1
|
Xie L, Yang Y, Ma J, Lin G, Deng J, Robson TM, Peng H, Zhou L, Yu D, Wang QW. Variations in ectomycorrhizal exploration types parallel seedling fine root traits of two temperate tree species under extreme drought and contrasting solar radiation treatments. PLANT, CELL & ENVIRONMENT 2024; 47:5053-5066. [PMID: 39139140 DOI: 10.1111/pce.15093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/23/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Summary statementHigh solar radiation exacerbated the negative effects of extreme drought on plant growth and fine root traits. Ectomycorrhizae did not compensate for fine roots under drought stress. Fine roots biomass determined the role of ectomycorrhizal fungi, supporting the energy limitation hypothesis.
Collapse
Affiliation(s)
- Lulu Xie
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Changbaishan Xipo National Field Observation and Research Station for Forest Ecosystem, Baishan, China
| | - Yanmeng Yang
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Changbaishan Xipo National Field Observation and Research Station for Forest Ecosystem, Baishan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jingran Ma
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Changbaishan Xipo National Field Observation and Research Station for Forest Ecosystem, Baishan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Guigang Lin
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Ecology, Northeast Forestry University, Harbin, China
- Northeast Asia Ecosystem Carbon Sink Research Center, School of Ecology, Northeast Forestry University, Harbin, China
| | - Jiaojiao Deng
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Changbaishan Xipo National Field Observation and Research Station for Forest Ecosystem, Baishan, China
| | - Thomas M Robson
- Programme Lead for Woodland Ecology & Conservation, UK National School of Forestry, University of Cumbria, Ambleside, UK
- Organismal and Evolutionary Biology, Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland
| | - Huan Peng
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Li Zhou
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Changbaishan Xipo National Field Observation and Research Station for Forest Ecosystem, Baishan, China
| | - Dapao Yu
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Changbaishan Xipo National Field Observation and Research Station for Forest Ecosystem, Baishan, China
| | - Qing-Wei Wang
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Changbaishan Xipo National Field Observation and Research Station for Forest Ecosystem, Baishan, China
| |
Collapse
|
2
|
Xie L, Palmroth S, Yin C, Oren R. Extramatrical mycelial biomass is mediated by fine root mass and ectomycorrhizal fungal community composition across tree species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175175. [PMID: 39111434 DOI: 10.1016/j.scitotenv.2024.175175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
In many ecosystems, a large fraction of gross primary production is invested in mycorrhiza. Ectomycorrhizal (ECM) mycelium is involved in regulating soil carbon and nutrient cycling. However, little is known about how mycelial biomass, production and turnover differ depending on ECM fungal community composition and associated tree species. We quantified fine root biomass and length using soil cores, and mycelial traits (biomass, production, and turnover) using mesh-bags and ergosterol analysis, and identified ECM exploration types by Illumina MiSeq sequencing of four ECM-dominated tree species (Picea asperata, Larix gmelinii, Quercus aquifolioides and Betula albosinensis) in subalpine forest. The ECM fungal community composition separated between needle-leaved and broadleaved species, and between evergreen and deciduous species. The ratio of mycelial to fine root biomass was similar across the species regardless of genus-scale community composition and the relative abundance of exploration types. Compared to the other species, Q. aquifolioides displayed higher fine root biomass and mycelial biomass and production, dominated by contact-short exploration type. Mycelial turnover rate tended to be lowest in P. asperata, dominated by medium-long exploration type. Much higher production of mycelium and only slightly higher turnover rate in Q. aquifolioides suggests that its steady-state mycelial biomass would be higher than of the other species. Moreover, compared to the two deciduous species, with similar production but somewhat lower turnover rate, the standing crop of mycelium in P. asperata may stabilize at a higher value. Our findings, that exploration type may affect production and turnover, highlight the importance of characterizing ECM fungal communities by exploration types when estimating the contribution of mycelium biomass to forest carbon sink and storage.
Collapse
Affiliation(s)
- Lulu Xie
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu 610041, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China
| | - Sari Palmroth
- Nicholas School of the Environment & Pratt School of Engineering, Duke University, Durham, NC 27708, USA; Department of Forest Sciences, University of Helsinki, FI-00014, Finland
| | - Chunying Yin
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu 610041, PR China.
| | - Ram Oren
- Nicholas School of the Environment & Pratt School of Engineering, Duke University, Durham, NC 27708, USA; Department of Forest Sciences, University of Helsinki, FI-00014, Finland
| |
Collapse
|
3
|
Oliveira MCO, Alves A, Fidalgo C, de Freitas JGR, Pinheiro de Carvalho MAA. Variations in the structure and function of the soil fungal communities in the traditional cropping systems from Madeira Island. Front Microbiol 2024; 15:1426957. [PMID: 39411432 PMCID: PMC11473422 DOI: 10.3389/fmicb.2024.1426957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
Agricultural soils are responsible for ecological functions and services that include primary production of food, fiber and fuel, nutrient cycling, carbon cycling and storage, water infiltration and purification, among others. Fungi are important drivers of most of those ecosystem services. Given the importance of fungi in agricultural soils, in this study, we aimed to characterize and analyse the changes of the soil fungal communities of three cropping systems from Madeira Island, where family farming is predominant, and investigate the response of fungi and its functional groups to soil physicochemical properties. To achieve that, we sequenced amplicons targeting the internal transcribed spacer 1 (ITS1) of the rRNA region, to analyse soil samples from 18 agrosystems: 6 vineyards (V), 6 banana plantations (B) and 6 vegetable plantations (H). Our results showed that alpha diversity indices of fungal communities are similar in the three cropping systems, but fungal composition and functional aspects varied among them, with more pronounced differences in B. Ascomycota, Basidiomycota, and Mortierellomycota were the main phyla found in the three cropping systems. Agaricomycetes and Sordariomycetes are the predominant classes in B, representing 23.8 and 22.4%, respectively, while Sordariomycetes (27.9%) followed by Eurotiomycetes (12.3%) were the predominant classes in V and Sordariomycetes (39.2%) followed by Tremellomycetes (8.9%) in the H. Saprotrophs are the fungal group showing higher relative abundance in the three cropping systems, followed by plant pathogens. Regarding symbionts, endophytes were highly observed in B, while mycorrhizal fungi was predominant in V and H. The structure of fungal communities was mainly correlated with soil content of P, K, N, Fe, and Cu. In addition, we identified bioindicators for each cropping system, which means that cultivated crops are also drivers of functional groups and the composition of communities. Overall, the three cropping systems favored diversity and growth of taxa that play important roles in soil, which highlights the importance of conservative management practices to maintain a healthy and resilient agrosystem.
Collapse
Affiliation(s)
- Maria Cristina O. Oliveira
- ISOPlexis Centre of Sustainable Agriculture and Food Technology, University of Madeira, Campus da Penteada, Funchal, Portugal
- ARDITI, Agência Regional para o Desenvolvimento da Investigação, Tecnologia e Inovação, Caminho da Penteada, Funchal, Portugal
- Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Artur Alves
- Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
- Department of Biology, CESAM—Centre for Environmental and Marine Studies, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Cátia Fidalgo
- Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
- Department of Biology, CESAM—Centre for Environmental and Marine Studies, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - José G. R. de Freitas
- ISOPlexis Centre of Sustainable Agriculture and Food Technology, University of Madeira, Campus da Penteada, Funchal, Portugal
| | - Miguel A. A. Pinheiro de Carvalho
- ISOPlexis Centre of Sustainable Agriculture and Food Technology, University of Madeira, Campus da Penteada, Funchal, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro - Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| |
Collapse
|
4
|
Izumi H. Abundances of ectomycorrhizal exploration types show the type-dependent temporal dynamics over the seasons-a controlled growth container experiment. Int Microbiol 2024:10.1007/s10123-024-00573-z. [PMID: 39126446 DOI: 10.1007/s10123-024-00573-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/04/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Ectomycorrhizas are ubiquitous symbiotic associations between host trees and soil fungi. While the seasonal changes of the taxonomic community structure of ectomycorrhizal fungi have been studied extensively, the temporal dynamics of ectomycorrhizal exploration types which have been proposed for elucidating the functional roles of ectomycorrhizas have not been fully examined. The purpose of the study is to test the hypothesis of whether the abundance of the exploration types in the hosts with different phenology shows different temporal patterns over the seasons. Two host species, deciduous Quercus acutissima and evergreen Q. glauca, were planted in growth containers with natural forest soils and were grown in single or combined species treatment, under similar environmental conditions and in shared soil spore banks of the ectomycorrhizal fungi. The ectomycorrhizal exploration types that occurred on these two host species in two different treatments were observed for two growing seasons. The observed exploration types, namely contact, short-distance, and long-distance type as well as the overall abundance of the ectomycorrhizas showed distinct temporal patterns although no specific response to the host seasonal phenology was found. The abundances of the contact type showed no relation to the seasons whereas those of the short- and the long-distance type increased with time. The formation of the long-distance type was strongly influenced by the host species treatments while that of the other two types was not so. Therefore, the different exploration types demonstrate distinct temporal patterns depending on the types but no specific seasonal responses.
Collapse
Affiliation(s)
- Hironari Izumi
- Microbial Ecology Unit, The Jurinji Buddhist Temple, 481 Oshiocho, Oharano, Nishikyo-Ku, Kyoto, 610-1133, Japan.
| |
Collapse
|
5
|
Livne-Luzon S, Avidar M, Herol L, Rog I, Klein T, Shemesh H. Inter-generational consistency of the ectomycorrhizal fungal community in a mixed pine-cedar post-fire stand. TREE PHYSIOLOGY 2024; 44:tpae094. [PMID: 39046267 DOI: 10.1093/treephys/tpae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/28/2024] [Accepted: 07/23/2024] [Indexed: 07/25/2024]
Abstract
The mutualistic interaction between trees and ectomycorrhizal fungi (EMF) can have a major effect on forest dynamics and specifically on seedling establishment. Here, we compared the EMF community composition associated with the roots of young saplings and mature trees of two co-habiting Pinaceae: Pinus halepensis and Cedrus deodara growing together in a post-fire forest plot, using fungal ITS metabarcoding. We found that the differences in the EMF community between the two sapling groups were mostly attributed to changes in the relative abundance of specific fungal species, with little species turnover. Specifically, Tomentella showed high abundance on pine roots, while Tuber, Russula and Sebacina were more common on the roots of cedars. The physical proximity to a specific host species was correlated with the EMF community composition of young saplings. Specifically, regardless of the sapling's own identity, the roots of saplings growing next to mature cedars had higher abundance of Tuber species, while Tomentella coerulea (Höhn. & Litsch), Russula densifolia (Secr. ex Gillet) and Tuber nitidum (Vittadini) dominated saplings next to mature pines. Cedar saplings' shoot structure was correlated with a specific EMF species. Overall, these results suggest that when germinating next to mature trees, the EMF community of saplings could be determined by extrinsic factors such as the small-scale distribution of mature trees in the forest.
Collapse
Affiliation(s)
- Stav Livne-Luzon
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Mor Avidar
- Department of Environmental Sciences, Tel-Hai College, 12208, Israel
| | - Lior Herol
- Department of Environmental Sciences, Tel-Hai College, 12208, Israel
| | - Ido Rog
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tamir Klein
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hagai Shemesh
- Department of Environmental Sciences, Tel-Hai College, 12208, Israel
| |
Collapse
|
6
|
Auer L, Buée M, Fauchery L, Lombard V, Barry KW, Clum A, Copeland A, Daum C, Foster B, LaButti K, Singan V, Yoshinaga Y, Martineau C, Alfaro M, Castillo FJ, Imbert JB, Ramírez L, Castanera R, Pisabarro AG, Finlay R, Lindahl B, Olson A, Séguin A, Kohler A, Henrissat B, Grigoriev IV, Martin FM. Metatranscriptomics sheds light on the links between the functional traits of fungal guilds and ecological processes in forest soil ecosystems. THE NEW PHYTOLOGIST 2024; 242:1676-1690. [PMID: 38148573 DOI: 10.1111/nph.19471] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 11/23/2023] [Indexed: 12/28/2023]
Abstract
Soil fungi belonging to different functional guilds, such as saprotrophs, pathogens, and mycorrhizal symbionts, play key roles in forest ecosystems. To date, no study has compared the actual gene expression of these guilds in different forest soils. We used metatranscriptomics to study the competition for organic resources by these fungal groups in boreal, temperate, and Mediterranean forest soils. Using a dedicated mRNA annotation pipeline combined with the JGI MycoCosm database, we compared the transcripts of these three fungal guilds, targeting enzymes involved in C- and N mobilization from plant and microbial cell walls. Genes encoding enzymes involved in the degradation of plant cell walls were expressed at a higher level in saprotrophic fungi than in ectomycorrhizal and pathogenic fungi. However, ectomycorrhizal and saprotrophic fungi showed similarly high expression levels of genes encoding enzymes involved in fungal cell wall degradation. Transcripts for N-related transporters were more highly expressed in ectomycorrhizal fungi than in other groups. We showed that ectomycorrhizal and saprotrophic fungi compete for N in soil organic matter, suggesting that their interactions could decelerate C cycling. Metatranscriptomics provides a unique tool to test controversial ecological hypotheses and to better understand the underlying ecological processes involved in soil functioning and carbon stabilization.
Collapse
Affiliation(s)
- Lucas Auer
- Université de Lorraine, INRAE, UMR Interactions Arbres-Microorganismes, Nancy, F-54000, France
| | - Marc Buée
- Université de Lorraine, INRAE, UMR Interactions Arbres-Microorganismes, Nancy, F-54000, France
| | - Laure Fauchery
- Université de Lorraine, INRAE, UMR Interactions Arbres-Microorganismes, Nancy, F-54000, France
| | - Vincent Lombard
- Architecture et Fonction des Macromolécules Biologiques, CNRS and Aix-Marseille Université, Marseille, 13288, France
- INRAE, USC1408 Architecture et Fonction des Macromolécules Biologiques, Marseille, 13009, France
| | - Kerry W Barry
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Alicia Clum
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Alex Copeland
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Chris Daum
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Brian Foster
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kurt LaButti
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Vasanth Singan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yuko Yoshinaga
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Christine Martineau
- Laurentian Forestry Centre, Natural Resources Canada, Canadian Forest Service, Quebec, G1V4C7, QC, Canada
| | - Manuel Alfaro
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarra (UPNA), Pamplona, 31006, Spain
| | - Federico J Castillo
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarra (UPNA), Pamplona, 31006, Spain
| | - J Bosco Imbert
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarra (UPNA), Pamplona, 31006, Spain
| | - Lucia Ramírez
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarra (UPNA), Pamplona, 31006, Spain
| | - Raúl Castanera
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarra (UPNA), Pamplona, 31006, Spain
| | - Antonio G Pisabarro
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarra (UPNA), Pamplona, 31006, Spain
| | - Roger Finlay
- Department of Forest Mycology and Pathology, Swedish University of Agricultural Sciences, Uppsala, 75007, Sweden
| | - Björn Lindahl
- Department of Forest Mycology and Pathology, Swedish University of Agricultural Sciences, Uppsala, 75007, Sweden
| | - Ake Olson
- Department of Forest Mycology and Pathology, Swedish University of Agricultural Sciences, Uppsala, 75007, Sweden
| | - Armand Séguin
- Laurentian Forestry Centre, Natural Resources Canada, Canadian Forest Service, Quebec, G1V4C7, QC, Canada
| | - Annegret Kohler
- Université de Lorraine, INRAE, UMR Interactions Arbres-Microorganismes, Nancy, F-54000, France
| | - Bernard Henrissat
- DTU Bioengineering, Denmarks Tekniske Universitet, Copenhagen, 2800, Denmark
- Department of Biological Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Francis M Martin
- Université de Lorraine, INRAE, UMR Interactions Arbres-Microorganismes, Nancy, F-54000, France
| |
Collapse
|
7
|
Solanki AC, Gurjar NS, Sharma S, Wang Z, Kumar A, Solanki MK, Kumar Divvela P, Yadav K, Kashyap BK. Decoding seasonal changes: soil parameters and microbial communities in tropical dry deciduous forests. Front Microbiol 2024; 15:1258934. [PMID: 38440136 PMCID: PMC10910104 DOI: 10.3389/fmicb.2024.1258934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/31/2024] [Indexed: 03/06/2024] Open
Abstract
In dry deciduous tropical forests, both seasons (winter and summer) offer habitats that are essential ecologically. How these seasonal changes affect soil properties and microbial communities is not yet fully understood. This study aimed to investigate the influence of seasonal fluctuations on soil characteristics and microbial populations. The soil moisture content dramatically increases in the summer. However, the soil pH only gradually shifts from acidic to slightly neutral. During the summer, electrical conductivity (EC) values range from 0.62 to 1.03 ds m-1, in contrast to their decline in the winter. The levels of soil macronutrients and micronutrients increase during the summer, as does the quantity of soil organic carbon (SOC). A two-way ANOVA analysis reveals limited impacts of seasonal fluctuations and specific geographic locations on the amounts of accessible nitrogen (N) and phosphorus (P). Moreover, dehydrogenase, nitrate reductase, and urease activities rise in the summer, while chitinase, protease, and acid phosphatase activities are more pronounced in the winter. The soil microbes were identified in both seasons through 16S rRNA and ITS (Internal Transcribed Spacer) gene sequencing. Results revealed Proteobacteria and Ascomycota as predominant bacterial and fungal phyla. However, Bacillus, Pseudomonas, and Burkholderia are dominant bacterial genera, and Aspergillus, Alternaria, and Trichoderma are dominant fungal genera in the forest soil samples. Dominant bacterial and fungal genera may play a role in essential ecosystem services such as soil health management and nutrient cycling. In both seasons, clear relationships exist between soil properties, including pH, moisture, iron (Fe), zinc (Zn), and microbial diversity. Enzymatic activities and microbial shift relate positively with soil parameters. This study highlights robust soil-microbial interactions that persist mainly in the top layers of tropical dry deciduous forests in the summer and winter seasons. It provides insights into the responses of soil-microbial communities to seasonal changes, advancing our understanding of ecosystem dynamics and biodiversity preservation.
Collapse
Affiliation(s)
| | - Narendra Singh Gurjar
- Department of Soil Science and Agriculture Chemistry, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior, Madhya Pradesh, India
| | - Satish Sharma
- Department of Plant Pathology, B. M. College of Agriculture, Khandwa, Madhya Pradesh, India
| | - Zhen Wang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Agricultural College, Yulin Normal University, Yulin, China
| | - Ajay Kumar
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Manoj Kumar Solanki
- Department of Life Sciences and Biological Sciences, IES University, Bhopal, Madhya Pradesh, India
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | | | - Kajal Yadav
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Brijendra Kumar Kashyap
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi, Uttar Pradesh, India
| |
Collapse
|
8
|
Dreyling L, Penone C, Schenk NV, Schmitt I, Dal Grande F. Biotic interactions outweigh abiotic factors as drivers of bark microbial communities in Central European forests. ISME COMMUNICATIONS 2024; 4:ycae012. [PMID: 38500703 PMCID: PMC10945369 DOI: 10.1093/ismeco/ycae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/18/2024] [Indexed: 03/20/2024]
Abstract
Bark surfaces are extensive areas within forest ecosystems, which provide an ideal habitat for microbial communities, through their longevity and seasonal stability. Here we provide a comprehensive account of the bark surface microbiome of living trees in Central European forests, and identify drivers of diversity and community composition. We examine algal, fungal, and bacterial communities and their interactions using metabarcoding on samples from over 750 trees collected in the Biodiversity Exploratories in northern, central, and southern Germany. We show that mutual biotic influence is more important than the abiotic environment with regard to community composition, whereas abiotic conditions and geography are more important for alpha diversity. Important abiotic factors are the relative humidity and light availability, which decrease the algal and bacterial alpha diversity but strongly increase fungal alpha diversity. In addition, temperature is important in shaping the microbial community, with higher temperature leading to homogeneous communities of dominant fungi, but high turnover in bacterial communities. Changes in the community dissimilarity of one organismal group occur in close relation to changes in the other two, suggesting that there are close interactions between the three major groups of the bark surface microbial communities, which may be linked to beneficial exchange. To understand the functioning of the forest microbiome as a whole, we need to further investigate the functionality of interactions within the bark surface microbiome and combine these results with findings from other forest habitats such as soil or canopy.
Collapse
Affiliation(s)
- Lukas Dreyling
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main 60325, Germany
- Goethe University Frankfurt, Institute of Ecology, Evolution and Diversity, Frankfurt am Main 60438, Germany
| | - Caterina Penone
- Institute of Plant Sciences, University of Bern, Bern 3013, Switzerland
| | | | - Imke Schmitt
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main 60325, Germany
- Goethe University Frankfurt, Institute of Ecology, Evolution and Diversity, Frankfurt am Main 60438, Germany
| | - Francesco Dal Grande
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main 60325, Germany
- Department of Biology, University of Padova, Padua 35122, Italy
- National Biodiversity Future Center (NBFC), Palermo 90133, Italy
| |
Collapse
|
9
|
Riit T, Cleary M, Adamson K, Blomquist M, Burokienė D, Marčiulynienė D, Oliva J, Poimala A, Redondo MA, Strømeng GM, Talgø V, Tedersoo L, Thomsen IM, Uimari A, Witzell J, Drenkhan R. Oomycete Soil Diversity Associated with Betula and Alnus in Forests and Urban Settings in the Nordic-Baltic Region. J Fungi (Basel) 2023; 9:926. [PMID: 37755034 PMCID: PMC10532727 DOI: 10.3390/jof9090926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 09/28/2023] Open
Abstract
This study aimed to determine the differences and drivers of oomycete diversity and community composition in alder- and birch-dominated park and natural forest soils of the Fennoscandian and Baltic countries of Estonia, Finland, Lithuania, Norway, and Sweden. For this, we sequenced libraries of PCR products generated from the DNA of 111 soil samples collected across a climate gradient using oomycete-specific primers on a PacBio high-throughput sequencing platform. We found that oomycete communities are most affected by temperature seasonality, annual mean temperature, and mean temperature of the warmest quarter. Differences in composition were partly explained by the higher diversity of Saprolegniales in Sweden and Norway, as both total oomycete and Saprolegniales richness decreased significantly at higher longitudes, potentially indicating the preference of this group of oomycetes for a more temperate maritime climate. None of the evaluated climatic variables significantly affected the richness of Pythiales or Peronosporales. Interestingly, the relative abundance and richness of Pythiales was higher at urban sites compared to forest sites, whereas the opposite was true for Saprolegniales. Additionally, this is the first report of Phytophthora gallica and P. plurivora in Estonia. Our results indicate that the composition of oomycetes in soils is strongly influenced by climatic factors, and, therefore, changes in climate conditions associated with global warming may have the potential to significantly alter the distribution range of these microbes, which comprise many important pathogens of plants.
Collapse
Affiliation(s)
- Taavi Riit
- Institute of Forestry and Engineering, Estonian University of Life Sciences, F. R. Kreutzwaldi 5, 51006 Tartu, Estonia; (T.R.)
| | - Michelle Cleary
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Sundsvägen 3, 230 53 Alnarp, Sweden
| | - Kalev Adamson
- Institute of Forestry and Engineering, Estonian University of Life Sciences, F. R. Kreutzwaldi 5, 51006 Tartu, Estonia; (T.R.)
| | - Mimmi Blomquist
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Sundsvägen 3, 230 53 Alnarp, Sweden
| | - Daiva Burokienė
- Nature Research Centre, Akademijos Str. 2, LT-08412 Vilnius, Lithuania
| | - Diana Marčiulynienė
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Sundsvägen 3, 230 53 Alnarp, Sweden
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, LT-53101 Girionys, Lithuania
| | - Jonàs Oliva
- Department of Agricultural and Forest Sciences and Engineering, University of Lleida, 25198 Lleida, Spain
- Joint Research Unit CTFC–Agrotecnio, 25198 Lleida, Spain
| | - Anna Poimala
- Natural Resources Institute Finland (LUKE), Latokartanonkaari 9, 00790 Helsinki, Finland
| | - Miguel Angel Redondo
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, P.O. Box 7026, 750 07 Uppsala, Sweden
| | - Gunn Mari Strømeng
- Norwegian Institute of Bioeconomy Research, NIBIO, Høgskoleveien 7, 1433 Ås, Norway
| | - Venche Talgø
- Norwegian Institute of Bioeconomy Research, NIBIO, Høgskoleveien 7, 1433 Ås, Norway
| | - Leho Tedersoo
- Mycology and Microbiology Center, University of Tartu, J. Liivi 2, 50409 Tartu, Estonia
| | - Iben Margrete Thomsen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, 1958 Frederiksberg C, Denmark
| | - Anne Uimari
- Natural Resources Institute Finland (LUKE), Juntintie 154, 77600 Suonenjoki, Finland
| | - Johanna Witzell
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Sundsvägen 3, 230 53 Alnarp, Sweden
- Department of Forestry and Wood Technology, Linnaeus University, 351 95 Växjö, Sweden
| | - Rein Drenkhan
- Institute of Forestry and Engineering, Estonian University of Life Sciences, F. R. Kreutzwaldi 5, 51006 Tartu, Estonia; (T.R.)
| |
Collapse
|
10
|
Wen Z, Lin C, Xu X, Ma S, Peng Y, Sun Y, Tang B, Shi L. Ectomycorrhizal community associated with Cedrus deodara in four urban forests of Nantong in East China. FRONTIERS IN PLANT SCIENCE 2023; 14:1226720. [PMID: 37719211 PMCID: PMC10502312 DOI: 10.3389/fpls.2023.1226720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/08/2023] [Indexed: 09/19/2023]
Abstract
Ectomycorrhizal (ECM) fungi play fundamental roles in host plant growth and terrestrial ecosystems. Cedrus deodara is cultivated in several regions in China, has high ecological, economic and medicinal value, for its afforestation and providing timber and wood oil. Here, we investigated ECM colonization status of four urban C. deodara forests in Nantong, East China. We also characterized soil spore banks by conducting bioassay experiments using soils collected from these forests. In total, we identified 19 ECM fungal species, of which 13 species were found in mature forests and 9 species were identified in bioassay experiments, with only 3 species shared. Soil pH and available P content had significant effects on species occurrence in both mature trees and bioassay seedlings on local scales. ECM communities clearly (A = 0.391, p = 0.006) separated mature forests from spore banks. Thelephoracae was the richest family we detected associated with C. deodara, while Trichophaea sp. was the most dominant in mature forests, and Wilcoxina sp. was dominant in spore banks. ECM richness affected the growth of bioassay seedlings, especially after inoculation with 2 ECM species, promoting root growth, significantly (F = 3.028, p = 0.050), but it had no effects on shoots (F = 1.778, p = 0.177). No effect of inoculation rate was found on seedlings growth. To conserve this important tree species, the ECM fungi that are associated with it should be considered.
Collapse
Affiliation(s)
- Zhugui Wen
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Chunyan Lin
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Xiaoming Xu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Simiao Ma
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Yue Peng
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Yue Sun
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Boping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Liang Shi
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
11
|
Zhang J, Liu Q, Wang D, Zhang Z. Soil Microbial Community, Soil Quality, and Productivity along a Chronosequence of Larix principis-rupprechtii Forests. PLANTS (BASEL, SWITZERLAND) 2023; 12:2913. [PMID: 37631125 PMCID: PMC10458017 DOI: 10.3390/plants12162913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/27/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023]
Abstract
Elucidating the correlation between soil microbial communities and forest productivity is the focus of research in the field of forest ecology. Nonetheless, the relationship between stand age, soil quality, soil microorganisms, and their combined influence on productivity is still unclear. In this study, five development stages (14, 25, 31, 39, and >80 years) of larch (Larix principis-rupprechtii) forests were investigated in Inner Mongolia and Shanxi provinces of China. We evaluated soil quality using the Integrated Soil Quality Index (SQI) and analyzed changes in bacterial and fungal communities using high-throughput sequencing. Regression models were also established to examine the impacts of stand age, microbial diversity, and SQI on productivity. The findings revealed an ascending trend in soil organic matter (SOM), total nitrogen (TN), total phosphorus (TP), available potassium (AK), and SQI in 14, 25, 31, and 39-year-old stands. The abundance of oligotrophic bacteria Acidobacteria exhibited a gradual decline with increasing forest age, whereas copiotroph bacteria Proteobacteria displayed a progressive increase. Stands older than 80 years exhibited a higher abundance of both the saprophytic fungus Ascomycota and mycorrhizal fungus Basidiomycota. Forest age had a significant impact on microbial diversity, particularly in terms of bacterial diversity, impacting both α and β diversity. The soil bacterial community structure was influenced by AK, SOM, TN, TP, and pH. Conversely, the fungal community structure was regulated by crucial factors including SOM, TN, TP, TK, AK, and pH. Fungal diversity demonstrated a significant and positive correlation with the basal area increment (BAI) of larch. Furthermore, microbial diversity accounted for 23.6% of the variation in BAI. In summary, the findings implied a robust association between microbial composition, diversity, and soil chemical properties throughout the chronosequence of larch forests. These factors collectively played a crucial role in influencing the productivity of larch forest.
Collapse
Affiliation(s)
| | | | | | - Zhidong Zhang
- College of Forestry, Hebei Agricultural University, Baoding 071001, China; (J.Z.); (Q.L.); (D.W.)
| |
Collapse
|
12
|
Sanz-Benito I, Stadler T, Mediavilla O, Hernández-Rodríguez M, Oria-de-Rueda JA, Dejene T, Geml J, Martín-Pinto P. Into the void: ECM fungal communities involved in the succession from rockroses to oak stands. Sci Rep 2023; 13:10085. [PMID: 37344617 DOI: 10.1038/s41598-023-37107-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 06/15/2023] [Indexed: 06/23/2023] Open
Abstract
Oak forests accompanied by Cistus species are a common landscape in the Mediterranean basin. It is argued that Cistus dominated fields serve as recruitment areas for Quercus seedlings, as they help in the transmission of the fungal community through vegetative succession in these ecosystems. To test these assumptions, we analyzed the fungal community in terms of its richness and composition, taking into account the effects of host (Oaks vs. Cistus) and forest structure, mainly based on age. Edaphic variables related to the different structures were also analyzed to examine how they evolve through succession and relate to shifts in the fungal community. No differences in fungal richness were observed between old Cistus stands and younger Quercus, while a brief increase in ECM richness was observed. Community composition also showed a greater overlap between old Cistus and young Quercus stands. We suggest that the most important step in fungal transfer from one host to another is the shift from the oldest Cistus fields to the youngest Quercus stands, with the genera Amanita, Cortinarius, Lactarius, Inocybe, Russula, and Tomentella probably playing a major role. In summary, our work has also revealed the network of fungal community structure in the succession of Cistus to Oak stands, it would suggest that the fungi share niches and significantly enhance the ecological setting of the transition from Cistus to Oak stands.
Collapse
Affiliation(s)
- Ignacio Sanz-Benito
- Sustainable Forest Management Research Institute, University of Valladolid, Avda. Madrid 44, 34071, Palencia, Spain
| | - Tim Stadler
- University for Sustainable Development Eberswalde, Schickler Street 5, 16225, Eberswalde, Germany
| | - Olaya Mediavilla
- Sustainable Forest Management Research Institute, University of Valladolid, Avda. Madrid 44, 34071, Palencia, Spain
- IDForest-Biotecnología Forestal Aplicada, Calle Curtidores 17, 34004, Palencia, Spain
| | - María Hernández-Rodríguez
- Sustainable Forest Management Research Institute, University of Valladolid, Avda. Madrid 44, 34071, Palencia, Spain
- IDForest-Biotecnología Forestal Aplicada, Calle Curtidores 17, 34004, Palencia, Spain
| | - Juan Andrés Oria-de-Rueda
- Sustainable Forest Management Research Institute, University of Valladolid, Avda. Madrid 44, 34071, Palencia, Spain
| | - Tatek Dejene
- Sustainable Forest Management Research Institute, University of Valladolid, Avda. Madrid 44, 34071, Palencia, Spain
- Central Ethiopia Environment and Forestry Research Center, P.O. Box 30708, Addis Ababa, Ethiopia
| | - József Geml
- ELKH-EKKE Lendület Environmental Microbiome Research Group, Eszterházy Károly Catholic University, Leányka U. 6, 3300, Eger, Hungary
| | - Pablo Martín-Pinto
- Sustainable Forest Management Research Institute, University of Valladolid, Avda. Madrid 44, 34071, Palencia, Spain.
| |
Collapse
|
13
|
Kalntremtziou M, Papaioannou IA, Vangalis V, Polemis E, Pappas KM, Zervakis GI, Typas MA. Evaluation of the lignocellulose degradation potential of Mediterranean forests soil microbial communities through diversity and targeted functional metagenomics. Front Microbiol 2023; 14:1121993. [PMID: 36922966 PMCID: PMC10008878 DOI: 10.3389/fmicb.2023.1121993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/31/2023] [Indexed: 02/28/2023] Open
Abstract
The enzymatic arsenal of several soil microorganisms renders them particularly suitable for the degradation of lignocellulose, a process of distinct ecological significance with promising biotechnological implications. In this study, we investigated the spatiotemporal diversity and distribution of bacteria and fungi with 16S and Internally Trascribed Spacer (ITS) ribosomal RNA next-generation-sequencing (NGS), focusing on forest mainland Abies cephalonica and insular Quercus ilex habitats of Greece. We analyzed samples during winter and summer periods, from different soil depths, and we applied optimized and combined targeted meta-omics approaches aiming at the peroxidase-catalase family enzymes to gain insights into the lignocellulose degradation process at the soil microbial community level. The microbial communities recorded showed distinct patterns of response to season, soil depth and vegetation type. Overall, in both forests Proteobacteria, Actinobacteria, Acidobacteria were the most abundant bacteria phyla, while the other phyla and the super-kingdom of Archaea were detected in very low numbers. Members of the orders Agaricales, Russulales, Sebacinales, Gomphales, Geastrales, Hysterangiales, Thelephorales, and Trechisporales (Basidiomycota), and Pezizales, Sordariales, Eurotiales, Pleosporales, Helotiales, and Diaporthales (Ascomycota) were the most abundant for Fungi. By using optimized "universal" PCR primers that targeted the peroxidase-catalase enzyme family, we identified several known and novel sequences from various Basidiomycota, even from taxa appearing at low abundance. The majority of the sequences recovered were manganese peroxidases from several genera of Agaricales, Hysterangiales, Gomphales, Geastrales, Russulales, Hymenochaetales, and Trechisporales, while lignin -and versatile-peroxidases were limited to two to eight species, respectively. Comparisons of the obtained sequences with publicly available data allowed a detailed structural analysis of polymorphisms and functionally relevant amino-acid residues at phylogenetic level. The targeted metagenomics applied here revealed an important role in lignocellulose degradation of hitherto understudied orders of Basidiomycota, such as the Hysterangiales and Gomphales, while it also suggested the auxiliary activity of particular members of Proteobacteria, Actinobacteria, Acidobacteria, Verrucomicrobia, and Gemmatimonadetes. The application of NGS-based metagenomics approaches allows a better understanding of the complex process of lignocellulolysis at the microbial community level as well as the identification of candidate taxa and genes for targeted functional investigations and genetic modifications.
Collapse
Affiliation(s)
- Maria Kalntremtziou
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis A. Papaioannou
- Zentrum für Molekulare Biologie der Universität Heidelberg, ZMBH, University of Heidelberg, Heidelberg, Germany
| | - Vasileios Vangalis
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Elias Polemis
- Laboratory of General and Agricultural Microbiology, Agricultural University of Athens, Athens, Greece
| | - Katherine M. Pappas
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios I. Zervakis
- Laboratory of General and Agricultural Microbiology, Agricultural University of Athens, Athens, Greece
| | - Milton A. Typas
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
14
|
Centenaro G, de Miguel S, Amouzgar L, Piñuela Y, Son D, Bonet JA, de Aragón JM, Dashevskaya S, Castaño C, Alday JG. Silvicultural management and altitude prevail on soil properties and fungal community in shaping understorey plant communities in a Mediterranean pine forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159860. [PMID: 36374731 DOI: 10.1016/j.scitotenv.2022.159860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/14/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Understorey vegetation plays a key role in Mediterranean forest ecosystem functioning. However, we still lack a thorough understanding of the patterns and drivers of understorey composition and diversity. As a result, understoreys are often ignored during assessments of forest functioning under climate change. Here we studied the effect of silvicultural management, topography, soil fungal community composition and soil physical and chemical properties on understorey community composition and diversity. The plant cover and number of individuals of understorey perennial plants, shrubs and non-dominant trees was recorded on 24 plots (paired: control-thinned) in a Mediterranean pine-dominated mountainous area in Northeast Spain. The study area represented a broad thinning intensity gradient (from 0 to 70 % in removed stand basal area) along a 400-m altitudinal range (from 609 m to 1013 m). Our results showed that thinning intensity and topography explained the greatest proportion of the total variance in the understorey species composition, i.e., 18 % and 16 %, respectively. Interestingly, the effects of the silvicultural treatments were significant only when considering the altitudinal effect, so that, the main impacts of thinning on the understorey community composition occurred at low altitudes (between 609 m and 870 m). Moreover, we found a significant decrease in both richness and abundance of understorey species in both the control and thinned plots with increasing altitude, with thinned plots being significantly richer in species compared to the control plots. The difference in the understorey community sensitivity to forest thinning along the altitudinal gradient suggests changes in factors that limit plant growth. Low elevation plots were restrained by light availability while high altitudes plots limited by winter freezing temperature.
Collapse
Affiliation(s)
- Giada Centenaro
- Department of Crop and Forest Sciences, University of Lleida, Av. Alcalde Rovira Roure 191, E-25198 Lleida, Spain; Joint Research Unit CTFC - AGROTECNIO - CERCA, Ctra. Sant Llorenç de Morunys, km 2, 25280 Solsona, Spain.
| | - Sergio de Miguel
- Department of Crop and Forest Sciences, University of Lleida, Av. Alcalde Rovira Roure 191, E-25198 Lleida, Spain; Joint Research Unit CTFC - AGROTECNIO - CERCA, Ctra. Sant Llorenç de Morunys, km 2, 25280 Solsona, Spain
| | - Laleh Amouzgar
- Department of Crop and Forest Sciences, University of Lleida, Av. Alcalde Rovira Roure 191, E-25198 Lleida, Spain
| | - Yasmine Piñuela
- Department of Crop and Forest Sciences, University of Lleida, Av. Alcalde Rovira Roure 191, E-25198 Lleida, Spain; Forest Science and Technology Centre of Catalonia, Ctra, Sant Llorenç de Morunys Km 2, E25280, Solsona, Spain
| | - Deokjoo Son
- Department of Crop and Forest Sciences, University of Lleida, Av. Alcalde Rovira Roure 191, E-25198 Lleida, Spain
| | - José Antonio Bonet
- Department of Crop and Forest Sciences, University of Lleida, Av. Alcalde Rovira Roure 191, E-25198 Lleida, Spain; Joint Research Unit CTFC - AGROTECNIO - CERCA, Ctra. Sant Llorenç de Morunys, km 2, 25280 Solsona, Spain
| | - Juan Martínez de Aragón
- Joint Research Unit CTFC - AGROTECNIO - CERCA, Ctra. Sant Llorenç de Morunys, km 2, 25280 Solsona, Spain; Forest Science and Technology Centre of Catalonia, Ctra, Sant Llorenç de Morunys Km 2, E25280, Solsona, Spain
| | - Svetlana Dashevskaya
- Department of Crop and Forest Sciences, University of Lleida, Av. Alcalde Rovira Roure 191, E-25198 Lleida, Spain
| | - Carles Castaño
- Swedish University of Agricultural Sciences, Department of Forest Mycology and Plant Pathology, SE 75007 Uppsala, Sweden
| | - Josu G Alday
- Department of Crop and Forest Sciences, University of Lleida, Av. Alcalde Rovira Roure 191, E-25198 Lleida, Spain; Joint Research Unit CTFC - AGROTECNIO - CERCA, Ctra. Sant Llorenç de Morunys, km 2, 25280 Solsona, Spain
| |
Collapse
|
15
|
The metamicrobiome: key determinant of the homeostasis of nutrient recycling. Trends Ecol Evol 2023; 38:183-195. [PMID: 36328807 DOI: 10.1016/j.tree.2022.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
Abstract
The metamicrobiome is an integrated concept to study carbon and nutrient recycling in ecosystems. Decomposition of plant-derived matter by free-living microbes and fire - two key recycling pathways - are highly sensitive to global change. Mutualistic associations of microbes with plants and animals strongly reduce this sensitivity. By solving a fundamental allometric trade-off between metabolic and homeostatic capacity, these mutualisms enable continued recycling of plant matter where and when conditions are unfavourable for the free-living microbiome. A diverse metamicrobiome - where multiple plant- and animal-associated microbiomes complement the free-living microbiome - thus enhances homeostasis of ecosystem recycling rates in variable environments. Research into metamicrobiome structure and functioning in ecosystems is therefore important for progress towards understanding environmental change.
Collapse
|
16
|
Yang Y, Dou Y, Wang B, Xue Z, Wang Y, An S, Chang SX. Deciphering factors driving soil microbial life-history strategies in restored grasslands. IMETA 2023; 2:e66. [PMID: 38868332 PMCID: PMC10989924 DOI: 10.1002/imt2.66] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/12/2022] [Accepted: 11/06/2022] [Indexed: 06/14/2024]
Abstract
In macroecology, the concept of r- and K-strategy has been widely applied, yet, there have been limited studies on microbial life-history strategies in temperate grasslands using multiple sequencing approaches. Total phospholipid fatty acid (PLFA) analysis, high-throughput meta-genomic sequencing, and GeoChip technologies were used to examine the changes in microbial life-history traits in a chronosequence of restored grasslands (1, 5, 10, 15, 25, and 30 years since restoration). Grassland restoration increased the relative abundances of Actinobacteria, Proteobacteria, and Bacteroidetes but reduced the relative abundances of Acidobacteria, Planctomycetes, and Chloroflexi. PLFA analysis revealed that grassland restoration reduced the fungi:bacteria and Gram-positive:Gram-negative bacteria ratios. Combined with the meta-genomic data, we found that grassland restoration shifted microorganisms from oligotrophic (K-) to copiotrophic (r-) groups, consistent with the increased rRNA operon copy number of the microbial community. Structural equation modeling showed that soil properties positively (p < 0.05) while plant properties negatively (p < 0.05) affected microbial life-history traits. We built a framework to highlight the importance of plant and soil properties in driving microbial life-history traits during grassland restoration. Finally, by incorporating meta-genomic and other microbiological data, this study showed that microbial life-history traits support the idea that rRNA operon copy number is a trait that reflects resource availability to soil microorganisms.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of SciencesXi'anChina
- Chinese Academy of Sciences Center for Excellence in Quaternary Science and Global ChangeXi'anChina
- National Observation and Research Station of Earth Critical Zone on the Loess Plateau in ShaanxiXi'anChina
| | - Yanxing Dou
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess PlateauNorthwest A&F UniversityYanglingChina
| | - Baorong Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess PlateauNorthwest A&F UniversityYanglingChina
| | - Zhijing Xue
- College of Geography and TourismShaanxi Normal UniversityXi'anChina
| | - Yunqiang Wang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of SciencesXi'anChina
- Chinese Academy of Sciences Center for Excellence in Quaternary Science and Global ChangeXi'anChina
- National Observation and Research Station of Earth Critical Zone on the Loess Plateau in ShaanxiXi'anChina
| | - Shaoshan An
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess PlateauNorthwest A&F UniversityYanglingChina
| | - Scott X. Chang
- Department of Renewable ResourcesUniversity of AlbertaEdmontonCanada
| |
Collapse
|
17
|
Martín-Pinto P, Fernández C, Santos M, Fontúrbel T, Oria-de-Rueda JA, Vázquez-Veloso A, Stadler T, Mediavilla O, Sanz-Benito I. Unaltered fungal community after fire prevention treatments over widespread Mediterranean rockroses (Halimium lasianthum). Sci Rep 2023; 13:608. [PMID: 36635464 PMCID: PMC9837117 DOI: 10.1038/s41598-023-27945-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Mediterranean ecosystems are frequently invaded by pyrophytic scrubs such as Halimium lasianthum that colonize areas traditionally used by livestock. A diverse fungal community is associated with this kind of vegetation, playing an important ecological role in these ecosystems. However, uncontrolled expansion of these shrubs considerably increases the risk of wildfires in these stands and, hence, fire-prevention treatments are needed. To investigate the long-term effects of two different forest-fire-prevention treatments on the soil fungal community, we analyzed these communities 9 years after prescribed burning or mechanical shredding were carried out in scrubland dominated by H. lasianthum. Neither of the fire-prevention treatments had a negative long-term effect on the abundance or richness of ectomycorrhizal fungi. However, saprotrophs and lichenized fungi experienced negative effects. Soil fertility significantly affected the distribution of fungi according to their functional groups, and pH was the most influential variable in terms of the distribution of edible species. Our findings indicate that forest management practices to prevent forest fires does not negatively affect the fungal community in the long-term, but for lichens and decomposers. Moreover, prescribed burning is suggested as a more economical way of reducing the risk of wildfires without affecting the ecology of the fungal community.
Collapse
Affiliation(s)
- Pablo Martín-Pinto
- Sustainable Forest Management Research Institute UVa-INIA, Avenida Madrid, S/N, 34004, Palencia, Spain. .,Department of Vegetal Production and Natural Resources, University of Valladolid, Avenida Madrid, S/N, 34004, Palencia, Spain.
| | - Cristina Fernández
- Centro de Investigación Forestal-Lourizán, Xunta de Galicia, P.O. Box. 127, 36080 Pontevedra, Spain
| | - María Santos
- Sustainable Forest Management Research Institute UVa-INIA, Avenida Madrid, S/N, 34004 Palencia, Spain
| | - Teresa Fontúrbel
- Centro de Investigación Forestal-Lourizán, Xunta de Galicia, P.O. Box. 127, 36080 Pontevedra, Spain
| | - Juan Andrés Oria-de-Rueda
- Sustainable Forest Management Research Institute UVa-INIA, Avenida Madrid, S/N, 34004 Palencia, Spain
| | - Aitor Vázquez-Veloso
- Sustainable Forest Management Research Institute UVa-INIA, Avenida Madrid, S/N, 34004 Palencia, Spain
| | - Tim Stadler
- University for Sustainable Development Eberswalde, Schickler Street 5, 16225 Eberswalde, Germany
| | - Olaya Mediavilla
- Sustainable Forest Management Research Institute UVa-INIA, Avenida Madrid, S/N, 34004 Palencia, Spain
| | - Ignacio Sanz-Benito
- Sustainable Forest Management Research Institute UVa-INIA, Avenida Madrid, S/N, 34004 Palencia, Spain
| |
Collapse
|
18
|
Krah F, March‐Salas M. eDNA metabarcoding reveals high soil fungal diversity and variation in community composition among Spanish cliffs. Ecol Evol 2022; 12:e9594. [PMID: 36523524 PMCID: PMC9745262 DOI: 10.1002/ece3.9594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 09/10/2024] Open
Abstract
Environments characterized by physical extremes harbor unique species diversity with particular adaptations. Cliffs are harsh environments for organisms but host a great diversity of specialized plants with many endemics, rare and even endangered species. It is, however, less known which fungal diversity the cliff habitats contain and whether it differs among different cliff locations. We thus sampled soil from three separate cliff locations in the North, Centre, and South of Spain and used eDNA metabarcoding to determine fungal diversity. To better understand whether cliff specialist plants may promote particular fungal communities, we have sampled soil from crevices with cliff specialist plants and no apparent plants as controls. Major lifestyles found in cliff soils were saprotrophs, and major fungal orders were Dothideomycetes, Sordariomycetes, and Eurotiomycetes, while the amount of symbiotrophic fungi was relatively low. We found no significant differences in fungal amplicon sequence variant (ASV) richness among the three sampled locations, but the sites were significantly different in their community composition and their main indicator species. Overall, there were no significant differences in fungal ASV richness or composition between soils from cliff specialist plants and soils without plants, suggesting a unique fungal diversity in cliff soils independent from specialized plants. However, preliminary findings on soils of the specialist cliff plant Sedum dasyphyllum against control soils suggest that the presence of a specialist plant may be a relevant factor affecting the specificity of the fungal community in cliff soils. Our results indicate the existence of particular cliff fungal communities in each location, and that, despite limited and poorly developed soils and harsh conditions, cliffs can harbor a great diversity of fungal species, comparable to other ecosystems of Spain. This study points out that some fungi may be cliff-specific, shaping particular communities that mediate plant adaptations to cliffs' extreme conditions.
Collapse
Affiliation(s)
- Franz‐Sebastian Krah
- Faculty of Biological Sciences, Institute for Ecology, Evolution and Diversity, Conservation BiologyGoethe University FrankfurtFrankfurt am MainGermany
| | - Martí March‐Salas
- Faculty of Biological Sciences, Institute for Ecology, Evolution and Diversity, Plant Evolutionary EcologyGoethe University FrankfurtFrankfurt am MainGermany
| |
Collapse
|
19
|
Lv H, Ji C, Zhang L, Jiang C, Cai H. Zinc application promotes nitrogen transformation in rice rhizosphere soil by modifying microbial communities and gene expression levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157858. [PMID: 35934040 DOI: 10.1016/j.scitotenv.2022.157858] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Application of Zn fertilizers to agricultural field is a simple and effective way for farmers to manage Zn deficient stress in soils to avoid yield lose. Although a synergistic effect of Zn on N transformation in soil has been reported, the mechanism is not fully understood yet. In this study, we planted rice in soils with different combinations of Zn and N supply, and analyzed the plant growth and N uptake, the N transformation, microbial communities, enzyme activities and gene expression levels in rhizosphere soil to reveal the underlying mechanism. Results showed that Zn application promoted the rice growth and N uptake, increased the soil alkali-hydrolyzed N and NH4+, but decreased NO3- and inhibited NH3 volatilization from the rhizosphere soil under optimal N condition. Zn supply significantly increased the relative abundances of Sphingomonas, Gaiella, subgroup_6, and Gemmatimonas, but decreased nitrosifying bacteria Ellin6067; while increased saprophytic fungi Schizothecium and Mortierella, but decreased pathogenic fungi Gaeumannomyces, Acremonium, Curvularia, and Fusarium in the rhizosphere soil under optimal N condition. Meanwhile, Zn application elevated the activities of protease, cellulase and dehydrogenase, and up-regulated the expression levels of napA, nirS, cnorB, and qnorB genes involved in the denitrification process in rice rhizosphere soil under optimal N condition. These results indicated Zn application could facilitate the soil N transformation and improved its availability by modifying both bacterial and fungal communities, and altering the soil enzyme activities and functional gene expression levels, ultimately promoted the N uptake and biomass of rice plant. However, this synergistic effect of Zn on rice growth, N uptake and soil N transformation strongly depended on the external N conditions, as no significant changes were observed under high N condition. Our results indicated that Zn co-fertilized with appropriate application of N is a useful strategy to improve the N bioavailability in rice rhizosphere soil and enhance the N uptake in rice plant.
Collapse
Affiliation(s)
- Haihan Lv
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China; College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Chenchen Ji
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China; College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Lin Zhang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Cuncang Jiang
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China; College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hongmei Cai
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China; College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
20
|
Wang J, Gao J, Zhang H, Tang M. Changes in Rhizosphere Soil Fungal Communities of Pinus tabuliformis Plantations at Different Development Stages on the Loess Plateau. Int J Mol Sci 2022; 23:ijms23126753. [PMID: 35743198 PMCID: PMC9223801 DOI: 10.3390/ijms23126753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/05/2022] [Accepted: 06/14/2022] [Indexed: 02/04/2023] Open
Abstract
The soil fungal community is an important factor in the forest ecosystems, and a better understanding of its composition and dynamic changes will contribute to the maintenance, preservation, and sustainable development of the forest ecosystems. Pinus tabuliformis has been widely planted for local ecological restoration on the Loess Plateau in China in recent decades. However, these plantations have been degraded to different degrees with increasing stand age. Hence, we tried to find the possible causes for the plantation degradation by analyzing soil environmental changes and soil fungal community composition at different stand ages. We collected rhizosphere soil samples from young (10-year-old), middle-aged (20-year-old), and near-mature (30-year-old) P. tabuliformis plantations in this region and characterized their soil properties and soil fungal community diversity and composition. Our results showed that with increasing stand age, the contents of organic carbon, ammonium nitrogen (AN) and nitrate nitrogen (NN) in the soil increased significantly, while the content of available phosphorus (AP) decreased significantly. The main factors affecting the composition of the soil fungal community were the contents of AP, AN, and NN in the soil. In addition, the genus Suillus was the dominant ectomycorrhizal (ECM) fungus in all periods of P. tabuliformis plantations in this region. The results of structural equation modeling showed that the community composition of ECM fungi was significantly correlated with stand age, soil NN, and AP contents, and that of pathogenic (PAG) fungi was significantly correlated with soil AN and AP contents. The decrease in the relative abundance of ECM fungi and the increase in the relative abundance of PAG fungi would exacerbate the degradation of P. tabulaeformis plantation. Our results illustrated that the content of soil AP is not only an important factor limiting the development of plantations, but it also significantly affects the community composition of soil fungi in the rhizosphere of the P. tabuliformis plantation. This study provides a novel insight into the degradation of P. tabuliformis plantations and builds a solid foundation for their subsequent management, restoration, and sustainable development on the Loess Plateau of China.
Collapse
Affiliation(s)
- Jiaxing Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China;
- College of Forestry, Northwest A&F University, Xianyang 712100, China; (J.G.); (H.Z.)
| | - Jing Gao
- College of Forestry, Northwest A&F University, Xianyang 712100, China; (J.G.); (H.Z.)
| | - Haoqiang Zhang
- College of Forestry, Northwest A&F University, Xianyang 712100, China; (J.G.); (H.Z.)
| | - Ming Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China;
- Correspondence:
| |
Collapse
|
21
|
Zhang S, Landuyt D, Verheyen K, De Frenne P. Tree species mixing can amplify microclimate offsets in young forest plantations. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shengmin Zhang
- Forest & Nature Lab, Department of Environment Ghent University Geraardsbergsesteenweg 267, 9090 Melle‐Gontrode Belgium
| | - Dries Landuyt
- Forest & Nature Lab, Department of Environment Ghent University Geraardsbergsesteenweg 267, 9090 Melle‐Gontrode Belgium
| | - Kris Verheyen
- Forest & Nature Lab, Department of Environment Ghent University Geraardsbergsesteenweg 267, 9090 Melle‐Gontrode Belgium
| | - Pieter De Frenne
- Forest & Nature Lab, Department of Environment Ghent University Geraardsbergsesteenweg 267, 9090 Melle‐Gontrode Belgium
| |
Collapse
|
22
|
Effect of Charcoal on the Properties, Enzyme Activities and Microbial Diversity of Temperate Pine Forest Soils. FORESTS 2021. [DOI: 10.3390/f12111488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Relict charcoal hearths (RCHs) increases soil fertility in forest ecosystems. However, the effects of RCHs on the activity and abundance of soil microorganisms remain unknown. In this paper, we analysed the impact of relict charcoal production on the soil enzymatic activity and composition of soil bacterial and fungal communities in Scots pine forests of the Manowo Forest District in northern Poland. Moreover, we determined the effect of relict charcoal production on the soil properties. Our research was conducted by comparing the physical, chemical, enzymatic and microbiological properties of charcoal-enriched and charcoal-free soils. Significant differences in physical properties were found between these two soil types in terms of their structure and water holding capacity. As expected, horizons enriched with charcoal were characterised by a significantly higher organic carbon content (4.7% on average compared to 2.2% in control horizons), and also by a considerably higher content of available phosphorus (an average of 64.07 mg·kg−1 compared to 36.21 mg·kg−1 in the control). Similarly, RCH horizons displayed a higher pH and higher contents of Ca and Na cations. These results indicated that RCH soils provided more favourable conditions for the soil microbiome, as reflected by the higher enzymatic activity and diversity of the microorganisms. Moreover, bacterial and fungal communities in RCH soils were more diverse and had greater species/genera richness, especially in the case of fungi. Members of the genus Rhodoplanes dominated the bacterial community at both RCH and non-RCH sites, followed by Streptomyces, Burkholderia, Skermanella, Tsukamurella and Candidatus Solibacter. Both culture- and next generation sequencing (NGS)-based analyses showed that soil fungal communities were dominated by Ascomycota, with Penicillium as the most abundant genus. Our results showed that hearth soils may represent a significant C pool in the forest ecosystem. This study supports the strategy of safeguarding such charcoal-enriched soils as precious C reservoirs and ecologically important biodiversity hotspots. Moreover, the application of charcoal may effectively increase the microbial diversity of forest soils, especially during the reforestation or re-cultivation of disturbed habitats.
Collapse
|
23
|
Adamo I, Castaño C, Bonet JA, Colinas C, Martínez de Aragón J, Alday JG. Lack of Phylogenetic Differences in Ectomycorrhizal Fungi among Distinct Mediterranean Pine Forest Habitats. J Fungi (Basel) 2021; 7:jof7100793. [PMID: 34682215 PMCID: PMC8538088 DOI: 10.3390/jof7100793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 01/22/2023] Open
Abstract
Understanding whether the occurrences of ectomycorrhizal species in a given tree host are phylogenetically determined can help in assessing different conservational needs for each fungal species. In this study, we characterized ectomycorrhizal phylogenetic composition and phylogenetic structure in 42 plots with five different Mediterranean pine forests: i.e., pure forests dominated by P. nigra, P. halepensis, and P. sylvestris, and mixed forests of P. nigra-P. halepensis and P. nigra-P. sylvestris, and tested whether the phylogenetic structure of ectomycorrhizal communities differs among these. We found that ectomycorrhizal communities were not different among pine tree hosts neither in phylogenetic composition nor in structure and phylogenetic diversity. Moreover, we detected a weak abiotic filtering effect (4%), with pH being the only significant variable influencing the phylogenetic ectomycorrhizal community, while the phylogenetic structure was slightly influenced by the shared effect of stand structure, soil, and geographic distance. However, the phylogenetic community similarity increased at lower pH values, supporting that fewer, closely related species were found at lower pH values. Also, no phylogenetic signal was detected among exploration types, although short and contact were the most abundant types in these forest ecosystems. Our results demonstrate that pH but not tree host, acts as a strong abiotic filter on ectomycorrhizal phylogenetic communities in Mediterranean pine forests at a local scale. Finally, our study shed light on dominant ectomycorrhizal foraging strategies in drought-prone ecosystems such as Mediterranean forests.
Collapse
Affiliation(s)
- Irene Adamo
- Joint Research Unit CTFC-AGROTECNIO-CERCA, Av. Alcalde Rovira Roure 191, E25198 Lleida, Spain; (J.A.B.); (J.M.d.A.); (J.G.A.)
- Department of Crop and Forest Sciences, University of Lleida, Av. Alcalde Rovira Roure 191, E25198 Lleida, Spain;
- Correspondence:
| | - Carles Castaño
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden;
| | - José Antonio Bonet
- Joint Research Unit CTFC-AGROTECNIO-CERCA, Av. Alcalde Rovira Roure 191, E25198 Lleida, Spain; (J.A.B.); (J.M.d.A.); (J.G.A.)
- Department of Crop and Forest Sciences, University of Lleida, Av. Alcalde Rovira Roure 191, E25198 Lleida, Spain;
| | - Carlos Colinas
- Department of Crop and Forest Sciences, University of Lleida, Av. Alcalde Rovira Roure 191, E25198 Lleida, Spain;
- Forest Science and Technology Centre of Catalonia, Ctra. Sant Llorenç de Morunys km 2, E25280 Solsona, Spain
| | - Juan Martínez de Aragón
- Joint Research Unit CTFC-AGROTECNIO-CERCA, Av. Alcalde Rovira Roure 191, E25198 Lleida, Spain; (J.A.B.); (J.M.d.A.); (J.G.A.)
- Forest Science and Technology Centre of Catalonia, Ctra. Sant Llorenç de Morunys km 2, E25280 Solsona, Spain
| | - Josu G. Alday
- Joint Research Unit CTFC-AGROTECNIO-CERCA, Av. Alcalde Rovira Roure 191, E25198 Lleida, Spain; (J.A.B.); (J.M.d.A.); (J.G.A.)
- Department of Crop and Forest Sciences, University of Lleida, Av. Alcalde Rovira Roure 191, E25198 Lleida, Spain;
| |
Collapse
|
24
|
Karst J, Wasyliw J, Birch JD, Franklin J, Chang SX, Erbilgin N. Long-term nitrogen addition does not sustain host tree stem radial growth but doubles the abundance of high-biomass ectomycorrhizal fungi. GLOBAL CHANGE BIOLOGY 2021; 27:4125-4138. [PMID: 34002431 DOI: 10.1111/gcb.15713] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
Global change has altered nitrogen availability in boreal forest soils. As ectomycorrhizal fungi play critical ecological functions, shifts in their abundance and community composition must be considered in the response of forests to changes in nitrogen availability. Furthermore, ectomycorrhizas are symbiotic, so the response of ectomycorrhizal fungi to nitrogen cannot be understood in isolation of their plant partners. Most previous studies, however, neglect to measure the response of host trees to nitrogen addition simultaneously with that of fungal communities. In addition to being one-sided, most of these studies have also been conducted in coniferous forests. Deciduous and "dual-mycorrhizal" tree species, namely those that form ecto- and arbuscular mycorrhizas, have received little attention despite being widespread in the boreal forest. We applied nitrogen (30 kg ha-1 year-1 ) for 13 years to stands dominated by aspen (Populus tremuloides Michx.) and hypothesized that tree stem radial growth would increase, ectomycorrhizal fungal biomass would decrease, ectomycorrhizal fungal community composition would shift, and the abundance of arbuscular mycorrhizal (AM) fungi would increase. Nitrogen addition initially increased stem radial growth of aspen, but it was not sustained at the time we characterized their mycorrhizas. After 13 years, the abundance of fungi possessing extramatrical hyphae, or "high-biomass" ectomycorrhizas, doubled. No changes occurred in ectomycorrhizal and AM fungal community composition, or in ecto- and AM abundance measured as root colonization. This dual-mycorrhizal tree species did not shift away from ectomycorrhizal fungal dominance with long-term nitrogen input. The unexpected increase in high-biomass ectomycorrhizal fungi with nitrogen addition may be due to increased carbon allocation to their fungal partners by growth-limited trees. Given the focus on conifers in past studies, reconciling results of plant-mycorrhizal fungal relationships in stands of deciduous trees may demand a broader view on the impacts of nitrogen addition on the structure and function of boreal forests.
Collapse
Affiliation(s)
- Justine Karst
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | - Joshua Wasyliw
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | - Joseph D Birch
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | - James Franklin
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | - Scott X Chang
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | - Nadir Erbilgin
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
25
|
Retention of Matured Trees to Conserve Fungal Diversity and Edible Sporocarps from Short-Rotation Pinus radiata Plantations in Ethiopia. J Fungi (Basel) 2021; 7:jof7090702. [PMID: 34575740 PMCID: PMC8471983 DOI: 10.3390/jof7090702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/08/2021] [Accepted: 08/21/2021] [Indexed: 11/19/2022] Open
Abstract
This study is conducted in the short-rotation plantations from the Afromontane Region of Ethiopia. Sporocarps were sampled weekly in a set of permanent plots (100 m2) in young, medium-aged, and mature Pinus radiata (Don) plantations. Fungal richness, diversity, and sporocarp yields were estimated. Composite soil samples were also collected from each plot to determine explanatory edaphic variables for taxa composition. We collected 92 fungal taxa, of which 8% were ectomycorrhizal (ECM). Taxa richness, the Shannon diversity index, and ECM species richness were higher in mature stands. Interestingly, 26% of taxa were classified as edible. Sporocarp yield showed increasing trends towards matured stands. OM and C/N ratio significantly affected fungal composition and sporocarp production. The deliberate retention of mature trees in a patch form rather than clear felling of the plantations could be useful to conserve and promote fungal diversity and production, including valuable taxa such as Morchella, Suillus, and Tylopilus in older stands. This approach has important implications for forest floor microhabitats, which are important for macrofungal occurrence and production. Thus, this strategy could improve the economic outputs of these plantations in the Afromontane Region, while the mature trees could serve as a bridge for providing fungal inocula to the new plantations.
Collapse
|
26
|
Woods HA, Pincebourde S, Dillon ME, Terblanche JS. Extended phenotypes: buffers or amplifiers of climate change? Trends Ecol Evol 2021; 36:889-898. [PMID: 34147289 DOI: 10.1016/j.tree.2021.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 01/09/2023]
Abstract
Historic approaches to understanding biological responses to climate change have viewed climate as something external that happens to organisms. Organisms, however, at least partially influence their own climate experience by moving within local mosaics of microclimates. Such behaviors are increasingly being incorporated into models of species distributions and climate sensitivity. Less attention has focused on how organisms alter microclimates via extended phenotypes: phenotypes that extend beyond the organismal surface, including structures that are induced or built. We argue that predicting the consequences of climate change for organismal performance and fitness will depend on understanding the expression and consequences of extended phenotypes, the microclimatic niches they generate, and the power of plasticity and evolution to shape those niches.
Collapse
Affiliation(s)
- H Arthur Woods
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA.
| | - Sylvain Pincebourde
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS - Université de Tours, 37200 Tours, France
| | - Michael E Dillon
- Department of Zoology & Physiology and Program in Ecology, University of Wyoming, Laramie, WY 82071, USA
| | - John S Terblanche
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
27
|
Chen Z, Li Y, Chang SX, Xu Q, Li Y, Ma Z, Qin H, Cai Y. Linking enhanced soil nitrogen mineralization to increased fungal decomposition capacity with Moso bamboo invasion of broadleaf forests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:144779. [PMID: 33736125 DOI: 10.1016/j.scitotenv.2020.144779] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/16/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
Plant invasion can markedly alter soil fungal communities and nitrogen (N) availability; however, the linkage between the fungal decomposition capacity and N mineralization during plant invasion remains largely unknown. Here, we examined the relationship between net mineralization rates and relevant functional genes, as well as fungal species composition and function following Moso bamboo (Phyllostachys edulis) invasion of evergreen broadleaf forests, by studying broadleaf forests (non-invaded), mixed bamboo-broadleaf forests (moderately invaded) and bamboo forests (heavily invaded). Fungal species composition and functional genes involved in organic matter decomposition (laccase and cellobiohydrolase), N mineralization (alkaline peptidases) and nitrification (ammonia monooxygenase) were determined via high-throughput sequencing and real-time PCR. Both net ammonification and nitrification rates were generally increased with bamboo invasion into the broadleaf forest, where the net ammonification rate, on average, was 10.8 times higher than the nitrification rate across the three forest types. The fungal species composition and ecological guilds were altered with bamboo invasion, as demonstrated by the increased proportion of saprotrophs but decreased proportion of symbiotrophs in the bamboo forest. The increased net ammonification rate in bamboo forest was positively correlated with both fungal species composition and functional groups, and the fungal lcc gene (for lignin breakdown) abundance explained 67% of the variation of the net ammonification rate. In addition, the gene abundance of ammonia-oxidizing bacteria (AOB) explained 62% of the variation of net nitrification rate across the three forest types. The increased soil ammonification and nitrification rates following bamboo invasion of broadleaf forests suggest that the bamboo-invasion associated increase in soil N supply provided a positive feedback that facilitated bamboo invasion into broadleaf forests.
Collapse
Affiliation(s)
- Zhihao Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration, Zhejiang A&F University, Hangzhou 311300, China
| | - Yongchun Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration, Zhejiang A&F University, Hangzhou 311300, China.
| | - Scott X Chang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, AB T6G 2E3, Canada
| | - Qiufang Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration, Zhejiang A&F University, Hangzhou 311300, China
| | - Yongfu Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration, Zhejiang A&F University, Hangzhou 311300, China
| | - Zilong Ma
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, AB T6G 2E3, Canada
| | - Hua Qin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration, Zhejiang A&F University, Hangzhou 311300, China
| | - Yanjiang Cai
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
28
|
Hagenbo A, Piñuela Y, Castaño C, Martínez de Aragón J, de-Miguel S, Alday JG, Bonet JA. Production and turnover of mycorrhizal soil mycelium relate to variation in drought conditions in Mediterranean Pinus pinaster, Pinus sylvestris and Quercus ilex forests. THE NEW PHYTOLOGIST 2021; 230:1609-1622. [PMID: 33091152 DOI: 10.1111/nph.17012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
In forests, ectomycorrhizal mycelium is pivotal for driving soil carbon and nutrient cycles, but how ectomycorrhizal mycelial dynamics vary in ecosystems with drought periods is unknown. We quantified the production and turnover of mycorrhizal mycelium in Mediterranean Pinus pinaster, Pinus sylvestris and Quercus ilex forests and related the estimates to standardised precipitation index (SPI), to study how mycelial dynamics relates to tree species and drought-moisture conditions. Production and turnover of mycelium was estimated between July and February, by quantifying the fungal biomass (ergosterol) in ingrowth mesh bags and using statistical modelling. SPI for time scales of 1-3 months was calculated from precipitation records and precipitation data over the study period. Forests dominated by Pinus trees displayed higher biomass but were seasonally more variable, as opposed to Q. ilex forests where the mycelial biomass remained lower and stable over the season. Production and turnover, respectively, varied between 1.4-5.9 kg ha-1 d-1 and 7.2-9.9 times yr-1 over the different forest types and were positively correlated with 2-month and 3-month SPI over the study period. Our results demonstrated that mycorrhizal mycelial biomass varied with season and tree species and we speculate that production and turnover are related to physiology and plant host performance during drought.
Collapse
Affiliation(s)
- Andreas Hagenbo
- Joint Research Unit CTFC - AGROTECNIO, Av. Alcalde Rovira Roure 191, Lleida, 25198, Spain
- Department of Crop and Forest Sciences, University of Lleida, Lleida, E-251 98, Spain
- School of Science and Technology, Örebro University, Örebro, SE-701 82, Sweden
- Norwegian Institute of Bioeconomy Research (NIBIO), Box 115, Ås, 1431, Norway
| | - Yasmine Piñuela
- Department of Crop and Forest Sciences, University of Lleida, Lleida, E-251 98, Spain
| | - Carles Castaño
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, SE-750 07, Sweden
| | | | - Sergio de-Miguel
- Joint Research Unit CTFC - AGROTECNIO, Av. Alcalde Rovira Roure 191, Lleida, 25198, Spain
- Department of Crop and Forest Sciences, University of Lleida, Lleida, E-251 98, Spain
| | - Josu G Alday
- Joint Research Unit CTFC - AGROTECNIO, Av. Alcalde Rovira Roure 191, Lleida, 25198, Spain
- Department of Crop and Forest Sciences, University of Lleida, Lleida, E-251 98, Spain
| | - José Antonio Bonet
- Joint Research Unit CTFC - AGROTECNIO, Av. Alcalde Rovira Roure 191, Lleida, 25198, Spain
- Department of Crop and Forest Sciences, University of Lleida, Lleida, E-251 98, Spain
| |
Collapse
|
29
|
Wang K, Bi Y, Cao Y, Peng S, Christie P, Ma S, Zhang J, Xie L. Shifts in composition and function of soil fungal communities and edaphic properties during the reclamation chronosequence of an open-cast coal mining dump. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144465. [PMID: 33434846 DOI: 10.1016/j.scitotenv.2020.144465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/06/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
The diversity, composition and ecological guilds of soil fungal communities in relation to revegetation were assessed during an open-cast mining dump reclamation chronosequence of the soil <1, 5, 10, 15 and 20 years after the start of reclamation. Soil pH and electrical conductivity, total nitrogen (TN), soil organic carbon (SOC), available potassium (AK), and available phosphorus (AP) contents, and soil phosphatase (Pha), urease (U) and invertase (INV) activities were measured. Using high-throughput sequence analysis on internal transcribed spacer (ITS) sequences, 1059 soil fungal operational taxonomic units (OTUs) were identified belonging to 64 orders and these were further categorized by ecological guild. Soil fungal diversity indices were significantly different between the early (<1 year) and later reclamation communities. Nonmetric multidimensional scaling (NMDS) analysis indicates that the composition and ecological guilds of soil fungal communities were significantly different early in the process and at the end of reclamation (P < 0.05). Co-occurrence network and structural equation model analyses show that soil fungal community structure and ecological guilds were correlated with edaphic properties and had an indirect effect on soil available nutrients through direct action on soil enzymes. Overall, the data suggest that soil fungal community composition and function within an open-cast coal mining dump reclamation chronosequence changed during the period following artificial re-vegetation, with interactions between edaphic properties and soil fungal communities associated with these changes.
Collapse
Affiliation(s)
- Kun Wang
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083, China
| | - Yinli Bi
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083, China; College of Geology and Environment, Xi'an University of Science and Technology, Shaanxi 710054, China.
| | - Yong Cao
- Shehua Group Zhungeer Energy CO., LTD, Ordos 017000, China
| | - Suping Peng
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083, China
| | - Peter Christie
- College of Geology and Environment, Xi'an University of Science and Technology, Shaanxi 710054, China
| | - Shaopeng Ma
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083, China
| | - Jiayu Zhang
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083, China
| | - Linlin Xie
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083, China
| |
Collapse
|
30
|
Arraiano-Castilho R, Bidartondo MI, Niskanen T, Clarkson JJ, Brunner I, Zimmermann S, Senn-Irlet B, Frey B, Peintner U, Mrak T, Suz LM. Habitat specialisation controls ectomycorrhizal fungi above the treeline in the European Alps. THE NEW PHYTOLOGIST 2021; 229:2901-2916. [PMID: 33107606 DOI: 10.1111/nph.17033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
Alpine habitats are one of the most vulnerable ecosystems to environmental change, however, little information is known about the drivers of plant-fungal interactions in these ecosystems and their resilience to climate change. We investigated the influence of the main drivers of ectomycorrhizal (EM) fungal communities along elevation and environmental gradients in the alpine zone of the European Alps and measured their degree of specialisation using network analysis. We sampled ectomycorrhizas of Dryas octopetala, Bistorta vivipara and Salix herbacea, and soil fungal communities at 28 locations across five countries, from the treeline to the nival zone. We found that: (1) EM fungal community composition, but not richness, changes along elevation, (2) there is no strong evidence of host specialisation, however, EM fungal networks in the alpine zone and within these, EM fungi associated with snowbed communities, are more specialised than in other alpine habitats, (3) plant host population structure does not influence EM fungal communities, and (4) most variability in EM fungal communities is explained by fine-scale changes in edaphic properties, like soil pH and total nitrogen. The higher specialisation and narrower ecological niches of these plant-fungal interactions in snowbed habitats make these habitats particularly vulnerable to environmental change in alpine ecosystems.
Collapse
Affiliation(s)
- Ricardo Arraiano-Castilho
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, TW9 3DS, UK
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Martin I Bidartondo
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, TW9 3DS, UK
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Tuula Niskanen
- Identification and Naming, Royal Botanic Gardens, Kew, TW9 3DS, UK
| | - James J Clarkson
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, TW9 3DS, UK
| | - Ivano Brunner
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - Stephan Zimmermann
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - Beatrice Senn-Irlet
- Biodiversity and Conservation Biology, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - Beat Frey
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - Ursula Peintner
- Institute of Microbiology, University of Innsbruck, Technikerstraße 25d, Innsbruck, 6020, Austria
| | - Tanja Mrak
- Slovenian Forestry Institute, Večna pot 2, Ljubljana, 1000, Slovenia
| | - Laura M Suz
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, TW9 3DS, UK
| |
Collapse
|
31
|
Adamo I, Piñuela Y, Bonet JA, Castaño C, Martínez de Aragón J, Parladé J, Pera J, Alday JG. Sampling forest soils to describe fungal diversity and composition. Which is the optimal sampling size in mediterranean pure and mixed pine oak forests? Fungal Biol 2021; 125:469-476. [PMID: 34024594 DOI: 10.1016/j.funbio.2021.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 01/19/2023]
Abstract
Soil sampling is a critical step affecting perceived fungal diversity, however sampling optimization for high-throughput-DNA sequencing studies have never been tested in Mediterranean forest ecosystems. We identified the minimum number of pooled samples needed to obtain a reliable description of fungal communities in terms of diversity and composition in three different Mediterranean forests (pine, oak, and mixed-pine-oak). Twenty soil samples were randomly selected in each of the three plots per type. Samples obtained in 100 m2 plots were pooled to obtain mixtures of 3, 6, 10, 15, 20 samples, and sequenced using Illumina MiSeq of fungal ITS2 amplicons. Pooling three soil samples in Pinus and Quercus stands provided consistent richness estimations, while at least six samples were needed in mixed-stands. β-diversity decreased with increasing sample pools in monospecific-stands, while there was no effect of sample pool size on mixed-stands. Soil sample pooling had no effect over species composition. We estimate that three samples would be already optimal to describe fungal richness and composition in Mediterranean pure stands, while at least six samples would be needed in mixed stands.
Collapse
Affiliation(s)
- Irene Adamo
- Joint Research Unit CTFC - AGROTECNIO, Av. Alcalde Rovira Roure 191, E25198, Lleida, Spain; Dep. Crop and Forest Sciences, University of Lleida, Av. Alcalde Rovira Roure 191, E25198, Lleida, Spain.
| | - Yasmine Piñuela
- Joint Research Unit CTFC - AGROTECNIO, Av. Alcalde Rovira Roure 191, E25198, Lleida, Spain; Dep. Crop and Forest Sciences, University of Lleida, Av. Alcalde Rovira Roure 191, E25198, Lleida, Spain; Forest Science and Technology Centre of Catalonia, Ctra, Sant Llorenç de Morunys Km 2, E25280, Solsona, Spain
| | - José Antonio Bonet
- Joint Research Unit CTFC - AGROTECNIO, Av. Alcalde Rovira Roure 191, E25198, Lleida, Spain; Dep. Crop and Forest Sciences, University of Lleida, Av. Alcalde Rovira Roure 191, E25198, Lleida, Spain
| | - Carles Castaño
- Swedish University of Agricultural Sciences, Department of Forest Mycology and Plant Pathology, SE, 75007, Uppsala, Sweden
| | - Juan Martínez de Aragón
- Joint Research Unit CTFC - AGROTECNIO, Av. Alcalde Rovira Roure 191, E25198, Lleida, Spain; Forest Science and Technology Centre of Catalonia, Ctra, Sant Llorenç de Morunys Km 2, E25280, Solsona, Spain
| | - Javier Parladé
- Sustainable Plant Protection, IRTA, Centre de Cabrils, Ctra Cabrils Km 2, E08348, Cabrils, Barcelona, Spain
| | - Joan Pera
- Sustainable Plant Protection, IRTA, Centre de Cabrils, Ctra Cabrils Km 2, E08348, Cabrils, Barcelona, Spain
| | - Josu G Alday
- Joint Research Unit CTFC - AGROTECNIO, Av. Alcalde Rovira Roure 191, E25198, Lleida, Spain; Dep. Crop and Forest Sciences, University of Lleida, Av. Alcalde Rovira Roure 191, E25198, Lleida, Spain
| |
Collapse
|
32
|
Castaño C, Camarero JJ, Zas R, Sampedro L, Bonet JA, Alday JG, Oliva J. Insect defoliation is linked to a decrease in soil ectomycorrhizal biomass and shifts in needle endophytic communities. TREE PHYSIOLOGY 2020; 40:1712-1725. [PMID: 32785638 DOI: 10.1093/treephys/tpaa104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Insect outbreaks of increasing frequency and severity in forests are predicted due to climate change. Insect herbivory is known to promote physiological changes in forest trees. However, little is known about whether these plant phenotypic adjustments have cascading effects on tree microbial symbionts such as fungi in roots and foliage. We studied the impact of defoliation by the pine processionary moth in two infested Pinus nigra forests through a multilevel sampling of defoliated and non-defoliated trees. We measured tree growth, nutritional status and carbon allocation to chemical defenses. Simultaneously, we analysed the putative impact of defoliation on the needle endophytes and on the soil fungal communities. Higher concentrations of chemical defenses were found in defoliated trees, likely as a response to defoliation; however, no differences in non-structural carbohydrate reserves were found. In parallel to the reductions in tree growth and changes in chemical defenses, we observed shifts in the composition of needle endophytic and soil fungal communities in defoliated trees. Defoliated trees consistently corresponded with a lower biomass of ectomycorrhizal fungi in both sites, and a higher alpha diversity and greater relative abundance of belowground saprotrophs and pathogens. However, ectomycorrhizal alpha diversity was similar between non-defoliated and defoliated trees. Specific needle endophytes in old needles were strongly associated with non-defoliated trees. The potential role of these endophytic fungi in pine resistance should be further investigated. Our study suggests that lower biomass of ectomycorrhizal fungi in defoliated trees might slow down tree recovery since fungal shifts might affect tree-mycorrhizal feedbacks and can potentially influence carbon and nitrogen cycling in forest soils.
Collapse
Affiliation(s)
- Carles Castaño
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - J Julio Camarero
- Instituto Pirenaico de Ecología (IPE-CSIC), 50192 Zaragoza, Spain
| | - Rafael Zas
- Misión Biológica de Galicia, Consejo Superior de Investigaciones Científicas (MBG-CSIC), Apdo 28, 36080 Pontevedra, Spain
| | - Luis Sampedro
- Misión Biológica de Galicia, Consejo Superior de Investigaciones Científicas (MBG-CSIC), Apdo 28, 36080 Pontevedra, Spain
| | - José Antonio Bonet
- Departament de Producció Vegetal i Ciència Forestal, Universitat de Lleida, Av. Rovira Roure, 191, E-25198 Lleida, Spain
- Joint Research Unit CTFC - AGROTECNIO, Av. Alcalde Rovira Roure 191, E25198 Lleida, Spain
| | - Josu G Alday
- Departament de Producció Vegetal i Ciència Forestal, Universitat de Lleida, Av. Rovira Roure, 191, E-25198 Lleida, Spain
- Joint Research Unit CTFC - AGROTECNIO, Av. Alcalde Rovira Roure 191, E25198 Lleida, Spain
| | - Jonàs Oliva
- Departament de Producció Vegetal i Ciència Forestal, Universitat de Lleida, Av. Rovira Roure, 191, E-25198 Lleida, Spain
- Joint Research Unit CTFC - AGROTECNIO, Av. Alcalde Rovira Roure 191, E25198 Lleida, Spain
| |
Collapse
|
33
|
|
34
|
Castaño C, Berlin A, Brandström Durling M, Ihrmark K, Lindahl BD, Stenlid J, Clemmensen KE, Olson Å. Optimized metabarcoding with Pacific biosciences enables semi-quantitative analysis of fungal communities. THE NEW PHYTOLOGIST 2020; 228:1149-1158. [PMID: 32531109 DOI: 10.1111/nph.16731] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
Recent studies have questioned the use of high-throughput sequencing of the nuclear ribosomal internal transcribed spacer (ITS) region to derive a semi-quantitative representation of fungal community composition. However, comprehensive studies that quantify biases occurring during PCR and sequencing of ITS amplicons are still lacking. We used artificially assembled communities consisting of 10 ITS-like fragments of varying lengths and guanine-cytosine (GC) contents to evaluate and quantify biases during PCR and sequencing with Illumina MiSeq, PacBio RS II and PacBio Sequel I technologies. Fragment length variation was the main source of bias in observed community composition relative to the template, with longer fragments generally being under-represented for all sequencing platforms. This bias was three times higher for Illumina MiSeq than for PacBio RS II and Sequel I. All 10 fragments in the artificial community were recovered when sequenced with PacBio technologies, whereas the three longest fragments (> 447 bases) were lost when sequenced with Illumina MiSeq. Fragment length bias also increased linearly with increasing number of PCR cycles but could be mitigated by optimization of the PCR setup. No significant biases related to GC content were observed. Despite lower sequencing output, PacBio sequencing was better able to reflect the community composition of the template than Illumina MiSeq sequencing.
Collapse
Affiliation(s)
- Carles Castaño
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, SE-75007, Sweden
| | - Anna Berlin
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, SE-75007, Sweden
| | - Mikael Brandström Durling
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, SE-75007, Sweden
| | - Katharina Ihrmark
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, SE-75007, Sweden
| | - Björn D Lindahl
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Uppsala, SE-75007, Sweden
| | - Jan Stenlid
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, SE-75007, Sweden
| | - Karina E Clemmensen
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, SE-75007, Sweden
| | - Åke Olson
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, SE-75007, Sweden
| |
Collapse
|
35
|
Marí T, Castaño C, Rodríguez A, Ibáñez M, Lobo A, Sebastià MT. Fairy rings harbor distinct soil fungal communities and high fungal diversity in a montane grassland. FUNGAL ECOL 2020. [DOI: 10.1016/j.funeco.2020.100962] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
36
|
Brunel C, Da Silva AMF, Gros R. Environmental Drivers of Microbial Functioning in Mediterranean Forest Soils. MICROBIAL ECOLOGY 2020; 80:669-681. [PMID: 32399630 DOI: 10.1007/s00248-020-01518-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
Mediterranean forests own distinct characteristics resulting from climate, soil, and vegetation that affect soil microbial communities' assembly and their associated functions. We initiated a multi-scalar analysis of environmental drivers of soil functioning to (1) identify pertinent factorial scales and (2) determine the relative importance of soil, vegetation, and geoclimate influences in shaping soil microbial functions across the French Mediterranean forests. Soil samples (0-15 cm) were collected from 60 forest sites and soil physicochemical and microbiological properties were assessed across different factorial scales i.e., bioclimates, slope exposures, and forest stands. Patterns in microbial catabolic potential (i.e., extracellular enzymes and microbial respiration) and carbon (C) source utilization (i.e., catabolic-level physiological profiling) were partitioned between vegetation cover, soil characteristics, and geoclimate components. Our results reveal that the catabolic potential of soil microbes was strongly influenced by the forest stands and mainly relied on ammonium and nitrate contents. In contrast, variation in C source utilization was mainly explained by vegetation cover. Soil metabolic capacities of microorganisms and resulting C dynamics were largely constrained by climate parameters, which suggests potentially important consequences for soil C storage. Our study revealed diverse structuration patterns between the catabolic potential and the carbon source utilization of soil microbial communities, and gives insights into the underlying mechanisms of soil microbial functioning in Mediterranean forests.
Collapse
Affiliation(s)
- Caroline Brunel
- Mediterranean Institute of Marine and Continental Biodiversity and Ecology, IMBE, Aix Marseille Université, UMR CNRS 7263, IRD, Avignon Université, Campus l'Etoile, Av. Escadrille Normandie Niemen, 13397, Cedex 20, Marseille, France.
- IRD, IPME, 911 Avenue Agropolis, BP 64501, 34394, Montpellier, France.
| | - Anne-Marie Farnet Da Silva
- Mediterranean Institute of Marine and Continental Biodiversity and Ecology, IMBE, Aix Marseille Université, UMR CNRS 7263, IRD, Avignon Université, Campus l'Etoile, Av. Escadrille Normandie Niemen, 13397, Cedex 20, Marseille, France
| | - Raphael Gros
- Mediterranean Institute of Marine and Continental Biodiversity and Ecology, IMBE, Aix Marseille Université, UMR CNRS 7263, IRD, Avignon Université, Campus l'Etoile, Av. Escadrille Normandie Niemen, 13397, Cedex 20, Marseille, France
| |
Collapse
|
37
|
Tedersoo L, Anslan S, Bahram M, Drenkhan R, Pritsch K, Buegger F, Padari A, Hagh-Doust N, Mikryukov V, Gohar D, Amiri R, Hiiesalu I, Lutter R, Rosenvald R, Rähn E, Adamson K, Drenkhan T, Tullus H, Jürimaa K, Sibul I, Otsing E, Põlme S, Metslaid M, Loit K, Agan A, Puusepp R, Varik I, Kõljalg U, Abarenkov K. Regional-Scale In-Depth Analysis of Soil Fungal Diversity Reveals Strong pH and Plant Species Effects in Northern Europe. Front Microbiol 2020; 11:1953. [PMID: 33013735 PMCID: PMC7510051 DOI: 10.3389/fmicb.2020.01953] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/31/2020] [Indexed: 01/16/2023] Open
Abstract
Soil microbiome has a pivotal role in ecosystem functioning, yet little is known about its build-up from local to regional scales. In a multi-year regional-scale survey involving 1251 plots and long-read third-generation sequencing, we found that soil pH has the strongest effect on the diversity of fungi and its multiple taxonomic and functional groups. The pH effects were typically unimodal, usually both direct and indirect through tree species, soil nutrients or mold abundance. Individual tree species, particularly Pinus sylvestris, Picea abies, and Populus x wettsteinii, and overall ectomycorrhizal plant proportion had relatively stronger effects on the diversity of biotrophic fungi than saprotrophic fungi. We found strong temporal sampling and investigator biases for the abundance of molds, but generally all spatial, temporal and microclimatic effects were weak. Richness of fungi and several functional groups was highest in woodlands and around ruins of buildings but lowest in bogs, with marked group-specific trends. In contrast to our expectations, diversity of soil fungi tended to be higher in forest island habitats potentially due to the edge effect, but fungal richness declined with island distance and in response to forest fragmentation. Virgin forests supported somewhat higher fungal diversity than old non-pristine forests, but there were no differences in richness between natural and anthropogenic habitats such as parks and coppiced gardens. Diversity of most fungal groups suffered from management of seminatural woodlands and parks and thinning of forests, but especially for forests the results depended on fungal group and time since partial harvesting. We conclude that the positive effects of tree diversity on overall fungal richness represent a combined niche effect of soil properties and intimate associations.
Collapse
Affiliation(s)
- Leho Tedersoo
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Sten Anslan
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia.,Zoological Institute, Technische Universität Braunschweig, Brunswick, Germany
| | - Mohammad Bahram
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia.,Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Rein Drenkhan
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Karin Pritsch
- Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | - Franz Buegger
- Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | - Allar Padari
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Niloufar Hagh-Doust
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Vladimir Mikryukov
- Chair of Forest Management Planning and Wood Processing Technologies, Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
| | - Daniyal Gohar
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Rasekh Amiri
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Indrek Hiiesalu
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Reimo Lutter
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Raul Rosenvald
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Elisabeth Rähn
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Kalev Adamson
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Tiia Drenkhan
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Tartu, Estonia.,Forest Health and Biodiversity, Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Hardi Tullus
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Katrin Jürimaa
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Ivar Sibul
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Eveli Otsing
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Sergei Põlme
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Marek Metslaid
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Kaire Loit
- Chair of Plant Health, Estonian University of Life Sciences, Tartu, Estonia
| | - Ahto Agan
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Rasmus Puusepp
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Inge Varik
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Urmas Kõljalg
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia.,Natural History Museum and Botanical Garden, University of Tartu, Tartu, Estonia
| | - Kessy Abarenkov
- Natural History Museum and Botanical Garden, University of Tartu, Tartu, Estonia
| |
Collapse
|
38
|
Rog I, Rosenstock NP, Körner C, Klein T. Share the wealth: Trees with greater ectomycorrhizal species overlap share more carbon. Mol Ecol 2020; 29:2321-2333. [PMID: 31923325 PMCID: PMC7116085 DOI: 10.1111/mec.15351] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 12/24/2019] [Accepted: 01/05/2020] [Indexed: 01/03/2023]
Abstract
The mutualistic symbiosis between forest trees and ectomycorrhizal fungi (EMF) is among the most ubiquitous and successful interactions in terrestrial ecosystems. Specific species of EMF are known to colonize specific tree species, benefitting from their carbon source, and in turn, improving their access to soil water and nutrients. EMF also form extensive mycelial networks that can link multiple root-tips of different trees. Yet the number of tree species connected by such mycelial networks, and the traffic of material across them, are just now under study. Recently we reported substantial belowground carbon transfer between Picea, Pinus, Larix and Fagus trees in a mature forest. Here, we analyze the EMF community of these same individual trees and identify the most likely taxa responsible for the observed carbon transfer. Among the nearly 1,200 EMF root-tips examined, 50%-70% belong to operational taxonomic units (OTUs) that were associated with three or four tree host species, and 90% of all OTUs were associated with at least two tree species. Sporocarp 13 C signals indicated that carbon originating from labelled Picea trees was transferred among trees through EMF networks. Interestingly, phylogenetically more closely related tree species exhibited more similar EMF communities and exchanged more carbon. Our results show that belowground carbon transfer is well orchestrated by the evolution of EMFs and tree symbiosis.
Collapse
Affiliation(s)
- Ido Rog
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | - Christian Körner
- Department of Environmental Sciences -Botany, University of Basel, Basel, Switzerland
| | - Tamir Klein
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
39
|
Successional Variation in the Soil Microbial Community in Odaesan National Park, Korea. SUSTAINABILITY 2020. [DOI: 10.3390/su12114795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Succession is defined as variation in ecological communities caused by environmental changes. Environmental succession can be caused by rapid environmental changes, but in many cases, it is slowly caused by climate change or constant low-intensity disturbances. Odaesan National Park is a well-preserved forest located in the Taebaek mountain range in South Korea. The forest in this national park is progressing from a mixed-wood forest to a broad-leaved forest. In this study, microbial community composition was investigated using 454 sequencing of soil samples collected from 13 different locations in Odaesan National Park. We assessed whether microbial communities are affected by changes in environmental factors such as water content (WC), nutrient availability (total carbon (TC) and total nitrogen (TN)) and pH caused by forest succession. WC, TC, TN and pH significantly differed between the successional stages of the forest. The WC, TC and TN of the forest soils tended to increase as succession progressed, while pH tended to decrease. In both successional stages, the bacterial genus Pseudolabrys was the most abundant, followed by Afipia and Bradyrhizobium. In addition, the fungal genus Saitozyma showed the highest abundance in the forest soils. Microbial community composition changed according to forest successional stage and soil properties (WC, TC, TN, and pH). Furthermore, network analysis of both bacterial and fungal taxa revealed strong relationships of the microbial community depending on the soil properties affected by forest succession.
Collapse
|
40
|
Ripullone F, Camarero JJ, Colangelo M, Voltas J. Variation in the access to deep soil water pools explains tree-to-tree differences in drought-triggered dieback of Mediterranean oaks. TREE PHYSIOLOGY 2020; 40:591-604. [PMID: 32159804 DOI: 10.1093/treephys/tpaa026] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/01/2020] [Indexed: 06/10/2023]
Abstract
Individual differences in the access to deep soil water pools may explain the differential damage among coexisting, conspecific trees as a consequence of drought-induced dieback. We addressed this issue by comparing the responses to a severe drought of three Mediterranean oak species with different drought tolerance, Quercus pubescens L. and Quercus frainetto Ten., mainly thriving at xeric and mesic sites, respectively, and Quercus cerris L., which dominates at intermediate sites. For each species, we compared coexisting declining (D) and non-declining (ND) trees. The stable isotope composition (δ2H, δ18O) of xylem and soil water was used to infer a differential use of soil water sources. We also measured tree size and radial growth to quantify the long-term divergence of wood production between D and ND trees and non-structural carbohydrates (NSCs) in sapwood to evaluate if D trees presented lower NSC values. The ND trees had access to deeper soil water than D trees except in Q. frainetto, as indicated by significantly more depleted xylem water values. However, a strong δ2H offset between soil and xylem water isotopes observed in peak summer could suggest that both tree types were not physiologically active under extreme drought conditions. Alternative processes causing deuterium fractionation, however, could not be ruled out. Tree height and recent (last 15-25 years) growth rates in all species studied were lower in D than in ND trees by 22 and 44%, respectively. Lastly, there was not a consistent pattern of NSC sapwood concentration; in Q. pubescens, it was higher in ND trees while in Q. frainetto, the D trees were the ones exhibiting the higher NSC concentration. We conclude that the vulnerability to drought among conspecific Mediterranean oaks depends on the differential access to deep soil water pools, which may be related to differences in rooting depth, tree size and growth rate.
Collapse
Affiliation(s)
- Francesco Ripullone
- School of Agricultural, Forest, Food and Environmental Sciences, University of Basilicata, Viale dell'Ateneo Lucano 10, Potenza I-85100, Italy
| | - J Julio Camarero
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda Montañana 1005, Zaragoza E-50059, Spain
| | - Michele Colangelo
- School of Agricultural, Forest, Food and Environmental Sciences, University of Basilicata, Viale dell'Ateneo Lucano 10, Potenza I-85100, Italy
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda Montañana 1005, Zaragoza E-50059, Spain
| | - Jordi Voltas
- Joint Research Unit CTFC-AGROTECNIO, Av. Alcalde Rovira Roure 191, Lleida 25198, Spain
- Department of Crop and Forest Sciences, University of Lleida, Av. Alcalde Rovira Roure 191, Lleida 25198, Spain
| |
Collapse
|
41
|
Competition experiments in a soil microcosm reveal the impact of genetic and biotic factors on natural yeast populations. ISME JOURNAL 2020; 14:1410-1421. [PMID: 32080356 DOI: 10.1038/s41396-020-0612-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023]
Abstract
The ability to measure microbial fitness directly in natural conditions and in interaction with other microbes is a challenge that needs to be overcome if we want to gain a better understanding of microbial fitness determinants in nature. Here we investigate the influence of the natural microbial community on the relative fitness of the North American populations SpB, SpC and SpC* of the wild yeast Saccharomyces paradoxus using DNA barcodes and a soil microcosm derived from soil associated with oak trees. We find that variation in fitness among these genetically distinct groups is influenced by the microbial community. Altering the microbial community load and diversity with an irradiation treatment significantly diminishes the magnitude of fitness differences among populations. Our findings suggest that microbial interactions could affect the evolution of yeast lineages in nature by modulating variation in fitness.
Collapse
|
42
|
Rainfall homogenizes while fruiting increases diversity of spore deposition in Mediterranean conditions. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2019.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
43
|
Geml J. Soil fungal communities reflect aspect-driven environmental structuring and vegetation types in a Pannonian forest landscape. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2018.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
44
|
Castaño C, Dejene T, Mediavilla O, Geml J, Oria-de-Rueda JA, Martín-Pinto P. Changes in fungal diversity and composition along a chronosequence of Eucalyptus grandis plantations in Ethiopia. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2019.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
45
|
Changes in Fungal Communities across a Forest Disturbance Gradient. Appl Environ Microbiol 2019; 85:AEM.00080-19. [PMID: 30979833 DOI: 10.1128/aem.00080-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/22/2019] [Indexed: 12/11/2022] Open
Abstract
Deforestation has a substantial impact on aboveground biodiversity, but the response of belowground soil fungi remains poorly understood. In a tropical montane rainforest in southwestern China, plots were established along a forest degradation gradient ranging from mature and regenerated forests to open land to examine the impacts of forest degradation and deforestation on ecosystem diversity and function. Here, we evaluated the changes in belowground fungal diversity and community composition using a metabarcoding approach. Soil saprotrophic fungal richness declined with increasing forest disturbance. For example, Penicillium spp. (phosphorus [P]-solubilizing fungi) dominated in mature forest but were less abundant in regenerating forests and showed the lowest abundance in open land sites. Conversely, the abundance of facultative pathogenic fungi increased along the disturbance gradient. The decline in soil saprophytic fungi may be a direct result of forest disturbance or it may be associated with increased availability of soil phosphorus indirectly through an increase in soil pH. The increase in abundance of facultative pathogenic fungi may be related to reduced competition with saprotrophic fungi, changes in microclimate, or increased spore rain. These results demonstrate a loss of dominant P-solubilizing saprotrophic fungi along the disturbance gradient, indicating a change from soil P limitation in mature tropical forests to soil C limitation in deforested sites. The increased prevalence of pathogenic fungi may inhibit plant succession following deforestation. Overall, this research demonstrates that soil fungi can be used as a sensitive indicator for soil health to evaluate the consequences of forest disturbance.IMPORTANCE The soil fungal functional group changes in response to forest disturbance and indicates a close interaction between the aboveground plant community and the belowground soil biological community. Soil saprotrophic fungi declined in relative abundance with increasing forest disturbance. At the same time, the relative abundance of facultative pathogenic fungi increased. The loss of saprotrophic fungal richness and abundance may have been a direct result of forest disturbance or an indirect result of changes in soil pH and soil P. Furthermore, the dominant P-solubilizing saprotrophic fungi were replaced by diverse facultative pathogenic fungi, which have weaker C decomposition ability. These changes potentially indicate a shift from soil phosphate limitation to carbon limitation following deforestation. This study suggests that changes in fungal functional group composition can be used as an indicator of the effects of forest disturbance on soil carbon and nutrients.
Collapse
|
46
|
Boeraeve M, Honnay O, Jacquemyn H. Forest edge effects on the mycorrhizal communities of the dual-mycorrhizal tree species Alnus glutinosa (L.) Gaertn. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 666:703-712. [PMID: 30812005 DOI: 10.1016/j.scitotenv.2019.02.290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/05/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
Forest conversion into agricultural land has resulted in a continuous decline in forest cover and in a reduced size and increased edge-to-core ratio of the remaining fragments. Forest edges are more directly exposed to sunlight, wind and pollutants and the resulting changes in habitat quality might have a large impact on plant and animal communities. Few studies, however, have focused on forest edge effects on mycorrhizal fungus communities. Here, we used high-throughput sequencing to study how communities of arbuscular mycorrhizal (AMF) and ectomycorrhizal fungi (EcMF), present in both the roots of the dual mycorrhizal tree Alnus glutinosa and in the soil, changed with increasing distance from the forest edge within fragmented forests embedded in an intensively managed agricultural matrix. Overall, we found 158 AMF OTUs and 275 EcMF OTUs. Soil moisture content increased with increasing distance from the forest edge, whereas soil nitrate concentration increased with increasing distance in south-facing and decreased in north-facing edges. Distance to the forest edge had a significant effect on EcMF community composition that largely overlapped with the observed changes in soil variables, especially soil moisture content. Apart from this distance effect, there were also clear effects of edge orientation on mycorrhizal diversity and community composition. While AMF OTU richness was higher at south- than at north-facing edges, the opposite pattern was found for EcMF. Community composition of both mycorrhiza types also differed significantly between south- and north-facing edges. We conclude that altered environmental conditions at forest edges cause significant changes in mycorrhizal communities, which could subsequently affect ecosystem functioning.
Collapse
Affiliation(s)
- Margaux Boeraeve
- Department of Biology, Plant Conservation and Population Biology, KU Leuven, B-3001 Leuven, Belgium.
| | - Olivier Honnay
- Department of Biology, Plant Conservation and Population Biology, KU Leuven, B-3001 Leuven, Belgium
| | - Hans Jacquemyn
- Department of Biology, Plant Conservation and Population Biology, KU Leuven, B-3001 Leuven, Belgium
| |
Collapse
|
47
|
Are Wildfires a Threat to Fungi in European Pinus Forests? A Case Study of Boreal and Mediterranean Forests. FORESTS 2019. [DOI: 10.3390/f10040309] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Natural forests and plantations of Pinus are ecologically and economically important worldwide, producing an array of goods and services, including the provision of non-wood forest products. Pinus species play an important role in Mediterranean and boreal forests. Although Pinus species seem to show an ecological adaptation to recurrent wildfires, a new era of mega fires is predicted, owing to climate changes associated with global warming. As a consequence, fungal communities, which are key players in forest ecosystems, could be strongly affected by these wildfires. The aim of this study was to observe the fungal community dynamics, and particularly the edible fungi, in maritime (Pinus pinaster Ait.), austrian pine (Pinus nigra J.F. Arnold), and scots pine (Pinus sylvestris L.) forests growing under wet Mediterranean, dry Mediterranean, and boreal climatic conditions, respectively, by comparing the mushrooms produced in severely burned Pinus forests in each area. Sporocarps were collected during the main sampling campaigns in non-burned plots, and in burned plots one year and five years after fire. A total of 182 taxa, belonging to 81 genera, were collected from the sampled plots, indicating a high level of fungal diversity in these pine forests, independent of the climatic conditions. The composition of the fungal communities was strongly affected by wildfire. Mycorrhizal taxa were impacted more severely by wildfire than the saprotrophic taxa, particularly in boreal forests—no mycorrhizal taxa were observed in the year following fire in boreal forests. Based on our observations, it seems that fungal communities of boreal P. sylvestris forests are not as adapted to high-intensity fires as the Mediterranean fungal communities of P. nigra and P. pinaster forests. This will have an impact on reducing fungal diversity and potential incomes in rural economically depressed areas that depend on income from foraged edible fungi, one of the most important non-wood forest products.
Collapse
|
48
|
Predicting Mushroom Productivity from Long-Term Field-Data Series in Mediterranean Pinus pinaster Ait. Forests in the Context of Climate Change. FORESTS 2019. [DOI: 10.3390/f10030206] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Long-term field-data series were used to fit a mushroom productivity model. Simulations enabled us to predict the consequences of management and climate scenarios on potential mushroom productivity. Mushrooms play an important ecological and economic role in forest ecosystems. Human interest in collecting mushrooms for self-consumption is also increasing, giving forests added value for providing recreational services. Pinus pinaster Ait. is a western Mediterranean species of great economic and ecological value. Over 7.5% of the total European distribution of the species is found on the Castilian Plateau in central Spain, where a great variety of mushrooms can be harvested. The aim of this study was to model and simulate mushroom productivity in Maritime pine (Pinus pinaster Ait.) ecosystems in northern Spain under different silvicultural and climatic scenarios. A mixed model was fitted that related total mushroom productivity to stand and weather variables. The model was uploaded to the SiManFor platform to study the effect of different silvicultural and climatic scenarios on mushroom productivity. The selected independent variables in the model were the ratio between stand basal area and density as a stand management indicator, along with precipitation and average temperatures for September and November. The simulation results also showed that silviculture had a positive impact on mushroom productivity, which was higher in scenarios with moderate and high thinning intensities. The impact was highly positive in wetter scenarios, though only slightly positive and negative responses were observed in hotter and drier scenarios, respectively. Silviculture had a positive impact on mushroom productivity, especially in wetter scenarios. Precipitation had greater influence than temperature on total mushroom productivity in Maritime pine stands. The results of this paper will enable forest managers to develop optimal management approaches for P. pinaster forests that integrate Non-Wood Forest Products resources.
Collapse
|
49
|
Martin FM, Harrison MJ, Lennon S, Lindahl B, Öpik M, Polle A, Requena N, Selosse MA. Cross-scale integration of mycorrhizal function. THE NEW PHYTOLOGIST 2018; 220:941-946. [PMID: 30408219 DOI: 10.1111/nph.15493] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- Francis M Martin
- INRA, Université de Lorraine, UMR Interactions Arbres/Micro-Organismes, INRA-Centre Grand Est, Champenoux, 54280, France
| | | | - Sarah Lennon
- New Phytologist Central Office, Bailrigg House, Lancaster University, Lancaster, LA1 4YE, UK
| | - Björn Lindahl
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, Uppsala, SE-750 07, Sweden
| | - Maarja Öpik
- Department of Botany, Institute of Ecology and Earth Sciences, 40 Lai St., Tartu, 51005, Estonia
| | - Andrea Polle
- Forest Botany and Tree Physiology, University of Goettingen, Goettingen, 37077, Germany
| | - Natalia Requena
- Molecular Phytopathology Department, Karlsruhe Institute of Technology, Fritz Haber-Weg 4, Geb. 30.43, 2. OG, Karlsruhe, D-76131, Germany
| | - Marc-André Selosse
- Département Systématique et Evolution, Muséum national d'Histoire naturelle, UMR 7205 ISYEB, CP 50, 45 rue Buffon, Paris, 75005, France
- Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308, Gdańsk, Poland
| |
Collapse
|