1
|
Monroe JG, Gill B, Turner K, Mckay J. Convergent discoveries support convergent evolution of life-history strategies: the importance of summer drought. THE NEW PHYTOLOGIST 2024; 241:535-537. [PMID: 38031441 DOI: 10.1111/nph.19351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/08/2023] [Indexed: 12/01/2023]
Affiliation(s)
- J Grey Monroe
- Department of Plant Sciences, University of California Davis, Davis, CA, 95616, USA
| | - Brian Gill
- School of Natural Resources and the Environment, The University of Arizona, Tucson, AZ, 85721, USA
| | - Kathryn Turner
- Department of Biological Sciences, Idaho State University, Pocatello, ID, 83201, USA
| | - John Mckay
- Institute for Plant Adaptation, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
2
|
Mucina L, Mummenhoff K, Winter P, van Niekerk A, Mandáková T, Lysak MA. Drought and life-history strategies in Heliophila (Brassicaceae). THE NEW PHYTOLOGIST 2024; 241:532-534. [PMID: 38031508 DOI: 10.1111/nph.19352] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/08/2023] [Indexed: 12/01/2023]
Affiliation(s)
- Ladislav Mucina
- Iluka Chair in Vegetation Science & Biogeography, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, Perth, WA, 6150, Australia
- Department of Geography & Environmental Studies, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
| | - Klaus Mummenhoff
- Biology Department/Botany, Osnabrück University, Barbarastrasse 11, Osnabrück, 49076, Germany
| | - Pieter Winter
- Compton Herbarium, South African National Biodiversity Institute, Private Bag X7, Claremont, 7735, South Africa
| | - Adriaan van Niekerk
- Department of Geography & Environmental Studies, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
| | - Terezie Mandáková
- CEITEC, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Martin A Lysak
- CEITEC, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| |
Collapse
|
3
|
Zhao B, Wang JW. Perenniality: From model plants to applications in agriculture. MOLECULAR PLANT 2024; 17:141-157. [PMID: 38115580 DOI: 10.1016/j.molp.2023.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023]
Abstract
To compensate for their sessile nature, plants have evolved sophisticated mechanisms enabling them to adapt to ever-changing environments. One such prominent feature is the evolution of diverse life history strategies, particularly such that annuals reproduce once followed by seasonal death, while perennials live longer by cycling growth seasonally. This intrinsic phenology is primarily genetic and can be altered by environmental factors. Although evolutionary transitions between annual and perennial life history strategies are common, perennials account for most species in nature because they survive well under year-round stresses. This proportion, however, is reversed in agriculture. Hence, perennial crops promise to likewise protect and enhance the resilience of agricultural ecosystems in response to climate change. Despite significant endeavors that have been made to generate perennial crops, progress is slow because of barriers in studying perennials, and many developed species await further improvement. Recent findings in model species have illustrated that simply rewiring existing genetic networks can lead to lifestyle variation. This implies that engineering plant life history strategy can be achieved by manipulating only a few key genes. In this review, we summarize our current understanding of genetic basis of perenniality and discuss major questions and challenges that remain to be addressed.
Collapse
Affiliation(s)
- Bo Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Key Laboratory of Plant Carbon Capture, CAS, Shanghai 200032, China; New Cornerstone Science Laboratory, Shanghai 200032, China.
| |
Collapse
|
4
|
Rehman S, Bahadur S, Xia W. An overview of floral regulatory genes in annual and perennial plants. Gene 2023; 885:147699. [PMID: 37567454 DOI: 10.1016/j.gene.2023.147699] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/31/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
The floral initiation in angiosperms is a complex process influenced by endogenous and exogenous signals. With this approach, we aim to provide a comprehensive review to integrate this complex floral regulatory process and summarize the regulatory genes and their functions in annuals and perennials. Seven primary paths leading to flowering have been discovered in Arabidopsis under several growth condition that include; photoperiod, ambient temperature, vernalization, gibberellins, autonomous, aging and carbohydrates. These pathways involve a series of interlinked signaling pathways that respond to both internal and external signals, such as light, temperature, hormones, and developmental cues, to coordinate the expression of genes that are involved in flower development. Among them, the photoperiodic pathway was the most important and conserved as some of the fundamental loci and mechanisms are shared even by closely related plant species. The activation of floral regulatory genes such as FLC, FT, LFY, and SOC1 that determine floral meristem identity and the transition to the flowering stage result from the merging of these pathways. Recent studies confirmed that alternative splicing, antisense RNA and epigenetic modification play crucial roles by regulating the expression of genes related to blooming. In this review, we documented recent progress in the floral transition time in annuals and perennials, with emphasis on the specific regulatory mechanisms along with the application of various molecular approaches including overexpression studies, RNA interference and Virus-induced flowering. Furthermore, the similarities and differences between annual and perennial flowering will aid significant contributions to the field by elucidating the mechanisms of perennial plant development and floral initiation regulation.
Collapse
Affiliation(s)
- Shazia Rehman
- Sanya Nanfan Research Institution, Hainan University, Haikou 572025, China; College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Saraj Bahadur
- College of Forestry, Hainan University, Haikou 570228 China
| | - Wei Xia
- Sanya Nanfan Research Institution, Hainan University, Haikou 572025, China; College of Tropical Crops, Hainan University, Haikou 570228, China.
| |
Collapse
|
5
|
Boyko JD, Hagen ER, Beaulieu JM, Vasconcelos T. The evolutionary responses of life-history strategies to climatic variability in flowering plants. THE NEW PHYTOLOGIST 2023; 240:1587-1600. [PMID: 37194450 DOI: 10.1111/nph.18971] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 04/17/2023] [Indexed: 05/18/2023]
Abstract
The evolution of annual or perennial strategies in flowering plants likely depends on a broad array of temperature and precipitation variables. Previous documented climate life-history correlations in explicit phylogenetic frameworks have been limited to certain clades and geographic regions. To gain insights which generalize to multiple lineages we employ a multi-clade approach analyzing 32 groups of angiosperms across eight climatic variables. We utilize a recently developed method that accounts for the joint evolution of continuous and discrete traits to evaluate two hypotheses: annuals tend to evolve in highly seasonal regions prone to extreme heat and drought; and annuals tend to have faster rates of climatic niche evolution than perennials. We find that temperature, particularly highest temperature of the warmest month, is the most consistent climatic factor influencing the evolution of annual strategy in flowering plants. Unexpectedly, we do not find significant differences in rates of climatic niche evolution between perennial and annual lineages. We propose that annuals are consistently favored in areas prone to extreme heat due to their ability to escape heat stress as seeds, but they tend to be outcompeted by perennials in regions where extreme heat is uncommon or nonexistent.
Collapse
Affiliation(s)
- James D Boyko
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
- Michigan Institute of Data Science, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Eric R Hagen
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Jeremy M Beaulieu
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Thais Vasconcelos
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
6
|
FitzPatrick JA, Doucet BI, Holt SD, Patterson CM, Kooyers NJ. Unique drought resistance strategies occur among monkeyflower populations spanning an aridity gradient. AMERICAN JOURNAL OF BOTANY 2023; 110:e16207. [PMID: 37347451 DOI: 10.1002/ajb2.16207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 06/23/2023]
Abstract
PREMISE Annual plants often exhibit drought-escape and avoidance strategies to cope with limited water availability. Determining the extent of variation and factors underlying the evolution of divergent strategies is necessary for determining population responses to more frequent and severe droughts. METHODS We leveraged five Mimulus guttatus populations collected across an aridity gradient within manipulative drought and quantitative genetics experiments to examine constitutive and terminal-drought induced responses in drought resistance traits. RESULTS Populations varied considerably in drought-escape- and drought-avoidance-associated traits. The most mesic population demonstrated a unique resource conservative strategy. Xeric populations exhibited extreme plasticity when exposed to terminal drought that included flowering earlier at shorter heights, increasing water-use efficiency, and shifting C:N ratios. However, plasticity responses also differed between populations, with two populations slowing growth rates and flowering at earlier nodes and another population increasing growth rate. While nearly all traits were heritable, phenotypic correlations differed substantially between treatments and often, populations. CONCLUSIONS Our results suggest drought resistance strategies of populations may be finely adapted to local patterns of water availability. Substantial plastic responses suggest that xeric populations can already acclimate to drought through plasticity, but populations not frequently exposed to drought may be more vulnerable.
Collapse
Affiliation(s)
| | - Braden I Doucet
- Department of Biology, University of Louisiana, Lafayette, LA, 70503, USA
| | - Stacy D Holt
- Department of Biology, University of Louisiana, Lafayette, LA, 70503, USA
| | | | - Nicholas J Kooyers
- Department of Biology, University of Louisiana, Lafayette, LA, 70503, USA
| |
Collapse
|
7
|
Peng HW, Xiang KL, Erst AS, Erst TV, Jabbour F, Ortiz RDC, Wang W. The synergy of abiotic and biotic factors correlated with diversification of Fumarioideae (Papaveraceae) in the Cenozoic. Mol Phylogenet Evol 2023:107868. [PMID: 37394080 DOI: 10.1016/j.ympev.2023.107868] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/04/2023]
Abstract
Rapid diversification of a group is often associated with exploiting an ecological opportunity and/or the evolution of a key innovation. However, how the interplay of such abiotic and biotic factors correlates with organismal diversification has been rarely documented in empirical studies, especially for organisms inhabiting drylands. Fumarioideae is the largest subfamily in Papaveraceae and is mainly distributed in temperate regions of the Northern Hemisphere. Here, we used one nuclear (ITS) and six plastid (rbcL, atpB, matK, rps16, trnL-F, and trnG) DNA sequences to investigate the spatio-temporal patterns of diversification and potential related factors of this subfamily. We first present the most comprehensive phylogenetic analysis of Fumarioideae to date. The results of our integrated molecular dating and biogeographic analyses indicate that the most recent common ancestor of Fumarioideae started to diversify in Asia during the Upper Cretaceous, and then dispersed multiple times out of Asia in the Cenozoic. In particular, we discover two independent dispersal events from Eurasia to East Africa in the late Miocene, suggesting that the Arabian Peninsula might be an important exchange corridor between Eurasia and East Africa in the late Miocene. Within the Fumarioideae, increased speciation rates were detected in two groups, Corydalis and Fumariinae. Corydalis first experienced a burst of diversification in its crown group at ∼42 Ma, and further accelerated diversification from the mid-Miocene onwards. During these two periods, Corydalis had evolved diverse life history types, which could have facilitated the colonization of diverse habitats originating from extensive orogenesis in the Northern Hemisphere as well as Asian interior desertification. Fumariinae underwent a burst of diversification at ∼15 Ma, which temporally coincides with the increasing aridification in central Eurasia, but is markedly posterior to the shifts in habitat (from moist to arid) and in life history (from perennial to annual) and to range expansion from Asia to Europe, suggesting that Fumariinae species may have been pre-adapted to invade European arid habitats by the acquisition of annual life history. Our study provides an empirical case that documents the importance of pre-adaptation on organismal diversification in drylands and highlights the significant roles of the synergy of abiotic and biotic factors in promoting plant diversification.
Collapse
Affiliation(s)
- Huan-Wen Peng
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun-Li Xiang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China
| | - Andrey S Erst
- Central Siberian Botanical Garden, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Tatyana V Erst
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| | - Florian Jabbour
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, Université des Antilles, EPHE, 57 rue Cuvier, CP39, Paris 75005, France
| | - Rosa Del C Ortiz
- Missouri Botanical Garden, 4344 Shaw Boulevard, St. Louis, MO 63110, USA
| | - Wei Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Hjertaas AC, Preston JC, Kainulainen K, Humphreys AM, Fjellheim S. Convergent evolution of the annual life history syndrome from perennial ancestors. FRONTIERS IN PLANT SCIENCE 2023; 13:1048656. [PMID: 36684797 PMCID: PMC9846227 DOI: 10.3389/fpls.2022.1048656] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Despite most angiosperms being perennial, once-flowering annuals have evolved multiple times independently, making life history traits among the most labile trait syndromes in flowering plants. Much research has focused on discerning the adaptive forces driving the evolution of annual species, and in pinpointing traits that distinguish them from perennials. By contrast, little is known about how 'annual traits' evolve, and whether the same traits and genes have evolved in parallel to affect independent origins of the annual syndrome. Here, we review what is known about the distribution of annuals in both phylogenetic and environmental space and assess the evidence for parallel evolution of annuality through similar physiological, developmental, and/or genetic mechanisms. We then use temperate grasses as a case study for modeling the evolution of annuality and suggest future directions for understanding annual-perennial transitions in other groups of plants. Understanding how convergent life history traits evolve can help predict species responses to climate change and allows transfer of knowledge between model and agriculturally important species.
Collapse
Affiliation(s)
- Ane C. Hjertaas
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Jill C. Preston
- Department of Plant Biology, The University of Vermont, Burlington, VT, United States
| | - Kent Kainulainen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Aelys M. Humphreys
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| | - Siri Fjellheim
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
9
|
He Y, Li T, Zhang R, Wang J, Zhu J, Li Y, Chen X, Pan J, Shen Y, Wang F, Li J, Tian D. Plant Evolution History Overwhelms Current Environment Gradients in Affecting Leaf Chlorophyll Across the Tibetan Plateau. FRONTIERS IN PLANT SCIENCE 2022; 13:941983. [PMID: 35898216 PMCID: PMC9309890 DOI: 10.3389/fpls.2022.941983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
AIMS Leaf chlorophyll (Chl) is a fundamental component and good proxy for plant photosynthesis. However, we know little about the large-scale patterns of leaf Chl and the relative roles of current environment changes vs. plant evolution in driving leaf Chl variations. LOCATIONS The east to west grassland transect of the Tibetan Plateau. METHODS We performed a grassland transect over 1,600 km across the Tibetan Plateau, measuring leaf Chl among 677 site-species. RESULTS Leaf Chl showed a significantly spatial pattern across the grasslands in the Tibetan Plateau, decreasing with latitude but increasing with longitude. Along with environmental gradient, leaf Chl decreased with photosynthetically active radiation (PAR), but increased with water availability and soil nitrogen availability. Furthermore, leaf Chl also showed significant differences among functional groups (C4 > C3 species; legumes < non-legume species), but no difference between annual and perennial species. However, we surprisingly found that plant evolution played a dominant role in shaping leaf Chl variations when comparing the sum and individual effects of all the environmental factors above. Moreover, we revealed that leaf Chl non-linearly decreased with plant evolutionary divergence time. This well-matches the non-linearly increasing trend in PAR or decreasing trend in temperature during the geological time-scale uplift of the Tibetan Plateau. MAIN CONCLUSION This study highlights the dominant role of plant evolution in determining leaf Chl variations across the Tibetan Plateau. Given the fundamental role of Chl for photosynthesis, these results provide new insights into reconsidering photosynthesis capacity in alpine plants and the carbon cycle in an evolutionary view.
Collapse
Affiliation(s)
- Yicheng He
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing, China
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Tingting Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing, China
| | - Ruiyang Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing, China
| | - Jinsong Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing, China
| | - Juntao Zhu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing, China
| | - Yang Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing, China
| | - Xinli Chen
- Faculty of Natural Resources Management, Lakehead University, Thunder Bay, ON, Canada
| | - Junxiao Pan
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing, China
| | - Ying Shen
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing, China
- Key Laboratory of Animal Ecology and Conservation Biology, China Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Furong Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing, China
| | - Jingwen Li
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Dashuan Tian
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Ning Z, Li Y, Zhao X, Han D, Zhan J. Comparison of Leaf and Fine Root Traits Between Annuals and Perennials, Implicating the Mechanism of Species Changes in Desertified Grasslands. FRONTIERS IN PLANT SCIENCE 2022; 12:778547. [PMID: 35185947 PMCID: PMC8854787 DOI: 10.3389/fpls.2021.778547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Annual species show traits, such as shortleaf lifetimes, higher specific leaf area, and leaf nutrient concentrations, that provided a more rapid resource acquisition compared to perennials. However, the comparison of root traits between the annuals and perennials is extremely limited, as well as the trade-offs of leaf and fine root traits, and resource allocation between leaf and root, which may provide insight into the mechanism of species changes in arid and semi-arid areas. With lab analysis and field observation, 12 traits of leaf and fine root of 54 dominant species from Horqin Sandy Land, Northeastern China were measured. The organization of leaf and fine root traits, and coordination between leaf and fine root traits of annual and perennial plants were examined. Results showed that there were differences between annuals and perennials in several leaves and fine root traits important in resource acquisition and conservation. Annuals had higher leaf area (LA), specific LA (SLA), and specific root length (SRL) but lower leaf dry-matter content (LDMC), leaf tissue density (LTD), leaf carbon concentration (LC), and fine root dry-matter content (FRDMC) than perennials. Leaf nitrogen (LN) concentration and fine root nitrogen concentration (FRN) were negatively related to LTD and FRDMC in annuals, while FRN was positively related to FRTD and fine root carbon concentration (FRC), and LA was positively related to LN in perennials. These implied that annuals exhibited tough tissue and low palatability, but perennials tend to have smaller leaves to reduce metabolism when N is insufficient. Annuals showed significant positive correlations between FRC/FRDMC and LDMC/LTD/LC, suggesting a proportional allocation of photosynthate between leaf and fine root. In perennials, significant negative correlations were detected between LN, LC, and SRL, fine root tissue density (FRTD), as well as between LA and FRTD/FRC. These indicated that perennials tend to allocate more photosynthate to construct a deeper and rigid roots system to improve resource absorption capacity in resource-limited habitats. Our findings suggested that annuals and perennials differed considerably in terms of adaptation, resource acquisition, and allocation strategies, which might be partly responsible for species changes in desertified grasslands. More broadly, this work might be conducive to understand the mechanism of species changes and could also provide support to the management and restoration of desertified grassland in arid and semi-arid areas.
Collapse
Affiliation(s)
- Zhiying Ning
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yulin Li
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Xueyong Zhao
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Dan Han
- Yangling Agricultural Hi-Tech Industries Demonstration Zone, Xi’an, China
| | - Jin Zhan
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Lu M, Fradera-Soler M, Forest F, Barraclough TG, Grace OM. Evidence linking life-form to a major shift in diversification rate in Crassula. AMERICAN JOURNAL OF BOTANY 2022; 109:272-290. [PMID: 34730230 DOI: 10.1002/ajb2.1797] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
PREMISE Plants have evolved different ecological strategies in response to environmental challenges, and a higher lability of such strategies is more common in plant groups that adapt to various niches. Crassula (Crassulaceae), occurring in varied mesic to xeric habitats, exhibits a remarkable diversity of life-forms. However, whether any particular life-form trait has shaped species diversification in Crassula has remained unexplored. This study aims to investigate diversification patterns within Crassula and identify potential links to its life-form evolution. METHODS A phylogenetic tree of 140 Crassula taxa was reconstructed using plastid and nuclear loci and dated based on the nuclear DNA information only. We reconstructed ancestral life-form characters to estimate the evolutionary trends of ecophysiological change, and subsequently estimated net diversification rates. Multiple diversification models were applied to examine the association between certain life-forms and net diversification rates. RESULTS Our findings confirm a radiation within Crassula in the last 10 million years. A configuration of net diversification rate shifts was detected, which coincides with the emergence of a speciose lineage during the late Miocene. The results of ancestral state reconstruction demonstrate a high lability of life-forms in Crassula, and the trait-dependent diversification analyses revealed that the increased diversification is strongly associated with a compact growth form. CONCLUSIONS Transitions between life-forms in Crassula seem to have driven adaptation and shaped diversification of this genus across various habitats. The diversification patterns we inferred are similar to those observed in other major succulent lineages, with the most-speciose clades originating in the late Miocene.
Collapse
Affiliation(s)
- Meng Lu
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, UK
| | - Marc Fradera-Soler
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Félix Forest
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Timothy G Barraclough
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, UK
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - Olwen M Grace
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| |
Collapse
|
12
|
Monroe JG, Cai H, Des Marais DL. Diversity in nonlinear responses to soil moisture shapes evolutionary constraints in Brachypodium. G3 (BETHESDA, MD.) 2021; 11:jkab334. [PMID: 34570202 PMCID: PMC8664479 DOI: 10.1093/g3journal/jkab334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/15/2021] [Indexed: 12/03/2022]
Abstract
Water availability is perhaps the greatest environmental determinant of plant yield and fitness. However, our understanding of plant-water relations is limited because-like many studies of organism-environment interaction-it is primarily informed by experiments considering performance at two discrete levels-wet and dry-rather than as a continuously varying environmental gradient. Here, we used experimental and statistical methods based on function-valued traits to explore genetic variation in responses to a continuous soil moisture gradient in physiological and morphological traits among 10 genotypes across two species of the model grass genus Brachypodium. We find that most traits exhibit significant genetic variation and nonlinear responses to soil moisture variability. We also observe differences in the shape of these nonlinear responses between traits and genotypes. Emergent phenomena arise from this variation including changes in trait correlations and evolutionary constraints as a function of soil moisture. Our results point to the importance of considering diversity in nonlinear organism-environment relationships to understand plastic and evolutionary responses to changing climates.
Collapse
Affiliation(s)
- J Grey Monroe
- Department of Plant Sciences, University of California at Davis, Davis, CA 95616, USA
| | - Haoran Cai
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David L Des Marais
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- The Arnold Arboretum of Harvard University, Boston, MA 02130, USA
| |
Collapse
|
13
|
Mocko K, Jones CS. Do seedlings of larger geophytic species outperform smaller ones when challenged by drought? AMERICAN JOURNAL OF BOTANY 2021; 108:320-333. [PMID: 33638194 DOI: 10.1002/ajb2.1612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
PREMISE In semiarid regions, decreasing rainfall presents a challenge to perennial seedlings that must reach sufficient size to survive the first year's seasonal drought. Attaining a large storage organ size has been hypothesized to enhance drought resilience in geophytes, but building larger storage organs requires faster growth, but paradoxically, some traits that confer faster growth are highly sensitive to drought. We examined whether tuber size confers greater drought resilience in seedlings of four closely related geophytic species of Pelargonium. METHODS We imposed two drought treatments when seedlings were 2 months old: chronic low water and acute water restriction for 10 days. Plants in the acute dry-down treatment were then rewatered at control levels. We compared morphological and ecophysiological traits at 2, 3, and 6 months of age and used mixed-effects models to identify traits determining tuber biomass at dormancy. RESULTS Despite a 10-fold variation in size, species had similar physiological trait values under well-watered conditions. Chronic and acute droughts negatively affected tuber size at the end of the season, but only in the two species with large tubers. Chronic drought did not affect physiological traits of any species, but in response to acute drought, larger species showed reduced photosynthetic performance. Canopy area was the best predictor of final tuber biomass. CONCLUSIONS Contradictory to the hypothesis that large tubers provide greater drought resiliency, small Pelargonium seedlings actually had higher drought tolerance, although at the expense of more vigorous growth compared to species with larger tubers under well-watered conditions.
Collapse
Affiliation(s)
- Kerri Mocko
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Cynthia S Jones
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
14
|
Friedman J. The Evolution of Annual and Perennial Plant Life Histories: Ecological Correlates and Genetic Mechanisms. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-110218-024638] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Flowering plants exhibit two principal life-history strategies: annuality (living and reproducing in one year) and perenniality (living more than one year). The advantages of either strategy depend on the relative benefits of immediate reproduction balanced against survivorship and future reproduction. This trade-off means that life-history strategies are associated with particular environments, with annuals being found more often in unpredictable habitats. Annuality and perenniality are the outcome of developmental genetic programs responding to their environment, with perennials being distinguished by their delayed competence to flower and reversion to growth after flowering. Evolutionary transitions between these strategies are frequent and have consequences for mating systems and genome evolution, with perennials being more likely to outcross with higher inbreeding depression and lower rates of molecular evolution. Integrating expectations from life-history theory with knowledge of the developmental genetics of flowering and seasonality is required to understand the mechanisms involved in the evolution of annual and perennial life histories.
Collapse
Affiliation(s)
- Jannice Friedman
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|