1
|
Khan FK, Sánchez-García M, Johannesson H, Ryberg M. High rate of gene family evolution in proximity to the origin of ectomycorrhizal symbiosis in Inocybaceae. THE NEW PHYTOLOGIST 2024; 244:219-234. [PMID: 39113397 DOI: 10.1111/nph.20007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/09/2024] [Indexed: 09/17/2024]
Abstract
The genomes of ectomycorrhizal (ECM) fungi have a reduced number of genes encoding Carbohydrate-Active EnZymes (CAZymes), expansions in transposable elements (TEs) and small secreted proteins (SSPs) compared with saprotrophs. Fewer genes for specific peptidases and lipases in ECM fungi are also reported. It is unclear whether these changes occur at the shift to the ECM habit or are more gradual throughout the evolution of ECM lineages. We generated a genomic dataset of 20 species in the ECM lineage Inocybaceae and compared them with six saprotrophic species. Inocybaceae genomes have fewer CAZymes, peptidases, lipases, secondary metabolite clusters and SSPs and higher TE content than their saprotrophic relatives. There was an increase in the rate of gene family evolution along the branch with the transition to the ECM lifestyle. This branch had very high rate of evolution in CAZymes and had the largest number of contractions. Other significant changes along this branch included expansions in transporters, transposons-related genes and communication genes such as fungal kinases. There is a high concentration of changes in proximity to the transition to the ECM lifestyle, which correspond to the identified key changes for the gain of this lifestyle.
Collapse
Affiliation(s)
- Faheema Kalsoom Khan
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, 752 36, Sweden
| | - Marisol Sánchez-García
- Department of Forest Mycology and Plant Pathology, Uppsala Biocentre, Swedish University of Agricultural Sciences, Uppsala, SE-75005, Sweden
| | - Hanna Johannesson
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, 752 36, Sweden
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, 106 91, Sweden
- The Royal Swedish Academy of Sciences, Stockholm, 114 18, Sweden
| | - Martin Ryberg
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, 752 36, Sweden
| |
Collapse
|
2
|
Zhao Y, Wang J, Xiao Q, Liu G, Li Y, Zha X, He Z, Kang J. New insights into decoding the lifestyle of endophytic Fusarium lateritium Fl617 via comparing genomes. Genomics 2024; 116:110925. [PMID: 39178998 DOI: 10.1016/j.ygeno.2024.110925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Fungal-plant interactions have persisted for 460 million years, and almost all terrestrial plants on Earth have endophytic fungi. However, the mechanism of symbiosis between endophytic fungi and host plants has been inconclusive. In this dissertation, we used a strain of endophytic Fusarium lateritium (Fl617), which was found in the previous stage to promote disease resistance in tomato, and selected the pathogenic Fusarium oxysporum Fo4287 and endophytic Fusarium oxysporum Fo47, which are in the same host and the closest relatives of Fl617, to carry out a comparative genomics analysis of the three systems and to provide a new perspective for the elucidation of the special lifestyle of the fungal endophytes. We found that endophytic F. lateritium has a smaller genome, fewer clusters and genes associated with pathogenicity, and fewer plant cell wall degrading enzymes (PCWDEs). There were also relatively fewer secondary metabolisms and typical Fusarium spp. toxins, and a lack of the key Fusarium spp. pathogenicity factor, secreted in xylem (SIX), but the endophytic fungi may be more sophisticated in their regulation of the colonization process. It is hypothesized that the endophytic fungi may have maintained their symbiosis with plants due to the relatively homogeneous microenvironment in plants for a long period of time, considering only plant interactions and discarding the relevant pathogenicity factors, and that their endophytic evolutionary tendency may tend to be genome streamlining and to enhance the fineness of the regulation of plant interactions, thus maintaining their symbiotic status with plants.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China; Engineering and Research Center for Southwest Biopharmaceutical Resource of National Education Ministry of China, Guizhou University, Guiyang 550025, China
| | - Jiankang Wang
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China; Engineering and Research Center for Southwest Biopharmaceutical Resource of National Education Ministry of China, Guizhou University, Guiyang 550025, China
| | - Qing Xiao
- Engineering and Research Center for Southwest Biopharmaceutical Resource of National Education Ministry of China, Guizhou University, Guiyang 550025, China; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Guizhou University, Guiyang 550025, China
| | - Guihua Liu
- Engineering and Research Center for Southwest Biopharmaceutical Resource of National Education Ministry of China, Guizhou University, Guiyang 550025, China; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Guizhou University, Guiyang 550025, China
| | - Yongjie Li
- Engineering and Research Center for Southwest Biopharmaceutical Resource of National Education Ministry of China, Guizhou University, Guiyang 550025, China; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Guizhou University, Guiyang 550025, China
| | - Xingping Zha
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China; Engineering and Research Center for Southwest Biopharmaceutical Resource of National Education Ministry of China, Guizhou University, Guiyang 550025, China
| | - Zhangjiang He
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China; Engineering and Research Center for Southwest Biopharmaceutical Resource of National Education Ministry of China, Guizhou University, Guiyang 550025, China.
| | - Jichuan Kang
- Engineering and Research Center for Southwest Biopharmaceutical Resource of National Education Ministry of China, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
3
|
Pan X, Liang J, Zhang J, Zhao Y, Chen M. Differential Strategies of Ectomycorrhizal Development between Suillus luteus and Pinus massoniana in Response to Nutrient Changes. J Fungi (Basel) 2024; 10:587. [PMID: 39194913 DOI: 10.3390/jof10080587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
Ectomycorrhizal fungi employ different strategies for mycelial growth and host colonization under varying nutrient conditions. However, key genes associated with mycorrhizal interaction should be influenced solely by the inoculation treatment and not by nutrient variations. To utilize subtle nutrient differences and rapidly screen for key genes related to the interaction between Suillus luteus and Pinus massoniana, we performed an inoculation experiment using culture bottles containing high- and low-nutrient media. Interestingly, S. luteus LS88 promoted the growth of P. massoniana seedlings without mature ectomycorrhiza, and the impact of LS88 inoculation on P. massoniana roots was greater than that of nutrient changes. In this study, the resequenced genome of the LS88 strain was utilized for transcriptome analysis of the strain. The analysis indicated that a unique gene encoding glutathione S-transferase (GST) in LS88 is likely involved in colonizing P. massoniana roots. In this study, the GST gene expression was independent of nutrient levels. It was probably induced by P. massoniana and could be used as a marker for S. luteus colonization degree.
Collapse
Affiliation(s)
- Xueyu Pan
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Junfeng Liang
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
| | - Jinhua Zhang
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
| | - Yan Zhao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Mingjie Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| |
Collapse
|
4
|
Shi L, Wang Z, Chen JH, Qiu H, Liu WD, Zhang XY, Martin FM, Zhao MW. LbSakA-mediated phosphorylation of the scaffolding protein LbNoxR in the ectomycorrhizal basidiomycete Laccaria bicolor regulates NADPH oxidase activity, ROS accumulation and symbiosis development. THE NEW PHYTOLOGIST 2024; 243:381-397. [PMID: 38741469 DOI: 10.1111/nph.19813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024]
Abstract
Ectomycorrhizal symbiosis, which involves mutually beneficial interactions between soil fungi and tree roots, is essential for promoting tree growth. To establish this symbiotic relationship, fungal symbionts must initiate and sustain mutualistic interactions with host plants while avoiding host defense responses. This study investigated the role of reactive oxygen species (ROS) generated by fungal NADPH oxidase (Nox) in the development of Laccaria bicolor/Populus tremula × alba symbiosis. Our findings revealed that L. bicolor LbNox expression was significantly higher in ectomycorrhizal roots than in free-living mycelia. RNAi was used to silence LbNox, which resulted in decreased ROS signaling, limited formation of the Hartig net, and a lower mycorrhizal formation rate. Using Y2H library screening, BiFC and Co-IP, we demonstrated an interaction between the mitogen-activated protein kinase LbSakA and LbNoxR. LbSakA-mediated phosphorylation of LbNoxR at T409, T477 and T480 positively modulates LbNox activity, ROS accumulation and upregulation of symbiosis-related genes involved in dampening host defense reactions. These results demonstrate that regulation of fungal ROS metabolism is critical for maintaining the mutualistic interaction between L. bicolor and P. tremula × alba. Our findings also highlight a novel and complex regulatory mechanism governing the development of symbiosis, involving both transcriptional and posttranslational regulation of gene networks.
Collapse
Affiliation(s)
- Liang Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zi Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Ju Hong Chen
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Hao Qiu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Wei Dong Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xiao Yan Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Francis M Martin
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, INRAE Grand Est-Nancy, Champenoux, 54280, France
| | - Ming Wen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
5
|
Mishra S, Duarte GT, Horemans N, Ruytinx J, Gudkov D, Danchenko M. Complexity of responses to ionizing radiation in plants, and the impact on interacting biotic factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171567. [PMID: 38460702 DOI: 10.1016/j.scitotenv.2024.171567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/20/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
In nature, plants are simultaneously exposed to different abiotic (e.g., heat, drought, and salinity) and biotic (e.g., bacteria, fungi, and insects) stresses. Climate change and anthropogenic pressure are expected to intensify the frequency of stress factors. Although plants are well equipped with unique and common defense systems protecting against stressors, they may compromise their growth and development for survival in such challenging environments. Ionizing radiation is a peculiar stress factor capable of causing clustered damage. Radionuclides are both naturally present on the planet and produced by human activities. Natural and artificial radioactivity affects plants on molecular, biochemical, cellular, physiological, populational, and transgenerational levels. Moreover, the fitness of pests, pathogens, and symbionts is concomitantly challenged in radiologically contaminated areas. Plant responses to artificial acute ionizing radiation exposure and laboratory-simulated or field chronic exposure are often discordant. Acute or chronic ionizing radiation exposure may occasionally prime the defense system of plants to better tolerate the biotic stress or could often exhaust their metabolic reserves, making plants more susceptible to pests and pathogens. Currently, these alternatives are only marginally explored. Our review summarizes the available literature on the responses of host plants, biotic factors, and their interaction to ionizing radiation exposure. Such systematic analysis contributes to improved risk assessment in radiologically contaminated areas.
Collapse
Affiliation(s)
- Shubhi Mishra
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, 950 07 Nitra, Slovakia
| | - Gustavo Turqueto Duarte
- Unit for Biosphere Impact Studies, Belgian Nuclear Research Centre SCK CEN, 2400 Mol, Belgium
| | - Nele Horemans
- Unit for Biosphere Impact Studies, Belgian Nuclear Research Centre SCK CEN, 2400 Mol, Belgium; Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Joske Ruytinx
- Department of Bio-engineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Dmitri Gudkov
- Institute of Hydrobiology, National Academy of Sciences of Ukraine, 04210 Kyiv, Ukraine
| | - Maksym Danchenko
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, 950 07 Nitra, Slovakia.
| |
Collapse
|
6
|
Ayuso-Fernández I, Emrich-Mills TZ, Haak J, Golten O, Hall KR, Schwaiger L, Moe TS, Stepnov AA, Ludwig R, Cutsail Iii GE, Sørlie M, Kjendseth Røhr Å, Eijsink VGH. Mutational dissection of a hole hopping route in a lytic polysaccharide monooxygenase (LPMO). Nat Commun 2024; 15:3975. [PMID: 38729930 PMCID: PMC11087555 DOI: 10.1038/s41467-024-48245-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
Oxidoreductases have evolved tyrosine/tryptophan pathways that channel highly oxidizing holes away from the active site to avoid damage. Here we dissect such a pathway in a bacterial LPMO, member of a widespread family of C-H bond activating enzymes with outstanding industrial potential. We show that a strictly conserved tryptophan is critical for radical formation and hole transference and that holes traverse the protein to reach a tyrosine-histidine pair in the protein's surface. Real-time monitoring of radical formation reveals a clear correlation between the efficiency of hole transference and enzyme performance under oxidative stress. Residues involved in this pathway vary considerably between natural LPMOs, which could reflect adaptation to different ecological niches. Importantly, we show that enzyme activity is increased in a variant with slower radical transference, providing experimental evidence for a previously postulated trade-off between activity and redox robustness.
Collapse
Affiliation(s)
- Iván Ayuso-Fernández
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway.
| | - Tom Z Emrich-Mills
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Julia Haak
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
- Institute of Inorganic Chemistry, University of Duisburg-Essen, 45141, Essen, Germany
| | - Ole Golten
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Kelsi R Hall
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Lorenz Schwaiger
- Biocatalysis and Biosensing Laboratory, Department of Food Sciences and Technology, Institute of Food Science and Technology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18/2, Vienna, 1190, Austria
| | - Trond S Moe
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Anton A Stepnov
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Roland Ludwig
- Biocatalysis and Biosensing Laboratory, Department of Food Sciences and Technology, Institute of Food Science and Technology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18/2, Vienna, 1190, Austria
| | - George E Cutsail Iii
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
- Institute of Inorganic Chemistry, University of Duisburg-Essen, 45141, Essen, Germany
| | - Morten Sørlie
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Åsmund Kjendseth Røhr
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway.
| |
Collapse
|
7
|
Plett JM, Wojtalewicz D, Plett KL, Collin S, Kohler A, Jacob C, Martin F. Sesquiterpenes of the ectomycorrhizal fungus Pisolithus microcarpus alter root growth and promote host colonization. MYCORRHIZA 2024; 34:69-84. [PMID: 38441669 PMCID: PMC10998793 DOI: 10.1007/s00572-024-01137-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 02/01/2024] [Indexed: 04/07/2024]
Abstract
Trees form symbioses with ectomycorrhizal (ECM) fungi, maintained in part through mutual benefit to both organisms. Our understanding of the signaling events leading to the successful interaction between the two partners requires further study. This is especially true for understanding the role of volatile signals produced by ECM fungi. Terpenoids are a predominant class of volatiles produced by ECM fungi. While several ECM genomes are enriched in the enzymes responsible for the production of these volatiles (i.e., terpene synthases (TPSs)) when compared to other fungi, we have limited understanding of the biochemical products associated with each enzyme and the physiological impact of specific terpenes on plant growth. Using a combination of phylogenetic analyses, RNA sequencing, and functional characterization of five TPSs from two distantly related ECM fungi (Laccaria bicolor and Pisolithus microcarpus), we investigated the role of these secondary metabolites during the establishment of symbiosis. We found that despite phylogenetic divergence, these TPSs produced very similar terpene profiles. We focused on the role of P. microcarpus terpenes and found that the fungus expressed a diverse array of mono-, di-, and sesquiterpenes prior to contact with the host. However, these metabolites were repressed following physical contact with the host Eucalyptus grandis. Exposure of E. grandis to heterologously produced terpenes (enriched primarily in γ -cadinene) led to a reduction in the root growth rate and an increase in P. microcarpus-colonized root tips. These results support a very early putative role of fungal-produced terpenes in the establishment of symbiosis between mycorrhizal fungi and their hosts.
Collapse
Affiliation(s)
- Jonathan M Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia.
| | - Dominika Wojtalewicz
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Krista L Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW, 2568, Australia
| | - Sabrina Collin
- Université de Lorraine, CNRS, IMoPA, F-54000, Nancy, France
| | - Annegret Kohler
- Université de Lorraine, INRAE, UMR Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, 54280, Champenoux, France
| | | | - Francis Martin
- Université de Lorraine, INRAE, UMR Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, 54280, Champenoux, France
| |
Collapse
|
8
|
Kumar A, Singh A, Sharma VK, Goel A, Kumar A. The upsurge of lytic polysaccharide monooxygenases in biomass deconstruction: characteristic functions and sustainable applications. FEBS J 2024. [PMID: 38291603 DOI: 10.1111/febs.17063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/19/2023] [Accepted: 01/12/2024] [Indexed: 02/01/2024]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are one of the emerging classes of copper metalloenzymes that have received considerable attention due to their ability to boost the enzymatic conversion of intractable polysaccharides such as plant cell walls and chitin polymers. LPMOs catalyze the oxidative cleavage of β-1,4-glycosidic bonds using molecular O2 or H2 O2 in the presence of an external electron donor. LPMOs have been classified as an auxiliary active (AA) class of enzymes and, further based on substrate specificity, divided into eight families. Until now, multiple LPMOs from AA9 and AA10 families, mostly from microbial sources, have been investigated; the exact mechanism and structure-function are elusive to date, and recently discovered AA families of LPMOs are just scratched. This review highlights the origin and discovery of the enzyme, nomenclature, three-dimensional protein structure, substrate specificity, copper-dependent reaction mechanism, and different techniques used to determine the product formation through analytical and biochemical methods. Moreover, the diverse functions of proteins in various biological activities such as plant-pathogen/pest interactions, cell wall remodeling, antibiotic sensitivity of biofilms, and production of nanocellulose along with certain obstacles in deconstructing the complex polysaccharides have also been summarized, while highlighting the innovative and creative ways to overcome the limitations of LPMOs in hydrolyzing the biomass.
Collapse
Affiliation(s)
- Asheesh Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Aishwarya Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Vijay Kumar Sharma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Akshita Goel
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Arun Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
9
|
Vigneaud J, Kohler A, Sow MD, Delaunay A, Fauchery L, Guinet F, Daviaud C, Barry KW, Keymanesh K, Johnson J, Singan V, Grigoriev I, Fichot R, Conde D, Perales M, Tost J, Martin FM, Allona I, Strauss SH, Veneault-Fourrey C, Maury S. DNA hypomethylation of the host tree impairs interaction with mutualistic ectomycorrhizal fungus. THE NEW PHYTOLOGIST 2023; 238:2561-2577. [PMID: 36807327 DOI: 10.1111/nph.18734] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/21/2022] [Indexed: 05/19/2023]
Abstract
Ectomycorrhizas are an intrinsic component of tree nutrition and responses to environmental variations. How epigenetic mechanisms might regulate these mutualistic interactions is unknown. By manipulating the level of expression of the chromatin remodeler DECREASE IN DNA METHYLATION 1 (DDM1) and two demethylases DEMETER-LIKE (DML) in Populus tremula × Populus alba lines, we examined how host DNA methylation modulates multiple parameters of the responses to root colonization with the mutualistic fungus Laccaria bicolor. We compared the ectomycorrhizas formed between transgenic and wild-type (WT) trees and analyzed their methylomes and transcriptomes. The poplar lines displaying lower mycorrhiza formation rate corresponded to hypomethylated overexpressing DML or RNAi-ddm1 lines. We found 86 genes and 288 transposable elements (TEs) differentially methylated between WT and hypomethylated lines (common to both OX-dml and RNAi-ddm1) and 120 genes/1441 TEs in the fungal genome suggesting a host-induced remodeling of the fungal methylome. Hypomethylated poplar lines displayed 205 differentially expressed genes (cis and trans effects) in common with 17 being differentially methylated (cis). Our findings suggest a central role of host and fungal DNA methylation in the ability to form ectomycorrhizas including not only poplar genes involved in root initiation, ethylene and jasmonate-mediated pathways, and immune response but also terpenoid metabolism.
Collapse
Affiliation(s)
- Julien Vigneaud
- LBLGC, INRAE, Université d'Orleans, EA 1207 USC 1328, Orléans, 45067, France
| | - Annegret Kohler
- UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, INRAE, Université de Lorraine, Champenoux, 54280, France
| | - Mamadou Dia Sow
- LBLGC, INRAE, Université d'Orleans, EA 1207 USC 1328, Orléans, 45067, France
| | - Alain Delaunay
- LBLGC, INRAE, Université d'Orleans, EA 1207 USC 1328, Orléans, 45067, France
| | - Laure Fauchery
- UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, INRAE, Université de Lorraine, Champenoux, 54280, France
| | - Frederic Guinet
- UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, INRAE, Université de Lorraine, Champenoux, 54280, France
| | - Christian Daviaud
- Laboratory for Epigenetics and Environment Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie Francois Jacob, Université Paris-Saclay, Evry, 91000, France
| | - Kerrie W Barry
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Keykhosrow Keymanesh
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Jenifer Johnson
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Vasanth Singan
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Igor Grigoriev
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Régis Fichot
- LBLGC, INRAE, Université d'Orleans, EA 1207 USC 1328, Orléans, 45067, France
| | - Daniel Conde
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Mariano Perales
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, 28040, Spain
| | - Jörg Tost
- Laboratory for Epigenetics and Environment Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie Francois Jacob, Université Paris-Saclay, Evry, 91000, France
| | - Francis M Martin
- UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, INRAE, Université de Lorraine, Champenoux, 54280, France
| | - Isabel Allona
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, 28040, Spain
| | - Steven H Strauss
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331-5752, USA
| | - Claire Veneault-Fourrey
- UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, INRAE, Université de Lorraine, Champenoux, 54280, France
| | - Stéphane Maury
- LBLGC, INRAE, Université d'Orleans, EA 1207 USC 1328, Orléans, 45067, France
| |
Collapse
|
10
|
Su C. Pectin modifications at the symbiotic interface. THE NEW PHYTOLOGIST 2023; 238:25-32. [PMID: 36565041 DOI: 10.1111/nph.18705] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Plant cells are surrounded by a structured cell wall, which not only defines cell shape but also provides a structural barrier for protection against pathogen infection. However, the presence of this barrier does not impede the establishment of mutualistic symbioses between plants and several microbes (e.g. ectomycorrhizal fungi, arbuscular mycorrhizal fungi, and rhizobia). To establish such beneficial associations, symbiotic microbes need to colonize the plant tissues via intercellular and/or intracellular infection, a process that requires cell wall modifications. Although cell wall composition and changes during this process have interested researchers for years, the functional characterization of the molecular players involved is still limited. In this viewpoint, based on several new studies, I discuss how the PME-PL/PG pathway mediates cell wall pectin modifications at the symbiotic interface and highlight further research directions which can broaden our understanding of how beneficial root symbioses are established.
Collapse
Affiliation(s)
- Chao Su
- Plant Cell Biology, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| |
Collapse
|
11
|
Shi L, Ren A, Zhu J, Liu R, Zhao M. Research Progress on Edible Fungi Genetic System. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 184:269-284. [PMID: 35364695 DOI: 10.1007/10_2021_192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In order to obtain strains with targeted changes in genetic characteristics, molecular biology and genetic engineering techniques are used to integrate target gene fragments into the vector and transform them into recipient cells. Due to the different target genes and functional elements on the transformation plasmids, gene silencing, gene knockout, and gene overexpression can be carried out, which provides a new way to study the gene function of edible fungi. At present, the cloning vectors used in the transformation of edible fungi are modified by bacterial plasmids, among which pCAMBIA-1300 plasmid and pAN7 plasmid are the two most commonly used basic vectors. On this basis, some basic elements such as promoters, selective marker genes, and reporter genes were added to construct silencing vectors, knockout vectors, and overexpression vectors. At the same time, different expression vector systems are needed for different transformation methods. In this chapter, the main elements of the genetic system (promoters, screening markers), the current main genetic transformation methods (Agrobacterium-mediated transformation, liposome transformation, electroporation method), and the specific application of transformation were systematically summarized, which provides a reference for the study of the genetic system of edible fungi.
Collapse
Affiliation(s)
- Liang Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Ang Ren
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Jing Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Rui Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Mingwen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
12
|
Role of carbohydrate-active enzymes in mycorrhizal symbioses. Essays Biochem 2022; 67:471-478. [PMID: 36562143 DOI: 10.1042/ebc20220127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022]
Abstract
Mycorrhizal fungi form mutually beneficial interactions with a wide range of terrestrial plants. During this symbiosis, the associated fungus provides mineral nutrients, such as phosphorus and nitrogen, to its host plant in exchange of photosynthesis-derived carbohydrates. Genome sequencing of mycorrhizal fungi has shown that arbuscular mycorrhizal fungi and ectomycorrhizal fungi have a restricted set of plant-cell wall degrading enzymes (PCWDE) genes, while orchid and ericoid mycorrhizal fungi have an extended PCWDE repertoire similar to soil decomposers and wood-decay fungi. On the other hand, mycorrhizal fungi have retained a substantial set of carbohydrate active enzymes (CAZymes) acting on microbial polysaccharides. Functional analysis has shown that several of the remaining PCWDEs are involved in the fungal root colonization and establishment of the symbiotic interface. In this review, we highlight the current knowledge on the evolution and function of PCWDEs in mycorrhizal fungi.
Collapse
|
13
|
Peng L, Zhang Y, Druzhinina IS, Kubicek CP, Wang Y, Zhu Z, Zhang Y, Wang K, Liu Z, Zhang X, Martin F, Yuan Z. A facultative ectomycorrhizal association is triggered by organic nitrogen. Curr Biol 2022; 32:5235-5249.e7. [PMID: 36402137 DOI: 10.1016/j.cub.2022.10.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/19/2022] [Accepted: 10/25/2022] [Indexed: 11/19/2022]
Abstract
Increasing nitrogen (N) deposition often tends to negatively impact the functions of belowground ectomycorrhizal networks, although the exact molecular mechanisms underlying this trait are still unclear. Here, we assess how the root-associated fungus Clitopilus hobsonii establishes an ectomycorrhiza-like association with its host tree Populus tomentosa and how this interaction is favored by organic N over mineral N. The establishment of a functional symbiosis in the presence of organic N promotes plant growth and the transfer of 15N from the fungus to above ground plant tissues. Genomic traits and in planta transcriptional signatures suggest that C. hobsonii may have a dual lifestyle with saprotrophic and mutualistic traits. For example, several genes involved in the digestion of cellulose and hemicellulose are highly expressed during the interaction, whereas the expression of multiple copies of pectin-digesting genes is tightly controlled. Conversely, the nutritional mutualism is dampened in the presence of ammonium (NH4+) or nitrate (NO3-). Increasing levels of NH4+ led to a higher expression of pectin-digesting genes and a continuous increase in hydrogen peroxide production in roots, whereas the presence of NO3- resulted in toxin production. In summary, our results suggest that C. hobsonii is a facultative ectomycorrhizal fungus. Access to various forms of N acts as an on/off switch for mutualism caused by large-scale fungal physiological remodeling. Furthermore, the abundance of pectin-degrading enzymes with distinct expression patterns during functional divergence after exposure to NH4+ or organic N is likely to be central to the transition from parasitism to mutualism.
Collapse
Affiliation(s)
- Long Peng
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Dongxiaofu 1, Beijing 10091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Daqiao Road 73, Hangzhou 311400, China
| | - Yan Zhang
- Liaoning Provincial Institute of Poplar, Gaizhou 115213, China
| | | | - Christian P Kubicek
- Institute of Chemical, Environmental & Bioscience Engineering (ICEBE), TU Wien, Vienna A1060, Austria
| | - Yuchen Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Dongxiaofu 1, Beijing 10091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Daqiao Road 73, Hangzhou 311400, China
| | - Zhiyong Zhu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Daqiao Road 73, Hangzhou 311400, China
| | - Yuwei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Dongxiaofu 1, Beijing 10091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Daqiao Road 73, Hangzhou 311400, China
| | - Kexuan Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Dongxiaofu 1, Beijing 10091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Daqiao Road 73, Hangzhou 311400, China
| | - Zhuo Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Dongxiaofu 1, Beijing 10091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Daqiao Road 73, Hangzhou 311400, China
| | - Xiaoguo Zhang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Daqiao Road 73, Hangzhou 311400, China
| | - Francis Martin
- Université de Lorraine, INRAE, UMR 1136 "Interactions Arbres/Microorganismes," Centre INRAE Grand Est - Nancy, Champenoux 54280, France.
| | - Zhilin Yuan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Dongxiaofu 1, Beijing 10091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Daqiao Road 73, Hangzhou 311400, China.
| |
Collapse
|
14
|
Feng W, Sun X, Ding G. Morphological and Transcriptional Characteristics of the Symbiotic Interaction between Pinus massoniana and Suillus bovinus. J Fungi (Basel) 2022; 8:1162. [PMID: 36354929 PMCID: PMC9699607 DOI: 10.3390/jof8111162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 09/08/2023] Open
Abstract
Ectomycorrhiza (ECM) function has been well studied; however, there is little detailed information regarding the establishment of ECM symbioses. We investigated the morphological and transcriptional changes that occur during the establishment of the Pinus massoniana-Suillus bovinus ECM. S. bovinus promoted the growth of P. massoniana via the release of volatile organic compounds and exudates during the pre-symbiotic stage. Exudate-induced effects showed host plant specificity. At seven days post-inoculation (dpi), the mycelium started to penetrate P. massoniana roots. At 28 dpi, the Hartig net and mantle formed. At the pre-symbiotic stage, most differentially expressed genes in P. massoniana roots were mapped to the biosynthesis of secondary metabolites, signal transduction, and carbohydrate metabolism. At the symbiotic stage, S. bovinus colonization induced the reprogramming of pathways involved in genetic information processing in P. massoniana, particularly at the Hartig net and mantle formation stage. Phenylpropanoid biosynthesis was present at all stages and was regulated via S. bovinus colonization. Enzyme inhibitor tests suggested that hydroxycinnamoyl-CoA shikimate/quinate transferase is involved in the development of the Hartig net. Our findings outline the mechanism involved in the P. massoniana-S. bovinus ECM. Further studies are needed to clarify the role of phenylpropanoid biosynthesis in ECM formation.
Collapse
Affiliation(s)
- Wanyan Feng
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang 550025, China
- Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Forestry, Guizhou University, Guiyang 550025, China
| | - Xueguang Sun
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang 550025, China
- Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Forestry, Guizhou University, Guiyang 550025, China
| | - Guijie Ding
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang 550025, China
- Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Forestry, Guizhou University, Guiyang 550025, China
| |
Collapse
|
15
|
Chowdhury J, Kemppainen M, Delhomme N, Shutava I, Zhou J, Takahashi J, Pardo AG, Lundberg‐Felten J. Laccaria bicolor pectin methylesterases are involved in ectomycorrhiza development with Populus tremula × Populus tremuloides. THE NEW PHYTOLOGIST 2022; 236:639-655. [PMID: 35794841 PMCID: PMC9796311 DOI: 10.1111/nph.18358] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
The development of ectomycorrhizal (ECM) symbioses between soil fungi and tree roots requires modification of root cell walls. The pectin-mediated adhesion between adjacent root cells loosens to accommodate fungal hyphae in the Hartig net, facilitating nutrient exchange between partners. We investigated the role of fungal pectin modifying enzymes in Laccaria bicolor for ECM formation with Populus tremula × Populus tremuloides. We combine transcriptomics of cell-wall-related enzymes in both partners during ECM formation, immunolocalisation of pectin (Homogalacturonan, HG) epitopes in different methylesterification states, pectin methylesterase (PME) activity assays and functional analyses of transgenic L. bicolor to uncover pectin modification mechanisms and the requirement of fungal pectin methylesterases (LbPMEs) for ECM formation. Immunolocalisation identified remodelling of pectin towards de-esterified HG during ECM formation, which was accompanied by increased LbPME1 expression and PME activity. Overexpression or RNAi of the ECM-induced LbPME1 in transgenic L. bicolor lines led to reduced ECM formation. Hartig Nets formed with LbPME1 RNAi lines were shallower, whereas those formed with LbPME1 overexpressors were deeper. This suggests that LbPME1 plays a role in ECM formation potentially through HG de-esterification, which initiates loosening of adjacent root cells to facilitate Hartig net formation.
Collapse
Affiliation(s)
- Jamil Chowdhury
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science CenterSwedish University of Agricultural Sciences90183UmeåSweden
- Department of Plant Physiology, Umeå Plant Science CenterUmeå University90187UmeåSweden
| | - Minna Kemppainen
- Laboratory of Molecular Mycology, Department of Science and Technology, Institute of Basic and Applied MicrobiologyNational University of Quilmes (UNQ), and National Scientific and Technical Research Council (CONICET)B1876BXDBernalArgentina
| | - Nicolas Delhomme
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science CenterSwedish University of Agricultural Sciences90183UmeåSweden
| | - Iryna Shutava
- Department of Plant Physiology, Umeå Plant Science CenterUmeå University90187UmeåSweden
| | - Jingjing Zhou
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science CenterSwedish University of Agricultural Sciences90183UmeåSweden
- Department of Plant Physiology, Umeå Plant Science CenterUmeå University90187UmeåSweden
| | - Junko Takahashi
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science CenterSwedish University of Agricultural Sciences90183UmeåSweden
| | - Alejandro G. Pardo
- Laboratory of Molecular Mycology, Department of Science and Technology, Institute of Basic and Applied MicrobiologyNational University of Quilmes (UNQ), and National Scientific and Technical Research Council (CONICET)B1876BXDBernalArgentina
| | - Judith Lundberg‐Felten
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science CenterSwedish University of Agricultural Sciences90183UmeåSweden
| |
Collapse
|
16
|
Redkar A, Sabale M, Schudoma C, Zechmann B, Gupta YK, López-Berges MS, Venturini G, Gimenez-Ibanez S, Turrà D, Solano R, Di Pietro A. Conserved secreted effectors contribute to endophytic growth and multihost plant compatibility in a vascular wilt fungus. THE PLANT CELL 2022; 34:3214-3232. [PMID: 35689625 PMCID: PMC9421472 DOI: 10.1093/plcell/koac174] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 06/03/2022] [Indexed: 05/04/2023]
Abstract
Fungal interactions with plant roots, either beneficial or detrimental, have a crucial impact on agriculture and ecosystems. The cosmopolitan plant pathogen Fusarium oxysporum (Fo) provokes vascular wilts in more than a hundred different crops. Isolates of this fungus exhibit host-specific pathogenicity, which is conferred by lineage-specific Secreted In Xylem (SIX) effectors encoded on accessory genomic regions. However, such isolates also can colonize the roots of other plants asymptomatically as endophytes or even protect them against pathogenic strains. The molecular determinants of endophytic multihost compatibility are largely unknown. Here, we characterized a set of Fo candidate effectors from tomato (Solanum lycopersicum) root apoplastic fluid; these early root colonization (ERC) effectors are secreted during early biotrophic growth on main and alternative plant hosts. In contrast to SIX effectors, ERCs have homologs across the entire Fo species complex as well as in other plant-interacting fungi, suggesting a conserved role in fungus-plant associations. Targeted deletion of ERC genes in a pathogenic Fo isolate resulted in reduced virulence and rapid activation of plant immune responses, while ERC deletion in a nonpathogenic isolate led to impaired root colonization and biocontrol ability. Strikingly, some ERCs contribute to Fo infection on the nonvascular land plant Marchantia polymorpha, revealing an evolutionarily conserved mechanism for multihost colonization by root infecting fungi.
Collapse
Affiliation(s)
| | - Mugdha Sabale
- Departamento de Genética, Universidad de Córdoba, 14071 Córdoba, Spain
| | | | - Bernd Zechmann
- Baylor University, Center for Microscopy and Imaging, Waco, Texas 76798, USA
| | - Yogesh K Gupta
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK
| | | | | | - Selena Gimenez-Ibanez
- Plant Molecular Genetics Department, Centro Nacional de Biotecnologıa-CSIC (CNB-CSIC), 28049 Madrid, Spain
| | - David Turrà
- Department of Agriculture and Center for Studies on Bioinspired Agro-enviromental Technology, Università di Napoli Federico II, 80055 Portici, Italy
| | - Roberto Solano
- Plant Molecular Genetics Department, Centro Nacional de Biotecnologıa-CSIC (CNB-CSIC), 28049 Madrid, Spain
| | | |
Collapse
|
17
|
Jing M, Xu X, Peng J, Li C, Zhang H, Lian C, Chen Y, Shen Z, Chen C. Comparative Genomics of Three Aspergillus Strains Reveals Insights into Endophytic Lifestyle and Endophyte-Induced Plant Growth Promotion. J Fungi (Basel) 2022; 8:jof8070690. [PMID: 35887447 PMCID: PMC9323082 DOI: 10.3390/jof8070690] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/19/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
Aspergillus includes both plant pathogenic and beneficial fungi. Although endophytes beneficial to plants have high potential for plant growth promotion and improving stress tolerance, studies on endophytic lifestyles and endophyte-plant interactions are still limited. Here, three endophytes belonging to Aspergillus, AS31, AS33, and AS42, were isolated. They could successfully colonize rice roots and significantly improved rice growth. The genomes of strains AS31, AS33, and AS42 were sequenced and compared with other Aspergillus species covering both pathogens and endophytes. The genomes of AS31, AS33, and AS42 were 36.8, 34.8, and 35.3 Mb, respectively. The endophytic genomes had more genes encoding carbohydrate-active enzymes (CAZymes) and small secreted proteins (SSPs) and secondary metabolism gene clusters involved in indole metabolism than the pathogens. In addition, these endophytes were able to improve Pi (phosphorus) accumulation and transport in rice by inducing the expression of Pi transport genes in rice. Specifically, inoculation with endophytes significantly increased Pi contents in roots at the early stage, while the Pi contents in inoculated shoots were significantly increased at the late stage. Our results not only provide important insights into endophyte-plant interactions but also provide strain and genome resources, paving the way for the agricultural application of Aspergillus endophytes.
Collapse
Affiliation(s)
- Minyu Jing
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.J.); (X.X.); (J.P.); (C.L.); (H.Z.); (Y.C.)
| | - Xihui Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.J.); (X.X.); (J.P.); (C.L.); (H.Z.); (Y.C.)
| | - Jing Peng
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.J.); (X.X.); (J.P.); (C.L.); (H.Z.); (Y.C.)
| | - Can Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.J.); (X.X.); (J.P.); (C.L.); (H.Z.); (Y.C.)
| | - Hanchao Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.J.); (X.X.); (J.P.); (C.L.); (H.Z.); (Y.C.)
| | - Chunlan Lian
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Tokyo 188-0002, Japan;
| | - Yahua Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.J.); (X.X.); (J.P.); (C.L.); (H.Z.); (Y.C.)
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.J.); (X.X.); (J.P.); (C.L.); (H.Z.); (Y.C.)
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (Z.S.); (C.C.); Tel.: +86-2584396391 (C.C.)
| | - Chen Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.J.); (X.X.); (J.P.); (C.L.); (H.Z.); (Y.C.)
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (Z.S.); (C.C.); Tel.: +86-2584396391 (C.C.)
| |
Collapse
|
18
|
Plett JM, Plett KL. Leveraging genomics to understand the broader role of fungal small secreted proteins in niche colonization and nutrition. ISME COMMUNICATIONS 2022; 2:49. [PMID: 37938664 PMCID: PMC9723739 DOI: 10.1038/s43705-022-00139-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/24/2022] [Accepted: 06/08/2022] [Indexed: 08/09/2023]
Abstract
The last few years have seen significant advances in the breadth of fungi for which we have genomic resources and our understanding of the biological mechanisms evolved to enable fungi to interact with their environment and other organisms. One field of research that has seen a paradigm shift in our understanding concerns the role of fungal small secreted proteins (SSPs) classified as effectors. Classically thought to be a class of proteins utilized by pathogenic microbes to manipulate host physiology in support of colonization, comparative genomic studies have demonstrated that mutualistic fungi and fungi not associated with a living host (i.e., saprotrophic fungi) also encode inducible effector and candidate effector gene sequences. In this review, we discuss the latest advances in understanding how fungi utilize these secreted proteins to colonize a particular niche and affect nutrition and nutrient cycles. Recent studies show that candidate effector SSPs in fungi may have just as significant a role in modulating hyphosphere microbiomes and in orchestrating fungal growth as they do in supporting colonization of a living host. We conclude with suggestions on how comparative genomics may direct future studies seeking to characterize and differentiate effector from other more generalized functions of these enigmatic secreted proteins across all fungal lifestyles.
Collapse
Affiliation(s)
- Jonathan M Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| | - Krista L Plett
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW, 2568, Australia
| |
Collapse
|
19
|
Yuan Z, Wu Q, Xu L, Druzhinina IS, Stukenbrock EH, Nieuwenhuis BPS, Zhong Z, Liu ZJ, Wang X, Cai F, Kubicek CP, Shan X, Wang J, Shi G, Peng L, Martin FM. Genomic landscape of a relict fir-associated fungus reveals rapid convergent adaptation towards endophytism. THE ISME JOURNAL 2022; 16:1294-1305. [PMID: 34916613 PMCID: PMC9038928 DOI: 10.1038/s41396-021-01176-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 12/24/2022]
Abstract
Comparative and pan-genomic analyses of the endophytic fungus Pezicula neosporulosa (Helotiales, Ascomycota) from needles of the relict fir, Abies beshanzuensis, showed expansions of carbohydrate metabolism and secondary metabolite biosynthetic genes characteristic for unrelated plant-beneficial helotialean, such as dark septate endophytes and ericoid mycorrhizal fungi. The current species within the relatively young Pliocene genus Pezicula are predominantly saprotrophic, while P. neosporulosa lacks such features. To understand the genomic background of this putatively convergent evolution, we performed population analyses of 77 P. neosporulosa isolates. This revealed a mosaic structure of a dozen non-recombining and highly genetically polymorphic subpopulations with a unique mating system structure. We found that one idiomorph of a probably duplicated mat1-2 gene was found in putatively heterothallic isolates, while the other co-occurred with mat1-1 locus suggesting homothallic reproduction for these strains. Moreover, 24 and 81 genes implicated in plant cell-wall degradation and secondary metabolite biosynthesis, respectively, showed signatures of the balancing selection. These findings highlight the evolutionary pattern of the two gene families for allowing the fungus a rapid adaptation towards endophytism and facilitating diverse symbiotic interactions.
Collapse
Affiliation(s)
- Zhilin Yuan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, 100091, Beijing, China. .,Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China.
| | - Qi Wu
- grid.458488.d0000 0004 0627 1442State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Liangxiong Xu
- grid.411411.00000 0004 0644 5457School of Life Sciences, Huizhou University, Huizhou, 516007 China
| | - Irina S. Druzhinina
- grid.27871.3b0000 0000 9750 7019Key Laboratory of Plant Immunity, Fungal Genomics Laboratory (FungiG), College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095 China ,grid.5329.d0000 0001 2348 4034Institute of Chemical, Environmental & Bioscience Engineering (ICEBE), TU Wien, Vienna, A1060 Austria
| | - Eva H. Stukenbrock
- grid.9764.c0000 0001 2153 9986Botanical Institute, Christian-Albrechts Universität zu Kiel, 24118 Kiel, Germany ,grid.419520.b0000 0001 2222 4708Environmental Genomics Research Group, Max-Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Bart P. S. Nieuwenhuis
- grid.5252.00000 0004 1936 973XDivision of Evolutionary Biology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Zhenhui Zhong
- grid.256111.00000 0004 1760 2876State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China ,grid.19006.3e0000 0000 9632 6718Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095 USA
| | - Zhong-Jian Liu
- grid.256111.00000 0004 1760 2876Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xinyu Wang
- grid.509676.bResearch Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400 China
| | - Feng Cai
- grid.27871.3b0000 0000 9750 7019Key Laboratory of Plant Immunity, Fungal Genomics Laboratory (FungiG), College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095 China
| | - Christian P. Kubicek
- grid.5329.d0000 0001 2348 4034Institute of Chemical, Environmental & Bioscience Engineering (ICEBE), TU Wien, Vienna, A1060 Austria
| | - Xiaoliang Shan
- grid.216566.00000 0001 2104 9346State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, 100091 Beijing, China ,grid.509676.bResearch Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400 China
| | - Jieyu Wang
- grid.458495.10000 0001 1014 7864Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
| | - Guohui Shi
- grid.458488.d0000 0004 0627 1442State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Long Peng
- grid.216566.00000 0001 2104 9346State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, 100091 Beijing, China ,grid.509676.bResearch Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400 China
| | - Francis M. Martin
- grid.29172.3f0000 0001 2194 6418Université de Lorraine, INRAe, UMR 1136 Interactions Arbres/Microorganismes, INRAe-Grand Est-Nancy, 54280 Champenoux, France
| |
Collapse
|
20
|
Wang YH, Hou LL, Wu XQ, Zhu ML, Dai Y, Zhao YJ. Mycorrhiza helper bacterium Bacillus pumilus HR10 improves growth and nutritional status of Pinus thunbergii by promoting mycorrhizal proliferation. TREE PHYSIOLOGY 2022; 42:907-918. [PMID: 34730183 DOI: 10.1093/treephys/tpab139] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Mycorrhizal helper bacteria (MHB) play an important role in mediating mycorrhizal symbiosis, which improves the growth and nutrient uptake of plants. This study examined the growth-promoting effects and mechanisms of pine growth after inoculation with the MHB Bacillus pumilus HR10 and/or Hymenochaete sp. Rl. The effect of B. pumilus HR10 on Hymenochaete sp. Rl growth, enzyme activity and gene expression related to mycorrhiza formation were determined. The growth, root activity, nitrogen, phosphorus, and potassium content and chlorophyll fluorescence activity of Pinus thunbergii and the mycorrhizal colonization intensity of Hymenochaete sp. Rl-inoculated pine seedlings after inoculation with B. pumilus HR10 were also evaluated. The results showed that B. pumilus HR10 promoted growth, regulated the expression of mycorrhizal-related genes and affected the β-1,3-glucanase activity of Hymenochaete sp. Rl. The mycorrhizal colonization intensity of pine seedlings co-inoculated with B. pumilus HR10 and Hymenochaete sp. Rl was 1.58-fold higher than seedlings inoculated with only Hymenochaete sp. Rl. Inoculation with B. pumilus HR10 and/or Hymenochaete sp. Rl increased lateral root number and root activity of pine seedlings and chlorophyll fluorescence activity of pine needles compared with the control. Bacillus pumilus HR10 facilitated nutrient uptake by enhancing the mycorrhizal proliferation of pine and induced greater photosynthesis and root activity of pine seedlings, which confirms its role as an outstanding plant-growth-promoting rhizobacterium. These findings improve our understanding of the mechanism of B. pumilus HR10 promotion of mycorrhizal symbiosis.
Collapse
Affiliation(s)
- Ya-Hui Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Liang-Liang Hou
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xiao-Qin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Mei-Ling Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yun Dai
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yin-Juan Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
21
|
Vandhana TM, Reyre JL, Sushmaa D, Berrin JG, Bissaro B, Madhuprakash J. On the expansion of biological functions of lytic polysaccharide monooxygenases. THE NEW PHYTOLOGIST 2022; 233:2380-2396. [PMID: 34918344 DOI: 10.1111/nph.17921] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/19/2021] [Indexed: 05/21/2023]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) constitute an enigmatic class of enzymes, the discovery of which has opened up a new arena of riveting research. LPMOs can oxidatively cleave the glycosidic bonds found in carbohydrate polymers enabling the depolymerisation of recalcitrant biomasses, such as cellulose or chitin. While most studies have so far mainly explored the role of LPMOs in a (plant) biomass conversion context, alternative roles and paradigms begin to emerge. In the present review, we propose a historical perspective of LPMO research providing a succinct overview of the major achievements of LPMO research over the past decade. This journey through LPMOs landscape leads us to dive into the emerging biological functions of LPMOs and LPMO-like proteins. We notably highlight roles in fungal and oomycete plant pathogenesis (e.g. potato late blight), but also in mutualistic/commensalism symbiosis (e.g. ectomycorrhizae). We further present the potential importance of LPMOs in other microbial pathogenesis including diseases caused by bacteria (e.g. pneumonia), fungi (e.g. human meningitis), oomycetes and viruses (e.g. entomopox), as well as in (micro)organism development (including several plant pests). Our assessment of the literature leads to the formulation of outstanding questions, promising for the coming years exciting research and discoveries on these moonlighting proteins.
Collapse
Affiliation(s)
- Theruvothu Madathil Vandhana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Jean-Lou Reyre
- INRAE, UMR1163 Biodiversité et Biotechnologie Fongiques, Aix Marseille University, 13009, Marseille, France
- IFP Energies Nouvelles, 1 et 4 avenue de Bois-Préau, 92852, Rueil-Malmaison, France
| | - Dangudubiyyam Sushmaa
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Jean-Guy Berrin
- INRAE, UMR1163 Biodiversité et Biotechnologie Fongiques, Aix Marseille University, 13009, Marseille, France
| | - Bastien Bissaro
- INRAE, UMR1163 Biodiversité et Biotechnologie Fongiques, Aix Marseille University, 13009, Marseille, France
| | - Jogi Madhuprakash
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| |
Collapse
|
22
|
Zhang F, Labourel A, Haon M, Kemppainen M, Da Silva Machado E, Brouilly N, Veneault-Fourrey C, Kohler A, Rosso MN, Pardo A, Henrissat B, Berrin JG, Martin F. The ectomycorrhizal basidiomycete Laccaria bicolor releases a GH28 polygalacturonase that plays a key role in symbiosis establishment. THE NEW PHYTOLOGIST 2022; 233:2534-2547. [PMID: 34942023 DOI: 10.1111/nph.17940] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/14/2021] [Indexed: 05/23/2023]
Abstract
In ectomycorrhiza, root penetration and colonization of the intercellular space by symbiotic hyphae is thought to rely on the mechanical force that results from hyphal tip growth, enhanced by the activity of secreted cell-wall-degrading enzymes. Here, we characterize the biochemical properties of the symbiosis-induced polygalacturonase LbGH28A from the ectomycorrhizal fungus Laccaria bicolor. The transcriptional regulation of LbGH28A was measured by quantitative PCR (qPCR). The biological relevance of LbGH28A was confirmed by generating RNA interference (RNAi)-silenced LbGH28A mutants. We localized the LbGH28A protein by immunofluorescence confocal and immunogold cytochemical microscopy in poplar ectomycorrhizal roots. Quantitative PCR confirmed the induced expression of LbGH28A during ectomycorrhiza formation. Laccaria bicolor RNAi mutants have a lower ability to establish ectomycorrhiza, confirming the key role of this enzyme in symbiosis. The purified recombinant LbGH28A has its highest activity towards pectin and polygalacturonic acid. In situ localization of LbGH28A indicates that this endopolygalacturonase is located in both fungal and plant cell walls at the symbiotic hyphal front. These findings suggest that the symbiosis-induced pectinase LbGH28A is involved in the Hartig net formation and is an important determinant for successful symbiotic colonization.
Collapse
Affiliation(s)
- Feng Zhang
- State Key Laboratory of Grassland Agro-Ecosystems & Institute of Innovation Ecology, Lanzhou University, Lanzhou, 73000, China
- UMR 'Interactions Arbres/Microorganismes', Université de Lorraine, INRAE, INRAE Grand Est - Nancy, 54280, Champenoux, France
| | - Aurore Labourel
- UMR 1163, Biodiversité et Biotechnologie Fongiques, INRAE, Aix-Marseille Université, 13009, Marseille, France
| | - Mireille Haon
- UMR 1163, Biodiversité et Biotechnologie Fongiques, INRAE, Aix-Marseille Université, 13009, Marseille, France
| | - Minna Kemppainen
- Laboratorio de Micología Molecular, Departamento de Ciencia y Tecnología, Instituto de Microbiología Básica y Aplicada, Universidad Nacional de Quilmes and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), B1876BXD, Bernal, Provincia de Buenos Aires, Argentina
| | - Emilie Da Silva Machado
- UMR 'Interactions Arbres/Microorganismes', Université de Lorraine, INRAE, INRAE Grand Est - Nancy, 54280, Champenoux, France
| | | | - Claire Veneault-Fourrey
- UMR 'Interactions Arbres/Microorganismes', Université de Lorraine, INRAE, INRAE Grand Est - Nancy, 54280, Champenoux, France
| | - Annegret Kohler
- UMR 'Interactions Arbres/Microorganismes', Université de Lorraine, INRAE, INRAE Grand Est - Nancy, 54280, Champenoux, France
| | - Marie-Noëlle Rosso
- UMR 1163, Biodiversité et Biotechnologie Fongiques, INRAE, Aix-Marseille Université, 13009, Marseille, France
| | - Alejandro Pardo
- Laboratorio de Micología Molecular, Departamento de Ciencia y Tecnología, Instituto de Microbiología Básica y Aplicada, Universidad Nacional de Quilmes and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), B1876BXD, Bernal, Provincia de Buenos Aires, Argentina
| | - Bernard Henrissat
- CNRS, UMR 7257 & Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, 13009, Marseille, France
- INRAE, USC 1408 AFMB, 13288, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Jean-Guy Berrin
- UMR 1163, Biodiversité et Biotechnologie Fongiques, INRAE, Aix-Marseille Université, 13009, Marseille, France
| | - Francis Martin
- UMR 'Interactions Arbres/Microorganismes', Université de Lorraine, INRAE, INRAE Grand Est - Nancy, 54280, Champenoux, France
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 152000, Beijing, China
| |
Collapse
|
23
|
Wu G, Miyauchi S, Morin E, Kuo A, Drula E, Varga T, Kohler A, Feng B, Cao Y, Lipzen A, Daum C, Hundley H, Pangilinan J, Johnson J, Barry K, LaButti K, Ng V, Ahrendt S, Min B, Choi IG, Park H, Plett JM, Magnuson J, Spatafora JW, Nagy LG, Henrissat B, Grigoriev IV, Yang ZL, Xu J, Martin FM. Evolutionary innovations through gain and loss of genes in the ectomycorrhizal Boletales. THE NEW PHYTOLOGIST 2022; 233:1383-1400. [PMID: 34767630 DOI: 10.1111/nph.17858] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
We aimed to identify genomic traits of transitions to ectomycorrhizal ecology within the Boletales by comparing the genomes of 21 symbiotrophic species with their saprotrophic brown-rot relatives. Gene duplication rate is constant along the backbone of Boletales phylogeny with large loss events in several lineages, while gene family expansion sharply increased in the late Miocene, mostly in the Boletaceae. Ectomycorrhizal Boletales have a reduced set of plant cell-wall-degrading enzymes (PCWDEs) compared with their brown-rot relatives. However, the various lineages retain distinct sets of PCWDEs, suggesting that, over their evolutionary history, symbiotic Boletales have become functionally diverse. A smaller PCWDE repertoire was found in Sclerodermatineae. The gene repertoire of several lignocellulose oxidoreductases (e.g. laccases) is similar in brown-rot and ectomycorrhizal species, suggesting that symbiotic Boletales are capable of mild lignocellulose decomposition. Transposable element (TE) proliferation contributed to the higher evolutionary rate of genes encoding effector-like small secreted proteins, proteases, and lipases. On the other hand, we showed that the loss of secreted CAZymes was not related to TE activity but to DNA decay. This study provides novel insights on our understanding of the mechanisms influencing the evolutionary diversification of symbiotic boletes.
Collapse
Affiliation(s)
- Gang Wu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54 280, France
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming, Yunnan, 650201, China
| | - Shingo Miyauchi
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54 280, France
| | - Emmanuelle Morin
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54 280, France
| | - Alan Kuo
- Lawrence Berkeley National Laboratory, US Department of Energy (DOE) Joint Genome Institute (JGI), Berkeley, CA, 94720, USA
| | - Elodie Drula
- Architecture et Fonction des Macromolécules Biologiques (USC1408), INRAE, Marseille, 13009, France
| | - Torda Varga
- Synthetic and Systems Biology Unit, Biological Research Centre, Szeged, 6726, Hungary
| | - Annegret Kohler
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54 280, France
| | - Bang Feng
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming, Yunnan, 650201, China
| | - Yang Cao
- Yunnan Institute of Tropic Crops, Jinghong, Yunnan, 666100, China
| | - Anna Lipzen
- Lawrence Berkeley National Laboratory, US Department of Energy (DOE) Joint Genome Institute (JGI), Berkeley, CA, 94720, USA
| | - Christopher Daum
- Lawrence Berkeley National Laboratory, US Department of Energy (DOE) Joint Genome Institute (JGI), Berkeley, CA, 94720, USA
| | - Hope Hundley
- Lawrence Berkeley National Laboratory, US Department of Energy (DOE) Joint Genome Institute (JGI), Berkeley, CA, 94720, USA
| | - Jasmyn Pangilinan
- Lawrence Berkeley National Laboratory, US Department of Energy (DOE) Joint Genome Institute (JGI), Berkeley, CA, 94720, USA
| | - Jenifer Johnson
- Lawrence Berkeley National Laboratory, US Department of Energy (DOE) Joint Genome Institute (JGI), Berkeley, CA, 94720, USA
| | - Kerrie Barry
- Lawrence Berkeley National Laboratory, US Department of Energy (DOE) Joint Genome Institute (JGI), Berkeley, CA, 94720, USA
| | - Kurt LaButti
- Lawrence Berkeley National Laboratory, US Department of Energy (DOE) Joint Genome Institute (JGI), Berkeley, CA, 94720, USA
| | - Vivian Ng
- Lawrence Berkeley National Laboratory, US Department of Energy (DOE) Joint Genome Institute (JGI), Berkeley, CA, 94720, USA
| | - Steven Ahrendt
- Lawrence Berkeley National Laboratory, US Department of Energy (DOE) Joint Genome Institute (JGI), Berkeley, CA, 94720, USA
| | - Byoungnam Min
- Lawrence Berkeley National Laboratory, US Department of Energy (DOE) Joint Genome Institute (JGI), Berkeley, CA, 94720, USA
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 02841, Seoul, Korea
| | - In-Geol Choi
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 02841, Seoul, Korea
| | - Hongjae Park
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, 370 05, České Budějovice, Czech Republic
| | - Jonathan M Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Jon Magnuson
- Chemical and Biological Processes Development Group, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Joseph W Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - László G Nagy
- Synthetic and Systems Biology Unit, Biological Research Centre, Szeged, 6726, Hungary
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, 1117, Hungary
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques (USC1408), INRAE, Marseille, 13009, France
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, 13009, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Igor V Grigoriev
- Lawrence Berkeley National Laboratory, US Department of Energy (DOE) Joint Genome Institute (JGI), Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Zhu-Liang Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming, Yunnan, 650201, China
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Francis M Martin
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54 280, France
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
24
|
A Transcriptomic Atlas of the Ectomycorrhizal Fungus Laccaria bicolor. Microorganisms 2021; 9:microorganisms9122612. [PMID: 34946213 PMCID: PMC8708209 DOI: 10.3390/microorganisms9122612] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 02/05/2023] Open
Abstract
Trees are able to colonize, establish and survive in a wide range of soils through associations with ectomycorrhizal (EcM) fungi. Proper functioning of EcM fungi implies the differentiation of structures within the fungal colony. A symbiotic structure is dedicated to nutrient exchange and the extramatricular mycelium explores soil for nutrients. Eventually, basidiocarps develop to assure last stages of sexual reproduction. The aim of this study is to understand how an EcM fungus uses its gene set to support functional differentiation and development of specialized morphological structures. We examined the transcriptomes of Laccaria bicolor under a series of experimental setups, including the growth with Populus tremula x alba at different developmental stages, basidiocarps and free-living mycelium, under various conditions of N, P and C supply. In particular, N supply induced global transcriptional changes, whereas responses to P supply seemed to be independent from it. Symbiosis development with poplar is characterized by transcriptional waves. Basidiocarp development shares transcriptional signatures with other basidiomycetes. Overlaps in transcriptional responses of L. bicolor hyphae to a host plant and N/C supply next to co-regulation of genes in basidiocarps and mature mycorrhiza were detected. Few genes are induced in a single condition only, but functional and morphological differentiation rather involves fine tuning of larger gene sets. Overall, this transcriptomic atlas builds a reference to study the function and stability of EcM symbiosis in distinct conditions using L. bicolor as a model and indicates both similarities and differences with other ectomycorrhizal fungi, allowing researchers to distinguish conserved processes such as basidiocarp development from nutrient homeostasis.
Collapse
|
25
|
Dong F, Wang Y, Tang M. Study on the molecular mechanism of Laccaria bicolor helping Populus trichocarpa to resist the infection of Botryosphaeria dothidea. J Appl Microbiol 2021; 132:2220-2233. [PMID: 34779092 DOI: 10.1111/jam.15359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/25/2021] [Accepted: 11/04/2021] [Indexed: 11/30/2022]
Abstract
AIMS This study explored the specific molecular mechanism of Laccaria bicolor to help Populus trichocarpa resist infection by Botryosphaeria dothidea. METHODS AND RESULTS Transcriptome technology was used to sequence P. trichocarpa under disease stress, and a total of 6379 differentially expressed genes (DEGs) were identified. A total of 536 new DEGs were induced by L. bicolor during the infection of B. dothidea. L. bicolor helps to prevent and alleviate the infection of B. dothidea by regulating related genes in the cell wall pathway, signal transduction pathway, disease-resistant protein synthesis pathway and antioxidant enzyme synthesis pathway of P. trichocarpa. CONCLUSION The inoculation of L. bicolor can regulate the expression of genes in the cell wall pathway and enhance the physical defense capabilities of plants. Under disease stress conditions, L. bicolor can regulate signal transduction pathways, disease-resistant related pathways and reactive oxygen species (ROS) clearance pathways to help P. trichocarpa alleviate the disease. SIGNIFICANCE AND IMPACT OF THE STUDY The research reveals the mechanism of L. bicolor inducing resistance to canker of P. trichocarpa from the molecular level and provides a theoretical basis for the practical application of mycorrhizal fungi to improve plant disease resistance.
Collapse
Affiliation(s)
- Fengxin Dong
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Yihan Wang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Ming Tang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China.,Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
26
|
Lebreton A, Zeng Q, Miyauchi S, Kohler A, Dai YC, Martin FM. Evolution of the Mode of Nutrition in Symbiotic and Saprotrophic Fungi in Forest Ecosystems. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2021. [DOI: 10.1146/annurev-ecolsys-012021-114902] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this review, we highlight the main insights that have been gathered from recent developments using large-scale genomics of fungal saprotrophs and symbiotrophs (including ectomycorrhizal and orchid and ericoid mycorrhizal fungi) inhabiting forest ecosystems. After assessing the goals and motivations underlying our approach, we explore our current understanding of the limits and future potential of using genomics to understand the ecological roles of these forest fungi. Comparative genomics unraveled the molecular machineries involved in lignocellulose decomposition in wood decayers, soil and litter saprotrophs, and mycorrhizal symbionts. They also showed that transitions from saprotrophy to mutualism entailed widespread losses of lignocellulose-degrading enzymes; diversification of novel, lineage-specific symbiosis-induced genes; and convergent evolution of genetic innovations that facilitate the accommodationof mutualistic symbionts within their plant hosts. We also identify the major questions that remain unanswered and propose new avenues of genome-based research to understand the role of soil fungi in sustainable forest ecosystems.
Collapse
Affiliation(s)
- Annie Lebreton
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design (BAIC-TBMD), Institute of Microbiology, Beijing Forestry University, Beijing, China 100083
- Université de Lorraine, Unité Mixte de Recherche (UMR) Interactions Arbres/Microorganismes, Centre INRAE (Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement) Grand Est-Nancy, INRAE, 54280 Champenoux, France
| | - Qingchao Zeng
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design (BAIC-TBMD), Institute of Microbiology, Beijing Forestry University, Beijing, China 100083
| | - Shingo Miyauchi
- Max Planck Institute for Plant Breeding Research, Department of Plant–Microbe Interactions, Köln, Germany, D-50829
| | - Annegret Kohler
- Université de Lorraine, Unité Mixte de Recherche (UMR) Interactions Arbres/Microorganismes, Centre INRAE (Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement) Grand Est-Nancy, INRAE, 54280 Champenoux, France
| | - Yu-Cheng Dai
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design (BAIC-TBMD), Institute of Microbiology, Beijing Forestry University, Beijing, China 100083
| | - Francis M. Martin
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design (BAIC-TBMD), Institute of Microbiology, Beijing Forestry University, Beijing, China 100083
- Université de Lorraine, Unité Mixte de Recherche (UMR) Interactions Arbres/Microorganismes, Centre INRAE (Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement) Grand Est-Nancy, INRAE, 54280 Champenoux, France
| |
Collapse
|
27
|
Tang N, Lebreton A, Xu W, Dai Y, Yu F, Martin FM. Transcriptome Profiling Reveals Differential Gene Expression of Secreted Proteases and Highly Specific Gene Repertoires Involved in Lactarius-Pinus Symbioses. FRONTIERS IN PLANT SCIENCE 2021; 12:714393. [PMID: 34490014 PMCID: PMC8417538 DOI: 10.3389/fpls.2021.714393] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Ectomycorrhizal fungi establish a mutualistic symbiosis in roots of most woody plants. The molecular underpinning of ectomycorrhizal development was only explored in a few lineages. Here, we characterized the symbiotic transcriptomes of several milkcap species (Lactarius, Russulales) in association with different pine hosts. A time-course study of changes in gene expression during the development of L. deliciosus-Pinus taeda symbiosis identified 6 to 594 differentially expressed fungal genes at various developmental stages. Up- or down-regulated genes are involved in signaling pathways, nutrient transport, cell wall modifications, and plant defenses. A high number of genes coding for secreted proteases, especially sedolisins, were induced during root colonization. In contrast, only a few genes encoding mycorrhiza-induced small secreted proteins were identified. This feature was confirmed in several other Lactarius species in association with various pines. Further comparison among all these species revealed that each Lactarius species encodes a highly specific symbiotic gene repertoire, a feature possibly related to their host-specificity. This study provides insights on the genetic basis of symbiosis in an ectomycorrhizal order, the Russulales, which was not investigated so far.
Collapse
Affiliation(s)
- Nianwu Tang
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Annie Lebreton
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Wenjun Xu
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yucheng Dai
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Fuqiang Yu
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Francis M. Martin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- Centre INRAE-GrandEst Nancy, INRAE, UMR Interactions Arbres/Microorganismes, Université de Lorraine, Champenoux, France
| |
Collapse
|
28
|
R. Cope K, B. Irving T, Chakraborty S, Ané JM. Perception of lipo-chitooligosaccharides by the bioenergy crop Populus. PLANT SIGNALING & BEHAVIOR 2021; 16:1903758. [PMID: 33794743 PMCID: PMC8143229 DOI: 10.1080/15592324.2021.1903758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Populus sp. is a developing feedstock for second-generation biofuel production. To ensure its success as a sustainable biofuel source, it is essential to capitalize on the ability of Populus sp. to associate with beneficial plant-associated microbes (e.g., mycorrhizal fungi) and engineer Populus sp. to associate with non-native symbionts (e.g., rhizobia). Here, we review recent research into the molecular mechanisms that control ectomycorrhizal associations in Populus sp. with particular emphasis on the discovery that ectomycorrhizal fungi produce lipochitooligosaccharides capable of activating the common symbiosis pathway. We also present new evidence that lipo-chitooligosaccharides produced by both ectomycorrhizal fungi and various species of rhizobia that do not associate with Populus sp. can induce nuclear calcium spiking in the roots of Populus sp. Thus, we argue Populus sp. already possesses the molecular machinery necessary for perceiving rhizobia, and the next step in engineering symbiosis with rhizobia should be focused on inducing bacterial accommodation and nodule organogenesis. The gene Nodule INception is central to these processes, and several putative orthologs are present in Populus sp. Manipulating the promoters of these genes to match that of plants in the nitrogen-fixing clade may be sufficient to introduce nodulation in Populus sp.
Collapse
Affiliation(s)
- Kevin R. Cope
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, WI,United States
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin, WI,United States
| | - Thomas B. Irving
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, WI,United States
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin, WI,United States
| | - Sanhita Chakraborty
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, WI,United States
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin, WI,United States
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, WI,United States
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin, WI,United States
| |
Collapse
|
29
|
Li H, Hu Q, Hong X, Jiang Z, Ni H, Li Q, Zhu Y. Molecular cloning and characterization of a thermostable and halotolerant endo-β-1,4-glucanase from Microbulbifer sp. ALW1. 3 Biotech 2021; 11:250. [PMID: 33968593 PMCID: PMC8088414 DOI: 10.1007/s13205-021-02801-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/19/2021] [Indexed: 01/20/2023] Open
Abstract
The bacterium Microbulbifer sp. ALW1 was previously characterized with the capability to break down the cell wall of brown algae into fine pieces. The biological functions of strain ALW1 were yet to be elucidated. In this study, a gene, namely MaCel5A, was isolated from the ALW1 strain genome, encoding an endo-β-1,4-glucanase. MaCel5A was phylogenetically categorized under the glycoside hydrolase family GH5, with the highest identity to a putative cellulase of Microbulbifer thermotolerans. The recombinant MaCel5A protein purified from heterologous expression in E. coli exhibited maximum activity at 50 °C and pH 6.0, respectively, and functioned selectively toward carboxymethyl cellulose and barley β-glucan. Recombinant MaCel5A demonstrated considerable tolerance to the exposure to high temperature up to 80 °C for 30 min retaining 49% residual activity. In addition, MaCel5A showed moderate stability against pH 5.0-11.0 and strong stability in the presence of nonionic surfactant. MaCel5A exhibited strong halo-stability and halotolerance. The activity of the enzyme increased about tenfold at 0.5 M NaCl, and about fivefold even at 4.0 M NaCl compared to the enzyme activity without the addition of salt. The two conserved glutamic acid residues in MaCel5A featured the typical catalytic acid/base and nucleophile machinery of glycoside hydrolases. These characteristics highlight the industrial application potential of MaCel5A.
Collapse
Affiliation(s)
- Hebin Li
- Department of Pharmacy, Xiamen Medical College, Xiamen, 361008 China
| | - Qingsong Hu
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021 China
| | - Xuan Hong
- Department of Pharmacy, Xiamen Medical College, Xiamen, 361008 China
| | - Zedong Jiang
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021 China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, 361021 China
| | - Hui Ni
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021 China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, 361021 China
| | - Qingbiao Li
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021 China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, 361021 China
| | - Yanbing Zhu
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021 China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, 361021 China
| |
Collapse
|
30
|
Ghahremani M, MacLean AM. Home sweet home: how mutualistic microbes modify root development to promote symbiosis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2275-2287. [PMID: 33369646 DOI: 10.1093/jxb/eraa607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
Post-embryonic organogenesis has uniquely equipped plants to become developmentally responsive to their environment, affording opportunities to remodel organism growth and architecture to an extent not possible in other higher order eukaryotes. It is this developmental plasticity that makes the field of plant-microbe interactions an exceptionally fascinating venue in which to study symbiosis. This review article describes the various ways in which mutualistic microbes alter the growth, development, and architecture of the roots of their plant hosts. We first summarize general knowledge of root development, and then examine how association of plants with beneficial microbes affects these processes. Working our way inwards from the epidermis to the pericycle, this review dissects the cell biology and molecular mechanisms underlying plant-microbe interactions in a tissue-specific manner. We examine the ways in which microbes gain entry into the root, and modify this specialized organ for symbiont accommodation, with a particular emphasis on the colonization of root cortical cells. We present significant advances in our understanding of root-microbe interactions, and conclude our discussion by identifying questions pertinent to root endosymbiosis that at present remain unresolved.
Collapse
Affiliation(s)
- Mina Ghahremani
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Canada
| | - Allyson M MacLean
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Canada
| |
Collapse
|
31
|
Evolution of Fungal Carbohydrate-Active Enzyme Portfolios and Adaptation to Plant Cell-Wall Polymers. J Fungi (Basel) 2021; 7:jof7030185. [PMID: 33807546 PMCID: PMC7998857 DOI: 10.3390/jof7030185] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/21/2022] Open
Abstract
The postindustrial era is currently facing two ecological challenges. First, the rise in global temperature, mostly caused by the accumulation of carbon dioxide (CO2) in the atmosphere, and second, the inability of the environment to absorb the waste of human activities. Fungi are valuable levers for both a reduction in CO2 emissions, and the improvement of a circular economy with the optimized valorization of plant waste and biomass. Soil fungi may promote plant growth and thereby increase CO2 assimilation via photosynthesis or, conversely, they may prompt the decomposition of dead organic matter, and thereby contribute to CO2 emissions. The strategies that fungi use to cope with plant-cell-wall polymers and access the saccharides that they use as a carbon source largely rely on the secretion of carbohydrate-active enzymes (CAZymes). In the past few years, comparative genomics and phylogenomics coupled with the functional characterization of CAZymes significantly improved the understanding of their evolution in fungal genomes, providing a framework for the design of nature-inspired enzymatic catalysts. Here, we provide an overview of the diversity of CAZyme enzymatic systems employed by fungi that exhibit different substrate preferences, different ecologies, or belong to different taxonomical groups for lignocellulose degradation.
Collapse
|
32
|
Plett KL, Kohler A, Lebel T, Singan VR, Bauer D, He G, Ng V, Grigoriev IV, Martin F, Plett JM, Anderson IC. Intra-species genetic variability drives carbon metabolism and symbiotic host interactions in the ectomycorrhizal fungus Pisolithus microcarpus. Environ Microbiol 2020; 23:2004-2020. [PMID: 33185936 DOI: 10.1111/1462-2920.15320] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 12/17/2022]
Abstract
Ectomycorrhizal (ECM) fungi are integral to boreal and temperate forest ecosystem functioning and nutrient cycling. ECM fungi, however, originate from diverse saprotrophic lineages and the impacts of genetic variation across species, and especially within a given ECM species, on function and interactions with the environment is not well understood. Here, we explore the extent of intra-species variation between four isolates of the ECM fungus Pisolithus microcarpus, in terms of gene regulation, carbon metabolism and growth, and interactions with a host, Eucalyptus grandis. We demonstrate that, while a core response to the host is maintained by all of the isolates tested, they have distinct patterns of gene expression and carbon metabolism, resulting in the differential expression of isolate-specific response pathways in the host plant. Together, these results highlight the importance of using a wider range of individuals within a species to understand the broader ecological roles of ECM fungi and their host interactions.
Collapse
Affiliation(s)
- Krista L Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Annegret Kohler
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRAE GrandEst-Nancy, Champenoux, 54280, France
| | - Teresa Lebel
- Royal Botanic Gardens Victoria, Melbourne, VIC, 3004, Australia.,Botanic Gardens and State Herbarium of South Australia, Adelaide, SA, 5000, Australia
| | - Vasanth R Singan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Diane Bauer
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Guifen He
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Vivian Ng
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Francis Martin
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRAE GrandEst-Nancy, Champenoux, 54280, France
| | - Jonathan M Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Ian C Anderson
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| |
Collapse
|
33
|
Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nat Commun 2020; 11:5125. [PMID: 33046698 PMCID: PMC7550596 DOI: 10.1038/s41467-020-18795-w] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 09/16/2020] [Indexed: 12/25/2022] Open
Abstract
Mycorrhizal fungi are mutualists that play crucial roles in nutrient acquisition in terrestrial ecosystems. Mycorrhizal symbioses arose repeatedly across multiple lineages of Mucoromycotina, Ascomycota, and Basidiomycota. Considerable variation exists in the capacity of mycorrhizal fungi to acquire carbon from soil organic matter. Here, we present a combined analysis of 135 fungal genomes from 73 saprotrophic, endophytic and pathogenic species, and 62 mycorrhizal species, including 29 new mycorrhizal genomes. This study samples ecologically dominant fungal guilds for which there were previously no symbiotic genomes available, including ectomycorrhizal Russulales, Thelephorales and Cantharellales. Our analyses show that transitions from saprotrophy to symbiosis involve (1) widespread losses of degrading enzymes acting on lignin and cellulose, (2) co-option of genes present in saprotrophic ancestors to fulfill new symbiotic functions, (3) diversification of novel, lineage-specific symbiosis-induced genes, (4) proliferation of transposable elements and (5) divergent genetic innovations underlying the convergent origins of the ectomycorrhizal guild. Mycorrhizal symbioses have evolved repeatedly in diverse fungal lineages. A large phylogenomic analysis sheds light on genomic changes associated with transitions from saprotrophy to symbiosis, including divergent genetic innovations underlying the convergent origins of the ectomycorrhizal guild.
Collapse
|
34
|
Quintero-Corrales C, Ángeles-Argáiz R, Jaramillo-Correa JP, Piñero D, Garibay-Orijel R, Mastretta-Yanes A. Allopatric instead of parapatric divergence in an ectomycorrhizal fungus (Laccaria trichodermophora) in tropical sky-islands. FUNGAL ECOL 2020. [DOI: 10.1016/j.funeco.2020.100966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
35
|
Genre A, Lanfranco L, Perotto S, Bonfante P. Unique and common traits in mycorrhizal symbioses. Nat Rev Microbiol 2020; 18:649-660. [PMID: 32694620 DOI: 10.1038/s41579-020-0402-3] [Citation(s) in RCA: 197] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2020] [Indexed: 12/16/2022]
Abstract
Mycorrhizas are among the most important biological interkingdom interactions, as they involve ~340,000 land plants and ~50,000 taxa of soil fungi. In these mutually beneficial interactions, fungi receive photosynthesis-derived carbon and provide the host plant with mineral nutrients such as phosphorus and nitrogen in exchange. More than 150 years of research on mycorrhizas has raised awareness of their biology, biodiversity and ecological impact. In this Review, we focus on recent phylogenomic, molecular and cell biology studies to present the current state of knowledge of the origin of mycorrhizal fungi and the evolutionary history of their relationship with land plants. As mycorrhizas feature a variety of phenotypes, depending on partner taxonomy, physiology and cellular interactions, we explore similarities and differences between mycorrhizal types. During evolution, mycorrhizal fungi have refined their biotrophic capabilities to take advantage of their hosts as food sources and protective niches, while plants have developed multiple strategies to accommodate diverse fungal symbionts. Intimate associations with pervasive ecological success have originated at the crossroads between these two evolutionary pathways. Our understanding of the biological processes underlying these symbioses, where fungi act as biofertilizers and bioprotectors, provides the tools to design biotechnological applications addressing environmental and agricultural challenges.
Collapse
Affiliation(s)
- Andrea Genre
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Silvia Perotto
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy.
| |
Collapse
|
36
|
Bouffaud ML, Herrmann S, Tarkka MT, Bönn M, Feldhahn L, Buscot F. Oak displays common local but specific distant gene regulation responses to different mycorrhizal fungi. BMC Genomics 2020; 21:399. [PMID: 32532205 PMCID: PMC7291512 DOI: 10.1186/s12864-020-06806-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/05/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Associations of tree roots with diverse symbiotic mycorrhizal fungi have distinct effects on whole plant functioning. An untested explanation might be that such effect variability is associated with distinct impacts of different fungi on gene expression in local and distant plant organs. Using a large scale transcriptome sequencing approach, we compared the impact of three ectomycorrhizal (EMF) and one orchid mycorrhizal fungi (OMF) on gene regulation in colonized roots (local), non-colonized roots (short distance) and leaves (long distance) of the Quercus robur clone DF159 with reference to the recently published oak genome. Since different mycorrhizal fungi form symbiosis in a different time span and variable extents of apposition structure development, we sampled inoculated but non-mycorrhizal plants, for which however markedly symbiotic effects have been reported. Local root colonization by the fungi was assessed by fungal transcript analysis. RESULTS The EMF induced marked and species specific effects on plant development in the analysed association stage, but the OMF did not. At local level, a common set of plant differentially expressed genes (DEG) was identified with similar patterns of responses to the three EMF, but not to the OMF. Most of these core DEG were down-regulated and correspond to already described but also new functions related to establishment of EMF symbiosis. Analysis of the fungal transcripts of two EMF in highly colonized roots also revealed onset of a symbiosis establishment. In contrast, in the OMF, the DEG were mainly related to plant defence. Already at short distances, high specificities in transcriptomic responses to the four fungi were detected, which were further enhanced at long distance in leaves, where almost no common DEG were found between the treatments. Notably, no correlation between phylogeny of the EMF and gene expression patterns was observed. CONCLUSIONS Use of clonal oaks allowed us to identify a core transcriptional program in roots colonized by three different EMF, supporting the existence of a common EMF symbiotic pathway. Conversely, the specific responses in non-colonized organs were more closely related to the specific impacts of the different of EMF on plant performance.
Collapse
Affiliation(s)
- Marie-Lara Bouffaud
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103, Leipzig, Germany
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120, Halle/Saale, Germany
| | - Sylvie Herrmann
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103, Leipzig, Germany.
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120, Halle/Saale, Germany.
| | - Mika T Tarkka
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103, Leipzig, Germany
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120, Halle/Saale, Germany
| | - Markus Bönn
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103, Leipzig, Germany
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120, Halle/Saale, Germany
| | - Lasse Feldhahn
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103, Leipzig, Germany
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120, Halle/Saale, Germany
| | - François Buscot
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103, Leipzig, Germany
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120, Halle/Saale, Germany
| |
Collapse
|
37
|
Adamo M, Chialva M, Calevo J, De Rose S, Girlanda M, Perotto S, Balestrini R. The Dark Side of Orchid Symbiosis: Can Tulasnella calospora Decompose Host Tissues? Int J Mol Sci 2020; 21:E3139. [PMID: 32365577 PMCID: PMC7247694 DOI: 10.3390/ijms21093139] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 01/02/2023] Open
Abstract
Photosynthetic orchids associate with mycorrhizal fungi that can be mostly ascribed to the "rhizoctonia" species complex. Rhizoctonias' phylogenetic diversity covers a variety of ecological/nutritional strategies that include, beside the symbiosis establishment with host plants, endophytic and pathogenic associations with non-orchid plants or saprotrophic soil colonization. In addition, orchid mycorrhizal fungi (OMF) that establish a symbiotic relationship with an orchid host can later proliferate in browning and rotting orchid tissues. Environmental triggers and molecular mechanisms governing the switch leading to either a saprotrophic or a mycorrhizal behavior in OMF remain unclear. As the sequenced OMF genomes feature a wide range of genes putatively involved in the degradation of plant cell wall (PCW) components, we tested if these transitions may be correlated with a change in the expression of some PCW degrading enzymes. Regulation of several genes encoding PCW degrading enzymes was evaluated during saprotrophic growth of the OMF Tulasnella calospora on different substrates and under successful and unsuccessful mycorrhizal symbioses. Fungal gene expression in planta was investigated in two orchid species, the terrestrial Mediterranean Serapias vomeracea and the epiphytic tropical Cattleya purpurata. Although we only tested a subset of the CAZyme genes identified in the T. calospora genome, and we cannot exclude therefore a role for different CAZyme families or members inside a family, the results showed that the degradative potential of T. calospora is finely regulated during saprotrophic growth and in symbiosis, often with a different regulation in the two orchid species. These data pose novel questions about the role of fungal PCW degrading enzymes in the development of unsuccessful and successful interactions.
Collapse
Affiliation(s)
- Martino Adamo
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125 Turin, Italy; (M.A.); (M.C.); (S.D.R.); (M.G.); (S.P.)
| | - Matteo Chialva
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125 Turin, Italy; (M.A.); (M.C.); (S.D.R.); (M.G.); (S.P.)
| | - Jacopo Calevo
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125 Turin, Italy; (M.A.); (M.C.); (S.D.R.); (M.G.); (S.P.)
| | - Silvia De Rose
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125 Turin, Italy; (M.A.); (M.C.); (S.D.R.); (M.G.); (S.P.)
| | - Mariangela Girlanda
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125 Turin, Italy; (M.A.); (M.C.); (S.D.R.); (M.G.); (S.P.)
| | - Silvia Perotto
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125 Turin, Italy; (M.A.); (M.C.); (S.D.R.); (M.G.); (S.P.)
| | - Raffaella Balestrini
- National Research Council, Institute for Sustainable Plant Protection, Viale Mattioli 25, 10125 Turin, Italy
| |
Collapse
|
38
|
Kang H, Chen X, Kemppainen M, Pardo AG, Veneault-Fourrey C, Kohler A, Martin FM. The small secreted effector protein MiSSP7.6 of Laccaria bicolor is required for the establishment of ectomycorrhizal symbiosis. Environ Microbiol 2020; 22:1435-1446. [PMID: 32090429 DOI: 10.1111/1462-2920.14959] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 11/29/2022]
Abstract
To establish and maintain a symbiotic relationship, the ectomycorrhizal fungus Laccaria bicolor releases mycorrhiza-induced small secreted proteins (MiSSPs) into host roots. Here, we have functionally characterized the MYCORRHIZA-iNDUCED SMALL SECRETED PROTEIN OF 7.6 kDa (MiSSP7.6) from L. bicolor by assessing its induced expression in ectomycorrhizae, silencing its expression by RNAi, and tracking in planta subcellular localization of its protein product. We also carried out yeast two-hybrid assays and bimolecular fluorescence complementation analysis to identify possible protein targets of the MiSSP7.6 effector in Populus roots. We showed that MiSSP7.6 expression is upregulated in ectomycorrhizal rootlets and associated extramatrical mycelium during the late stage of symbiosis development. RNAi mutants with a decreased MiSSP7.6 expression have a lower mycorrhization rate, suggesting a key role in the establishment of the symbiosis with plants. MiSSP7.6 is secreted, and it localizes both to the nuclei and cytoplasm in plant cells. MiSSP7.6 protein was shown to interact with two Populus Trihelix transcription factors. Furthermore, when coexpressed with one of the Trihelix transcription factors, MiSSP7.6 is localized to plant nuclei only. Our data suggest that MiSSP7.6 is a novel secreted symbiotic effector and is a potential determinant for ectomycorrhiza formation.
Collapse
Affiliation(s)
- Heng Kang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.,University of Lorraine, Institut National de la Recherche Agronomique, UMR Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, Centre INRA-Grand Est, Champenoux, France
| | - Xin Chen
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Minna Kemppainen
- Laboratorio de Micología Molecular, Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernal, Provincia de Buenos Aires, Argentina
| | - Alejandro G Pardo
- Laboratorio de Micología Molecular, Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernal, Provincia de Buenos Aires, Argentina
| | - Claire Veneault-Fourrey
- University of Lorraine, Institut National de la Recherche Agronomique, UMR Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, Centre INRA-Grand Est, Champenoux, France
| | - Annegret Kohler
- University of Lorraine, Institut National de la Recherche Agronomique, UMR Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, Centre INRA-Grand Est, Champenoux, France
| | - Francis M Martin
- University of Lorraine, Institut National de la Recherche Agronomique, UMR Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, Centre INRA-Grand Est, Champenoux, France
| |
Collapse
|
39
|
Identification and characterization of an Endo-glucanase secreted from cellulolytic Escherichia coli ZH-4. BMC Biotechnol 2019; 19:63. [PMID: 31455320 PMCID: PMC6712877 DOI: 10.1186/s12896-019-0556-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 08/22/2019] [Indexed: 12/20/2022] Open
Abstract
Background In the previous study, the cellulolytic Escherichia coli ZH-4 isolated from bovine rumen was found to show extracellular cellulase activity and could degrade cellulose in the culture. The goal of this work was to identify and characterize the secreted cellulase of E. coli ZH-4. It will be helpful to re-understand E. coli and extend its application in industry. Results A secreted cellulase was confirmed to be endo-glucanase BcsZ which was encoded by bcsZ gene and located in the cellulose synthase operon bcsABZC in cellulolytic E. coli ZH-4 by western blotting. Characterization of BcsZ indicated that a broad range of pH and temperature tolerance with optima at pH 6.0 and 50 °C, respectively. The apparent Michaelis–Menten constant (Km) and maximal reaction rate (Vmax) for BcsZ were 8.86 mg/mL and 0.3 μM/min·mg, respectively. Enzyme activity of BcsZ was enhanced by Mg2+ and inhibited by Zn2+, Cu2+ and Fe3+. BcsZ could hydrolyze carboxymethylcellulose (CMC) to produce cello-oligosaccharides, cellotriose, cellobiose and glucose. Conclusions It is confirmed that extracellular cellulolytic capability of E. coli ZH-4 was attributed to BcsZ, which explained why E. coli ZH-4 can grow on cellulose. The endo-glucanase BcsZ from E. coli-ZH4 has some new characteristics which will extend the understanding of endo-glucanase. Analysis of the secretion characteristics of BcsZ provided a great reference for applying E. coli in multiple industrial fields.
Collapse
|
40
|
Anasontzis GE, Lebrun MH, Haon M, Champion C, Kohler A, Lenfant N, Martin F, O'Connell RJ, Riley R, Grigoriev IV, Henrissat B, Berrin JG, Rosso MN. Broad-specificity GH131 β-glucanases are a hallmark of fungi and oomycetes that colonize plants. Environ Microbiol 2019; 21:2724-2739. [PMID: 30887618 DOI: 10.1111/1462-2920.14596] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 02/17/2019] [Accepted: 03/17/2019] [Indexed: 12/21/2022]
Abstract
Plant-tissue-colonizing fungi fine-tune the deconstruction of plant-cell walls (PCW) using different sets of enzymes according to their lifestyle. However, some of these enzymes are conserved among fungi with dissimilar lifestyles. We identified genes from Glycoside Hydrolase family GH131 as commonly expressed during plant-tissue colonization by saprobic, pathogenic and symbiotic fungi. By searching all the publicly available genomes, we found that GH131-coding genes were widely distributed in the Dikarya subkingdom, except in Taphrinomycotina and Saccharomycotina, and in phytopathogenic Oomycetes, but neither other eukaryotes nor prokaryotes. The presence of GH131 in a species was correlated with its association with plants as symbiont, pathogen or saprobe. We propose that GH131-family expansions and horizontal-gene transfers contributed to this adaptation. We analysed the biochemical activities of GH131 enzymes whose genes were upregulated during plant-tissue colonization in a saprobe (Pycnoporus sanguineus), a plant symbiont (Laccaria bicolor) and three hemibiotrophic-plant pathogens (Colletotrichum higginsianum, C. graminicola, Zymoseptoria tritici). These enzymes were all active on substrates with β-1,4, β-1,3 and mixed β-1,4/1,3 glucosidic linkages. Combined with a cellobiohydrolase, GH131 enzymes enhanced cellulose degradation. We propose that secreted GH131 enzymes unlock the PCW barrier and allow further deconstruction by other enzymes during plant tissue colonization by symbionts, pathogens and saprobes.
Collapse
Affiliation(s)
- George E Anasontzis
- INRA, Aix-Marseille Univ, UMR1163, Biodiversité et Biotechnologie Fongiques, BBF, Marseille, France.,CNRS, Aix-Marseille Univ, UMR7257, Architecture et Fonction des Macromolecules Biologiques, Marseille, France
| | - Marc-Henri Lebrun
- INRA, AgroParisTech, Université Paris-Saclay, BIOGER, Thiverval-Grignon, France
| | - Mireille Haon
- INRA, Aix-Marseille Univ, UMR1163, Biodiversité et Biotechnologie Fongiques, BBF, Marseille, France
| | - Charlotte Champion
- INRA, Aix-Marseille Univ, UMR1163, Biodiversité et Biotechnologie Fongiques, BBF, Marseille, France
| | - Annegret Kohler
- INRA, University of Lorraine, Laboratory of Excellence Advanced Research on the Biology of Tree and Forest Ecosystems (ARBRE), UMR 1136, Champenoux, France
| | - Nicolas Lenfant
- CNRS, Aix-Marseille Univ, UMR7257, Architecture et Fonction des Macromolecules Biologiques, Marseille, France
| | - Francis Martin
- INRA, University of Lorraine, Laboratory of Excellence Advanced Research on the Biology of Tree and Forest Ecosystems (ARBRE), UMR 1136, Champenoux, France
| | - Richard J O'Connell
- INRA, AgroParisTech, Université Paris-Saclay, BIOGER, Thiverval-Grignon, France
| | - Robert Riley
- US Department of Energy Joint Genome Institute (JGI), Walnut Creek, CA, 94598, USA
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute (JGI), Walnut Creek, CA, 94598, USA.,Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94598, USA
| | - Bernard Henrissat
- CNRS, Aix-Marseille Univ, UMR7257, Architecture et Fonction des Macromolecules Biologiques, Marseille, France.,INRA, USC 1408, AFMB, Marseille, France
| | - Jean-Guy Berrin
- INRA, Aix-Marseille Univ, UMR1163, Biodiversité et Biotechnologie Fongiques, BBF, Marseille, France
| | - Marie-Noëlle Rosso
- INRA, Aix-Marseille Univ, UMR1163, Biodiversité et Biotechnologie Fongiques, BBF, Marseille, France
| |
Collapse
|
41
|
The soil organic matter decomposition mechanisms in ectomycorrhizal fungi are tuned for liberating soil organic nitrogen. ISME JOURNAL 2018; 13:977-988. [PMID: 30538275 PMCID: PMC6461840 DOI: 10.1038/s41396-018-0331-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/27/2018] [Accepted: 11/28/2018] [Indexed: 02/08/2023]
Abstract
Many trees form ectomycorrhizal symbiosis with fungi. During symbiosis, the tree roots supply sugar to the fungi in exchange for nitrogen, and this process is critical for the nitrogen and carbon cycles in forest ecosystems. However, the extents to which ectomycorrhizal fungi can liberate nitrogen and modify the soil organic matter and the mechanisms by which they do so remain unclear since they have lost many enzymes for litter decomposition that were present in their free-living, saprotrophic ancestors. Using time-series spectroscopy and transcriptomics, we examined the ability of two ectomycorrhizal fungi from two independently evolved ectomycorrhizal lineages to mobilize soil organic nitrogen. Both species oxidized the organic matter and accessed the organic nitrogen. The expression of those events was controlled by the availability of glucose and inorganic nitrogen. Despite those similarities, the decomposition mechanisms, including the type of genes involved as well as the patterns of their expression, differed markedly between the two species. Our results suggest that in agreement with their diverse evolutionary origins, ectomycorrhizal fungi use different decomposition mechanisms to access organic nitrogen entrapped in soil organic matter. The timing and magnitude of the expression of the decomposition activity can be controlled by the below-ground nitrogen quality and the above-ground carbon supply.
Collapse
|
42
|
Martin FM, Harrison MJ, Lennon S, Lindahl B, Öpik M, Polle A, Requena N, Selosse MA. Cross-scale integration of mycorrhizal function. THE NEW PHYTOLOGIST 2018; 220:941-946. [PMID: 30408219 DOI: 10.1111/nph.15493] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- Francis M Martin
- INRA, Université de Lorraine, UMR Interactions Arbres/Micro-Organismes, INRA-Centre Grand Est, Champenoux, 54280, France
| | | | - Sarah Lennon
- New Phytologist Central Office, Bailrigg House, Lancaster University, Lancaster, LA1 4YE, UK
| | - Björn Lindahl
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, Uppsala, SE-750 07, Sweden
| | - Maarja Öpik
- Department of Botany, Institute of Ecology and Earth Sciences, 40 Lai St., Tartu, 51005, Estonia
| | - Andrea Polle
- Forest Botany and Tree Physiology, University of Goettingen, Goettingen, 37077, Germany
| | - Natalia Requena
- Molecular Phytopathology Department, Karlsruhe Institute of Technology, Fritz Haber-Weg 4, Geb. 30.43, 2. OG, Karlsruhe, D-76131, Germany
| | - Marc-André Selosse
- Département Systématique et Evolution, Muséum national d'Histoire naturelle, UMR 7205 ISYEB, CP 50, 45 rue Buffon, Paris, 75005, France
- Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308, Gdańsk, Poland
| |
Collapse
|