1
|
Liu J, Qiu S, Xue T, Yuan Y. Physiology and transcriptome of Sapindus mukorossi seeds at different germination stages. Genomics 2024; 116:110822. [PMID: 38471577 DOI: 10.1016/j.ygeno.2024.110822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
Sapindus mukorossi has a wide distribution range, high application value, and broad developmental potential. Previous studies have mostly focused on the medicinal and economic value of soapberry; however, few studies have been conducted on its seed germination. This study measured the physiological indicators and hormone content of soapberry seeds at different germination stages and preliminarily determined that abscisic acid (ABA) and indole-3-acetic acid (IAA) are the key hormones that affect the germination of soapberry seeds. Both Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG enrichment) analyses detected hormone transduction pathways, further confirming the key role of plant hormones in the germination process of soapberry seeds. Through transcriptome analysis, we speculated that CYP707A and IPA are key genes in the ABA and IAA synthesis pathways, respectively. This study revealed the close relationship between plant hormones and soapberry seed germination and provided new ideas for further exploration of the germination mechanism of soapberry seeds.
Collapse
Affiliation(s)
- Jia Liu
- Department of Civil and Architecture and Engineering, Chuzhou University, Anhui 239000, China
| | - Sumei Qiu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Tingting Xue
- Department of Civil and Architecture and Engineering, Chuzhou University, Anhui 239000, China.
| | - Yingdan Yuan
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
2
|
Sajeev N, Koornneef M, Bentsink L. A commitment for life: Decades of unraveling the molecular mechanisms behind seed dormancy and germination. THE PLANT CELL 2024; 36:1358-1376. [PMID: 38215009 PMCID: PMC11062444 DOI: 10.1093/plcell/koad328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/19/2023] [Indexed: 01/14/2024]
Abstract
Seeds are unique time capsules that can switch between 2 complex and highly interlinked stages: seed dormancy and germination. Dormancy contributes to the survival of plants because it allows to delay germination to optimal conditions. The switch between dormancy and germination occurs in response to developmental and environmental cues. In this review we provide a comprehensive overview of studies that have helped to unravel the molecular mechanisms underlying dormancy and germination over the last decades. Genetic and physiological studies provided a strong foundation for this field of research and revealed the critical role of the plant hormones abscisic acid and gibberellins in the regulation of dormancy and germination, and later natural variation studies together with quantitative genetics identified previously unknown genetic components that control these processes. Omics technologies like transcriptome, proteome, and translatomics analysis allowed us to mechanistically dissect these processes and identify new components in the regulation of seed dormancy and germination.
Collapse
Affiliation(s)
- Nikita Sajeev
- Wageningen Seed Science Centre, Laboratory of Plant Physiology, Wageningen University, 6708PB Wageningen, the Netherlands
| | - Maarten Koornneef
- Laboratory of Genetics, Wageningen University, 6708PB Wageningen, the Netherlands
- Max Planck Institute for Plant Breeding Research, Former Department of Plant Breeding and Genetics, Koeln 50829, Germany
| | - Leónie Bentsink
- Wageningen Seed Science Centre, Laboratory of Plant Physiology, Wageningen University, 6708PB Wageningen, the Netherlands
| |
Collapse
|
3
|
Solanki M, Shukla LI. Recent advances in auxin biosynthesis and homeostasis. 3 Biotech 2023; 13:290. [PMID: 37547917 PMCID: PMC10400529 DOI: 10.1007/s13205-023-03709-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 07/18/2023] [Indexed: 08/08/2023] Open
Abstract
The plant proliferation is linked with auxins which in turn play a pivotal role in the rate of growth. Also, auxin concentrations could provide insights into the age, stress, and events leading to flowering and fruiting in the sessile plant kingdom. The role in rejuvenation and plasticity is now evidenced. Interest in plant auxins spans many decades, information from different plant families for auxin concentrations, transcriptional, and epigenetic evidences for gene regulation is evaluated here, for getting an insight into pattern of auxin biosynthesis. This biosynthesis takes place via an tryptophan-independent and tryptophan-dependent pathway. The independent pathway initiated before the tryptophan (trp) production involves indole as the primary substrate. On the other hand, the trp-dependent IAA pathway passes through the indole pyruvic acid (IPyA), indole-3-acetaldoxime (IAOx), and indole acetamide (IAM) pathways. Investigations on trp-dependent pathways involved mutants, namely yucca (1-11), taa1, nit1, cyp79b and cyp79b2, vt2 and crd, and independent mutants of tryptophan, ins are compiled here. The auxin conjugates of the IAA amide and ester-linked mutant gh3, iar, ilr, ill, iamt1, ugt, and dao are remarkable and could facilitate the assimilation of auxins. Efforts are made herein to provide an up-to-date detailed information about biosynthesis leading to plant sustenance. The vast information about auxin biosynthesis and homeostasis is consolidated in this review with a simplified model of auxin biosynthesis with keys and clues for important missing links since auxins can enable the plants to proliferate and override the environmental influence and needs to be probed for applications in sustainable agriculture. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03709-6.
Collapse
Affiliation(s)
- Manish Solanki
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry, 605014 India
- Puducherry, India
| | - Lata Israni Shukla
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry, 605014 India
| |
Collapse
|
4
|
Tuo D, Wu J, Zou J, Dong G, Zeng W, Li J, Du D. Analysis of Hormone Regulation on Seed Germination of Coix Based on Muli-Omics Analysis. PLANTS (BASEL, SWITZERLAND) 2023; 12:2700. [PMID: 37514314 PMCID: PMC10385750 DOI: 10.3390/plants12142700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/01/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023]
Abstract
Seed germination is an important stage of growth and reproduction and plays an important role in the life cycle of spermatophyte. It is co-determined by both genetic and environmental factors, and plant hormone regulation may be a highly conservative mechanism. Coix lachryrma-jobi (coix) is a grain with balanced nutrition for medicine and food and has substantial production value. It is an important part of agricultural production, and the efficiency of seed germination after sowing is a key link. In this study, coix species "small white shell Xingren" was used as the experimental material, and changes in gene expression levels and metabolite enrichment in seeds were identified by transcriptome and metabonomic analysis before and after seed germination. A total of 599 metabolites, including those from amino acid metabolism, sugar metabolism, and fatty acid metabolism, were significantly increased in germinating coix. Simultaneously, 10,929 differentially expressed genes (DEGs) were identified, and functional clusters of genes were also significantly clustered in hormone-signaling and glucose and fatty acid metabolism. In addition, this study found that a considerable number of hormone-signaling genes were significantly up-regulated during seed germination, activating multiple metabolic processes. The results of our conjoint analysis of multi omics showed that glucose and fatty acid metabolism played an important role in seed germination under hormone regulation.
Collapse
Affiliation(s)
- Donghao Tuo
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiawen Wu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Juan Zou
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Guoqing Dong
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wanyong Zeng
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jinhua Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Dengxiang Du
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
5
|
Née G, Krüger T. Dry side of the core: a meta-analysis addressing the original nature of the ABA signalosome at the onset of seed imbibition. FRONTIERS IN PLANT SCIENCE 2023; 14:1192652. [PMID: 37476171 PMCID: PMC10354442 DOI: 10.3389/fpls.2023.1192652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/08/2023] [Indexed: 07/22/2023]
Abstract
The timing of seedling emergence is a major agricultural and ecological fitness trait, and seed germination is controlled by a complex molecular network including phytohormone signalling. One such phytohormone, abscisic acid (ABA), controls a large array of stress and developmental processes, and researchers have long known it plays a crucial role in repressing germination. Although the main molecular components of the ABA signalling pathway have now been identified, the molecular mechanisms through which ABA elicits specific responses in distinct organs is still enigmatic. To address the fundamental characteristics of ABA signalling during germination, we performed a meta-analysis focusing on the Arabidopsis dry seed proteome as a reflexion basis. We combined cutting-edge proteome studies, comparative functional analyses, and protein interaction information with genetic and physiological data to redefine the singular composition and operation of the ABA core signalosome from the onset of seed imbibition. In addition, we performed a literature survey to integrate peripheral regulators present in seeds that directly regulate core component function. Although this may only be the tip of the iceberg, this extended model of ABA signalling in seeds already depicts a highly flexible system able to integrate a multitude of information to fine-tune the progression of germination.
Collapse
|
6
|
Baud S, Corso M, Debeaujon I, Dubreucq B, Job D, Marion-Poll A, Miquel M, North H, Rajjou L, Lepiniec L. Recent progress in molecular genetics and omics-driven research in seed biology. C R Biol 2023; 345:61-110. [PMID: 36847120 DOI: 10.5802/crbiol.104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 01/11/2023]
Abstract
Elucidating the mechanisms that control seed development, metabolism, and physiology is a fundamental issue in biology. Michel Caboche had long been a catalyst for seed biology research in France up until his untimely passing away last year. To honour his memory, we have updated a review written under his coordination in 2010 entitled "Arabidopsis seed secrets unravelled after a decade of genetic and omics-driven research". This review encompassed different molecular aspects of seed development, reserve accumulation, dormancy and germination, that are studied in the lab created by M. Caboche. We have extended the scope of this review to highlight original experimental approaches implemented in the field over the past decade such as omics approaches aimed at investigating the control of gene expression, protein modifications, primary and specialized metabolites at the tissue or even cellular level, as well as seed biodiversity and the impact of the environment on seed quality.
Collapse
|
7
|
Transcriptomic insights into the effects of abscisic acid on the germination of Magnolia sieboldii K. Koch seed. Gene 2023; 853:147066. [PMID: 36455787 DOI: 10.1016/j.gene.2022.147066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/07/2022] [Accepted: 11/18/2022] [Indexed: 11/30/2022]
Abstract
Magnolia sieboldii K. Koch is a deciduous tree species. However, the wild resource of M. sieboldii has been declining due to excessive utilization and seed dormancy. In our previous research, M. sieboldii seeds have morphophysiological dormancy and low germination rates under natural conditions. The aim of the present study was to identify the genes involved in dormancy maintenance. In this study, the germination percentage of M. sieboldii seeds negatively correlated with the content of endogenous abscisic acid (ABA). The hydration of seeds for germination showed three distinct phases. Five key time points were identified: 0 h imbibition (dry seed, GZ), 0 day after imbibition (DAI), 16 DAI, 40 DAI, and 56 DAI. The comprehensive transcript profiles of M. sieboldii seeds treated with ABA and water at the five key germinating stages were obtained. A total of 9641 differentially expressed genes (DEGs) were identified, and 208 and 197 common DEGs were found throughout the ABA and water treatments, respectively. Compared with that in the GZ, 518, 696, 2133, and 1535 DEGs were identified in the SH group at 0, 16, 40 and 56 DAI, respectively. 666, 1725, 1560 and 1415 DEGs were identified in the ABA group at 0, 16, 40, and 56 DAI, respectively. Among the identified DEGs, 12 722 were annotated with GO terms, the top three enriched GO terms were different among the DEGs at 56 DAI in the ABA vs. SH treatments. KEGG pathway enrichment analysis for DEGs indicated that oxidative phosphorylation, protein processing in endoplasmic reticulum, starch and sucrose metabolism play an important role in seed response to ABA. 1926 TFs are obtained and classified into 72 families from the M. sieboldii transcriptome. Results of differential gene expression analysis together with qRT-PCR indicated that phase II is crucial for rapid and successful seed germination. This study is the first to present the global expression patterns of ABA-regulated transcripts in M. sieboldii seeds at different germinating phases.
Collapse
|
8
|
DELAY OF GERMINATION 1, the Master Regulator of Seed Dormancy, Integrates the Regulatory Network of Phytohormones at the Transcriptional Level to Control Seed Dormancy. Curr Issues Mol Biol 2022; 44:6205-6217. [PMID: 36547084 PMCID: PMC9777134 DOI: 10.3390/cimb44120423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Seed dormancy, an important adaptive trait that governs germination timing, is endogenously controlled by phytohormones and genetic factors. DELAY OF GERMINATION 1 (DOG1) is the vital genetic regulator of dormancy, significantly affecting the expression of numerous ABA and GA metabolic genes. However, whether DOG1 could influence the expression of other phytohormone-related genes is still unknown. Here, we comprehensively investigated all well-documented hormone-related genes which might be affected in dog1-2 dry or imbibed seeds by using whole-transcriptome sequencing (RNA-seq). We found that DOG1 could systematically control the expression of phytohormone-related genes. An evident decrease was observed in the endogenous signal intensity of abscisic acid (ABA) and indole-3-acetic acid (IAA), while a dramatic increase appeared in that of gibberellins (GA), brassinosteroids (BR), and cytokinin (CK) in the dog1-2 background, which may contribute considerably to its dormancy-deficient phenotype. Collectively, our data highlight the role of DOG1 in balancing the expression of phytohormone-related genes and provide inspirational evidence that DOG1 may integrate the phytohormones network to control seed dormancy.
Collapse
|
9
|
Rehmani MS, Aziz U, Xian B, Shu K. Seed Dormancy and Longevity: A Mutual Dependence or a Trade-Off? PLANT & CELL PHYSIOLOGY 2022; 63:1029-1037. [PMID: 35594901 DOI: 10.1093/pcp/pcac069] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Seed dormancy is an important agronomic trait in cereals and leguminous crops as low levels of seed dormancy during harvest season, coupled with high humidity, can cause preharvest sprouting. Seed longevity is another critical trait for commercial crop propagation and production, directly influencing seed germination and early seedling establishment. Both traits are precisely regulated by the integration of genetic and environmental cues. Despite the significance of these two traits in crop production, the relationship between them at the molecular level is still elusive, even with contradictory conclusions being reported. Some studies have proposed a positive correlation between seed dormancy and longevity in association with differences in seed coat permeability or seed reserve accumulation, whereas an increasing number of studies have highlighted a negative relationship, largely with respect to phytohormone-dependent pathways. In this review paper, we try to provide some insights into the interactions between regulatory mechanisms of genetic and environmental cues, which result in positive or negative relationships between seed dormancy and longevity. Finally, we conclude that further dissection of the molecular mechanism responsible for this apparently contradictory relationship between them is needed.
Collapse
Affiliation(s)
- Muhammad Saad Rehmani
- School of Environment and Ecology, Northwestern Polytechnical University, No. 1, Dongxiang Road, Xi'an 710129, China
| | - Usman Aziz
- School of Environment and Ecology, Northwestern Polytechnical University, No. 1, Dongxiang Road, Xi'an 710129, China
| | - BaoShan Xian
- School of Environment and Ecology, Northwestern Polytechnical University, No. 1, Dongxiang Road, Xi'an 710129, China
| | - Kai Shu
- School of Environment and Ecology, Northwestern Polytechnical University, No. 1, Dongxiang Road, Xi'an 710129, China
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, No. 45, Gaoxin South 9 Road, Shenzhen 518057, China
| |
Collapse
|
10
|
Zhang J, Qian JY, Bian YH, Liu X, Wang CL. Transcriptome and Metabolite Conjoint Analysis Reveals the Seed Dormancy Release Process in Callery Pear. Int J Mol Sci 2022; 23:ijms23042186. [PMID: 35216299 PMCID: PMC8878392 DOI: 10.3390/ijms23042186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 01/09/2023] Open
Abstract
Seed dormancy transition is a vital developmental process for seedling propagation and agricultural production. The process is precisely regulated by diverse endogenous genetic factors and environmental cues. Callery pear (Pyrus calleryana Decne) is an important rootstock species that requires cold stratification to break seed dormancy, but the mechanisms underlying pear seed dormancy release are not yet fully understood. Here, we analyzed the transcriptome profiles at three different stages of cold stratification in callery pear seeds using RNA sequencing combined with phytohormone and sugar content measurements. Significant alterations in hormone contents and carbohydrate metabolism were observed and reflected the dormancy status of the seeds. The expressions of genes related to plant hormone metabolism and signaling transduction, including indole-3-acetic acid (IAA) biosynthesis (ASAs, TSA, NITs, YUC, and AAO) genes as well as several abscisic acid (ABA) and gibberellic acid (GA) catabolism and signaling transduction genes (CYP707As, GA2ox, and DELLAs), were consistent with endogenous hormone changes. We further found that several genes involved in cytokinin (CTK), ethylene (ETH), brassionolide (BR), and jasmonic acid (JA) metabolism and signaling transduction were differentially expressed and integrated in pear seed dormancy release. In accordance with changes in starch and soluble sugar contents, the genes associated with starch and sucrose metabolism were significantly up-regulated during seed dormancy release progression. Furthermore, the expression levels of genes involved in lipid metabolism pathways were also up-regulated. Finally, 447 transcription factor (TF) genes (including ERF, bHLH, bZIP, NAC, WRKY, and MYB genes) were observed to be differentially expressed during seed cold stratification and might relate to pear seed dormancy release. Our results suggest that the mechanism underlying pear seed dormancy release is a complex, transcriptionally regulated process involving hormones, sugars, lipids, and TFs.
Collapse
|
11
|
A Raf-like kinase is required for smoke-induced seed dormancy in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2021; 118:2020636118. [PMID: 33795513 DOI: 10.1073/pnas.2020636118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Plants sense and integrate diverse stimuli to determine the timing for germination. A smoke compound, 3,4,5-trimethylfuran-2(5H)-one (trimethylbutenolide, TMB), has been identified to inhibit the seed germination of higher plants. To understand the mode of action, we examined various physiological and molecular aspects of the TMB-dependent inhibition of seed germination in Arabidopsis thaliana The results indicated that the effect of TMB is due to the enhanced physiological dormancy, which is modulated by other dormancy regulatory cues such as after-ripening, stratification, and ABA/GA signaling. In addition, gene expression profiling showed that TMB caused genome-wide transcriptional changes, altering the expression of a series of dormancy-related genes. Based on the TMB-responsive physiological contexts in Arabidopsis, we performed mutant screening to isolate genetic components that underpin the TMB-induced seed dormancy. As a result, the TMB-RESISTANT1 (TES1) gene in Arabidopsis, encoding a B2 group Raf-like kinase, was identified. Phenotypic analysis of the tes1 mutant implicated that TES1 has a critical role in the TMB-responsive gene expression and the inhibition of seed germination. Taken together, we propose that plants have been equipped with a TMB sensory pathway through which the TMB induces the seed dormancy in a TES1-dependent way.
Collapse
|
12
|
Merieux N, Cordier P, Wagner MH, Ducournau S, Aligon S, Job D, Grappin P, Grappin E. ScreenSeed as a novel high throughput seed germination phenotyping method. Sci Rep 2021; 11:1404. [PMID: 33446694 PMCID: PMC7809209 DOI: 10.1038/s41598-020-79115-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/23/2020] [Indexed: 11/09/2022] Open
Abstract
A high throughput phenotyping tool for seed germination, the ScreenSeed technology, was developed with the aim of screening genotype responsiveness and chemical drugs. This technology was presently used with Arabidopsis thaliana seeds to allow characterizing seed samples germination behavior by incubating seeds in 96-well microplates under defined conditions and detecting radicle protrusion through the seed coat by automated image analysis. This study shows that this technology provides a fast procedure allowing to handle thousands of seeds without compromising repeatability or accuracy of the germination measurements. Potential biases of the experimental protocol were assessed through statistical analyses of germination kinetics. Comparison of the ScreenSeed procedure with commonly used germination tests based upon visual scoring displayed very similar germination kinetics.
Collapse
Affiliation(s)
| | - Pierre Cordier
- EffiSciency, ScreenSeed, Issy-les-Moulineaux, 97132, France
| | - Marie-Hélène Wagner
- Groupe d'Étude et de Contrôle des Variétés et des Semences (GEVES, Dept Seed Testing, Station Nationale d'Essais de Semences (SNES), 49071, Beaucouzé, France
| | - Sylvie Ducournau
- Groupe d'Étude et de Contrôle des Variétés et des Semences (GEVES, Dept Seed Testing, Station Nationale d'Essais de Semences (SNES), 49071, Beaucouzé, France
| | - Sophie Aligon
- Institut de recherche en horticulture et semences (IRHS), UMR 1345 INRAE - Institut Agro - Université d'Angers, SFR 4207 QuaSav, 49071, Beaucouzé, France
| | - Dominique Job
- Microbiologie, Adaptation et Pathogénie, UMR 5240 CNRS - INSA - Université Claude Bernard Lyon1 - Bayer CropScience, 69009, Lyon, France
| | - Philippe Grappin
- Institut de recherche en horticulture et semences (IRHS), UMR 1345 INRAE - Institut Agro - Université d'Angers, SFR 4207 QuaSav, 49071, Beaucouzé, France.
| | - Edwin Grappin
- EffiSciency, ScreenSeed, Issy-les-Moulineaux, 97132, France.
| |
Collapse
|
13
|
Liu X, Giarola V, Quan W, Song X, Bartels D. Identification and characterization of CTP:phosphocholine cytidylyltransferase CpCCT1 in the resurrection plant Craterostigma plantagineum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110698. [PMID: 33288011 DOI: 10.1016/j.plantsci.2020.110698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/08/2020] [Accepted: 10/02/2020] [Indexed: 06/12/2023]
Abstract
Phosphatidylcholine is a major phospholipid which is shown to be involved in stress adaptation. Phosphatidylcholine increased during dehydration in Craterostigma plantagineum, and therefore we characterized CTP:phosphocholine cytidylyltransferase (CpCCT1), a key regulatory enzyme for phosphatidylcholine synthesis in plants. The CpCCT1 gene from the resurrection plant C. plantagineum was cloned and the amino acid sequence was compared with homologs from other species including yeast and rat. CCT proteins have conserved catalytic and membrane-binding domains while the N-terminal and C-terminal domains have diverged. The tissue specific expression analysis indicated that CpCCT1 is expressed in all tested tissues and it is induced by dehydration and in response to 0.5 M NaCl solutions. In plants exposed to low temperature in the dark, the CpCCT1 transcript increased after 4 h at 4 °C. CpCCT1 expression also increased during mannitol and sorbitol treatments in a concentration dependent manner. Phytohormones such as abscisic acid and indole-3-acetic acid also trigged transcript accumulation. Comparisons of transcript and protein accumulations for different treatments (except for dehydration) suggest transcriptional and translational control mechanisms. Analysis of promoter activity and polysome occupancy suggest that CpCCT1 gene expression is mainly under translational regulation during dehydration.
Collapse
Affiliation(s)
- Xun Liu
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Valentino Giarola
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115, Bonn, Germany.
| | - Wenli Quan
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115, Bonn, Germany; Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan, Hubei, 432000, China
| | - Xiaomin Song
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115, Bonn, Germany.
| |
Collapse
|
14
|
Bai B, van der Horst N, Cordewener JH, America AHP, Nijveen H, Bentsink L. Delayed Protein Changes During Seed Germination. FRONTIERS IN PLANT SCIENCE 2021; 12:735719. [PMID: 34603360 PMCID: PMC8480309 DOI: 10.3389/fpls.2021.735719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/05/2021] [Indexed: 05/12/2023]
Abstract
Over the past decade, ample transcriptome data have been generated at different stages during seed germination; however, far less is known about protein synthesis during this important physiological process. Generally, the correlation between transcript levels and protein abundance is low, which strongly limits the use of transcriptome data to accurately estimate protein expression. Polysomal profiling has emerged as a tool to identify mRNAs that are actively translated. The association of the mRNA to the polysome, also referred to as translatome, provides a proxy for mRNA translation. In this study, the correlation between the changes in total mRNA, polysome-associated mRNA, and protein levels across seed germination was investigated. The direct correlation between polysomal mRNA and protein abundance at a single time-point during seed germination is low. However, once the polysomal mRNA of a time-point is compared to the proteome of the next time-point, the correlation is much higher. 35% of the investigated proteome has delayed changes at the protein level. Genes have been classified based on their delayed protein changes, and specific motifs in these genes have been identified. Moreover, mRNA and protein stability and mRNA length have been found as important predictors for changes in protein abundance. In conclusion, polysome association and/or dissociation predicts future changes in protein abundance in germinating seeds.
Collapse
Affiliation(s)
- Bing Bai
- Wageningen Seed Science Centre, Laboratory of Plant Physiology, Wageningen University, Wageningen, Netherlands
- *Correspondence: Bing Bai,
| | | | - Jan H. Cordewener
- BU Bioscience, Wageningen Plant Research, Wageningen, Netherlands
- Centre for BioSystems Genomics, Wageningen, Netherlands
- Netherlands Proteomics Centre, Utrecht, Netherlands
| | - Antoine H. P. America
- BU Bioscience, Wageningen Plant Research, Wageningen, Netherlands
- Centre for BioSystems Genomics, Wageningen, Netherlands
- Netherlands Proteomics Centre, Utrecht, Netherlands
| | - Harm Nijveen
- Bioinformatics Group, Wageningen University, Wageningen, Netherlands
| | - Leónie Bentsink
- Wageningen Seed Science Centre, Laboratory of Plant Physiology, Wageningen University, Wageningen, Netherlands
- Leónie Bentsink,
| |
Collapse
|
15
|
Carrera-Castaño G, Calleja-Cabrera J, Pernas M, Gómez L, Oñate-Sánchez L. An Updated Overview on the Regulation of Seed Germination. PLANTS 2020; 9:plants9060703. [PMID: 32492790 PMCID: PMC7356954 DOI: 10.3390/plants9060703] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023]
Abstract
The ability of a seed to germinate and establish a plant at the right time of year is of vital importance from an ecological and economical point of view. Due to the fragility of these early growth stages, their swiftness and robustness will impact later developmental stages and crop yield. These traits are modulated by a continuous interaction between the genetic makeup of the plant and the environment from seed production to germination stages. In this review, we have summarized the established knowledge on the control of seed germination from a molecular and a genetic perspective. This serves as a “backbone” to integrate the latest developments in the field. These include the link of germination to events occurring in the mother plant influenced by the environment, the impact of changes in the chromatin landscape, the discovery of new players and new insights related to well-known master regulators. Finally, results from recent studies on hormone transport, signaling, and biophysical and mechanical tissue properties are underscoring the relevance of tissue-specific regulation and the interplay of signals in this crucial developmental process.
Collapse
|
16
|
Goro MG, Sinha VB. Seed germination responses for varying KNO3 and NaNO3 stress in Trifolium alexandrinum. L cultivars. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Buijs G, Vogelzang A, Nijveen H, Bentsink L. Dormancy cycling: translation-related transcripts are the main difference between dormant and non-dormant seeds in the field. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:327-339. [PMID: 31785171 PMCID: PMC7217185 DOI: 10.1111/tpj.14626] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 05/20/2023]
Abstract
Primary seed dormancy is a mechanism that orchestrates the timing of seed germination in order to prevent out-of-season germination. Secondary dormancy can be induced in imbibed seeds when they encounter prolonged unfavourable conditions. Secondary dormancy is not induced during dry storage, and therefore the mechanisms underlying this process have remained largely unexplored. Here, a 2-year seed burial experiment in which dormancy cycling was studied at the physiological and transcriptional level is presented. For these analyses six different Arabidopsis thaliana genotypes were used: Landsberg erecta (Ler) and the dormancy associated DELAY OF GERMINATION (DOG) near-isogenic lines 1, 2, 3, 6 and 22 (NILDOG1, 2, 3, 6 and 22). The germination potential of seeds exhumed from the field showed that these seeds go through dormancy cycling and that the dynamics of this cycling is genotype dependent. RNA-seq analysis revealed large transcriptional changes during dormancy cycling, especially at the time points preceding shifts in dormancy status. Dormancy cycling is driven by soil temperature and the endosperm is important in the perception of the environment. Genes that are upregulated in the low- to non-dormant stages are enriched for genes involved in translation, indicating that the non-dormant seeds are prepared for rapid seed germination.
Collapse
Affiliation(s)
- Gonda Buijs
- Wageningen Seed LaboratoryLaboratory of Plant PhysiologyWageningen UniversityWageningenthe Netherlands
| | - Afke Vogelzang
- Wageningen Seed LaboratoryLaboratory of Plant PhysiologyWageningen UniversityWageningenthe Netherlands
| | - Harm Nijveen
- Bioinformatics GroupWageningen UniversityWageningenthe Netherlands
| | - Leónie Bentsink
- Wageningen Seed LaboratoryLaboratory of Plant PhysiologyWageningen UniversityWageningenthe Netherlands
| |
Collapse
|
18
|
Lost in Translation: Physiological Roles of Stored mRNAs in Seed Germination. PLANTS 2020; 9:plants9030347. [PMID: 32164149 PMCID: PMC7154877 DOI: 10.3390/plants9030347] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023]
Abstract
Seeds characteristics such as germination ability, dormancy, and storability/longevity are important traits in agriculture, and various genes have been identified that are involved in its regulation at the transcriptional and post-transcriptional level. A particularity of mature dry seeds is a special mechanism that allows them to accumulate more than 10,000 mRNAs during seed maturation and use them as templates to synthesize proteins during germination. Some of these stored mRNAs are also referred to as long-lived mRNAs because they remain translatable even after seeds have been exposed to long-term stressful conditions. Mature seeds can germinate even in the presence of transcriptional inhibitors, and this ability is acquired in mid-seed development. The type of mRNA that accumulates in seeds is affected by the plant hormone abscisic acid and environmental factors, and most of them accumulate in seeds in the form of monosomes. Release of seed dormancy during after-ripening involves the selective oxidation of stored mRNAs and this prevents translation of proteins that function in the suppression of germination after imbibition. Non-selective oxidation and degradation of stored mRNAs occurs during long-term storage of seeds so that the quality of stored RNAs is linked to the degree of seed deterioration. After seed imbibition, a population of stored mRNAs are selectively loaded into polysomes and the mRNAs, involved in processes such as redox, glycolysis, and protein synthesis, are actively translated for germination.
Collapse
|
19
|
Liew LC, Narsai R, Wang Y, Berkowitz O, Whelan J, Lewsey MG. Temporal tissue-specific regulation of transcriptomes during barley (Hordeum vulgare) seed germination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:700-715. [PMID: 31628689 DOI: 10.1111/tpj.14574] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/09/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
The distinct functions of individual cell types require cells to express specific sets of genes. The germinating seed is an excellent model to study genome regulation between cell types since the majority of the transcriptome is differentially expressed in a short period, beginning from a uniform, metabolically inactive state. In this study, we applied laser-capture microdissection RNA-sequencing to small numbers of cells from the plumule, radicle tip and scutellum of germinating barley seeds every 8 h, over a 48 h time course. Tissue-specific gene expression was notably common; 25% (910) of differentially expressed transcripts in plumule, 34% (1876) in radicle tip and 41% (2562) in scutellum were exclusive to that organ. We also determined that tissue-specific storage of transcripts occurs during seed development and maturation. Co-expression of genes had strong spatiotemporal structure, with most co-expression occurring within one organ and at a subset of specific time points during germination. Overlapping and distinct enrichment of functional categories were observed in the tissue-specific profiles. We identified candidate transcription factors amongst these that may be regulators of spatiotemporal gene expression programs. Our findings contribute to the broader goal of generating an integrative model that describes the structure and function of individual cells within seeds during germination.
Collapse
Affiliation(s)
- Lim Chee Liew
- Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, Vic., 3086, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Vic., 3086, Australia
| | - Reena Narsai
- Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, Vic., 3086, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Vic., 3086, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, Vic., 3086, Australia
| | - Yan Wang
- Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, Vic., 3086, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Vic., 3086, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, Vic., 3086, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Vic., 3086, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, Vic., 3086, Australia
| | - James Whelan
- Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, Vic., 3086, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Vic., 3086, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, Vic., 3086, Australia
| | - Mathew G Lewsey
- Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, Vic., 3086, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, Vic., 3086, Australia
| |
Collapse
|
20
|
Pellizzaro A, Neveu M, Lalanne D, Ly Vu B, Kanno Y, Seo M, Leprince O, Buitink J. A role for auxin signaling in the acquisition of longevity during seed maturation. THE NEW PHYTOLOGIST 2020; 225:284-296. [PMID: 31461534 DOI: 10.1111/nph.16150] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/14/2019] [Indexed: 05/23/2023]
Abstract
Seed longevity, the maintenance of viability during dry storage, is a crucial factor to preserve plant genetic resources and seed vigor. Inference of a temporal gene-regulatory network of seed maturation identified auxin signaling as a putative mechanism to induce longevity-related genes. Using auxin-response sensors and tryptophan-dependent auxin biosynthesis mutants of Arabidopsis thaliana L., the role of auxin signaling in longevity was studied during seed maturation. DII and DR5 sensors demonstrated that, concomitant with the acquisition of longevity, auxin signaling input and output increased and underwent a spatiotemporal redistribution, spreading throughout the embryo. Longevity of seeds of single auxin biosynthesis mutants with altered auxin signaling activity was affected in a dose-response manner depending on the level of auxin activity. Longevity-associated genes with promoters enriched in auxin response elements and the master regulator ABSCISIC ACID INSENSITIVE3 were induced by auxin in developing embryos and deregulated in auxin biosynthesis mutants. The beneficial effect of exogenous auxin during seed maturation on seed longevity was abolished in abi3-1 mutants. These data suggest a role for auxin signaling activity in the acquisition of longevity during seed maturation.
Collapse
Affiliation(s)
- Anthoni Pellizzaro
- UMR 1345 Institut de Recherche en Horticulture et Semences, Agrocampus Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, Beaucouzé, 49070, France
| | - Martine Neveu
- UMR 1345 Institut de Recherche en Horticulture et Semences, Agrocampus Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, Beaucouzé, 49070, France
| | - David Lalanne
- UMR 1345 Institut de Recherche en Horticulture et Semences, Agrocampus Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, Beaucouzé, 49070, France
| | - Benoit Ly Vu
- UMR 1345 Institut de Recherche en Horticulture et Semences, Agrocampus Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, Beaucouzé, 49070, France
| | - Yuri Kanno
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Olivier Leprince
- UMR 1345 Institut de Recherche en Horticulture et Semences, Agrocampus Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, Beaucouzé, 49070, France
| | - Julia Buitink
- UMR 1345 Institut de Recherche en Horticulture et Semences, Agrocampus Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, Beaucouzé, 49070, France
| |
Collapse
|
21
|
Liu L, Liu F, Chu J, Yi X, Fan W, Tang T, Chen G, Guo Q, Zhao X. A transcriptome analysis reveals a role for the indole GLS-linked auxin biosynthesis in secondary dormancy in rapeseed (Brassica napus L.). BMC PLANT BIOLOGY 2019; 19:264. [PMID: 31215396 PMCID: PMC6582522 DOI: 10.1186/s12870-019-1866-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/03/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND Brassica napus L. has little or no primary dormancy, but exhibits great variation in secondary dormancy. Secondary dormancy potential in oilseed rape can lead to the emergence of volunteer plants that cause genetic contamination, reduced quality and biosafety issues. However, the mechanisms underlying secondary dormancy are poorly understood. In this study, cultivars Huaiyou-WSD-H2 (H) and Huaiyou-SSD-V1 (V), which exhibit low (approximately 5%) and high (approximately 95%) secondary dormancy rate, respectively, were identified. Four samples, before (Hb and Vb) and after (Ha and Va) secondary dormancy induction by polyethylene glycol (PEG), were collected to identify the candidate genes involved in secondary dormancy via comparative transcriptome profile analysis. RESULTS A total of 998 differentially expressed genes (DEGs), which are mainly involved in secondary metabolism, transcriptional regulation, protein modification and signaling pathways, were then detected. Among these DEGs, the expression levels of those involved in the sulfur-rich indole glucosinolate (GLS)-linked auxin biosynthesis pathway were markedly upregulated in the dormant seeds (Va), which were validated by qRT-PCR and subsequently confirmed via detection of altered concentrations of indole-3-acetic acid (IAA), IAA conjugates and precursors. Furthermore, exogenous IAA applications to cultivar H enhanced secondary dormancy. CONCLUSION This study first (to our knowledge) elucidated that indole GLS-linked auxin biosynthesis is enhanced during secondary dormancy induced by PEG, which provides valuable information concerning secondary dormancy and expands the current understanding of the role of auxin in rapeseed.
Collapse
Affiliation(s)
- Lei Liu
- Jiangsu Key Laboratory for Eco-agriculture Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’an, 223300 China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai’an, 223300 China
| | - Fuxia Liu
- Jiangsu Key Laboratory for Eco-agriculture Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’an, 223300 China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai’an, 223300 China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xin Yi
- Jiangsu Key Laboratory for Eco-agriculture Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’an, 223300 China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai’an, 223300 China
| | - Wenqi Fan
- Jiangsu Key Laboratory for Eco-agriculture Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’an, 223300 China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai’an, 223300 China
- School of Food Science and Engineering, Yangzhou University, Yangzhou, 225127 China
| | - Tang Tang
- Jiangsu Key Laboratory for Eco-agriculture Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’an, 223300 China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai’an, 223300 China
| | - Guimin Chen
- Jiangsu Key Laboratory for Eco-agriculture Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’an, 223300 China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai’an, 223300 China
| | - Qiuhuan Guo
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiangxiang Zhao
- Jiangsu Key Laboratory for Eco-agriculture Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’an, 223300 China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai’an, 223300 China
| |
Collapse
|
22
|
Sajeev N, Bai B, Bentsink L. Seeds: A Unique System to Study Translational Regulation. TRENDS IN PLANT SCIENCE 2019; 24:487-495. [PMID: 31003894 DOI: 10.1016/j.tplants.2019.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 05/18/2023]
Abstract
Seeds accumulate mRNA during their development and have the ability to store these mRNAs over extended periods of time. On imbibition, seeds transform from a quiescent dry state (no translation) to a fully active metabolic state, and selectively translate subsets of these stored mRNA. Thus, seeds provide a unique developmentally regulated 'on/off' switch for translation. Additionally, there is extensive translational control during seed germination. Here we discuss new findings and hypotheses linked to mRNA fate and the role of translational regulation in seeds. Translation is an understated yet important mode of gene regulation. We propose seeds as a novel system to study developmentally and physiologically regulated translation.
Collapse
Affiliation(s)
- Nikita Sajeev
- Wageningen Seed Laboratory, Laboratory of Plant Physiology, Wageningen University, Wageningen, The Netherlands; Laboratory website: www.pph.wur.nl
| | - Bing Bai
- Wageningen Seed Laboratory, Laboratory of Plant Physiology, Wageningen University, Wageningen, The Netherlands; Laboratory website: www.pph.wur.nl
| | - Leónie Bentsink
- Wageningen Seed Laboratory, Laboratory of Plant Physiology, Wageningen University, Wageningen, The Netherlands; Laboratory website: www.pph.wur.nl.
| |
Collapse
|
23
|
Li X, Liu S, Yuan G, Zhao P, Yang W, Jia J, Cheng L, Qi D, Chen S, Liu G. Comparative transcriptome analysis provides insights into the distinct germination in sheepgrass (Leymus chinensis) during seed development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:446-458. [PMID: 30999132 DOI: 10.1016/j.plaphy.2019.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/05/2019] [Accepted: 04/07/2019] [Indexed: 05/12/2023]
Abstract
Sheepgrass (Leymus chinensis ((Trin.) Tzvel)) is an important perennial forage grass that is widely distributed in the Eurasia steppe. The seed germination percentage show significant variation among the different germplasm in sheepgrass. However, the underlying molecular mechanisms of distinct germination during seed development are still mostly unknown. Here, we performed comparative transcriptomic analyses of high seed germination percentage (H) and low seed germination percentage (L) at 14, 28, and 42 days after pollination. After comparing 3 consecutive development stages, 9255, 5366, and 4306 genes were found to be significantly differently expressed between H and L. Pathway analysis indicated that transcripts related to starch and sucrose metabolism, phenylpropanoid biosynthesis, plant hormone signal transduction, amino sugar and nucleotide sugar metabolism, and photosynthesis were significantly changed between the two germplasm at three stages. ABA and GA metabolism- and signaling transduction-related genes were differentially expressed between two germplasm at development stages, suggesting that the reduced signaling of GA and ABA is likely to be related to seed germination and dormancy in sheepgrass. We also identified 81 transcription factor (TF) families, and some TFs genes such as NAC48, NAC78, WRKY80, ZnFP, C3H14 and ILR3 were significantly differential expressed in two germplasm. Our results provide insights into seed development, germination and dormancy in sheepgrass at the transcriptional level.
Collapse
Affiliation(s)
- Xiaoxia Li
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Shu Liu
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Guangxiao Yuan
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Pincang Zhao
- College of Management Science and Engineering, Hebei University of Economics and Business, Shijiazhuang, China
| | - Weiguang Yang
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; Institute of Animal Science of Heilongjiang Province, Heilongjiang, Qiqihar, China
| | - Junting Jia
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Liqin Cheng
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Dongmei Qi
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Shuangyan Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China.
| | - Gongshe Liu
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
24
|
Lin W, Huang W, Ning S, Gong X, Ye Q, Wei D. Comparative transcriptome analyses revealed differential strategies of roots and leaves from methyl jasmonate treatment Baphicacanthus cusia (Nees) Bremek and differentially expressed genes involved in tryptophan biosynthesis. PLoS One 2019; 14:e0212863. [PMID: 30865659 PMCID: PMC6415880 DOI: 10.1371/journal.pone.0212863] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/11/2019] [Indexed: 12/22/2022] Open
Abstract
Baphicacanthus cusia (Nees) Bremek (B. cusia) is an effective herb for the treatment of acute promyelocytic leukemia and psoriasis in traditional Chinese medicine. Methyl jasmonate (MeJA) is a well-known signaling phytohormone that triggers gene expression in secondary metabolism. Currently, MeJA-mediated biosynthesis of indigo and indirubin in B. cusia is not well understood. In this study, we analyzed the content of indigo and indirubin in leaf and root tissues of B. cusia with high-performance liquid chromatography and measured photosynthetic characteristics of leaves treated by MeJA using FluorCam6 Fluorometer and chlorophyll fluorescence using the portable photosynthesis system CIRAS-2. We performed de novo RNA-seq of B. cusia leaf and root transcriptional profiles to investigate differentially expressed genes (DEGs) in response to exogenous MeJA application. The amount of indigo in MeJA-treated leaves were higher than that in controled leaves (p = 0.004), and the amounts of indigo in treated roots was higher than that in controlled roots (p = 0.048); Chlorophyll fluorescence of leaves treated with MeJA were significantly decreased. Leaves treated with MeJA showed lower photosynthetic rate compared to the control in the absence of MeJA. Functional annotation of DEGs showed the DEGs related to growth and development processes were down-regulated in the treated leaves, while most of the unigenes involved in the defense response were up-regulated in treated roots. This coincided with the effects of MeJA on photosynthetic characteristics and chlorophyll fluorescence. The qRT-PCR results showed that MeJA appears to down-regulate the gene expression of tryptophan synthase β-subunits (trpA-β) in leaves but increased the gene expression of anthranilate synthase (trp 3) in roots responsible for increased indigo content. The results showed that MeJA suppressed leaf photosynthesis for B. cusia and this growth-defense trade-off may contribute to the improved adaptability of B. cusia in changing environments.
Collapse
Affiliation(s)
- Wenjin Lin
- School of Life science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou, Fujian, China
| | - Wei Huang
- School of Life science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shuju Ning
- School of Crop science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiaogui Gong
- School of Life science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Qi Ye
- School of Life science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Daozhi Wei
- School of Life science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- * E-mail:
| |
Collapse
|
25
|
Gianinetti A, Finocchiaro F, Bagnaresi P, Zechini A, Faccioli P, Cattivelli L, Valè G, Biselli C. Seed Dormancy Involves a Transcriptional Program That Supports Early Plastid Functionality during Imbibition. PLANTS 2018; 7:plants7020035. [PMID: 29671830 PMCID: PMC6026906 DOI: 10.3390/plants7020035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/05/2018] [Accepted: 04/11/2018] [Indexed: 01/18/2023]
Abstract
Red rice fully dormant seeds do not germinate even under favorable germination conditions. In several species, including rice, seed dormancy can be removed by dry-afterripening (warm storage); thus, dormant and non-dormant seeds can be compared for the same genotype. A weedy (red) rice genotype with strong dormancy was used for mRNA expression profiling, by RNA-Seq, of dormant and non-dormant dehulled caryopses (here addressed as seeds) at two temperatures (30 °C and 10 °C) and two durations of incubation in water (8 h and 8 days). Aim of the study was to highlight the differences in the transcriptome of dormant and non-dormant imbibed seeds. Transcript data suggested important differences between these seeds (at least, as inferred by expression-based metabolism reconstruction): dry-afterripening seems to impose a respiratory impairment onto non-dormant seeds, thus glycolysis is deduced to be preferentially directed to alcoholic fermentation in non-dormant seeds but to alanine production in dormant ones; phosphoenolpyruvate carboxykinase, pyruvate phosphate dikinase and alanine aminotransferase pathways appear to have an important gluconeogenetic role associated with the restoration of plastid functions in the dormant seed following imbibition; correspondingly, co-expression analysis pointed out a commitment to guarantee plastid functionality in dormant seeds. At 8 h of imbibition, as inferred by gene expression, dormant seeds appear to preferentially use carbon and nitrogen resources for biosynthetic processes in the plastid, including starch and proanthocyanidins accumulation. Chromatin modification appears to be a possible mechanism involved in the transition from dormancy to germination. Non-dormant seeds show higher expression of genes related to cell wall modification, suggesting they prepare for acrospire/radicle elongation.
Collapse
Affiliation(s)
- Alberto Gianinetti
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Franca Finocchiaro
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Paolo Bagnaresi
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Antonella Zechini
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Primetta Faccioli
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Giampiero Valè
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, s.s. 11 to Torino, km 2.5, 13100 Vercelli, Italy.
| | - Chiara Biselli
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| |
Collapse
|