1
|
Xie DF, Li J, Sun JH, Cheng RY, Wang Y, Song BN, He XJ, Zhou SD. Peering through the hedge: Multiple datasets yield insights into the phylogenetic relationships and incongruences in the tribe Lilieae (Liliaceae). Mol Phylogenet Evol 2024; 200:108182. [PMID: 39222738 DOI: 10.1016/j.ympev.2024.108182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 08/06/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The increasing use of genome-scale data has significantly facilitated phylogenetic analyses, contributing to the dissection of the underlying evolutionary mechanisms that shape phylogenetic incongruences, such as incomplete lineage sorting (ILS) and hybridization. Lilieae, a prominent member of the Liliaceae family, comprises four genera and approximately 260 species, representing 43% of all species within Liliaceae. They possess high ornamental, medicinal and edible values. Yet, no study has explored the validity of various genome-scale data in phylogenetic analyses within this tribe, nor have potential evolutionary mechanisms underlying its phylogenetic incongruences been investigated. Here, transcriptome, Angiosperms353, plastid and mitochondrial data, were collected from 50 to 93 samples of Lilieae, covering all four recognized genera. Multiple datasets were created and used for phylogenetic analyses based on concatenated and coalescent-based methods. Evolutionary rates of different datasets were calculated, and divergence times were estimated. Various approaches, including coalescence simulation, Quartet Sampling (QS), calculation of concordance factors (gCF and sCF), as well as MSCquartets and reticulate network inference, were carried out to infer the phylogenetic discordances and analyze their underlying mechanisms using a reduced 33-taxon dataset. Despite extensive phylogenetic discordances among gene trees, robust phylogenies were inferred from nuclear and plastid data compared to mitochondrial data, with lower synonymous substitution detected in mitochondrial genes than in nuclear and plastid genes. Significant ILS was detected across the phylogeny of Lilieae, with clear evidence of reticulate evolution identified. Divergence time estimation indicated that most of lineages in Lilieae diverged during a narrow time frame (ranging from 5.0 Ma to 10.0 Ma), consistent with the notion of rapid radiation evolution. Our results suggest that integrating transcriptomic and plastid data can serve as cost-effective and efficient tools for phylogenetic inference and evolutionary analysis within Lilieae, and Angiosperms353 data is also a favorable choice. Mitochondrial data are more suitable for phylogenetic analyses at higher taxonomic levels due to their stronger conservation and lower synonymous substitution rates. Significant phylogenetic incongruences detected in Lilieae were caused by both incomplete lineage sorting (ILS) and reticulate evolution, with hybridization and "ghost introgression" likely prevalent in the evolution of Lilieae species. Our findings provide new insights into the phylogeny of Lilieae, enhancing our understanding of the evolution of species in this tribe.
Collapse
Affiliation(s)
- Deng-Feng Xie
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065 Chengdu, Sichuan, PR China.
| | - Juan Li
- Southwest Minzu University, Institute Of Qinghai-Tibetan Plateau, 610225 Chengdu, Sichuan, PR China
| | - Jia-Hui Sun
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Rui-Yu Cheng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065 Chengdu, Sichuan, PR China
| | - Yuan Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065 Chengdu, Sichuan, PR China
| | - Bo-Ni Song
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065 Chengdu, Sichuan, PR China
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065 Chengdu, Sichuan, PR China
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065 Chengdu, Sichuan, PR China.
| |
Collapse
|
2
|
Song Y, Yu QF, Zhang D, Chen LG, Tan YH, Zhu W, Su HL, Yao X, Liu C, Corlett RT. New insights into the phylogenetic relationships within the Lauraceae from mitogenomes. BMC Biol 2024; 22:241. [PMID: 39444010 DOI: 10.1186/s12915-024-02040-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND The family Lauraceae is subdivided into six main lineages: Caryodaphnopsideae, Cassytheae, Cryptocaryeae, Hypodaphnideae, Laureae, and Neocinnamomeae. However, phylogenetic relationships among these lineages have been debatable due to incongruence between trees constructed using nuclear ribosomal DNA (nrDNA) sequences and chloroplast (cp) genomes. As with cp DNA, the mitochondrial (mt) DNA of most flowering plants is maternally inherited, so the phylogenetic relationships recovered with mt genomes are expected to be consistent with that from cp genomes, rather than nrDNA sequences. RESULTS The mitogenome of Machilus yunnanensis, with a length of 735,392 bp, has a very different genome size and gene linear order from previously published magnoliid mitogenomes. Phylogenomic reconstructions based on 41 mt genes from 92 Lauraceae mitogenomes resulted in highly supported relationships: sisterhood of the Laureae and a group containing Neocinnamomeae and Caryodaphnopsideae, with Cassytheae being the next sister group, followed by Cryptocaryeae. However, we found significant incongruence among the mitochondrial, chloroplast, and nuclear phylogenies, especially for the species within the Caryodaphnopsideae and Neocinnamomeae lineages. Time-calibrated phylogenetic analyses showed that the split between Caryodaphnopsideae and Neocinnamomeae dated to the later Eocene, around 38.5 Ma, Laureae originated in the Late Cretaceous, around 84.9 Ma, Cassytheae originated in the mid-Cretaceous around 102 Ma, and Cryptocaryeae originated in the Early Cretaceous around 116 Ma. From the Late Cretaceous to the Paleocene, net diversification rates significantly increased across extant clades of major lineages, and both speciation rates and net diversification rates continued steady growth towards the present. CONCLUSIONS The topology obtained here for the first time shows that mt genes can be used to support relationships among lineages of Lauraceae. Our results highlight that both Caryodaphnopsideae and Neocinnamomeae lineages are younger than previously thought, likely first diversifying in the Eocene, and species in the other extant lineages of Lauraceae dates in a long-time span from the Early Cretaceous to the Eocene, and the climate of a period of about 90 million years was relatively warm, while the extant species of Lauraceae then continuously diversified with global cooling from the Eocene to the present day.
Collapse
Affiliation(s)
- Yu Song
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education) & Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, 541004, Guangxi, China
| | - Qun-Fei Yu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
| | - Di Zhang
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Li-Gang Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
| | - Yun-Hong Tan
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Yunnan International Joint Laboratory of Southeast Asia Biodiversity Conservation & Yunnan Key Laboratory for Conservation of Tropical Rainforests and Asian Elephants, Menglun, Mengla, Yunnan, 666303, China
| | - Wen Zhu
- Southwest Research Center for Landscape Architecture Engineering, National Forestry and Grassland Administration, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Hua-Long Su
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education) & Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, 541004, Guangxi, China
| | - Xin Yao
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China.
| | - Chao Liu
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, 655011, China.
| | - Richard T Corlett
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China.
| |
Collapse
|
3
|
Chen H, Li T, Chen X, Zheng X, Qu T, Li B, Fu Z. Phylogenomic Analysis of Dichrocephala benthamii and Comparative Analysis within Tribe Astereae (Asteraceae). Genet Mol Biol 2024; 47:e20230340. [PMID: 39438250 PMCID: PMC11495966 DOI: 10.1590/1678-4685-gmb-2023-0340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/08/2024] [Indexed: 10/25/2024] Open
Abstract
Dichrocephala benthamii C. B. Clarke has long been used as traditional Chinese medicine. However, the chloroplast (cp) genome of D. benthamii is poorly understood so far. In this study, we sequenced and analyzed the cp genome of D. benthamii. The results showed that the cp genome is 152,350 bp in length, with a pair of inverted repeat regions (IRa and IRb, each 24,982 bp), a large single-copy (LSC) region comprising 84,136 bp, and a small single-copy (SSC) region comprising 18,250 bp. The GC content of the cp genome was 37.3%. A total of 134 genes were identified, including 87 protein-coding genes (CDS), 38 tRNA genes, 8 rRNA genes, and 1 pseudogene (ycf1). Expansion or contraction of IR regions were detected in D. benthamii and other species of the tribe Astereae. Additionally, our analyses showed the types of sequence repeats and the highly variable regions discovered by analyzing the border regions, sequence divergence, and hot spots. The phylogenetic analysis revealed D. benthamii is the basal group of Astereae. The results of this study will be a significant contribution to the genetics and species identification related to D. benthamii.
Collapse
Affiliation(s)
- Hui Chen
- Sichuan Normal University, Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Chengdu, Sichuan, China
- Sichuan Normal University, College of Life Sciences, Chengdu, Sichuan, China
| | - Tingyu Li
- Sichuan Normal University, College of Life Sciences, Chengdu, Sichuan, China
| | - Xinyu Chen
- Sichuan Normal University, College of Life Sciences, Chengdu, Sichuan, China
| | - Xinyi Zheng
- Sichuan Normal University, College of Life Sciences, Chengdu, Sichuan, China
| | - Tianmeng Qu
- Sichuan Normal University, College of Life Sciences, Chengdu, Sichuan, China
| | - Bo Li
- Sichuan Environmental Monitoring Center, Chengdu, Sichuan, China
| | - Zhixi Fu
- Sichuan Normal University, Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Chengdu, Sichuan, China
- Sichuan Normal University, College of Life Sciences, Chengdu, Sichuan, China
- Sichuan Normal University, Sustainable Development Research Center of Resources and Environment of Western Sichuan, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Uckele KA, Vargas OM, Kay KM. Prezygotic barriers effectively limit hybridization in a rapid evolutionary radiation. THE NEW PHYTOLOGIST 2024. [PMID: 39400313 DOI: 10.1111/nph.20187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/22/2024] [Indexed: 10/15/2024]
Abstract
Hybridization is increasingly recognized as an important evolutionary process across the tree of life. In many clades, phylogenomic approaches have permitted unparalleled insight into the extent and frequency of hybridization. However, we continue to lack a deep understanding of the factors that limit and shape patterns of hybridization, especially in evolutionary radiations. In this study, we characterized patterns of introgression across Costus (Costaceae), a young evolutionary radiation of tropical understory plants that maintain widespread interfertility despite exhibiting strong prezygotic reproductive isolation. We analyzed a phylogenomic dataset of 756 genes from 54 Costus species using multiple complementary approaches - D-statistics, gene-tree-based tests, and phylogenetic network analyses - to detect and characterize introgression events throughout the evolutionary history of the radiation. Our results identified a moderate number of introgression events, including a particularly ancient, well-supported event spanning one of the deepest divergences in the clade. Most introgression events occurred between taxa or ancestral lineages that shared the same pollination syndrome (bee-pollinated or hummingbird-pollinated). These findings suggest that prezygotic barriers, including pollinator specialization, have been key to the balance between introgression and reproductive isolation in Costus.
Collapse
Affiliation(s)
- Kathryn A Uckele
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, 95060, USA
| | - Oscar M Vargas
- Department of Biological Sciences, California State Polytechnic University, Humboldt, Arcata, CA, 95521, USA
| | - Kathleen M Kay
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, 95060, USA
| |
Collapse
|
5
|
Manzo E, Tomasello S. The first complete chloroplast genome for the species-rich genus Anthemis (Asteraceae). Mitochondrial DNA B Resour 2024; 9:1248-1253. [PMID: 39301046 PMCID: PMC11411556 DOI: 10.1080/23802359.2024.2405528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024] Open
Abstract
Anthemis L. 1753 is a species-rich genus of Asteraceae. It includes species of economic value as ornamental, edible and medicinal plants. We report here the complete chloroplast genome of Anthemis cretica subsp. calabrica (Arcang.) R. Fern. 1975, the first chloroplast genome of any Anthemis species. For the scope, we have used long reads obtained with Oxford Nanopore technology. The assembled plastome is 149,509 bp long and is subdivided in a large single-copy region (LSC, 82,317 bp), a small single-copy region (SSC, 18,212 bp) and two inverted repeat regions (IR: 24,490 bp). It comprehends 136 predicted genes, of which 92 protein-coding genes, 35 tRNAs, and 8 rRNAs. The overall GC content is 37.54%. The position of A. cretica subsp. calabrica in the phylogenetic tree is congruent with those of previous analyses based on a few chloroplast or nuclear regions.
Collapse
Affiliation(s)
- Eleonora Manzo
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Göttingen, Göttingen, Germany
| | - Salvatore Tomasello
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Göttingen, Göttingen, Germany
| |
Collapse
|
6
|
Frost LA, Bedoya AM, Lagomarsino LP. Artifactual Orthologs and the Need for Diligent Data Exploration in Complex Phylogenomic Datasets: A Museomic Case Study from the Andean Flora. Syst Biol 2024; 73:308-322. [PMID: 38170162 DOI: 10.1093/sysbio/syad076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/20/2023] [Accepted: 01/02/2024] [Indexed: 01/05/2024] Open
Abstract
The Andes mountains of western South America are a globally important biodiversity hotspot, yet there is a paucity of resolved phylogenies for plant clades from this region. Filling an important gap in our understanding of the World's richest flora, we present the first phylogeny of Freziera (Pentaphylacaceae), an Andean-centered, cloud forest radiation. Our dataset was obtained via hybrid-enriched target sequence capture of Angiosperms353 universal loci for 50 of the ca. 75 spp., obtained almost entirely from herbarium specimens. We identify high phylogenomic complexity in Freziera, including the presence of data artifacts. Via by-eye observation of gene trees, detailed examination of warnings from recently improved assembly pipelines, and gene tree filtering, we identified that artifactual orthologs (i.e., the presence of only one copy of a multicopy gene due to differential assembly) were an important source of gene tree heterogeneity that had a negative impact on phylogenetic inference and support. These artifactual orthologs may be common in plant phylogenomic datasets, where multiple instances of genome duplication are common. After accounting for artifactual orthologs as source of gene tree error, we identified a significant, but nonspecific signal of introgression using Patterson's D and f4 statistics. Despite phylogenomic complexity, we were able to resolve Freziera into 9 well-supported subclades whose evolution has been shaped by multiple evolutionary processes, including incomplete lineage sorting, historical gene flow, and gene duplication. Our results highlight the complexities of plant phylogenomics, which are heightened in Andean radiations, and show the impact of filtering data processing artifacts and standard filtering approaches on phylogenetic inference.
Collapse
Affiliation(s)
- Laura A Frost
- Shirley C. Tucker Herbarium, Department of Biological Sciences, Louisiana State University, Life Science Annex Building A257, Baton Rouge, LA 70803, USA
- Biology Department, University of South Alabama, 5871 USA N Dr, Mobile, AL 36688, USA
| | - Ana M Bedoya
- Shirley C. Tucker Herbarium, Department of Biological Sciences, Louisiana State University, Life Science Annex Building A257, Baton Rouge, LA 70803, USA
| | - Laura P Lagomarsino
- Shirley C. Tucker Herbarium, Department of Biological Sciences, Louisiana State University, Life Science Annex Building A257, Baton Rouge, LA 70803, USA
| |
Collapse
|
7
|
Li T, Chen H, Chen X, Qu T, Zheng X, Pang L, Gu X, Fu Z. Characterization and phylogenetic analysis of the complete chloroplast genome of Carpesium lipskyi (Asteraceae, Inuleae). Mitochondrial DNA B Resour 2024; 9:924-928. [PMID: 39077057 PMCID: PMC11285215 DOI: 10.1080/23802359.2024.2383680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024] Open
Abstract
The species of Carpesium lipskyi C.Winkl. 1998 is an important traditional Chinese medicine in China. In this study, the complete chloroplast (cp) genome of C. lipskyi was determined and analyzed. The result showed that the complete cp genome of C. lipskyi was 151,244 bp in length, consisting of a large single-copy (LSC) region of 82,908 bp, a small single-copy (SSC) region of 18,430 bp, and a pair of inverted repeats (IRs) of 24,953 bp. The overall GC content of the C. lipskyi is 37.68%. The species of C. lipskyi possessed 127 genes, including 83 protein-coding genes, 36 transfer RNA genes, and eight ribosomal RNA genes. The present study found that Inula is sister groups with the closest genetic relationship. The obtained knowledge could provide useful information for future phylogenetic, taxonomic, and evolutionary studies on Inuleae.
Collapse
Affiliation(s)
- Tingyu Li
- Ministry of Education, Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Chengdu, China
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Hui Chen
- Ministry of Education, Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Chengdu, China
| | - Xinyu Chen
- Ministry of Education, Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Chengdu, China
| | - Tianmeng Qu
- Ministry of Education, Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Chengdu, China
| | - Xinyi Zheng
- Ministry of Education, Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Chengdu, China
| | - Liang Pang
- Sichuan Tianshengyuan Environmental Services Co., Ltd, Chengdu, China
- Sichuan Tianshengyuan Information Technology Co., Ltd, Chengdu, China
| | - Xianhua Gu
- Sichuan Leshan Ecological Environment Monitoring Center Station, Leshan, China
| | - Zhixi Fu
- Ministry of Education, Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Chengdu, China
- College of Life Sciences, Sichuan Normal University, Chengdu, China
- Sustainable Development Research Center of Resources and Environment of Western Sichuan, Sichuan Normal University, Chengdu, China
| |
Collapse
|
8
|
Zheng HZ, Dai W, Xu MH, Lin YY, Zhu XL, Long H, Tong LL, Xu XG. Intraspecific Differentiation of Styrax japonicus (Styracaceae) as Revealed by Comparative Chloroplast and Evolutionary Analyses. Genes (Basel) 2024; 15:940. [PMID: 39062719 PMCID: PMC11275416 DOI: 10.3390/genes15070940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Styrax japonicus is a medicinal and ornamental shrub belonging to the Styracaceae family. To explore the diversity and characteristics of the chloroplast genome of S. japonicus, we conducted sequencing and comparison of the chloroplast genomes of four naturally distributed S. japonicus. The results demonstrated that the four chloroplast genomes (157,914-157,962 bp) exhibited a typical quadripartite structure consisting of a large single copy (LSC) region, a small single copy (SSC) region, and a pair of reverse repeats (IRa and IRb), and the structure was highly conserved. DNA polymorphism analysis revealed that three coding genes (infA, psbK, and rpl33) and five intergene regions (petA-psbJ, trnC-petN, trnD-trnY, trnE-trnT, and trnY-trnE) were identified as mutation hotspots. These genetic fragments have the potential to be utilized as DNA barcodes for future identification purposes. When comparing the boundary genes, a small contraction was observed in the IR region of four S. japonicus. Selection pressure analysis indicated positive selection for ycf1 and ndhD. These findings collectively suggest the adaptive evolution of S. japonicus. The phylogenetic structure revealed conflicting relationships among several S. japonicus, indicating divergent evolutionary paths within this species. Our study concludes by uncovering the genetic traits of the chloroplast genome in the differentiation of S. japonicus variety, offering fresh perspectives on the evolutionary lineage of this species.
Collapse
Affiliation(s)
- Hao-Zhi Zheng
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Science, Nanjing Forestry University, Nanjing 210037, China; (H.-Z.Z.); (W.D.); (M.-H.X.); (Y.-Y.L.); (X.-L.Z.); (H.L.)
- State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Wuyi Mountains, Nanjing 210037, China
| | - Wei Dai
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Science, Nanjing Forestry University, Nanjing 210037, China; (H.-Z.Z.); (W.D.); (M.-H.X.); (Y.-Y.L.); (X.-L.Z.); (H.L.)
- State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Wuyi Mountains, Nanjing 210037, China
| | - Meng-Han Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Science, Nanjing Forestry University, Nanjing 210037, China; (H.-Z.Z.); (W.D.); (M.-H.X.); (Y.-Y.L.); (X.-L.Z.); (H.L.)
- State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Wuyi Mountains, Nanjing 210037, China
| | - Yu-Ye Lin
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Science, Nanjing Forestry University, Nanjing 210037, China; (H.-Z.Z.); (W.D.); (M.-H.X.); (Y.-Y.L.); (X.-L.Z.); (H.L.)
- State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Wuyi Mountains, Nanjing 210037, China
| | - Xing-Li Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Science, Nanjing Forestry University, Nanjing 210037, China; (H.-Z.Z.); (W.D.); (M.-H.X.); (Y.-Y.L.); (X.-L.Z.); (H.L.)
- State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Wuyi Mountains, Nanjing 210037, China
| | - Hui Long
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Science, Nanjing Forestry University, Nanjing 210037, China; (H.-Z.Z.); (W.D.); (M.-H.X.); (Y.-Y.L.); (X.-L.Z.); (H.L.)
- State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Wuyi Mountains, Nanjing 210037, China
| | - Li-Li Tong
- School of Horticulture & Landscape Architecture, Jinling Institute of Technology, Nanjing 210038, China;
| | - Xiao-Gang Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Science, Nanjing Forestry University, Nanjing 210037, China; (H.-Z.Z.); (W.D.); (M.-H.X.); (Y.-Y.L.); (X.-L.Z.); (H.L.)
- State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Wuyi Mountains, Nanjing 210037, China
| |
Collapse
|
9
|
Draper D, Riofrío L, Naranjo C, Marques I. The Complex Genetic Legacy of Hybridization and Introgression between the Rare Ocotea loxensis van der Werff and the Widespread O. infrafoveolata van der Werff (Lauraceae). PLANTS (BASEL, SWITZERLAND) 2024; 13:1956. [PMID: 39065483 PMCID: PMC11280420 DOI: 10.3390/plants13141956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
Hybridization and introgression are complex evolutionary mechanisms that can increase species diversity and lead to speciation, but may also lead to species extinction. In this study, we tested the presence and genetic consequences of hybridization between the rare and Ecuadorian endemic O. loxensis van der Werff and the widespread O. infrafoveolata van der Werff (Lauraceae). Phenotypically, some trees are difficult to identify, and we expect that some might in fact be cryptic hybrids. Thus, we developed nuclear microsatellites to assess the existence of hybrids, as well as the patterns of genetic diversity and population structure in allopatric and sympatric populations. The results revealed high levels of genetic diversity, even in the rare O. loxensis, being usually significantly higher in sympatric than in allopatric populations. The Bayesian assignment of individuals into different genetic classes revealed a complex scenario with different hybrid generations occurring in all sympatric populations, but also in allopatric ones. The absence of some backcrossed hybrids suggests the existence of asymmetric gene flow, and that some hybrids might be more fitted than others might. The existence of current and past interspecific gene flow also explains the blurring of species boundaries in these species and could be linked to the high rates of species found in Ocotea.
Collapse
Affiliation(s)
- David Draper
- Center for Ecology, Evolution, and Environmental Changes & CHANGE—Global Change and Sustainability Institute, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Lorena Riofrío
- Facultad de Ciencias Exactas y Naturales, Universidad Tecnica Particular de Loja (UTPL), Loja 1101608, Ecuador; (L.R.); (C.N.)
| | - Carlos Naranjo
- Facultad de Ciencias Exactas y Naturales, Universidad Tecnica Particular de Loja (UTPL), Loja 1101608, Ecuador; (L.R.); (C.N.)
| | - Isabel Marques
- Forest Research Centre, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, 1349-017 Lisbon, Portugal
| |
Collapse
|
10
|
Kang ES, Son DC, Kim SC. The complete chloroplast genome assembly of Solidago altissima (Lineaus, 1753) (Astereae; Asteraceae). Mitochondrial DNA B Resour 2024; 9:605-609. [PMID: 38720906 PMCID: PMC11078073 DOI: 10.1080/23802359.2024.2349138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
This study aims to report the complete chloroplast genome of Solidago altissima L., a globally recognized invasive plant. The complete genome length of S. altissima is 152,961 bp; S. altissima has a typical quadripartite structure (including a large single copy of 84,829 bp, a small single copy of 18,084 bp, and two inverted repeat regions of 25,024 bp), which is commonly found in angiosperms. The genome contains 129 genes, consisting of 85 coding sequences, 36 tRNA genes, and 8 rRNA genes. To understand the phylogenetic relationship between S. altissima and its related species, maximum likelihood analysis was performed. The results revealed that S. altissima is closely related to Symphyotrichum subulatum. The findings of the present study could provide fundamental data for the future phylogenetic and evolutionary studies, while also research on species invasion and resolving complexity of S. altissima.
Collapse
Affiliation(s)
- Eun Su Kang
- Forest Biodiversity Division, Korea National Arboretum, Gyeonggi-do, Republic of Korea
| | - Dong Chan Son
- Forest Biodiversity Division, Korea National Arboretum, Gyeonggi-do, Republic of Korea
| | - Sang-Chul Kim
- Forest Biodiversity Division, Korea National Arboretum, Gyeonggi-do, Republic of Korea
| |
Collapse
|
11
|
Chen H, Li T, Chen X, Qu T, Zheng X, Luo J, Li B, Zhang G, Fu Z. Insights into comparative genomics, structural features, and phylogenetic relationship of species from Eurasian Aster and its related genera (Asteraceae: Astereae) based on complete chloroplast genome. FRONTIERS IN PLANT SCIENCE 2024; 15:1367132. [PMID: 38736446 PMCID: PMC11082289 DOI: 10.3389/fpls.2024.1367132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/25/2024] [Indexed: 05/14/2024]
Abstract
Aster L. is an economically and phylogenetically important genus in the tribe Astereae. Here, the complete plastomes of the eight Aster species were assembled and characterized using next-generation sequencing datasets. The results indicated the complete plastomes of Aster had a quadripartite structure. These genomes were 152,045-152,729 bp in length and contained 132-133 genes, including 87 protein-coding genes, 37-38 tRNA genes, and eight rRNA genes. Expansion or contraction of inverted repeat regions and forward, palindromic, complement, and reverse repeats were detected in the eight Aster species. Additionally, our analyses showed the richest type of simple sequence repeats was A/T mononucleotides, and 14 highly variable regions were discovered by analyzing the border regions, sequence divergence, and hotspots. Phylogenetic analyses indicated that 27 species in Astereae were clustered into six clades, i.e., A to D, North American, and outgroup clades, and supported that the genera Heteropappus, Kalimeris, and Heteroplexis are nested within Aster. The results indicated the clades B to D might be considered as genera. Divergence time estimate showed the clades A, B, C, and D diverged at 23.15 Mya, 15.13 Mya, 24.29 Mya, and 21.66 Mya, respectively. These results shed light on the phylogenetic relationships of Aster and provided new information on species identification of Aster and its related genera.
Collapse
Affiliation(s)
- Hui Chen
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Sichuan Normal University, Ministry of Education, Chengdu, China
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Tingyu Li
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Sichuan Normal University, Ministry of Education, Chengdu, China
| | - Xinyu Chen
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Sichuan Normal University, Ministry of Education, Chengdu, China
| | - Tianmeng Qu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Sichuan Normal University, Ministry of Education, Chengdu, China
| | - Xinyi Zheng
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Sichuan Normal University, Ministry of Education, Chengdu, China
| | - Junjia Luo
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Sichuan Normal University, Ministry of Education, Chengdu, China
| | - Bo Li
- Sichuan Environmental Monitoring Center, Chengdu, China
| | - Guojin Zhang
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Zhixi Fu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Sichuan Normal University, Ministry of Education, Chengdu, China
- College of Life Sciences, Sichuan Normal University, Chengdu, China
- Sustainable Development Research Center of Resources and Environment of Western Sichuan, Sichuan Normal University, Chengdu, China
| |
Collapse
|
12
|
Lao XL, Meng Y, Wu J, Wen J, Nie ZL. Plastid genomes provide insights into the phylogeny and chloroplast evolution of the paper daisy tribe Gnaphalieae (Asteraceae). Gene 2024; 901:148177. [PMID: 38242378 DOI: 10.1016/j.gene.2024.148177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/03/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Chloroplast genomes, as an essential source of phylogenetic information, are increasingly utilized in the evolutionary study of angiosperms. Gnaphalieae is a medium-sized tribe of the sunflower family of Asteraceae, with about 2,100 species in 178 genera distributed in temperate habitats worldwide. There has been considerable progress in our understanding of their phylogenetic evolution using both nuclear and chloroplast sequences, but no focus on chloroplast genomic data. In this study, we performed sequencing, assembly, and annotation of 16 representative chloroplast genomes from all the major lineages of Gnaphalieae. Our results showed that the plastomes exhibited a typical circular tetrad structure with similar genomic structure gene content. But there were differences in genome size, SSRs, and codon usage within the tribe. Phylogenetic analysis revealed Relhania clade is the earliest diverged lineages with the Lasiopogon clade and the Gnaphalium s.s. clade diverged subsequently. The core group includes FLAG clade sister to the HAP and Australasian group. Compared with the outgroup species, chloroplast genome size of the FLAG clade is much reduced whereas those of Australasian, HAP, Gnaphalium s.s., Lasiopogon and Relhania clades are relatively expanded. Insertions and deletions in the intergenic regions associated with repetitive sequence variations are supposed to be the main factor leading to length variations in the chloroplast genomes of Gnaphalieae. The comparative analyses of chloroplast genomes would provide useful implications into understanding the taxonomic and evolutionary history of Gnaphalieae.
Collapse
Affiliation(s)
- Xiao-Lin Lao
- College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan 416000, China
| | - Ying Meng
- College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan 416000, China
| | - Jue Wu
- College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan 416000, China
| | - Jun Wen
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012, USA
| | - Ze-Long Nie
- College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan 416000, China.
| |
Collapse
|
13
|
Zhang G, Ma H. Nuclear phylogenomics of angiosperms and insights into their relationships and evolution. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:546-578. [PMID: 38289011 DOI: 10.1111/jipb.13609] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/03/2024] [Indexed: 02/06/2024]
Abstract
Angiosperms (flowering plants) are by far the most diverse land plant group with over 300,000 species. The sudden appearance of diverse angiosperms in the fossil record was referred to by Darwin as the "abominable mystery," hence contributing to the heightened interest in angiosperm evolution. Angiosperms display wide ranges of morphological, physiological, and ecological characters, some of which have probably influenced their species richness. The evolutionary analyses of these characteristics help to address questions of angiosperm diversification and require well resolved phylogeny. Following the great successes of phylogenetic analyses using plastid sequences, dozens to thousands of nuclear genes from next-generation sequencing have been used in angiosperm phylogenomic analyses, providing well resolved phylogenies and new insights into the evolution of angiosperms. In this review we focus on recent nuclear phylogenomic analyses of large angiosperm clades, orders, families, and subdivisions of some families and provide a summarized Nuclear Phylogenetic Tree of Angiosperm Families. The newly established nuclear phylogenetic relationships are highlighted and compared with previous phylogenetic results. The sequenced genomes of Amborella, Nymphaea, Chloranthus, Ceratophyllum, and species of monocots, Magnoliids, and basal eudicots, have facilitated the phylogenomics of relationships among five major angiosperms clades. All but one of the 64 angiosperm orders were included in nuclear phylogenomics with well resolved relationships except the placements of several orders. Most families have been included with robust and highly supported placements, especially for relationships within several large and important orders and families. Additionally, we examine the divergence time estimation and biogeographic analyses of angiosperm on the basis of the nuclear phylogenomic frameworks and discuss the differences compared with previous analyses. Furthermore, we discuss the implications of nuclear phylogenomic analyses on ancestral reconstruction of morphological, physiological, and ecological characters of angiosperm groups, limitations of current nuclear phylogenomic studies, and the taxa that require future attention.
Collapse
Affiliation(s)
- Guojin Zhang
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Department of Biology, 510 Mueller Laboratory, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Hong Ma
- Department of Biology, 510 Mueller Laboratory, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
14
|
Luo J, Liu X, Li T, Chen H, Qu T, Wang Y, Yu S, Fu Z. Characterization and phylogenetic analysis of the chloroplast genome of Duhaldea cappa (Buch.-Ham. ex D.Don) Pruski & Anderb. (Asteraceae). Mitochondrial DNA B Resour 2024; 9:186-190. [PMID: 38282979 PMCID: PMC10812854 DOI: 10.1080/23802359.2024.2306203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 01/11/2024] [Indexed: 01/30/2024] Open
Abstract
Duhaldea cappa, a valuable medicinal plant of genus Duhaldea in the tribe Inuleae, is predominantly found in China, Bhutan, India, Malaysia, Nepal, Pakistan, Thailand, and Vietnam. However, the genomic studies of Duhaldea cappa are limited. In this study, we successfully sequenced and assembled the complete chloroplast genome of Duhaldea cappa. The chloroplast genome is 150,819 bp in length with a 37.73% GC content. The chloroplast genome has a quadripartite structure, consisting of a large single-copy region of 82,731 bp, a small single-copy region of 18,168 bp, and a pair of inverted repeat sequences of 24,960 bp. The genome contains 133 genes. Among these genes, there are 88 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. The phylogeny reconstructed from data of the complete chloroplast genome indicated that Duhaldea cappa is closely related to Pluchea indica in the tribe Inuleae. Analyzing and reporting the chloroplast genome of Duhaldea cappa will establish a solid theoretical and data foundation for the efficient development, conservation, and utilization of this plant species.
Collapse
Affiliation(s)
- Junjia Luo
- Ministry of Education, Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Chengdu, China
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Xiaofeng Liu
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Tingyu Li
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Hui Chen
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Tianmeng Qu
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Yueguang Wang
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Shuhua Yu
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Zhixi Fu
- Ministry of Education, Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Chengdu, China
- College of Life Sciences, Sichuan Normal University, Chengdu, China
- Sustainable Development Research Center of Resources and Environment of Western Sichuan, Sichuan Normal University, Chengdu, China
| |
Collapse
|
15
|
Liu Y, Wang H, Yang J, Dao Z, Sun W. Conservation genetics and potential geographic distribution modeling of Corybas taliensis, a small 'sky Island' orchid species in China. BMC PLANT BIOLOGY 2024; 24:11. [PMID: 38163918 PMCID: PMC10759615 DOI: 10.1186/s12870-023-04693-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Corybas taliensis is an endemic species of sky islands in China. Its habitat is fragile and unstable, and it is likely that the species is threatened. However, it is difficult to determine the conservation priority or unit without knowing the genetic background and the overall distribution of this species. In this study, we used double digest restriction-site associated DNA-sequencing (ddRAD-seq) to investigate the conservation genomics of C. taliensis. At the same time, we modeled the extent of suitable habitat for C. taliensis in present and future (2030 and 2090) habitat using the maximum-entropy (MaxEnt) model. RESULTS The results suggested that the related C. fanjingshanensis belongs to C. taliensis and should not be considered a separate species. All the sampling locations were divided into three genetic groups: the Sichuan & Guizhou population (SG population), the Hengduan Mountains population (HD population) and Himalayan population (HM population), and we found that there was complex gene flow between the sampling locations of HD population. MT was distinct genetically from the other sampling locations due to the unique environment in Motuo. The genetic diversity (π, He) of C. taliensis was relatively high, but its contemporary effective population size (Ne) was small. C. taliensis might be currently affected by inbreeding depression, although its large population density may be able to reduce the effect of this. The predicted areas of suitable habitat currently found in higher mountains will not change significantly in the future, and these suitable habitats are predicted to spread to other higher mountains under future climate change. However, suitable habitat in relatively low altitude areas may disappear in the future. This suggests that C. taliensis will be caught in a 'summit trap' in low altitude areas, however, in contrast, the high altitude of the Himalaya and the Hengduan Mountains are predicted to act as 'biological refuges' for C. taliensis in the future. CONCLUSIONS These results not only provide a new understanding of the genetic background and potential resource distribution of C. taliensis, but also lay the foundation for its conservation and management.
Collapse
Affiliation(s)
- Yuhang Liu
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650201, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huichun Wang
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650201, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Yang
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650201, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650201, China
- Kunming Botanical Garden, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650201, China
| | - Zhiling Dao
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650201, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650201, China
- Kunming Botanical Garden, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650201, China
| | - Weibang Sun
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650201, China.
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650201, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Kunming Botanical Garden, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650201, China.
| |
Collapse
|
16
|
Thureborn O, Wikström N, Razafimandimbison SG, Rydin C. Phylogenomics and topological conflicts in the tribe Anthospermeae (Rubiaceae). Ecol Evol 2024; 14:e10868. [PMID: 38274863 PMCID: PMC10809029 DOI: 10.1002/ece3.10868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 11/15/2023] [Accepted: 12/05/2023] [Indexed: 01/27/2024] Open
Abstract
Genome skimming (shallow whole-genome sequencing) offers time- and cost-efficient production of large amounts of DNA data that can be used to address unsolved evolutionary questions. Here we address phylogenetic relationships and topological incongruence in the tribe Anthospermeae (Rubiaceae), using phylogenomic data from the mitochondrion, the nuclear ribosomal cistron, and the plastome. All three genomic compartments resolve relationships in the Anthospermeae; the tribe is monophyletic and consists of three major subclades. Carpacoce Sond. is sister to the remaining clade, which comprises an African subclade and a Pacific subclade. Most results, from all three genomic compartments, are statistically well supported; however, not fully consistent. Intergenomic topological incongruence is most notable in the Pacific subclade but present also in the African subclade. Hybridization and introgression followed by organelle capture may explain these conflicts but other processes, such as incomplete lineage sorting (ILS), can yield similar patterns and cannot be ruled out based on the results. Whereas the null hypothesis of congruence among all sequenced loci in the individual genomes could not be rejected for nuclear and mitochondrial data, it was rejected for plastid data. Phylogenetic analyses of three subsets of plastid loci identified using the hierarchical likelihood ratio test demonstrated statistically supported intragenomic topological incongruence. Given that plastid genes are thought to be fully linked, this result is surprising and may suggest modeling or sampling error. However, biological processes such as biparental inheritance and inter-plastome recombination have been reported and may be responsible for the observed intragenomic incongruence. Mitochondrial insertions into the plastome are rarely documented in angiosperms. Our results indicate that a mitochondrial insertion event in the plastid trnS GGA - rps4 IGS region occurred in the common ancestor of the Pacific clade of Anthospermeae. Exclusion/inclusion of this locus in phylogenetic analyses had a strong impact on topological results in the Pacific clade.
Collapse
Affiliation(s)
- Olle Thureborn
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
| | - Niklas Wikström
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
- The Bergius FoundationThe Royal Academy of SciencesStockholmSweden
| | | | - Catarina Rydin
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
- The Bergius FoundationThe Royal Academy of SciencesStockholmSweden
| |
Collapse
|
17
|
Olivares I, Tusso S, José Sanín M, de La Harpe M, Loiseau O, Rolland J, Salamin N, Kessler M, Shimizu KK, Paris M. Hyper-Cryptic radiation of a tropical montane plant lineage. Mol Phylogenet Evol 2024; 190:107954. [PMID: 37898295 DOI: 10.1016/j.ympev.2023.107954] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Species are seen as the fundamental unit of biotic diversity, and thus their delimitation is crucial for defining measures for diversity assessments and studying evolution. Differences between species have traditionally been associated with variation in morphology. And yet, the discovery of cryptic diversity suggests that the evolution of distinct lineages does not necessarily involve morphological differences. Here, we analyze 1,684,987 variant sites and over 4,000 genes for more than 400 samples to show how a tropical montane plant lineage (Geonoma undata species complex) is composed of numerous unrecognized genetic groups that are not morphologically distinct. We find that 11 to 14 clades do not correspond to the three currently recognized species. Most clades are genetically different and geographic distance and topography are the most important factors determining this genetic divergence. The genetic structure of this lineage does not match its morphological variation. Instead, this species complex constitutes the first example of a hyper-cryptic plant radiation in tropical mountains.
Collapse
Affiliation(s)
- Ingrid Olivares
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Switzerland.
| | - Sergio Tusso
- Department of Genetics, Faculty of Biology, Ludwig Maximilian Universität München, Germany
| | - María José Sanín
- School of Mathematical and Natural Sciences, Arizona State University. United States; Facultad de Ciencias y Biotecnología, Universidad CES, Colombia
| | - Marylaure de La Harpe
- Office for Nature Conservation and Environment of the Canton of Graubünden, Switzerland
| | - Oriane Loiseau
- School of Geosciences, University of Edinburgh, United Kingdom
| | - Jonathan Rolland
- CNRS, Laboratoire Evolution et Diversité Biologique, Université Toulouse, France
| | - Nicolas Salamin
- Department of Computational Biology, University of Lausanne, Switzerland
| | - Michael Kessler
- Department of Systematic and Evolutionary Botany, University of Zurich, Switzerland
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Switzerland; Kihara Institute of Biological Research, Yokohama City University, Japan
| | - Margot Paris
- Department of Biology. University of Fribourg, Switzerland
| |
Collapse
|
18
|
Moore‐Pollard ER, Jones DS, Mandel JR. Compositae-ParaLoss-1272: A complementary sunflower-specific probe set reduces paralogs in phylogenomic analyses of complex systems. APPLICATIONS IN PLANT SCIENCES 2024; 12:e11568. [PMID: 38369976 PMCID: PMC10873820 DOI: 10.1002/aps3.11568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/30/2023] [Accepted: 11/12/2023] [Indexed: 02/20/2024]
Abstract
Premise A family-specific probe set for sunflowers, Compositae-1061, enables family-wide phylogenomic studies and investigations at lower taxonomic levels, but may lack resolution at genus to species levels, especially in groups complicated by polyploidy and hybridization. Methods We developed a Hyb-Seq probe set, Compositae-ParaLoss-1272, that targets orthologous loci in Asteraceae. We tested its efficiency across the family by simulating target enrichment sequencing in silico. Additionally, we tested its effectiveness at lower taxonomic levels in the historically complex genus Packera. We performed Hyb-Seq with Compositae-ParaLoss-1272 for 19 Packera taxa that were previously studied using Compositae-1061. The resulting sequences from each probe set, plus a combination of both, were used to generate phylogenies, compare topologies, and assess node support. Results We report that Compositae-ParaLoss-1272 captured loci across all tested Asteraceae members, had less gene tree discordance, and retained longer loci than Compositae-1061. Most notably, Compositae-ParaLoss-1272 recovered substantially fewer paralogous sequences than Compositae-1061, with only ~5% of the recovered loci reporting as paralogous, compared to ~59% with Compositae-1061. Discussion Given the complexity of plant evolutionary histories, assigning orthology for phylogenomic analyses will continue to be challenging. However, we anticipate Compositae-ParaLoss-1272 will provide improved resolution and utility for studies of complex groups and lower taxonomic levels in the sunflower family.
Collapse
Affiliation(s)
- Erika R. Moore‐Pollard
- Department of Biological SciencesUniversity of Memphis3700 Walker Ave.MemphisTennessee38152USA
| | - Daniel S. Jones
- Department of Biological SciencesAuburn University101 Rouse Life SciencesAuburnAlabama36849USA
| | - Jennifer R. Mandel
- Department of Biological SciencesUniversity of Memphis3700 Walker Ave.MemphisTennessee38152USA
| |
Collapse
|
19
|
Liu XF, Luo JJ, Li TY, Chen H, Liu JY, Li B, Dou L, Fu ZX. Characterization and phylogenetic analysis of the complete chloroplast genome of Saussurea sagittifolia (Asteraceae, Cardueae). Mitochondrial DNA B Resour 2023; 8:1268-1272. [PMID: 38188437 PMCID: PMC10769533 DOI: 10.1080/23802359.2023.2281704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/03/2023] [Indexed: 01/09/2024] Open
Abstract
The species of Saussurea sagittifolia Y. S. Chen & S. R. Yi belongs to the family Asteraceae (Cardueae). The complete chloroplast genome of S. sagittifolia was assembled and annotated for the first time in this study. The complete chloroplast genome of S. sagittifolia was 152,535 bp, including a large single-copy (LSC) region of 83,511 bp, a small single-copy (SSC) region of 18,632 bp, and a pair of inverted repeats (IRs) of 25,196 bp. The overall GC content of the chloroplast genome was 37.7%. The chloroplast genome encoded 131 genes, including 87 protein-coding genes, 36 tRNA genes, and eight rRNA genes. Phylogenetic analysis based on complete chloroplast sequences revealed that it related closely to Saussurea medusa.
Collapse
Affiliation(s)
- Xiao-Feng Liu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Sichuan Normal University, Ministry of Education, Chengdu, China
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Jun-Jia Luo
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Ting-Yu Li
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Hui Chen
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | | | - Bo Li
- Sichuan Environmental Monitoring Center, Chengdu, China
| | - Liang Dou
- Museum of Natural History/School of Life Sciences, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, Key Laboratory of Conservation Biology on Endangered Wildlife of Sichuan Province, Sichuan University, Chengdu, China
| | - Zhi-Xi Fu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Sichuan Normal University, Ministry of Education, Chengdu, China
- College of Life Sciences, Sichuan Normal University, Chengdu, China
- Sustainable Development Research Center of Resources and Environment of Western Sichuan, Sichuan Normal University, Chengdu, China
| |
Collapse
|
20
|
Zhang C, Meng R, Meng Y, Guo BL, Liu QR, Nie ZL. Parallel evolution, atavism, and extensive introgression explain the radiation of Epimedium sect. Diphyllon (Berberidaceae) in southern East Asia. FRONTIERS IN PLANT SCIENCE 2023; 14:1234148. [PMID: 37915504 PMCID: PMC10616310 DOI: 10.3389/fpls.2023.1234148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/29/2023] [Indexed: 11/03/2023]
Abstract
East Asia is the richest region of plant biodiversity in the northern temperate zone, and its radiation provides key insights for understanding rapid speciation, including evolutionary patterns and processes. However, it is challenging to investigate the recent evolutionary radiation among plants because of the lack of genetic divergence, phenotypic convergence, and interspecific gene flow. Epimedium sect. Diphyllon is a rarely studied plant lineage endemic to East Asia, especially highly diversified in its southern part. In this study, we report a robust phylogenomic analysis based on genotyping-by-sequencing data of this lineage. The results revealed a clear biogeographic pattern for Epimedium sect. Diphyllon with recognition into two major clades corresponding to the Sino-Himalayan and Sino-Japanese subkingdoms of East Asian Flora and rapid diversification of the extant species dated to the Pleistocene. Evolutionary radiation of Epimedium sect. Diphyllon is characterized by recent and predominant parallel evolution and atavism between the two subkingdom regions, with extensive reticulating hybridization within each region during the course of diversification in southern East Asia. A parallel-atavism-introgression hypothesis is referred to in explaining the radiation of plant diversity in southern East Asia, which represents a potential model for the rapid diversification of plants under global climate cooling in the late Tertiary. Our study advances our understanding of the evolutionary processes of plant radiation in East Asia as well as in other biodiversity hotspot regions.
Collapse
Affiliation(s)
- Cheng Zhang
- Key Laboratory of Biodiversity Science and Ecological Engineering of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
- College of Biological Resources and Environmental Sciences, Jishou University, Jishou, Hunan, China
| | - Ran Meng
- College of Biological Resources and Environmental Sciences, Jishou University, Jishou, Hunan, China
| | - Ying Meng
- College of Biological Resources and Environmental Sciences, Jishou University, Jishou, Hunan, China
| | - Bao-Lin Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Quan-Ru Liu
- Key Laboratory of Biodiversity Science and Ecological Engineering of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Ze-Long Nie
- College of Biological Resources and Environmental Sciences, Jishou University, Jishou, Hunan, China
| |
Collapse
|
21
|
Escobari B, Borsch T, Kilian N. Generic concepts and species diversity within the Gynoxyoid clade (Senecioneae, Compositae). PHYTOKEYS 2023; 234:61-106. [PMID: 37860599 PMCID: PMC10582726 DOI: 10.3897/phytokeys.234.107750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/19/2023] [Indexed: 10/21/2023]
Abstract
The Gynoxyoid clade of the Senecioneae (Asteraceae) until now included the five genera Aequatorium, Gynoxys, Nordenstamia, Paracalia and Paragynoxys as diagnosed using selected morphological characters. In their pre-phylogenetic circumscription, the genera Aequatorium and Paragynoxys were considered to inhabit the northern Andes in contrast to Nordenstamia and Paracalia that occur in the central Andes. The most species-rich genus, Gynoxys, was believed to be distributed throughout the Andes. We use a recently established plastid phylogenomic framework that rendered Gynoxys paraphyletic to further evaluate the delimitation of genera in the Gynoxyoid clade. We examine the morphological variation of all members of the Gynoxyoid to identify characters potentially informative at genus level. This results in a matrix of eleven, mostly multistate characters, including those originally used to diagnose these genera. The ancestral character state inference displays a high level of homoplasy, but nevertheless supports the recognition of four genera. Aequatorium is characterised by white radiate capitula. Paracalia and Paragynoxys share white flowers and floral characteristics, such as flower opening and length of disc flowers lobes, as plesiomorphic states, but differ in habit (scandent shrubs vs. trees). Paracalia also retained white flowers, but its two species are characterised by the absence of outer phyllaries. The genera Gynoxys and Nordenstamia comprise species with yellow capitula which appear to be a derived feature in the Gynoxyoids. The genus Nordenstamia, with eight species, is synonymised under Gynoxys since molecular evidence shows its species nested within various parts of the Gynoxys subclade and the morphological variation of Nordenstamia falls well within that of Gynoxys. With the goal to assign all species to four genera (Aequatorium, Gynoxys, Paracalia and Paragynoxys), we assess the states for the eleven characters for all members of the Gynoxyoids and generate new ETS and ITS sequences for 171 specimens belonging to 49 species to further support their generic placement. We provide a taxonomic treatment for the four genera recognised here including amended diagnoses and morphological descriptions. Furthermore, a species-level taxonomic backbone is elaborated for all genera using electronic tools that list 158 currently accepted names and synonyms (209 names in total) with the respective protologue and type information, as well as notes on the current understanding of species limits. Eleven names are newly synonymised, two are lectotypified and eight are newly transferred to other genera.
Collapse
Affiliation(s)
- Belen Escobari
- Botanischer Garten und Botanisches Museum Berlin, Freie Universität Berlin, Berlin 14195, Germany
- Herbario Nacional de Bolivia, Universidad Mayor de San Andres, Casilla, La Paz, 10077, Bolivia
| | - Thomas Borsch
- Botanischer Garten und Botanisches Museum Berlin, Freie Universität Berlin, Berlin 14195, Germany
| | - Norbert Kilian
- Botanischer Garten und Botanisches Museum Berlin, Freie Universität Berlin, Berlin 14195, Germany
| |
Collapse
|
22
|
Yisilam G, Liu Z, Turdi R, Chu Z, Luo W, Tian X. Assembly and comparative analysis of the complete mitochondrial genome of Isopyrum anemonoides (Ranunculaceae). PLoS One 2023; 18:e0286628. [PMID: 37796878 PMCID: PMC10553351 DOI: 10.1371/journal.pone.0286628] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/19/2023] [Indexed: 10/07/2023] Open
Abstract
Ranunculaceae is a large family of angiosperms comprising 2500 known species-a few with medicinal and ornamental values. Despite this, only two mitochondrial genomes (mitogenomes) of the family have been released in GenBank. Isopyrum anemonoides is a medicinal plant belonging to the family Ranunculaceae, and its chloroplast genome has recently been reported; however, its mitogenome remains unexplored. In this study, we assembled and analyzed the complete mitochondrial genome of I. anemonoides and performed a comparative analysis against different Ranunculaceae species, reconstructing the phylogenetic framework of Isopyrum. The circular mitogenome of I. anemonoides has a length of 206,722 bp, with a nucleotide composition of A (26.4%), T (26.4%), C (23.6%), and G (23.6%), and contains 62 genes, comprising 37 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, and three ribosomal RNA (rRNA) genes. Abundantly interspersed repetitive and simple sequence repeat (SSR) loci were detected in the I. anemonoides mitogenome, with tetranucleotide repeats accounting for the highest proportion of SSRs. By detecting gene migration, we observed gene exchange between the chloroplast and mitogenome in I. anemonoides, including six intact tRNA genes, six PCG fragments, and fragments from two rRNA genes. Comparative mitogenome analysis of three Ranunculaceae species indicated that the PCG contents were conserved and the GC contents were similar. Selective pressure analysis revealed that only two genes (nad1 and rpl5) were under positive selection during their evolution in Ranunculales, and two specific RNA editing sites (atp6 and mttB) were detected in the I. anemonoides mitogenome. Moreover, a phylogenetic analysis based on the mitogenomes of I. anemonoides and the other 15 taxa accurately reflected the evolutionary and taxonomic status of I. anemonoides. Overall, this study provides new insights into the genetics, systematics, and evolution of mitochondrial evolution in Ranunculaceae, particularly I. anemonoides.
Collapse
Affiliation(s)
- Gulbar Yisilam
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Zhiyou Liu
- City Management and Service Centre of Tiemenguan, Xinjiang, China
| | - Rayhangul Turdi
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Zhenzhou Chu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Wei Luo
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Xinmin Tian
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life science and Technology, Xinjiang University, Urumqi, Xinjiang, China
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, College of Life Science, Guangxi Normal University, Ministry of Education, Guilin, 541004, China
| |
Collapse
|
23
|
Llaberia-Robledillo M, Lucas-Lledó JI, Pérez-Escobar OA, Krasnov BR, Balbuena JA. Rtapas: An R Package to Assess Cophylogenetic Signal between Two Evolutionary Histories. Syst Biol 2023; 72:946-954. [PMID: 36964756 DOI: 10.1093/sysbio/syad016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 03/14/2023] [Accepted: 03/24/2023] [Indexed: 03/26/2023] Open
Abstract
Cophylogeny represents a framework to understand how ecological and evolutionary process influence lineage diversification. The recently developed algorithm Random Tanglegram Partitions provides a directly interpretable statistic to quantify the strength of cophylogenetic signal and incorporates phylogenetic uncertainty into its estimation, and maps onto a tanglegram the contribution to cophylogenetic signal of individual host-symbiont associations. We introduce Rtapas, an R package to perform Random Tanglegram Partitions. Rtapas applies a given global-fit method to random partial tanglegrams of a fixed size to identify the associations, terminals, and internal nodes that maximize phylogenetic congruence. This new package extends the original implementation with a new algorithm that examines the contribution to phylogenetic incongruence of each host-symbiont association and adds ParaFit, a method designed to test for topological congruence between two phylogenies, to the list of global-fit methods than can be applied. Rtapas facilitates and speeds up cophylogenetic analysis, as it can handle large phylogenies (100+ terminals) in affordable computational time as illustrated with two real-world examples. Rtapas can particularly cater for the need for causal inference in cophylogeny in two domains: (i) Analysis of complex and intricate host-symbiont evolutionary histories and (ii) assessment of topological (in)congruence between phylogenies produced with different DNA markers and specifically identify subsets of loci for phylogenetic analysis that are most likely to reflect gene-tree evolutionary histories. [Cophylogeny; cophylogenetic signal; gene tree incongruence; phylogenetic congruence; phylogenomics.].
Collapse
Affiliation(s)
- Mar Llaberia-Robledillo
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, PO Box 22085, ES-46071 Valencia, Spain
| | - J Ignacio Lucas-Lledó
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, PO Box 22085, ES-46071 Valencia, Spain
| | | | - Boris R Krasnov
- Mitrani Department of Desert Ecology, Swiss Institute of Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990, Midreshet Ben-Gurion, Israel
| | - Juan Antonio Balbuena
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, PO Box 22085, ES-46071 Valencia, Spain
| |
Collapse
|
24
|
Chen G, Kang R, Wang Z, Jiang Y, Zhou H, Abuduaini A, Suo F, Huang L. The complete mitochondrial genome of Cuminum cyminum (Apiales: Apiaceae) and phylogenetic analysis. Mitochondrial DNA B Resour 2023; 8:760-765. [PMID: 37521907 PMCID: PMC10375935 DOI: 10.1080/23802359.2023.2238357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 07/13/2023] [Indexed: 08/01/2023] Open
Abstract
Cumin (Cuminum cyminum L). belongs to the family Apiaceae and the order Apiales, which is a widely grown spice and medicinal plant in Xinjiang province, China. In the current study, whole genome sequencing of C. cyminum was performed using the Illumina HiSeq 4000 platform, and the complete mitogenome sequence was assembled and annotated. We found that the single circular mitogenome of C. cyminum was 246,721 bp in length, and has about 45.5% GC content. It comprised 73 genes in the coding region (35 protein-coding genes, 18 tRNA genes, 3 rRNA genes, and 15 open-reading frames) and a non-coding region. Phylogenetic analysis indicated that C. cyminum is closely related to Daucus carota and the subtribes Daucinae. The mitogenome of C. cyminum revealed its phylogenetic relationships with other species in the Apiaceae family, which would further help in understanding its evolution.
Collapse
Affiliation(s)
- Ge Chen
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Ruiping Kang
- College of Life Science and Technology, Xinjiang University, Urumchi, Xinjiang, China
| | - Zihao Wang
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Yu Jiang
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Huiying Zhou
- College of Life Science and Technology, Xinjiang University, Urumchi, Xinjiang, China
| | - Aifeire Abuduaini
- College of Life Science and Technology, Xinjiang University, Urumchi, Xinjiang, China
| | - Feiya Suo
- College of Life Science and Technology, Xinjiang University, Urumchi, Xinjiang, China
| | - Luodong Huang
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
25
|
Su N, Hodel RG, Wang X, Wang JR, Xie SY, Gui CX, Zhang L, Chang ZY, Zhao L, Potter D, Wen J. Molecular phylogeny and inflorescence evolution of Prunus (Rosaceae) based on RAD-seq and genome skimming analyses. PLANT DIVERSITY 2023; 45:397-408. [PMID: 37601549 PMCID: PMC10435964 DOI: 10.1016/j.pld.2023.03.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 08/22/2023]
Abstract
Prunus is an economically important genus widely distributed in the temperate Northern Hemisphere. Previous studies on the genus using a variety of loci yielded conflicting phylogenetic hypotheses. Here, we generated nuclear reduced representation sequencing data and plastid genomes for 36 Prunus individuals and two outgroups. Both nuclear and plastome data recovered a well-resolved phylogeny. The species were divided into three main clades corresponding to their inflorescence types, - the racemose group, the solitary-flower group and the corymbose group - with the latter two sister to one another. Prunus was inferred to have diversified initially in the Late Cretaceous around 67.32 million years ago. The diversification of the three major clades began between the Paleocene and Miocene, suggesting that paleoclimatic events were an important driving force for Prunus diversification. Ancestral state reconstructions revealed that the most recent common ancestor of Prunus had racemose inflorescences, and the solitary-flower and corymb inflorescence types were derived by reduction of flower number and suppression of the rachis, respectively. We also tested the hybrid origin hypothesis of the racemose group proposed in previous studies. Prunus has undergone extensive hybridization events, although it is difficult to identify conclusively specific instances of hybridization when using SNP data, especially deep in the phylogeny. Our study provides well-resolved nuclear and plastid phylogenies of Prunus, reveals substantial cytonuclear discord at shallow scales, and sheds new light on inflorescence evolution in this economically important lineage.
Collapse
Affiliation(s)
- Na Su
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
- Herbarium of Northwest A&F University, Yangling 712100, China
| | - Richard G.J. Hodel
- Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, DC 20013-7012, USA
| | - Xi Wang
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
- Herbarium of Northwest A&F University, Yangling 712100, China
| | - Jun-Ru Wang
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
- Herbarium of Northwest A&F University, Yangling 712100, China
| | - Si-Yu Xie
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
- Herbarium of Northwest A&F University, Yangling 712100, China
| | - Chao-Xia Gui
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
- Herbarium of Northwest A&F University, Yangling 712100, China
| | - Ling Zhang
- College of Life Sciences, Tarim University, Alaer 843300, China
| | - Zhao-Yang Chang
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
- Herbarium of Northwest A&F University, Yangling 712100, China
| | - Liang Zhao
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
- Herbarium of Northwest A&F University, Yangling 712100, China
| | - Daniel Potter
- Department of Plant Sciences, MS2, University of California, Davis, CA 95616, USA
| | - Jun Wen
- Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, DC 20013-7012, USA
| |
Collapse
|
26
|
Vargas OM, Madriñán S, Simpson B. Allopatric speciation is more prevalent than parapatric ecological divergence in a recent high-Andean diversification ( Linochilus: Asteraceae). PeerJ 2023; 11:e15479. [PMID: 37312875 PMCID: PMC10259450 DOI: 10.7717/peerj.15479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/08/2023] [Indexed: 06/15/2023] Open
Abstract
Elucidating how species accumulate in diversity hotspots is an ongoing debate in evolutionary biology. The páramo, in the Northern Andes, has remarkably high indices of plant diversity, endemicity, and diversification rates. A hypothesis for explaining such indices is that allopatric speciation is high in the páramo given its island-like distribution. An alternative hypothesis is that the altitudinal gradient of the Andean topography provides a variety of niches that drive vertical parapatric ecological speciation. A formal test for evaluating the relative roles of allopatric and parapatric ecological speciation is lacking. The main aim of our study is to test which kind of speciation is more common in an endemic páramo genus. We developed a framework incorporating phylogenetics, species' distributions, and a morpho-ecological trait (leaf area) to compare sister species and infer whether allopatric or parapatric ecological divergence caused their speciation. We applied our framework to the species-rich genus Linochilus (63 spp.) and found that the majority of recent speciation events in it (12 events, 80%) have been driven by allopatric speciation, while a smaller fraction (one event, 6.7%) is attributed to parapatric ecological speciation; two pairs of sister species produced inconclusive results (13.3%). We conclude that páramo autochthonous (in-situ) diversification has been primarily driven by allopatric speciation.
Collapse
Affiliation(s)
- Oscar M. Vargas
- Department of Biological Sciences, California State Polytechnic University, Humboldt, Arcata, CA, United States
- Department of Integrative Biology and Billie Turner Plant Resources Center, The University of Texas at Austin, Austin, TX, USA
| | - Santiago Madriñán
- Department of Biological Sciences, University of the Andes, Bogotá, DC, Colombia
- Jardín Botánico de Cartagena, Turbaco, Bolívar, Colombia
| | - Beryl Simpson
- Department of Integrative Biology and Billie Turner Plant Resources Center, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
27
|
Zhang W, Hu Y, Zhang S, Shao J. Integrative taxonomy in a rapid speciation group associated with mating system transition: A case study in the Primula cicutariifolia complex. Mol Phylogenet Evol 2023:107840. [PMID: 37279815 DOI: 10.1016/j.ympev.2023.107840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/08/2023]
Abstract
Accurate species delimitation is the key to biodiversity conservation and is fundamental to most branches of biology. However, species delimitation remains challenging in those evolutionary radiations associated with mating system transition from outcrossing to self-fertilization, which have frequently occurred in angiosperms and are usually accompanied by rapid speciation. Here, using the Primula cicutariifolia complex as a case, we integrated molecular, morphological and reproductive isolation evidence to test and verify whether its outcrossing (distylous) and selfing (homostylous) populations have developed into independent evolutionary lineages. Phylogenetic trees based on whole plastomes and SNPs of the nuclear genome both indicated that the distylous and homostylous populations grouped into two different clades. Multispecies coalescent, gene flow and genetic structure analyses all supported such two clades as two different genetic entities. In morphology, as expected changes in selfing syndrome, homostylous populations have significantly fewer umbel layers and smaller flower and leaf sizes compared to distylous populations, and the variation range of some floral traits, such as corolla diameter and umbel layers, show obvious discontinuity. Furthermore, hand-pollinated hybridization between the two clades produced almost no seeds, indicating that well post-pollination reproductive isolation has been established between them. Therefore, the distylous and homostylous populations in this studied complex are two independent evolutionary lineages, and thus these distylous populations should be treated as a distinct species, here named Primula qiandaoensis W. Zhang & J.W. Shao sp. nov.. Our empirical study of the P. cicutariifolia complex highlights the importance of applying multiple lines of evidence, in particular genomic data, to delimit species in pervasive evolutionary plant radiations associated with mating system transition.
Collapse
Affiliation(s)
- Wei Zhang
- College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China; College of Life Sciences, Anqing Normal University, Anqing 246011, Anhui, China
| | - Yingfeng Hu
- College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China
| | - Siyu Zhang
- College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China
| | - Jianwen Shao
- College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China; Provincial Key Laboratory of Conservation and Utilization of Biological Resources, Wuhu 241000, Anhui, China.
| |
Collapse
|
28
|
Liu G, Xue G, Zhao T, Li Y, Yue L, Song H, Liu Q. Population structure and phylogeography of three closely related tree peonies. Ecol Evol 2023; 13:e10073. [PMID: 37274151 PMCID: PMC10234759 DOI: 10.1002/ece3.10073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 06/06/2023] Open
Abstract
Paeonia decomposita, Paeonia rotundiloba, and Paeonia rockii are three closely related species of Sect. Moutan is distributed in the montane area of the Eastern Hengduan Mountain region. Understanding the population history of these three tree peony species could contribute to unraveling the evolutionary patterns of undergrowth species in this hotspot area. We used one nuclear DNA marker (internal transcribed spacer region, ITS) and two chloroplast DNA markers (matK, ycf1) to reconstruct the phylogeographic pattern of the populations. In total, 228 individuals from 17 populations of the three species were analyzed in this study. Three nuclear clades (Clade I - Clade III) and four maternal clades (Clade A - Clade D) were reconstructed. Molecular dating suggested that young lineages diverged during the late Pliocene and early Pleistocene, younger than the uplift of the Hengduan Mountains but older than the last glacial maximum (LGM). Significant population and phylogeographic structures were detected at both markers. Furthermore, the populations of these tree peonies were overall at equilibrium during the climatic oscillations of the Pleistocene. The simulated palaeoranges of the three species during the LGM period mostly overlapped, which could have led to cross-breeding events. We propose an evolutionary scenario in which mountain orogenesis around the Hengduan Mountain area triggered parapatric isolation between maternal lineages of tree peonies. Subsequent climatic fluctuations drove migration and range recontact of these populations along the valleys. This detailed evolutionary history provides new insights into the phylogeographic pattern of species from mountain-valley systems.
Collapse
Affiliation(s)
- Guangli Liu
- College of Landscape ArchitectureSichuan Agricultural UniversityChengduChina
| | - Ge Xue
- College of Landscape ArchitectureSichuan Agricultural UniversityChengduChina
| | - Tingting Zhao
- College of Landscape ArchitectureSichuan Agricultural UniversityChengduChina
| | - Yang Li
- College of Landscape ArchitectureSichuan Agricultural UniversityChengduChina
| | - Liangliang Yue
- National Plateau Wetlands Research Center, College of WetlandsSouthwest Forestry UniversityKunmingChina
| | - Huixing Song
- College of Landscape ArchitectureSichuan Agricultural UniversityChengduChina
| | - Qinglin Liu
- College of Landscape ArchitectureSichuan Agricultural UniversityChengduChina
| |
Collapse
|
29
|
Pouchon C, Boluda CG. REFMAKER: make your own reference to target nuclear loci in low coverage genome skimming libraries. Phylogenomic application in Sapotaceae. Mol Phylogenet Evol 2023:107826. [PMID: 37257798 DOI: 10.1016/j.ympev.2023.107826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/24/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
Genome skimming approach is widely used in plant systematics to infer phylogenies mostly from organelle genomes. However, organelles represent only 10% of the produced libraries, and the low coverage associated with these libraries (< 3X) prevents the capture of nuclear sequences, which are not always available in non-model organisms or limited to the ribosomal regions. We developed REFMAKER, a user-friendly pipeline, to create specific sets of nuclear loci that can next be extracted directly from the genome skimming libraries. For this, a catalogue is built from the meta-assembly of each library contigs and cleaned by selecting the nuclear regions and removing duplicates from clustering steps. Libraries are next mapped onto this catalogue and consensus sequences are generated to produce a ready-to-use phylogenetic matrix following different filtering parameters aiming at removing putative errors and paralogous sequences. REFMAKER allowed us to infer a well resolved phylogeny in Capurodendron (Sapotaceae) on 67 nuclear loci from low-coverage libraries (<1X). The resulting phylogeny is concomitant with one previously inferred on 638 nuclear genes from target enrichment libraries. While it remains preliminary because of this low sequencing depth, REFMAKER therefore opens perspectives in phylogenomics by allowing nuclear phylogeny reconstructions with genome skimming datasets.
Collapse
Affiliation(s)
- Charles Pouchon
- Conservatoire et Jardin botaniques de la Ville de Genève, Chemin de l'Impératrice 1, 1292 Chambésy, Geneva, Switzerland; PhyloLab, Department of Plant Sciences, Université de Genève, Chemin de l'Impératrice 1, 1292 Chambésy, Geneva, Switzerland.
| | - Carlos G Boluda
- Conservatoire et Jardin botaniques de la Ville de Genève, Chemin de l'Impératrice 1, 1292 Chambésy, Geneva, Switzerland; PhyloLab, Department of Plant Sciences, Université de Genève, Chemin de l'Impératrice 1, 1292 Chambésy, Geneva, Switzerland
| |
Collapse
|
30
|
Farhat P, Mandáková T, Divíšek J, Kudoh H, German DA, Lysak MA. The evolution of the hypotetraploid Catolobus pendulus genome - the poorly known sister species of Capsella. FRONTIERS IN PLANT SCIENCE 2023; 14:1165140. [PMID: 37223809 PMCID: PMC10200890 DOI: 10.3389/fpls.2023.1165140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/04/2023] [Indexed: 05/25/2023]
Abstract
The establishment of Arabidopsis as the most important plant model has also brought other crucifer species into the spotlight of comparative research. While the genus Capsella has become a prominent crucifer model system, its closest relative has been overlooked. The unispecific genus Catolobus is native to temperate Eurasian woodlands, from eastern Europe to the Russian Far East. Here, we analyzed chromosome number, genome structure, intraspecific genetic variation, and habitat suitability of Catolobus pendulus throughout its range. Unexpectedly, all analyzed populations were hypotetraploid (2n = 30, ~330 Mb). Comparative cytogenomic analysis revealed that the Catolobus genome arose by a whole-genome duplication in a diploid genome resembling Ancestral Crucifer Karyotype (ACK, n = 8). In contrast to the much younger Capsella allotetraploid genomes, the presumably autotetraploid Catolobus genome (2n = 32) arose early after the Catolobus/Capsella divergence. Since its origin, the tetraploid Catolobus genome has undergone chromosomal rediploidization, including a reduction in chromosome number from 2n = 32 to 2n = 30. Diploidization occurred through end-to-end chromosome fusion and other chromosomal rearrangements affecting a total of six of 16 ancestral chromosomes. The hypotetraploid Catolobus cytotype expanded toward its present range, accompanied by some longitudinal genetic differentiation. The sister relationship between Catolobus and Capsella allows comparative studies of tetraploid genomes of contrasting ages and different degrees of genome diploidization.
Collapse
Affiliation(s)
- Perla Farhat
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia
| | - Terezie Mandáková
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Jan Divíšek
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Otsu, Japan
| | - Dmitry A. German
- South-Siberian Botanical Garden, Altai State University, Barnaul, Russia
| | - Martin A. Lysak
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia
- National Centre for Biomolecular Research (NCBR), Faculty of Science, Masaryk University, Brno, Czechia
| |
Collapse
|
31
|
Nie ZL, Hodel R, Ma ZY, Johnson G, Ren C, Meng Y, Ickert-Bond SM, Liu XQ, Zimmer E, Wen J. Climate-influenced boreotropical survival and rampant introgressions explain the thriving of New World grapes in the north temperate zone. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1183-1203. [PMID: 36772845 DOI: 10.1111/jipb.13466] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 02/08/2023] [Indexed: 05/13/2023]
Abstract
The north temperate region was characterized by a warm climate and a rich thermophilic flora before the Eocene, but early diversifications of the temperate biome under global climate change and biome shift remain uncertain. Moreover, it is becoming clear that hybridization/introgression is an important driving force of speciation in plant diversity. Here, we applied analyses from biogeography and phylogenetic networks to account for both introgression and incomplete lineage sorting based on genomic data from the New World Vitis, a charismatic component of the temperate North American flora with known and suspected gene flow among species. Biogeographic inference and fossil evidence suggest that the grapes were widely distributed from North America to Europe during the Paleocene to the Eocene, followed by widespread extinction and survival of relicts in the tropical New World. During the climate warming in the early Miocene, a Vitis ancestor migrated northward from the refugia with subsequent diversification in the North American region. We found strong evidence for widespread incongruence and reticulate evolution among nuclear genes within both recent and ancient lineages of the New World Vitis. Furthermore, the organellar genomes showed strong conflicts with the inferred species tree from the nuclear genomes. Our phylogenomic analyses provided an important assessment of the wide occurrence of reticulate introgression in the New World Vitis, which potentially represents one of the most important mechanisms for the diversification of Vitis species in temperate North America and even the entire temperate Northern Hemisphere. The scenario we report here may be a common model of temperate diversification of flowering plants adapted to the global climate cooling and fluctuation in the Neogene.
Collapse
Affiliation(s)
- Ze-Long Nie
- College of Biology and Environmental Sciences, Jishou University, Jishou, 416000, China
| | - Richard Hodel
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013-7012, USA
| | - Zhi-Yao Ma
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013-7012, USA
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Gabriel Johnson
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013-7012, USA
| | - Chen Ren
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Ying Meng
- College of Biology and Environmental Sciences, Jishou University, Jishou, 416000, China
| | - Stefanie M Ickert-Bond
- Herbarium (ALA), University of Alaska Museum of the North, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA
| | - Xiu-Qun Liu
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Elizabeth Zimmer
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013-7012, USA
| | - Jun Wen
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013-7012, USA
| |
Collapse
|
32
|
Phylogenomics of Aralia sect. Aralia (Araliaceae): Signals of hybridization and insights into its species delimitations and intercontinental biogeography. Mol Phylogenet Evol 2023; 181:107727. [PMID: 36754338 DOI: 10.1016/j.ympev.2023.107727] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
Genome-scale data have significantly increased the number of informative characters for phylogenetic analyses and recent studies have also revealed widespread phylogenomic discordance in many plant lineages. Aralia sect. Aralia is a small plant lineage (14 spp.) of the ginseng family Araliaceae with a disjunct distribution between eastern Asia (11 spp.) and North America (3 spp.). We herein employ sequences of hundreds of nuclear loci and the complete plastomes using targeted sequence capture and genome skimming to reconstruct the phylogenetic and biogeographic history of this section. We detected substantial conflicts among nuclear genes, yet different analytical strategies generated largely congruent topologies from the nuclear data. Significant cytonuclear discordance was detected, especially concerning the positions of the three North American species. The phylogenomic results support two intercontinental disjunctions: (1) Aralia californica of western North America is sister to the eastern Asian clade consisting of A. cordata and A. continentalis in the nuclear tree, and (2) the eastern North American A. racemosa forms a clade with A. bicrenata from southwestern North America, and the North American A. racemosa - A. bicrenata clade is then sister to the eastern Asian clade consisting of A. glabra (Japan), A. fargesii (C China), and A. apioides and A. atropurpurea (the Hengduan Mountains). Aralia cordata is supported to be disjunctly distributed in Japan, Taiwan, the Ulleung island of Korea, and in Central, Southwest and South China, and Aralia continentalis is redefined with a narrower distribution in Northeast China, eastern Russia and peninsular Korea.
Collapse
|
33
|
Duan Y, Fu S, Ye Z, Bu W. Phylogeny of Urostylididae (Heteroptera: Pentatomoidea) reveals rapid radiation and challenges traditional classification. ZOOL SCR 2023. [DOI: 10.1111/zsc.12582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Yujie Duan
- Institute of Entomology, College of Life Sciences Nankai University Tianjin China
| | - Siying Fu
- Institute of Entomology, College of Life Sciences Nankai University Tianjin China
| | - Zhen Ye
- Institute of Entomology, College of Life Sciences Nankai University Tianjin China
| | - Wenjun Bu
- Institute of Entomology, College of Life Sciences Nankai University Tianjin China
| |
Collapse
|
34
|
Jiang D, Cai X, Gong M, Xia M, Xing H, Dong S, Tian S, Li J, Lin J, Liu Y, Li HL. Complete chloroplast genomes provide insights into evolution and phylogeny of Zingiber (Zingiberaceae). BMC Genomics 2023; 24:30. [PMID: 36653780 PMCID: PMC9848714 DOI: 10.1186/s12864-023-09115-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The genus Zingiber of the Zingiberaceae is distributed in tropical, subtropical, and in Far East Asia. This genus contains about 100-150 species, with many species valued as important agricultural, medicinal and horticultural resources. However, genomic resources and suitable molecular markers for species identification are currently sparse. RESULTS We conducted comparative genomics and phylogenetic analyses on Zingiber species. The Zingiber chloroplast genome (size range 162,507-163,711 bp) possess typical quadripartite structures that consist of a large single copy (LSC, 86,986-88,200 bp), a small single copy (SSC, 15,498-15,891 bp) and a pair of inverted repeats (IRs, 29,765-29,934 bp). The genomes contain 113 unique genes, including 79 protein coding genes, 30 tRNA and 4 rRNA genes. The genome structures, gene contents, amino acid frequencies, codon usage patterns, RNA editing sites, simple sequence repeats and long repeats are conservative in the genomes of Zingiber. The analysis of sequence divergence indicates that the following genes undergo positive selection (ccsA, ndhA, ndhB, petD, psbA, psbB, psbC, rbcL, rpl12, rpl20, rpl23, rpl33, rpoC2, rps7, rps12 and ycf3). Eight highly variable regions are identified including seven intergenic regions (petA-pabJ, rbcL-accD, rpl32-trnL-UAG, rps16-trnQ-UUG, trnC-GCA-psbM, psbC-trnS-UGA and ndhF-rpl32) and one genic regions (ycf1). The phylogenetic analysis revealed that the sect. Zingiber was sister to sect. Cryptanthium rather than sect. Pleuranthesis. CONCLUSIONS This study reports 14 complete chloroplast genomes of Zingiber species. Overall, this study provided a solid backbone phylogeny of Zingiber. The polymorphisms we have uncovered in the sequencing of the genome offer a rare possibility (for Zingiber) of the generation of DNA markers. These results provide a foundation for future studies that seek to understand the molecular evolutionary dynamics or individual population variation in the genus Zingiber.
Collapse
Affiliation(s)
- Dongzhu Jiang
- grid.449955.00000 0004 1762 504XCollege of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Yongchuan, 402160 China ,grid.410654.20000 0000 8880 6009College of Horticulture and Gardening, Yangtze University, Jingzhou, 433200 China
| | - Xiaodong Cai
- grid.449955.00000 0004 1762 504XCollege of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Yongchuan, 402160 China
| | - Min Gong
- grid.449955.00000 0004 1762 504XCollege of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Yongchuan, 402160 China ,grid.411581.80000 0004 1790 0881College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404100 China
| | - Maoqin Xia
- grid.449955.00000 0004 1762 504XCollege of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Yongchuan, 402160 China
| | - Haitao Xing
- grid.449955.00000 0004 1762 504XCollege of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Yongchuan, 402160 China
| | - Shanshan Dong
- grid.9227.e0000000119573309Fairylake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, 518004 China
| | - Shuming Tian
- grid.449955.00000 0004 1762 504XCollege of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Yongchuan, 402160 China ,grid.411581.80000 0004 1790 0881College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404100 China
| | - Jialin Li
- grid.449955.00000 0004 1762 504XCollege of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Yongchuan, 402160 China
| | - Junyao Lin
- grid.449955.00000 0004 1762 504XCollege of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Yongchuan, 402160 China
| | - Yiqing Liu
- grid.449955.00000 0004 1762 504XCollege of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Yongchuan, 402160 China ,grid.410654.20000 0000 8880 6009College of Horticulture and Gardening, Yangtze University, Jingzhou, 433200 China
| | - Hong-Lei Li
- grid.449955.00000 0004 1762 504XCollege of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Yongchuan, 402160 China
| |
Collapse
|
35
|
Yamazaki Y, Kajita T, Takayama K. Spatiotemporal process of long-distance seed dispersal in a pantropically distributed sea hibiscus group. Mol Ecol 2023; 32:1726-1738. [PMID: 36635976 DOI: 10.1111/mec.16836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/25/2022] [Accepted: 12/20/2022] [Indexed: 01/14/2023]
Abstract
Long-distance dispersal (LDD) of seeds plays an essential role in the migration of plants to a new habitat and maintaining gene flow among geographically isolated populations. Pantropical plants with sea-drifted seeds, which have one of the largest distributions in all flowering plants, have achieved their global distribution by LDD. However, the spatiotemporal processes to achieve the wide distribution and the role of LDD in it have not yet been elucidated. In this study, we conducted phylogenomic analyses on the plastome, genome-wide nuclear SNP, and low-copy gene data of Hibiscus tiliaceus and its relatives. The dated phylogeny suggested that global expansion started approximately 4 million years ago (Ma), and species diversification occurred 1 Ma. Plastome phylogeny confirmed the nonmonophyly of the haplotypes in the two widely distributed coastal species, H. tiliaceus and H. pernambucensis. In contrast, genome-wide nuclear SNP phylogenies demonstrated clear genetic segregation among species and/or geographical regions. Ancestral polymorphisms in chloroplast genomes shared among widely distributed species have remained below the range of rapid expansion and speciation of marginal populations. This study demonstrated that the LDD of sea-drifted seeds contributed to the rapid expansion and pantropical distribution of sea hibiscus in the last few million years, and adaptation to local environment or isolation by regional effect after LDD promoted speciation, suppressing gene flow.
Collapse
Affiliation(s)
- Yuri Yamazaki
- Department of Botany, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Kyoto, Japan.,Railway Systems Business Unit, Hitachi, Ltd., Ibaraki, Japan
| | - Tadashi Kajita
- Iriomote Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan.,United Graduate School of Agricultural Science, Kagoshima University, Kagoshima, Japan
| | - Koji Takayama
- Department of Botany, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Kyoto, Japan
| |
Collapse
|
36
|
Otero A, Barcenas-Peña A, Lumbsch HT, Grewe F. Reference-Based RADseq Unravels the Evolutionary History of Polar Species in 'the Crux Lichenologorum' Genus Usnea (Parmeliaceae, Ascomycota). J Fungi (Basel) 2023; 9:99. [PMID: 36675920 PMCID: PMC9865703 DOI: 10.3390/jof9010099] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/03/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Nearly 90% of fungal diversity, one of the most speciose branches in the tree of life, remains undescribed. Lichenized fungi as symbiotic associations are still a challenge for species delimitation, and current species diversity is vastly underestimated. The ongoing democratization of Next-Generation Sequencing is turning the tables. Particularly, reference-based RADseq allows for metagenomic filtering of the symbiont sequence and yields robust phylogenomic trees of closely related species. We implemented reference-based RADseq to disentangle the evolution of neuropogonoid lichens, which inhabit harsh environments and belong to Usnea (Parmeliaceae, Ascomycota), one of the most taxonomically intriguing genera within lichenized fungi. Full taxon coverage of neuropogonoid lichens was sampled for the first time, coupled with phenotype characterizations. More than 20,000 loci of 126 specimens were analyzed through concatenated and coalescent-based methods, including time calibrations. Our analysis addressed the major taxonomic discussions over recent decades. Subsequently, two species are newly described, namely U. aymondiana and U. fibriloides, and three species names are resurrected. The late Miocene and Pliocene-Pleistocene boundary is inferred as the timeframe for neuropogonoid lichen diversification. Ultimately, this study helped fill the gap of fungal diversity by setting a solid backbone phylogeny which raises new questions about which factors may trigger complex evolutionary scenarios.
Collapse
Affiliation(s)
- Ana Otero
- The Grainger Bioinformatics Center & Negaunee Integrative Research Center, Science & Education, The Field Museum, Chicago, IL 60605, USA
| | | | | | | |
Collapse
|
37
|
Ibáñez ST, Muñoz-Schick M, Scherson RA, Moreira-Muñoz A. A new species of Diplostephium (Asteraceae, Astereae) from the Atacama Desert, Chile. PHYTOKEYS 2022; 215:51-63. [PMID: 36761092 PMCID: PMC9836661 DOI: 10.3897/phytokeys.215.89175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/23/2022] [Indexed: 06/18/2023]
Abstract
A new species, Diplostephiumpaposanum S.T.Ibáñez & Muñoz-Schick, sp. nov., is described for Chile, extending the southern distribution of the genus. Its position within the genus was confirmed by morphological and molecular data, discussed here. The new species was found in a coastal environment, new to the genus, and is geographically far removed from the other Chilean species, which are from the Andes. The formation where it occurs, known as lomas, acts as a biodiversity refuge in hyperarid environments. The presence of D.paposanum in this environment contributes to the evidence of a floristic connection between the Atacama Desert and the Neotropical Andes.
Collapse
Affiliation(s)
- Sergio T. Ibáñez
- Instituto de Investigaciones Agropecuarias (INIA), Centro Regional de Investigación Intihuasi, Vicuña, ChileInstituto de Investigaciones AgropecuariasVicuñaChile
| | - Mélica Muñoz-Schick
- Museo Nacional de Historia Natural, Casilla 787, Santiago, ChileMuseo Nacional de Historia NaturalSantiagoChile
| | - Rosa A. Scherson
- Laboratorio de Sistemática y Evolución de Plantas, Departamento de Silvicultura y Conservación de la Naturaleza, Universidad de Chile, Santiago 9206, ChileUniversidad de ChileSantiagoChile
| | - Andrés Moreira-Muñoz
- Instituto de Geografía, Pontificia Universidad Católica de Valparaíso, Avda. Brasil 2241, Valparaíso, ChilePontificia Universidad Católica de ValparaísoValparaísoChile
| |
Collapse
|
38
|
Wang T, Li TZ, Chen SS, Yang T, Shu JP, Mu YN, Wang KL, Chen JB, Xiang JY, Yan YH. Untying the Gordian knot of plastid phylogenomic conflict: A case from ferns. FRONTIERS IN PLANT SCIENCE 2022; 13:918155. [PMID: 36507421 PMCID: PMC9730426 DOI: 10.3389/fpls.2022.918155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/11/2022] [Indexed: 06/17/2023]
Abstract
Phylogenomic studies based on plastid genome have resolved recalcitrant relationships among various plants, yet the phylogeny of Dennstaedtiaceae at the level of family and genera remains unresolved due to conflicting plastid genes, limited molecular data and incomplete taxon sampling of previous studies. The present study generated 30 new plastid genomes of Dennstaedtiaceae (9 genera, 29 species), which were combined with 42 publicly available plastid genomes (including 24 families, 27 genera, 42 species) to explore the evolution of Dennstaedtiaceae. In order to minimize the impact of systematic errors on the resolution of phylogenetic inference, we applied six strategies to generate 30 datasets based on CDS, intergenic spacers, and whole plastome, and two tree inference methods (maximum-likelihood, ML; and multispecies coalescent, MSC) to comprehensively analyze the plastome-scale data. Besides, the phylogenetic signal among all loci was quantified for controversial nodes using ML framework, and different topologies hypotheses among all datasets were tested. The species trees based on different datasets and methods revealed obvious conflicts at the base of the polypody ferns. The topology of the "CDS-codon-align-rm3" (CDS with the removal of the third codon) matrix was selected as the primary reference or summary tree. The final phylogenetic tree supported Dennstaedtiaceae as the sister group to eupolypods, and Dennstaedtioideae was divided into four clades with full support. This robust reconstructed phylogenetic backbone establishes a framework for future studies on Dennstaedtiaceae classification, evolution and diversification. The present study suggests considering plastid phylogenomic conflict when using plastid genomes. From our results, reducing saturated genes or sites can effectively mitigate tree conflicts for distantly related taxa. Moreover, phylogenetic trees based on amino acid sequences can be used as a comparison to verify the confidence of nucleotide-based trees.
Collapse
Affiliation(s)
- Ting Wang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The Orchid Conservation and Research Center of Shenzhen, Shenzhen, China
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Ting-Zhang Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The Orchid Conservation and Research Center of Shenzhen, Shenzhen, China
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Si-Si Chen
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The Orchid Conservation and Research Center of Shenzhen, Shenzhen, China
| | - Tuo Yang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The Orchid Conservation and Research Center of Shenzhen, Shenzhen, China
| | - Jiang-Ping Shu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The Orchid Conservation and Research Center of Shenzhen, Shenzhen, China
| | - Yu-Nong Mu
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Kang-Lin Wang
- Green Development Institute, Southwest Forestry University, Kunming, China
| | - Jian-Bing Chen
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The Orchid Conservation and Research Center of Shenzhen, Shenzhen, China
| | - Jian-Ying Xiang
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, China
| | - Yue-Hong Yan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The Orchid Conservation and Research Center of Shenzhen, Shenzhen, China
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| |
Collapse
|
39
|
Timilsena PR, Wafula EK, Barrett CF, Ayyampalayam S, McNeal JR, Rentsch JD, McKain MR, Heyduk K, Harkess A, Villegente M, Conran JG, Illing N, Fogliani B, Ané C, Pires JC, Davis JI, Zomlefer WB, Stevenson DW, Graham SW, Givnish TJ, Leebens-Mack J, dePamphilis CW. Phylogenomic resolution of order- and family-level monocot relationships using 602 single-copy nuclear genes and 1375 BUSCO genes. FRONTIERS IN PLANT SCIENCE 2022; 13:876779. [PMID: 36483967 PMCID: PMC9723157 DOI: 10.3389/fpls.2022.876779] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 09/29/2022] [Indexed: 05/26/2023]
Abstract
We assess relationships among 192 species in all 12 monocot orders and 72 of 77 families, using 602 conserved single-copy (CSC) genes and 1375 benchmarking single-copy ortholog (BUSCO) genes extracted from genomic and transcriptomic datasets. Phylogenomic inferences based on these data, using both coalescent-based and supermatrix analyses, are largely congruent with the most comprehensive plastome-based analysis, and nuclear-gene phylogenomic analyses with less comprehensive taxon sampling. The strongest discordance between the plastome and nuclear gene analyses is the monophyly of a clade comprising Asparagales and Liliales in our nuclear gene analyses, versus the placement of Asparagales and Liliales as successive sister clades to the commelinids in the plastome tree. Within orders, around six of 72 families shifted positions relative to the recent plastome analysis, but four of these involve poorly supported inferred relationships in the plastome-based tree. In Poales, the nuclear data place a clade comprising Ecdeiocoleaceae+Joinvilleaceae as sister to the grasses (Poaceae); Typhaceae, (rather than Bromeliaceae) are resolved as sister to all other Poales. In Commelinales, nuclear data place Philydraceae sister to all other families rather than to a clade comprising Haemodoraceae+Pontederiaceae as seen in the plastome tree. In Liliales, nuclear data place Liliaceae sister to Smilacaceae, and Melanthiaceae are placed sister to all other Liliales except Campynemataceae. Finally, in Alismatales, nuclear data strongly place Tofieldiaceae, rather than Araceae, as sister to all the other families, providing an alternative resolution of what has been the most problematic node to resolve using plastid data, outside of those involving achlorophyllous mycoheterotrophs. As seen in numerous prior studies, the placement of orders Acorales and Alismatales as successive sister lineages to all other extant monocots. Only 21.2% of BUSCO genes were demonstrably single-copy, yet phylogenomic inferences based on BUSCO and CSC genes did not differ, and overall functional annotations of the two sets were very similar. Our analyses also reveal significant gene tree-species tree discordance despite high support values, as expected given incomplete lineage sorting (ILS) related to rapid diversification. Our study advances understanding of monocot relationships and the robustness of phylogenetic inferences based on large numbers of nuclear single-copy genes that can be obtained from transcriptomes and genomes.
Collapse
Affiliation(s)
- Prakash Raj Timilsena
- Department of Biology and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| | - Eric K. Wafula
- Department of Biology and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| | - Craig F. Barrett
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Saravanaraj Ayyampalayam
- Georgia Advanced Computing Resource Center, University of Georgia, Athens, GA, United States
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| | - Joel R. McNeal
- Department of Ecology, Evolution, and Organismal Biology, Biology Kennesaw State University, Kennesaw, GA, United States
| | - Jeremy D. Rentsch
- Department of Biology, Francis Marion University, Florence, SC, United States
| | - Michael R. McKain
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Karolina Heyduk
- School of Life Sciences, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Alex Harkess
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Matthieu Villegente
- Institut des Sciences Exactes et Appliquees (ISEA), University of New Caledonia, Noumea, New Caledonia
| | - John G. Conran
- Australian Centre for Evolutionary Biology and Biodiversity & Sprigg Geobiology Centre, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Nicola Illing
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Bruno Fogliani
- Institut des Sciences Exactes et Appliquees (ISEA), University of New Caledonia, Noumea, New Caledonia
| | - Cécile Ané
- Department of Botany, University of Wisconsin-Madison, Madison, WI, United States
- Department of Statistics, University of Wisconsin–Madison, Madison, WI, United States
| | - J. Chris Pires
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Jerrold I. Davis
- School of Integrative Plant Sciences and L.H. Bailey Hortorium, Cornell University, Ithaca, NY, United States
| | - Wendy B. Zomlefer
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| | | | | | - Thomas J. Givnish
- Department of Botany, University of Wisconsin-Madison, Madison, WI, United States
| | - James Leebens-Mack
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| | - Claude W. dePamphilis
- Department of Biology and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
40
|
Wilson TC, Rossetto M, Bain D, Yap JS, Wilson PD, Stimpson ML, Weston PH, Croft L. A turn in species conservation for hairpin banksias: demonstration of oversplitting leads to better management of diversity. AMERICAN JOURNAL OF BOTANY 2022; 109:1652-1671. [PMID: 36164832 PMCID: PMC9828017 DOI: 10.1002/ajb2.16074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
PREMISE Understanding evolutionary history and classifying discrete units of organisms remain overwhelming tasks, and lags in this workload concomitantly impede an accurate documentation of biodiversity and conservation management. Rapid advances and improved accessibility of sensitive high-throughput sequencing tools are fortunately quickening the resolution of morphological complexes and thereby improving the estimation of species diversity. The recently described and critically endangered Banksia vincentia is morphologically similar to the hairpin banksia complex (B. spinulosa s.l.), a group of eastern Australian flowering shrubs whose continuum of morphological diversity has been responsible for taxonomic controversy and possibly questionable conservation initiatives. METHODS To assist conservation while testing the current taxonomy of this group, we used high-throughput sequencing to infer a population-scale evolutionary scenario for a sample set that is comprehensive in its representation of morphological diversity and a 2500-km distribution. RESULTS Banksia spinulosa s.l. represents two clades, each with an internal genetic structure shaped through historical separation by biogeographic barriers. This structure conflicts with the existing taxonomy for the group. Corroboration between phylogeny and population statistics aligns with the hypothesis that B. collina, B. neoanglica, and B. vincentia should not be classified as species. CONCLUSIONS The pattern here supports how morphological diversity can be indicative of a locally expressed suite of traits rather than relationship. Oversplitting in the hairpin banksias is atypical since genomic analyses often reveal that species diversity is underestimated. However, we show that erring on overestimation can yield negative consequences, such as the disproportionate prioritization of a geographically anomalous population.
Collapse
Affiliation(s)
- Trevor C. Wilson
- Plant Discovery and Evolution, Australian Institute of Botanical ScienceRoyal Botanic Gardens and Domain TrustSydneyAustralia
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical ScienceThe Royal Botanic Garden SydneyAustralia
| | - Maurizio Rossetto
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical ScienceThe Royal Botanic Garden SydneyAustralia
| | - David Bain
- Ecosystems and Threatened Species, Biodiversity Conservation and ScienceNSW Department of Planning and EnvironmentWollongongAustralia
| | - Jia‐Yee S. Yap
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical ScienceThe Royal Botanic Garden SydneyAustralia
| | - Peter D. Wilson
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical ScienceThe Royal Botanic Garden SydneyAustralia
| | - Margaret L. Stimpson
- Botany, School of Environmental and Rural ScienceUniversity of New EnglandArmidaleNSW2351Australia
| | - Peter H. Weston
- Plant Discovery and Evolution, Australian Institute of Botanical ScienceRoyal Botanic Gardens and Domain TrustSydneyAustralia
| | - Larry Croft
- Centre of Integrative Ecology, School of Life and Environmental SciencesDeakin UniversityGeelong3125VictoriaAustralia
| |
Collapse
|
41
|
Brignone NF, Pozner R, Denham SS. Macroevolutionary trends and diversification dynamics in Atripliceae (Amaranthaceae s.l., Chenopodioideae): a first approach. ANNALS OF BOTANY 2022; 130:199-214. [PMID: 35737947 PMCID: PMC9445597 DOI: 10.1093/aob/mcac085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS Atripliceae evolved and diversified by dispersals and radiations across continents in both hemispheres, colonizing similar semi-arid, saline-alkaline environments throughout the world. Meanwhile, its species developed different life forms, photosynthetic pathways, mono- or dioecy, and different morphological features in flowers, fruiting bracteoles and seeds. In this study, we introduce a first approach to the macroevolutionary patterns and diversification dynamics of the Atripliceae to understand how time, traits, speciation, extinction and new habitats influenced the evolution of this lineage. METHODS We performed molecular phylogenetic analyses and clade age estimation of Atripliceae to apply time-, trait- and geographic-dependent diversification analyses and ancestral state reconstructions to explore diversification patterns within the tribe. KEY RESULTS Opposite diversification dynamics within the two major clades of Atripliceae, the Archiatriplex and Atriplex clades, could explain the unbalanced species richness between them; we found low mean speciation rates in the Archiatriplex clade and one shift to higher speciation rates placed in the branch of the Atriplex core. This acceleration in diversification seems to have started before the transition between C3 and C4 metabolism and before the arrival of Atriplex in the Americas, and matches the Mid-Miocene Climatic Optimum. Besides, the American species of Atriplex exhibit slightly higher net diversification rates than the Australian and Eurasian ones. While time seems not to be associated with diversification, traits such as life form, photosynthetic pathway and plant sex may have played roles as diversification drivers. CONCLUSIONS Traits more than time played a key role in Atripliceae diversification, and we could speculate that climate changes could have triggered speciation. The extreme arid or saline environments where Atripliceae species prevail may explain its particular evolutionary trends and trait correlations compared with other angiosperms and highlight the importance of conservation efforts needed to preserve them as genetic resources to deal with climatic changes.
Collapse
Affiliation(s)
| | - Raúl Pozner
- Instituto de Botánica Darwinion (Consejo Nacional de Investigaciones Científicas y Técnicas, Academia Nacional de Ciencias Exactas, Físicas y Naturales), Labardén, Casilla de Correo, San Isidro, Buenos Aires, Argentina
| | - Silvia S Denham
- Instituto de Botánica Darwinion (Consejo Nacional de Investigaciones Científicas y Técnicas, Academia Nacional de Ciencias Exactas, Físicas y Naturales), Labardén, Casilla de Correo, San Isidro, Buenos Aires, Argentina
- Laboratorio de Investigaciones en Biotecnología Sustentable (LIBioS), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña, Bernal, Buenos Aires, Argentina
- Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| |
Collapse
|
42
|
Yue J, Lu Q, Ni Y, Chen P, Liu C. Comparative analysis of the plastid and mitochondrial genomes of Artemisia giraldii Pamp. Sci Rep 2022; 12:13931. [PMID: 35978085 PMCID: PMC9385723 DOI: 10.1038/s41598-022-18387-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 08/10/2022] [Indexed: 12/30/2022] Open
Abstract
Artemisia giraldii Pamp. is an herbaceous plant distributed only in some areas in China. To understand the evolutionary relationship between plastid and mitochondria in A. giraldii, we sequenced and analysed the plastome and mitogenome of A. giraldii on the basis of Illumina and Nanopore DNA sequencing data. The mitogenome was 194,298 bp long, and the plastome was 151,072 bp long. The mitogenome encoded 56 genes, and the overall GC content was 45.66%. Phylogenetic analysis of the two organelle genomes revealed that A. giraldii is located in the same branching position. We found 13 pairs of homologous sequences between the plastome and mitogenome, and only one of them might have transferred from the plastid to the mitochondria. Gene selection pressure analysis in the mitogenome showed that ccmFc, nad1, nad6, atp9, atp1 and rps12 may undergo positive selection. According to the 18 available plastome sequences, we found 17 variant sites in two hypervariable regions that can be used in completely distinguishing 18 Artemisia species. The most interesting discovery was that the mitogenome of A. giraldii was only 43,226 bp larger than the plastome. To the best of our knowledge, this study represented one of the smallest differences between all sequenced mitogenomes and plastomes from vascular plants. The above results can provide a reference for future taxonomic and molecular evolution studies of Asteraceae species.
Collapse
Affiliation(s)
- Jingwen Yue
- grid.256111.00000 0004 1760 2876Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, National Engineering Research Center of Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, No.15, Shangxiadian Road, Fuzhou, 350002 Fujian People’s Republic of China ,grid.506261.60000 0001 0706 7839Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193 People’s Republic of China
| | - Qianqi Lu
- grid.256111.00000 0004 1760 2876Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, National Engineering Research Center of Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, No.15, Shangxiadian Road, Fuzhou, 350002 Fujian People’s Republic of China
| | - Yang Ni
- grid.506261.60000 0001 0706 7839Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193 People’s Republic of China
| | - Pinghua Chen
- grid.256111.00000 0004 1760 2876Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, National Engineering Research Center of Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, No.15, Shangxiadian Road, Fuzhou, 350002 Fujian People’s Republic of China
| | - Chang Liu
- grid.506261.60000 0001 0706 7839Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193 People’s Republic of China
| |
Collapse
|
43
|
Kao T, Wang T, Ku C. Rampant nuclear-mitochondrial-plastid phylogenomic discordance in globally distributed calcifying microalgae. THE NEW PHYTOLOGIST 2022; 235:1394-1408. [PMID: 35556250 PMCID: PMC9539906 DOI: 10.1111/nph.18219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Incongruent phylogenies have been widely observed between nuclear and plastid or mitochondrial genomes in terrestrial plants and animals. However, few studies have examined these patterns in microalgae or the discordance between the two organelles. Here we investigated the nuclear-mitochondrial-plastid phylogenomic incongruence in Emiliania-Gephyrocapsa, a group of cosmopolitan calcifying phytoplankton with enormous populations and recent speciations. We assembled mitochondrial and plastid genomes of 27 strains from across global oceans and temperature regimes, and analyzed the phylogenomic histories of the three compartments using concatenation and coalescence methods. Six major clades with varying morphology and distribution are well recognized in the nuclear phylogeny, but such relationships are absent in the mitochondrial and plastid phylogenies, which also differ substantially from each other. The rampant phylogenomic discordance is due to a combination of organellar capture (introgression), organellar genome recombination, and incomplete lineage sorting of ancient polymorphic organellar genomes. Hybridization can lead to replacements of whole organellar genomes without introgression of nuclear genes and the two organelles are not inherited as a single cytoplasmic unit. This study illustrates the convoluted evolution and inheritance of organellar genomes in isogamous haplodiplontic microalgae and provides a window into the phylogenomic complexity of marine unicellular eukaryotes.
Collapse
Affiliation(s)
- Tzu‐Tong Kao
- Institute of Plant and Microbial BiologyAcademia SinicaTaipei11529Taiwan
| | - Tzu‐Haw Wang
- Institute of Plant and Microbial BiologyAcademia SinicaTaipei11529Taiwan
| | - Chuan Ku
- Institute of Plant and Microbial BiologyAcademia SinicaTaipei11529Taiwan
| |
Collapse
|
44
|
Ufimov R, Gorospe JM, Fér T, Kandziora M, Salomon L, van Loo M, Schmickl R. Utilizing paralogs for phylogenetic reconstruction has the potential to increase species tree support and reduce gene tree discordance in target enrichment data. Mol Ecol Resour 2022; 22:3018-3034. [PMID: 35796729 DOI: 10.1111/1755-0998.13684] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/28/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022]
Abstract
The analysis of target enrichment data in phylogenetics lacks optimization toward using paralogs for phylogenetic reconstruction. We developed a novel approach of detecting paralogs and utilizing them for phylogenetic tree inference, by retrieving both ortho- and paralogous copies and creating orthologous alignments, from which the gene trees are built. We implemented this approach in ParalogWizard and demonstrate its performance in plant groups that underwent a whole genome duplication relatively recently: the subtribe Malinae (family Rosaceae), using Angiosperms353 as well as Malinae481 probes, the genus Oritrophium (family Asteraceae), using Compositae1061 probes, and the genus Amomum (family Zingiberaceae), using Zingiberaceae1180 probes. Discriminating between orthologs and paralogs reduced gene tree discordance and increased the species tree support in the case of the Malinae, but not for Oritrophium and Amomum. This may relate to the difference in the proportion of paralogous loci between the datasets, which was highest for the Malinae. Overall, retrieving paralogs for phylogenetic reconstruction following ParalogWizard has the potential to increase the species tree support and reduce gene tree discordance in target enrichment data, particularly if the proportion of paralogous loci is high.
Collapse
Affiliation(s)
- Roman Ufimov
- Department of Forest Growth, Silviculture and Genetics, Austrian Research Centre for Forests, Seckendorff-Gudent-Weg 8, 1130, Vienna, Austria.,Komarov Botanical Institute, Russian Academy of Sciences, ul. Prof. Popova 2, 197376, St. Petersburg, Russian Federation
| | - Juan Manuel Gorospe
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic.,Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01, Prague, Czech Republic
| | - Tomáš Fér
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01, Prague, Czech Republic
| | - Martha Kandziora
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01, Prague, Czech Republic
| | - Luciana Salomon
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01, Prague, Czech Republic
| | - Marcela van Loo
- Department of Forest Growth, Silviculture and Genetics, Austrian Research Centre for Forests, Seckendorff-Gudent-Weg 8, 1130, Vienna, Austria
| | - Roswitha Schmickl
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic.,Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01, Prague, Czech Republic
| |
Collapse
|
45
|
Qu XJ, Zhang XJ, Cao DL, Guo XX, Mower JP, Fan SJ. Plastid and mitochondrial phylogenomics reveal correlated substitution rate variation in Koenigia (Polygonoideae, Polygonaceae) and a reduced plastome for Koenigia delicatula including loss of all ndh genes. Mol Phylogenet Evol 2022; 174:107544. [PMID: 35690375 DOI: 10.1016/j.ympev.2022.107544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/19/2022] [Accepted: 06/01/2022] [Indexed: 10/18/2022]
Abstract
Koenigia, a genus proposed by Linnaeus, has a contentious taxonomic history. In particular, relationships among species and the circumscription of the genus relative to Aconogonon remain uncertain. To explore phylogenetic relationships of Koenigia with other members of tribe Persicarieae and to establish the timing of major evolutionary diversification events, genome skimming of organellar sequences was used to assemble plastomes and mitochondrial genes from 15 individuals representing 13 species. Most Persicarieae plastomes exhibit a conserved structure and content relative to other flowering plants. However, Koenigia delicatula has lost functional copies of all ndh genes and the intron from atpF. In addition, the rpl32 gene was relocated in the K. delicatula plastome, which likely occurred via overlapping inversions or differential expansion and contraction of the inverted repeat. The highly supported but conflicting relationships between plastome and mitochondrial trees and among gene trees complicates the circumscription of Koenigia, which could be caused by rapid diversification within a short period. Moreover, the plastome and mitochondrial trees revealed correlated variation in substitution rates among Persicarieae species, suggesting a shared underlying mechanism promoting evolutionary rate variation in both organellar genomes. The divergence of dwarf K. delicatula from other Koenigia species may be associated with the well-known Eocene Thermal Maximum 2 or Early Eocene Climatic Optimum event, while diversification of the core-Koenigia clade associates with the Mid-Miocene Climatic Optimum and the uplift of Qinghai-Tibetan Plateau and adjacent areas.
Collapse
Affiliation(s)
- Xiao-Jian Qu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan 250014, Shandong, China
| | - Xue-Jie Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan 250014, Shandong, China
| | - Dong-Ling Cao
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan 250014, Shandong, China
| | - Xiu-Xiu Guo
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan 250014, Shandong, China
| | - Jeffrey P Mower
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA; Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583, USA.
| | - Shou-Jin Fan
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan 250014, Shandong, China.
| |
Collapse
|
46
|
Böhnert T, Luebert F, Merklinger FF, Harpke D, Stoll A, Schneider JV, Blattner FR, Quandt D, Weigend M. Plant migration under long-lasting hyperaridity - phylogenomics unravels recent biogeographic history in one of the oldest deserts on Earth. THE NEW PHYTOLOGIST 2022; 234:1863-1875. [PMID: 35274308 DOI: 10.1111/nph.18082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
The post-Miocene climatic histories of arid environments have been identified as key drivers of dispersal and diversification. Here, we investigate how climatic history correlates with the historical biogeography of the Atacama Desert genus Cristaria (Malvaceae). We analyze phylogenetic relationships and historical biogeography by using next-generation sequencing (NGS), molecular clock dating, Dispersal Extinction Cladogenesis and Bayesian sampling approaches. We employ a novel way to identify biogeographically meaningful regions as well as a rarely utilized program permitting the use of dozens of ancestral areas. Partial incongruence between the established taxonomy and our phylogenetic data argue for a complex historical biogeography with repeated introgression and incomplete lineage sorting. Cristaria originated in the central southern part of the Atacama Desert, from there the genus colonized other areas from the late Miocene onwards. The more recently diverged lineages appear to have colonized different habitats in the Atacama Desert during pluvial phases of the Pliocene and early Pleistocene. We show that NGS combined with near-comprehensive sampling can provide an unprecedented degree of phylogenetic resolution and help to correlate the historical biogeography of plant communities with cycles of arid and pluvial phases.
Collapse
Affiliation(s)
- Tim Böhnert
- Nees Institute for Biodiversity of Plants, University of Bonn, 53115, Bonn, Germany
| | - Federico Luebert
- Nees Institute for Biodiversity of Plants, University of Bonn, 53115, Bonn, Germany
- Facultad de Ciencias Agronómicas and Departamento de Silvicultura y Conservación de la Naturaleza, Universidad de Chile, 8820000, Santiago, Chile
| | - Felix F Merklinger
- Nees Institute for Biodiversity of Plants, University of Bonn, 53115, Bonn, Germany
- Sukkulenten-Sammlung Zürich/Grün Stadt Zürich, 8002, Zürich, Switzerland
| | - Dörte Harpke
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Germany
| | - Alexandra Stoll
- Centro de Estudios Avanzados en Zonas Áridas Ceaza, 1720256, La Serena, Chile
- Instituto de Investigación Multidisciplinar en Ciencia y Tecnología, Universidad de la Serena, 1720170, La Serena, Chile
| | - Julio V Schneider
- Botany and Molecular Evolution and Entomology III, Senckenberg Research Institute and Natural History Museum, Frankfurt, 60325, Germany
| | - Frank R Blattner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Germany
| | - Dietmar Quandt
- Nees Institute for Biodiversity of Plants, University of Bonn, 53115, Bonn, Germany
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Germany
| | - Maximilian Weigend
- Nees Institute for Biodiversity of Plants, University of Bonn, 53115, Bonn, Germany
| |
Collapse
|
47
|
Lagomarsino LP, Frankel L, Uribe-Convers S, Antonelli A, Muchhala N. Increased resolution in the face of conflict: phylogenomics of the Neotropical bellflowers (Campanulaceae: Lobelioideae), a rapid plant radiation. ANNALS OF BOTANY 2022; 129:723-736. [PMID: 35363863 PMCID: PMC9113290 DOI: 10.1093/aob/mcac046] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/24/2022] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND AIMS The centropogonid clade (Lobelioideae: Campanulaceae) is an Andean-centred rapid radiation characterized by repeated convergent evolution of morphological traits, including fruit type and pollination syndromes. While previous studies have resolved relationships of lineages with fleshy fruits into subclades, relationships among capsular species remain unresolved. This lack of resolution has impeded reclassification of non-monophyletic genera, whose current taxonomy relies heavily on traits that have undergone convergent evolution. METHODS Targeted sequence capture using a probe-set recently developed for the centropogonid clade was used to obtain phylogenomic data from DNA extracted from both silica-dried and herbarium leaf tissue. These data were used to infer relationships among species using concatenated and partitioned species tree methods, and to quantify gene tree discordance. KEY RESULTS While silica-dried leaf tissue resulted in longer assembled sequence data, the inclusion of herbarium samples improved taxonomic representation. Relationships among baccate lineages are similar to those inferred in previous studies, although they differ for lineages within and among capsular clades. We improve the phylogenetic resolution of Siphocampylus, which forms ten groups of closely related species which we informally name. Two subclades of Siphocampylus and two individual species are rogue taxa whose placement differs widely across analyses. Gene tree discordance (including cytonuclear discordance) is rampant. CONCLUSIONS This first phylogenomic study of the centropogonid clade considerably improves our understanding of relationships in this rapid radiation. Differences across analyses and the possibility of additional lineage discoveries still hamper a solid and stable reclassification. Rapid morphological innovation corresponds with a high degree of phylogenomic complexity, including cytonuclear discordance, nuclear gene tree conflict and well-supported differences between analyses based on different nuclear loci. Together, these results point to a potential role of hemiplasy underlying repeated convergent evolution. This hallmark of rapid radiations is probably present in many other species-rich Andean plant radiations.
Collapse
Affiliation(s)
- Laura P Lagomarsino
- Shirley C. Tucker Herbarium, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO, USA
| | - Lauren Frankel
- Department of Botany, University of Wisconsin-Madison, Madison, WI, USA
| | - Simon Uribe-Convers
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO, USA
- Invitae Corporation, San Francisco, CA, USA
| | - Alexandre Antonelli
- Royal Botanic Gardens, Kew, TW9 3AE, UK
- Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, 405 30, Sweden
- Department of Plant Science, University of Oxford, Oxford, UK
| | - Nathan Muchhala
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO, USA
| |
Collapse
|
48
|
Wang Y, Ruhsam M, Milne R, Graham SW, Li J, Tao T, Zhang Y, Mao K. Incomplete lineage sorting and local extinction shaped the complex evolutionary history of the Paleogene relict conifer genus, Chamaecyparis (Cupressaceae). Mol Phylogenet Evol 2022; 172:107485. [PMID: 35452840 DOI: 10.1016/j.ympev.2022.107485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 03/26/2022] [Accepted: 04/05/2022] [Indexed: 11/24/2022]
Abstract
Inferring accurate biogeographic history of plant taxa with an East Asia (EA)-North America (NA) is usually hindered by conflicting phylogenies and a poor fossil record. The current distribution of Chamaecyparis (false cypress; Cupressaceae) with four species in EA, and one each in western and eastern NA, and its relatively rich fossil record, make it an excellent model for studying the EA-NA disjunction. Here we reconstruct phylogenomic relationships within Chamaecyparis using > 1400 homologous nuclear and 61 plastid genes. Our phylogenomic analyses using concatenated and coalescent approaches revealed strong cytonuclear discordance and conflicting topologies between nuclear gene trees. Incomplete lineage sorting (ILS) and hybridization are possible explanations of conflict; however, our coalescent analyses and simulations suggest that ILS is the major contributor to the observed phylogenetic discrepancies. Based on a well-resolved species tree and four fossil calibrations, the crown lineage of Chamaecyparis is estimated to have originated in the upper Cretaceous, followed by diversification events in the early and middle Paleogene. Ancestral area reconstructions suggest that Chamaecyparis had an ancestral range spanning both EA and NA. Fossil records further indicate that this genus is a relict of the "boreotropical" flora, and that local extinctions of European species were caused by global cooling. Overall, our results unravel a complex evolutionary history of a Paleogene relict conifer genus, which may have involved ILS, hybridization and the extinction of local species.
Collapse
Affiliation(s)
- Yi Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Markus Ruhsam
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, UK
| | - Richard Milne
- Institute of Molecular Plant Science, School of Biological Science, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Sean W Graham
- Department of Botany, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Jialiang Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Tongzhou Tao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Yujiao Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Kangshan Mao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, China; College of Science, Tibet University, Lhasa 850000, Xizang Autonomous Region, PR China.
| |
Collapse
|
49
|
Campbell EO, MacDonald ZG, Gage EV, Gage RV, Sperling FAH. Genomics and ecological modelling clarify species integrity in a confusing group of butterflies. Mol Ecol 2022; 31:2400-2417. [PMID: 35212068 DOI: 10.1111/mec.16407] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 11/30/2022]
Abstract
Recent advances in both genomics and ecological modelling present new, multidisciplinary opportunities for resolving species boundaries and understanding the mechanisms that maintain their integrity in regions of contact. Here, we use a combination of high-throughput DNA sequencing and ecological niche modelling to resolve species boundaries and niche divergence within the Speyeria atlantis-hesperis (Lepidoptera: Nymphalidae) complex, a confusing group of North American butterflies. This complex is notorious for its muddled species delimitations, morphological ambiguity, and extensive mito-nuclear discordance. Our admixture and multispecies coalescent-based analyses of single nucleotide polymorphisms identified substantial divergences between S. atlantis and S. hesperis in areas of contact, as well as between distinct northern and southern lineages within S. hesperis. Our results also provide evidence of past introgression relating to another species, S. zerene, which previous work has shown to be more distantly related to the S. atlantis-hesperis complex. We then used ecological models to predict habitat suitability for each of the three recovered genomic lineages in the S. atlantis-hesperis complex and assess their pairwise niche divergence. These analyses resolved that these three lineages are significantly diverged in their respective niches and are not separated by discontinuities in suitable habitat that might present barriers to gene flow. We therefore infer that ecologically-mediated selection resulting in disparate habitat associations is a principal mechanism reinforcing their genomic integrity. Overall, our results unambiguously support significant evolutionary and ecological divergence between the northern and southern lineages of S. hesperis, sufficient to recognize the southern evolutionary lineage as a distinct species, called S. nausicaa based on taxonomic priority.
Collapse
Affiliation(s)
- E O Campbell
- Department of Biological Sciences, Biosciences Centre, University of Alberta, Edmonton, AB, Canada
| | - Z G MacDonald
- Department of Biological Sciences, Biosciences Centre, University of Alberta, Edmonton, AB, Canada.,Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | - E V Gage
- Texas Museum of Entomology, Pipe Creek, TX, U.S.A
| | | | - F A H Sperling
- Department of Biological Sciences, Biosciences Centre, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
50
|
Incompatibility Phylogenetic Signals between Double-Digest Restriction Site-Associated DNA Sequencing and Plastid Genomes in Chinese Curcuma (Zingiberaceae)—A Recent Qinghai–Tibetan Plateau Diversification Genera. FORESTS 2022. [DOI: 10.3390/f13020280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Curcuma is of high economic value, credited to its medicinal, edible, and ornamental properties, which possess all signatures of adaptability, and rapid radiation, especially species of Curcuma (Chinese Curcuma, a recent Qinghai–Tibetan Plateau diversification genera) scattered in China. However, little is known about the incongruent phylogenetic signals within this genera from different inheritance patterns that will militate against the further development of this genera. In this research, we applied complete chloroplast genome data together with double-digest restriction site-associated DNA sequencing data (ddRAD-seq) strategy to investigate phylogenetic signals of Chinese Curcuma species, clustering using two RAD analysis pipelines (STACKS and pyRAD). Phylogenetic trees were obtained from each locus based on the maximum likelihood (ML) and multispecies coalescent (BEAST) methods. For visual comparison, multi-method and different datasets were used to infer the phylogeny. We discovered inconsistent relationships for the Chinese Curcuma with varying degrees of support using different methods and datasets.
Collapse
|