1
|
Romanov MS, Bobrov AVFC, Iovlev PS, Roslov MS, Zdravchev NS, Sorokin AN, Romanova ES, Kandidov MV. Fruit and seed structure in the ANA-grade angiosperms: Ancestral traits and specializations. AMERICAN JOURNAL OF BOTANY 2024; 111:e16264. [PMID: 38031509 DOI: 10.1002/ajb2.16264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023]
Abstract
PREMISE The representatives of the ANA-grade angiosperms demonstrate a diverse pattern of morphological characters, but their apocarpous gynoecium (except in Nymphaeaceae), composed of at least partly ascidiate carpels, the four-nucleate and four-celled female gametophyte, and the diploid endosperm (except in Amborella) are inferred to be plesiomorphies. Since the structure of fruits in Austrobaileyales is under-investigated, this research aims to fill this gap in these data, describing the carpological characters of ANA-grade taxa, and potentially illuminating the ancestral fruit and seed types of angiosperms. METHODS The pericarp and seed coat anatomy was studied with light microscopy. The character optimization was carried out using WinClada software. RESULTS The fruits of Austrobaileya, Trimenia, Kadsura, and Schisandra are determined to be apocarpous berries of the Schisandra type, with a parenchymatous pericarp and mesotestal (Austrobaileya) or exomesotestal seeds (other genera). Most inferred scenarios of fruit evolution indicate that the apocarpous berry is either the most probable plesiomorphic fruit type of all angiosperms, or that of all angiosperms except Amborellaceae. This inference suggests the early origin of the berry in fruit evolution. The plesiomorphic seed type of angiosperms according to reconstructed scenarios of seed type evolution was either a seed lacking a sclerenchymatous layer or an exotestal seed. CONCLUSIONS The current research indicates that an apocarpous berry, and not a follicle, is a probable plesiomorphic character of the ANA-grade taxa and of angiosperms as a whole.
Collapse
Affiliation(s)
- Mikhail S Romanov
- Laboratory of Tropical Plants, Tsitsin Main Botanical Garden of Russian Academy of Sciences, Botanicheskaya st., 4, Moscow, 127276, Russia
| | - Alexey V F Ch Bobrov
- Department of Biogeography, Geographical Faculty, M. V. Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Peter S Iovlev
- Laboratory of Tropical Plants, Tsitsin Main Botanical Garden of Russian Academy of Sciences, Botanicheskaya st., 4, Moscow, 127276, Russia
| | - Maxim S Roslov
- Department of Biogeography, Geographical Faculty, M. V. Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Nikita S Zdravchev
- Laboratory of Tropical Plants, Tsitsin Main Botanical Garden of Russian Academy of Sciences, Botanicheskaya st., 4, Moscow, 127276, Russia
| | - Alexey N Sorokin
- Laboratory of Tropical Plants, Tsitsin Main Botanical Garden of Russian Academy of Sciences, Botanicheskaya st., 4, Moscow, 127276, Russia
| | - Ekaterina S Romanova
- Botanical Garden, Biological Faculty, M. V. Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Maxim V Kandidov
- Department of Biogeography, Geographical Faculty, M. V. Lomonosov Moscow State University, Moscow, 119992, Russia
| |
Collapse
|
2
|
Losada JM. Concluding Embryogenesis After Diaspora: Seed Germination in Illicium Parviflorum. Integr Comp Biol 2023; 63:1352-1363. [PMID: 37349968 PMCID: PMC10755177 DOI: 10.1093/icb/icad078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023] Open
Abstract
Albuminous seeds, dispersed with a minimally developed embryo surrounded by nutrient storage tissue, are pervasive across extinct and extant early diverging angiosperm lineages. Typically, seed ontogenic studies have focused on the time between fertilization and seed release, but in albuminous seeds, embryogenesis is incomplete at the time of seed dispersal. Here, I studied the morphological and nutritional relationships between the embryo and the endosperm after seed dispersal in Illicium parviflorum (Austrobaileyales). Seeds of I. parviflorum germinate over a period of three months. Different stages during the germination process were anatomically evaluated using a combination of histochemistry and immunocytochemistry. At dispersal, the seeds of Illicium contain a tiny achlorophyllous embryo with minimal histological differentiation, surrounded by copious amounts of lipo-protein globules stored in the endosperm within cell walls rich in un-esterified pectins. Six weeks later, the embryo expanded and differentiated the vascular tissues before the emergence of the radicle through the seed coat, as the stored lipids and proteins coalesced within cells. Six weeks later, the cotyledons contained starch and complex lipids intracellularly, and accumulated low-esterified pectins in their cell walls. The proteolipid-rich albuminous seeds of Illicium exemplify how woody angiosperms of the Austrobaileyales, Amborellales, and many magnoliids release seeds with high-energy storage compounds that are reprocessed by embryos that complete development during germination. Seedlings of these lineages thrive in the understory of tropical environments, which match with the predicted habitats where angiosperms evolved.
Collapse
Affiliation(s)
- Juan M Losada
- Institute of Subtropical and Mediterranean Hortofruticulture La Mayora – CSIC – UMA. Avda. Dr. Wienberg s/n., Algarrobo-Costa, Málaga, 29750, Spain
| |
Collapse
|
3
|
Losada JM, He Z, Holbrook NM. Sieve tube structural variation in Austrobaileya scandens and its significance for lianescence. PLANT, CELL & ENVIRONMENT 2022; 45:2460-2475. [PMID: 35606891 PMCID: PMC9540405 DOI: 10.1111/pce.14361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/15/2022] [Accepted: 04/23/2022] [Indexed: 06/15/2023]
Abstract
Lianas combine large leaf areas with slender stems, features that require an efficient vascular system. The only extant member of the Austrobaileyaceae is an endemic twining liana of the tropical Australian forests with well-known xylem hydraulics, but the vascular phloem continuum aboveground remains understudied. Microscopy analysis across leaf vein orders and stems of Austrobaileya scandens revealed a low foliar xylem:phloem ratio, with isodiametric vascular elements along the midrib, but tapered across vein orders. Sieve plate pore radii increased from 0.08 µm in minor veins to 0.12 µm in the petiole, but only to 0.20 µm at the stem base, tens of metres away. In easily bent searcher branches, phloem conduits have pectin-rich walls and simple plates, whereas in twining stems, conduits were connected through highly angled and densely porated sieve plates. The hydraulic resistance of phloem conduits in the twisted and elongated stems of A. scandens is large compared with trees of similar stature; phloem hydraulic resistance decreases from leaves to stems, consistent with the efficient delivery of photoassimilates from sources under Münch predictions. Sink strength of a continuously growing canopy might be stronger than in self-supporting understory plants, favoring resource allocation to aerial organs and the attainment of vertical stature.
Collapse
Affiliation(s)
- Juan M. Losada
- Institute for Mediterranean and Subtropical Horticulture ‘La Mayora’—CSIC—UMAAvda. Dr. Wienberg s/nAlgarrobo‐CostaMálaga29750Spain
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMassachusettsUSA
- Arnold Arboretum of Harvard UniversityBostonMassachusettsUSA
| | - Zhe He
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMassachusettsUSA
- Arnold Arboretum of Harvard UniversityBostonMassachusettsUSA
| | - N. Michele Holbrook
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMassachusettsUSA
- Arnold Arboretum of Harvard UniversityBostonMassachusettsUSA
| |
Collapse
|
4
|
Montgomery SA, Berger F. The evolution of imprinting in plants: beyond the seed. PLANT REPRODUCTION 2021; 34:373-383. [PMID: 33914165 PMCID: PMC8566399 DOI: 10.1007/s00497-021-00410-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/12/2021] [Indexed: 05/14/2023]
Abstract
Genomic imprinting results in the biased expression of alleles depending on if the allele was inherited from the mother or the father. Despite the prevalence of sexual reproduction across eukaryotes, imprinting is only found in placental mammals, flowering plants, and some insects, suggesting independent evolutionary origins. Numerous hypotheses have been proposed to explain the selective pressures that favour the innovation of imprinted gene expression and each differs in their experimental support and predictions. Due to the lack of investigation of imprinting in land plants, other than angiosperms with triploid endosperm, we do not know whether imprinting occurs in species lacking endosperm and with embryos developing on maternal plants. Here, we discuss the potential for uncovering additional examples of imprinting in land plants and how these observations may provide additional support for one or more existing imprinting hypotheses.
Collapse
Affiliation(s)
- Sean A Montgomery
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr Gasse 3, 1030, Vienna, Austria
| | - Frédéric Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr Gasse 3, 1030, Vienna, Austria.
| |
Collapse
|
5
|
Roots Structure and Development of Austrobaileya scandens (Austrobaileyaceae) and Implications for Their Evolution in Angiosperms. PLANTS 2020; 9:plants9010054. [PMID: 31906395 PMCID: PMC7020429 DOI: 10.3390/plants9010054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/13/2019] [Accepted: 12/23/2019] [Indexed: 11/24/2022]
Abstract
Since the resolution of the ANA grade [Amborellales, Nymphaeales, Austrobaileyales] as sister to all other flowering plants, a few comparative studies of root structure have suggested that some of their anatomical traits could be of importance to understanding root evolutionary development and angiosperm phylogeny. However, there is still a paucity of information on root structure and apical meristems (RAMs) in these lineages and especially the sister to all other Austrobaileyales, Austrobaileya scandens. We used microtome sections and bright field, epifluorescence, laser confocal, and scanning electron microscopy to study adventitious root RAMs and tissues of A. scandens. Our results indicate that root structure is relatively simple in A. scandens. The epidermis has a thick cuticle and lacks root hairs. The stele is typically diarch, or some modification thereof, and surrounded by a cortex differentiated into a uniseriate endodermis, a middle region sometimes packed with starch, some oil cells, and colonized by arbuscular mycorrhizal fungi, and a multiseriate exodermis. Secondary growth produced many vessel elements in the secondary xylem and scattered sclerenchymatous fibers in secondary phloem. The absence of distinct patterning within the RAM and between the RAM and derivative differentiating tissues shows that the RAM is open and characterized by common initials. Roots structure and anatomy of A. scandens are thus essentially similar to some previously described in Amborella or Illicium in the ANA grade and many magnoliids, and suggest that the first woody flowering plants likely had an open RAM with common initials. Their functional and evolutionary significance in woody early-diverging and basal lineages of flowering plants and gymnosperms remains unclear, but they are clearly ancestral traits.
Collapse
|
6
|
Liu XX, Luo XF, Luo KX, Liu YL, Pan T, Li ZZ, Duns GJ, He FL, Qin ZD. Small RNA sequencing reveals dynamic microRNA expression of important nutrient metabolism during development of Camellia oleifera fruit. Int J Biol Sci 2019; 15:416-429. [PMID: 30745831 PMCID: PMC6367553 DOI: 10.7150/ijbs.26884] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 11/10/2018] [Indexed: 12/13/2022] Open
Abstract
To obtain insight into the function of miRNAs in the synthesis and storage of important nutrients during the development of Camellia oleifera fruit, Illumina sequencing of flower and fruit small-RNA was conducted. The results revealed that 797 miRNAs were significantly differentially expressed between flower and fruit samples of Camellia oleifera. Through integrated GO and KEGG function annotations, it was determined that the miRNA target genes were mainly involved in metabolic pathways, plant hormone signal transduction, fruit development, mitosis and regulation of biosynthetic processes. Carbohydrate accumulation genes were differentially regulated by miR156, miR390 and miR395 in the fruit growth and development process. MiR477 is the key miRNA functioning in regulation of genes and involved in fatty acid synthesis. Additionally, miR156 also has the function of regulating glycolysis and nutrient transformation genes.
Collapse
Affiliation(s)
- Xiao-Xia Liu
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, Hunan Provincial Engineering Research Center for Ginkgo biloba, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Xiao-Fang Luo
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, Hunan Provincial Engineering Research Center for Ginkgo biloba, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Ke-Xin Luo
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, Hunan Provincial Engineering Research Center for Ginkgo biloba, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Ya-Lin Liu
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, Hunan Provincial Engineering Research Center for Ginkgo biloba, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Ting Pan
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, Hunan Provincial Engineering Research Center for Ginkgo biloba, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Zhi-Zhang Li
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, Hunan Provincial Engineering Research Center for Ginkgo biloba, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Gregory J Duns
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, Hunan Provincial Engineering Research Center for Ginkgo biloba, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Fu-Lin He
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, Hunan Provincial Engineering Research Center for Ginkgo biloba, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Zuo-Dong Qin
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, Hunan Provincial Engineering Research Center for Ginkgo biloba, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| |
Collapse
|
7
|
Dalziell EL, Baskin CC, Baskin JM, Young RE, Dixon KW, Merritt DJ. Morphophysiological dormancy in the basal angiosperm order Nymphaeales. ANNALS OF BOTANY 2019; 123:95-106. [PMID: 30052753 PMCID: PMC6344092 DOI: 10.1093/aob/mcy142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/04/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND AND AIMS Substantial evidence supports the hypothesis that morphophysiological dormancy (MPD) is the basal kind of seed dormancy in the angiosperms. However, only physiological dormancy (PD) is reported in seeds of the ANA-grade genus Nymphaea. The primary aim of this study was to determine the kind of dormancy in seeds of six species of Nymphaea from the wet-dry tropics of Australia. METHODS The effects of temperature, light and germination stimulants on germination were tested on multiple collections of seeds of N. immutabilis, N. lukei, N. macrosperma, N. ondinea, N. pubescens and N. violacea. Embryo growth prior to hypocotyl emergence was monitored. KEY RESULTS Germination was generally <10 % after 28 d in control treatments. Germination percentage was highest at 30 or 35 °C for seeds exposed to light and treated with ethylene or in anoxic conditions in sealed vials of water, and it differed significantly between collections of N. lukei, N. macrosperma and N. violacea. Seeds of N. pubescens did not germinate under any of the conditions. Embryo growth (8-37 % in length) occurred before hypocotyl emergence (germination) in seeds of the five species that germinated. CONCLUSIONS Fresh seeds were dormant, and the amount of pregermination embryo growth in seeds of N. lukei and N. immutabilis was relatively small, while in seeds of N. macrosperma, N. ondinea and N. violacea it was relatively large. Thus, seeds of N. lukei and N. immutabilis had PD and those of N. macrosperma, N. ondinea and N. violacea had MPD. Overall, we found that seeds in the most phylogenetically derived clades within Nymphaea have MPD, suggesting that PD is the most likely basal trait within the Nymphaeales. This study also highlights the broad range of dormancy types and germination strategies in the ANA-grade angiosperms.
Collapse
Affiliation(s)
- Emma L Dalziell
- Kings Park Science, Department of Biodiversity, Conservation and Attractions, Kings Park, WA, Australia
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Carol C Baskin
- Department of Biology, University of Kentucky, Lexington, KY, USA
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
| | - Jerry M Baskin
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | - Renee E Young
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - Kingsley W Dixon
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - David J Merritt
- Kings Park Science, Department of Biodiversity, Conservation and Attractions, Kings Park, WA, Australia
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
8
|
Lu J, Magnani E. Seed tissue and nutrient partitioning, a case for the nucellus. PLANT REPRODUCTION 2018; 31:309-317. [PMID: 29869727 PMCID: PMC6105262 DOI: 10.1007/s00497-018-0338-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/25/2018] [Indexed: 05/18/2023]
Abstract
Flowering plants display a large spectrum of seed architectures. The volume ratio of maternal versus zygotic seed tissues changes considerably among species and underlies different nutrient-storing strategies. Such diversity arose through the evolution of cell elimination programs that regulate the relative growth of one tissue over another to become the major storage compartment. The elimination of the nucellus maternal tissue is regulated by developmental programs that marked the origin of angiosperms and outlined the most ancient seed architectures. This review focuses on such a defining mechanism for seed evolution and discusses the role of nucellus development in seed tissues and nutrient partitioning at the light of novel discoveries on its molecular regulation.
Collapse
Affiliation(s)
- Jing Lu
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, University of Paris-Saclay, Route de St-Cyr (RD10), 78026, Versailles Cedex, France
- Ecole Doctorale 567 Sciences du Végétal, University Paris-Sud, University of Paris-Saclay, Bat 360, 91405, Orsay Cedex, France
| | - Enrico Magnani
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, University of Paris-Saclay, Route de St-Cyr (RD10), 78026, Versailles Cedex, France.
| |
Collapse
|