1
|
Jeong HJ, Nam BE, Jeong SJ, Lee G, Kim SG, Kim JG. Primary Metabolic Response of Aristolochia contorta to Simulated Specialist Herbivory under Elevated CO 2 Conditions. PLANTS (BASEL, SWITZERLAND) 2024; 13:1456. [PMID: 38891265 PMCID: PMC11174525 DOI: 10.3390/plants13111456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
This study explores how elevated carbon dioxide (CO2) levels affects the growth and defense mechanisms of plants. We focused on Aristolochia contorta Bunge (Aristolochiaceae), a wild plant that exhibits growth reduction under elevated CO2 in the previous study. The plant has Sericinus montela Gray (Papilionidae) as a specialist herbivore. By analyzing primary metabolites, understanding both the growth and defense response of plants to herbivory under elevated CO2 conditions is possible. The experiment was conducted across four groups, combining two CO2 concentration conditions (ambient CO2 and elevated CO2) with two herbivory conditions (herbivory treated and untreated). Although many plants exhibit increased growth under elevated CO2 levels, A. contorta exhibited reduced growth with lower height, dry weight, and total leaf area. Under herbivory, A. contorta triggered both localized and systemic responses. More primary metabolites exhibited significant differences due to herbivory treatment in systemic tissue than local leaves that herbivory was directly treated. Herbivory under elevated CO2 level triggered more significant responses in primary metabolites (17 metabolites) than herbivory under ambient CO2 conditions (five metabolites). Several defense-related metabolites exhibited higher concentrations in the roots and lower concentrations in the leaves in response to the herbivory treatment in the elevated CO2 group. This suggests a potential intensification of defensive responses in the underground parts of the plant under elevated CO2 levels. Our findings underscore the importance of considering both abiotic and biotic factors in understanding plant responses to environmental changes. The adaptive strategies of A. contorta suggest a complex response mechanism to elevated CO2 and herbivory pressures.
Collapse
Affiliation(s)
- Hyeon Jin Jeong
- Department of Biology Education, Seoul National University, Seoul 08826, Republic of Korea; (H.J.J.)
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon 11187, Republic of Korea
| | - Bo Eun Nam
- Department of Biology Education, Seoul National University, Seoul 08826, Republic of Korea; (H.J.J.)
- Research Institute of Basic Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Se Jong Jeong
- Department of Biology Education, Seoul National University, Seoul 08826, Republic of Korea; (H.J.J.)
- Seoul National University Elementary School, Seoul 03087, Republic of Korea
| | - Gisuk Lee
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sang-Gyu Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jae Geun Kim
- Department of Biology Education, Seoul National University, Seoul 08826, Republic of Korea; (H.J.J.)
- Center for Education Research, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
2
|
Li C, Czyż EA, Halitschke R, Baldwin IT, Schaepman ME, Schuman MC. Evaluating potential of leaf reflectance spectra to monitor plant genetic variation. PLANT METHODS 2023; 19:108. [PMID: 37833725 PMCID: PMC10576306 DOI: 10.1186/s13007-023-01089-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
Remote sensing of vegetation by spectroscopy is increasingly used to characterize trait distributions in plant communities. How leaves interact with electromagnetic radiation is determined by their structure and contents of pigments, water, and abundant dry matter constituents like lignins, phenolics, and proteins. High-resolution ("hyperspectral") spectroscopy can characterize trait variation at finer scales, and may help to reveal underlying genetic variation-information important for assessing the potential of populations to adapt to global change. Here, we use a set of 360 inbred genotypes of the wild coyote tobacco Nicotiana attenuata: wild accessions, recombinant inbred lines (RILs), and transgenic lines (TLs) with targeted changes to gene expression, to dissect genetic versus non-genetic influences on variation in leaf spectra across three experiments. We calculated leaf reflectance from hand-held field spectroradiometer measurements covering visible to short-wave infrared wavelengths of electromagnetic radiation (400-2500 nm) using a standard radiation source and backgrounds, resulting in a small and quantifiable measurement uncertainty. Plants were grown in more controlled (glasshouse) or more natural (field) environments, and leaves were measured both on- and off-plant with the measurement set-up thus also in more to less controlled environmental conditions. Entire spectra varied across genotypes and environments. We found that the greatest variance in leaf reflectance was explained by between-experiment and non-genetic between-sample differences, with subtler and more specific variation distinguishing groups of genotypes. The visible spectral region was most variable, distinguishing experimental settings as well as groups of genotypes within experiments, whereas parts of the short-wave infrared may vary more specifically with genotype. Overall, more genetically variable plant populations also showed more varied leaf spectra. We highlight key considerations for the application of field spectroscopy to assess genetic variation in plant populations.
Collapse
Affiliation(s)
- Cheng Li
- Department of Geography, Faculty of Science, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| | - Ewa A Czyż
- Department of Geography, Faculty of Science, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Rayko Halitschke
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Michael E Schaepman
- Department of Geography, Faculty of Science, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Meredith C Schuman
- Department of Geography, Faculty of Science, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Chemistry, Faculty of Science, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|
3
|
Cárdenas Pardo NJ, Rodriguez Robayo DE, Fernandez Lizarazo JC, Peña-Quemba DC, McGale E. Exploring the future of GM technology in sustainable local food systems in Colombia. Front Genome Ed 2023; 5:1181811. [PMID: 37457887 PMCID: PMC10349173 DOI: 10.3389/fgeed.2023.1181811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
The security of Earth's food systems is challenged by shifting regional climates. While agricultural processes are disrupted by climate change, they also play a large role in contributing to destabilizing greenhouse gases. Finding new strategies to increase yields while decreasing agricultural environmental impacts is essential. Tropical agriculture is particularly susceptible to climate change: local, smallholder farming, which provides a majority of the food supply, is high risk and has limited adaptation capacity. Rapid, inexpensive, intuitive solutions are needed, like the implementation of genetically modified (GM) crops. In the Latin American tropics, high awareness and acceptance of GM technologies, opportunities to test GM crops as part of local agricultural educations, and their known economic benefits, support their use. However, this is not all that is needed for the future of GM technologies in these areas: GM implementation must also consider environmental and social sustainability, which can be unique to a locality. Primarily from the perspective of its educators, the potential of a rural Colombian university in driving GM implementation is explored, including the role of this type of university in producing agricultural engineers who can innovate with GM to meet regionally-dependent environmental and cultural needs that could increase their sustainability.
Collapse
Affiliation(s)
| | | | | | - Diego Camilo Peña-Quemba
- Utopía, Universidad de La Salle, Yopal, Colombia
- Faculty of Natural Sciences and Engineering, Fundación Universitaria de San Gil, UNISANGIL, Yopal, Colombia
| | - Erica McGale
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
4
|
He J, Halitschke R, Schuman MC, Baldwin IT. Light dominates the diurnal emissions of herbivore-induced volatiles in wild tobacco. BMC PLANT BIOLOGY 2021; 21:401. [PMID: 34461825 PMCID: PMC8404343 DOI: 10.1186/s12870-021-03179-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/09/2021] [Indexed: 05/23/2023]
Abstract
BACKGROUND Timing is everything when it comes to the fitness outcome of a plant's ecological interactions, and accurate timing is particularly relevant for interactions with herbivores or mutualists that are based on ephemeral emissions of volatile organic compounds. Previous studies of the wild tobacco N. attenuata have found associations between the diurnal timing of volatile emissions, and daytime predation of herbivores by their natural enemies. RESULTS Here, we investigated the role of light in regulating two biosynthetic groups of volatiles, terpenoids and green leaf volatiles (GLVs), which dominate the herbivore-induced bouquet of N. attenuata. Light deprivation strongly suppressed terpenoid emissions while enhancing GLV emissions, albeit with a time lag. Silencing the expression of photoreceptor genes did not alter terpenoid emission rhythms, but silencing expression of the phytochrome gene, NaPhyB1, disordered the emission of the GLV (Z)-3-hexenyl acetate. External abscisic acid (ABA) treatments increased stomatal resistance, but did not truncate the emission of terpenoid volatiles (recovered in the headspace). However, ABA treatment enhanced GLV emissions and leaf internal pools (recovered from tissue), and reduced internal linalool pools. In contrast to the pattern of diurnal terpenoid emissions and nocturnal GLV emissions, transcripts of herbivore-induced plant volatile (HIPV) biosynthetic genes peaked during the day. The promotor regions of these genes were populated with various cis-acting regulatory elements involved in light-, stress-, phytohormone- and circadian regulation. CONCLUSIONS This research provides insights into the complexity of the mechanisms involved in the regulation of HIPV bouquets, a mechanistic complexity which rivals the functional complexity of HIPVs, which includes repelling herbivores, calling for body guards, and attracting pollinators.
Collapse
Affiliation(s)
- Jun He
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Xiema Street, Beibei, Chongqing, 400712, People's Republic of China.
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany.
| | - Rayko Halitschke
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Meredith C Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
- Current address: Departments of Geography and Chemistry, University of Zurich, 8057, Zürich, Switzerland
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany.
| |
Collapse
|
5
|
Valim H, Dalton H, Joo Y, McGale E, Halitschke R, Gaquerel E, Baldwin IT, Schuman MC. TOC1 in Nicotiana attenuata regulates efficient allocation of nitrogen to defense metabolites under herbivory stress. THE NEW PHYTOLOGIST 2020; 228:1227-1242. [PMID: 32608045 DOI: 10.1111/nph.16784] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
The circadian clock contextualizes plant responses to environmental signals. Plants use temporal information to respond to herbivory, but many of the functional roles of circadian clock components in these responses, and their contribution to fitness, remain unknown. We investigate the role of the central clock regulator TIMING OF CAB EXPRESSION 1 (TOC1) in Nicotiana attenuata's defense responses to the specialist herbivore Manduca sexta under both field and glasshouse conditions. We utilize 15 N pulse-labeling to quantify nitrogen incorporation into pools of three defense compounds: caffeoylputrescine (CP), dicaffeoyl spermidine (DCS) and nicotine. Nitrogen incorporation was decreased in CP and DCS and increased in nicotine pools in irTOC1 plants compared to empty vector (EV) under control conditions, but these differences were abolished after simulated herbivory. Differences between EV and irTOC1 plants in nicotine, but not phenolamide production, were abolished by treatment with the ethylene agonist 1-methylcyclopropene. Using micrografting, TOC1's effect on nicotine was isolated to the root and did not affect the fitness of heterografts under field conditions. These results suggest that the circadian clock contributes to plant fitness by balancing production of metabolically expensive nitrogen-rich defense compounds and mediating the allocation of resources between vegetative biomass and reproduction.
Collapse
Affiliation(s)
- Henrique Valim
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, 07745, Germany
| | - Heidi Dalton
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, 07745, Germany
| | - Youngsung Joo
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, 07745, Germany
| | - Erica McGale
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, 07745, Germany
| | - Rayko Halitschke
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, 07745, Germany
| | - Emmanuel Gaquerel
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, 07745, Germany
- Institute of Plant Molecular Biology, University of Strasbourg, 12 Rue du Général Zimmer, Strasbourg, 67084, France
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, 07745, Germany
| | - Meredith C Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, 07745, Germany
| |
Collapse
|
6
|
McGale E, Valim H, Mittal D, Morales Jimenez J, Halitschke R, Schuman MC, Baldwin IT. Determining the scale at which variation in a single gene changes population yields. eLife 2020; 9:e53517. [PMID: 32057293 PMCID: PMC7136025 DOI: 10.7554/elife.53517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/13/2020] [Indexed: 11/13/2022] Open
Abstract
Plant trait diversity is known to influence population yield, but the scale at which this happens remains unknown: divergent individuals might change yields of immediate neighbors (neighbor scale) or of plants across a population (population scale). We use Nicotiana attenuata plants silenced in mitogen-activated protein kinase 4 (irMPK4) - with low water-use efficiency (WUE) - to study the scale at which water-use traits alter intraspecific population yields. In the field and glasshouse, we observed overyielding in populations with low percentages of irMPK4 plants, unrelated to water-use phenotypes. Paired-plant experiments excluded the occurrence of overyielding effects at the neighbor scale. Experimentally altering field arbuscular mycorrhizal fungal associations by silencing the Sym-pathway gene NaCCaMK did not affect reproductive overyielding, implicating an effect independent of belowground AMF interactions. Additionally, micro-grafting experiments revealed dependence on shoot-expressed MPK4 for N. attenuata to vary its yield per neighbor presence. We find that variation in a single gene, MPK4, is responsible for population overyielding through a mechanism, independent of irMPK4's WUE phenotype, at the aboveground, population scale.
Collapse
Affiliation(s)
- Erica McGale
- Department of Molecular Ecology, Max Planck for Chemical EcologyJenaGermany
| | - Henrique Valim
- Department of Molecular Ecology, Max Planck for Chemical EcologyJenaGermany
| | - Deepika Mittal
- Department of Molecular Ecology, Max Planck for Chemical EcologyJenaGermany
| | | | - Rayko Halitschke
- Department of Molecular Ecology, Max Planck for Chemical EcologyJenaGermany
| | - Meredith C Schuman
- Department of Molecular Ecology, Max Planck for Chemical EcologyJenaGermany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck for Chemical EcologyJenaGermany
| |
Collapse
|
7
|
Schuman MC, Meldau S, Gaquerel E, Diezel C, McGale E, Greenfield S, Baldwin IT. The Active Jasmonate JA-Ile Regulates a Specific Subset of Plant Jasmonate-Mediated Resistance to Herbivores in Nature. FRONTIERS IN PLANT SCIENCE 2018; 9:787. [PMID: 29963064 PMCID: PMC6010948 DOI: 10.3389/fpls.2018.00787] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/24/2018] [Indexed: 05/20/2023]
Abstract
The jasmonate hormones are essential regulators of plant defense against herbivores and include several dozen derivatives of the oxylipin jasmonic acid (JA). Among these, the conjugate jasmonoyl isoleucine (JA-Ile) has been shown to interact directly with the jasmonate co-receptor complex to regulate responses to jasmonate signaling. However, functional studies indicate that some aspects of jasmonate-mediated defense are not regulated by JA-Ile. Thus, it is not clear whether JA-Ile is best characterized as the master jasmonate regulator of defense, or if it regulates more specific aspects. We investigated possible functions of JA-Ile in anti-herbivore resistance of the wild tobacco Nicotiana attenuata, a model system for plant-herbivore interactions. We first analyzed the soluble and volatile secondary metabolomes of irJAR4xirJAR6, asLOX3, and WT plants, as well as an RNAi line targeting the jasmonate co-receptor CORONATINE INSENSITIVE 1 (irCOI1), following a standardized herbivory treatment. irJAR4xirJAR6 were the most similar to WT plants, having a ca. 60% overlap in differentially regulated metabolites with either asLOX3 or irCOI1. In contrast, while at least 25 volatiles differed between irCOI1 or asLOX3 and WT plants, there were few or no differences in herbivore-induced volatile emission between irJAR4xirJAR6 and WT plants, in glasshouse- or field-collected samples. We then measured the susceptibility of jasmonate-deficient vs. JA-Ile-deficient plants in nature, in comparison to wild-type (WT) controls, and found that JA-Ile-deficient plants (irJAR4xirJAR6) are much better defended even than a mildly jasmonate-deficient line (asLOX3). The differences among lines could be attributed to differences in damage from specific herbivores, which appeared to prefer either one or the other jasmonate-deficient phenotype. We further investigated the elicitation of one herbivore-induced volatile known to be jasmonate-regulated and to mediate resistance to herbivores: (E)-α-bergamotene. We found that JA was a more potent elicitor of (E)-α-bergamotene emission than was JA-Ile, and when treated with JA, irJAR4xirJAR6 plants emitted 20- to 40-fold as much (E)-α-bergamotene than WT. We conclude that JA-Ile regulates specific aspects of herbivore resistance in N. attenuata. This specificity may allow plants flexibility in their responses to herbivores and in managing trade-offs between resistance, vs. growth and reproduction, over the course of ontogeny.
Collapse
Affiliation(s)
- Meredith C. Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
- *Correspondence: Meredith C. Schuman
| | - Stefan Meldau
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Emmanuel Gaquerel
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Celia Diezel
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Erica McGale
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Sara Greenfield
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Plant Genetics, Brigham Young University, Provo, UT, United States
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|