1
|
Ilyas T, Shahid M, Shafi Z, Aijaz SA, Wasiullah. Molecular mechanisms of methyl jasmonate (MeJAs)-mediated detoxification of heavy metals (HMs) in agricultural crops: An interactive review. SOUTH AFRICAN JOURNAL OF BOTANY 2025; 177:139-159. [DOI: 10.1016/j.sajb.2024.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Rachappanavar V, Gupta SK, Jayaprakash GK, Abbas M. Silicon mediated heavy metal stress amelioration in fruit crops. Heliyon 2024; 10:e37425. [PMID: 39315184 PMCID: PMC11417240 DOI: 10.1016/j.heliyon.2024.e37425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
Fruit crops are essential for human nutrition and health, yet high level of heavy metal levels in soils can degrade fruit quality. These metals accumulate in plant roots and tissues due to factors like excessive fertilizer and pesticide use, poor waste management, and unscientific agricultural practices. Such accumulation can adversely affect plant growth, physiology, and yield. Consuming fruits contaminated with toxic metals poses significant health risks, including nervous system disorders and cancer. Various strategies, such as organic manuring, biomaterials, and modified cultivation practices have been widely researched to reduce heavy metal accumulation. Recently, silicon (Si) application has emerged as a promising and cost-effective solution for addressing biological and environmental challenges in food crops. Si, which can be applied to the soil, through foliar application or a combination of both, helps reduce toxic metal concentrations in soil and plants. Despite its potential, there is currently no comprehensive review that details Si's role in mitigating heavy metal stress in fruit crops. This review aims to explore the potential of Si in reducing heavy metal-induced damage in fruit crops while enhancing growth by alleviating heavy metal toxicity.
Collapse
Affiliation(s)
- Vinaykumar Rachappanavar
- MS Swaminathan School of Agriculture, Shoolini University of Biotechnlogy and Management, Solan, Himachal Pradesh, 173230, India
| | - Satish K. Gupta
- MS Swaminathan School of Agriculture, Shoolini University of Biotechnlogy and Management, Solan, Himachal Pradesh, 173230, India
| | | | - Mohamed Abbas
- Electrical Engineering Department, King Khalid University, Abha, 61421, Saudi Arabia
| |
Collapse
|
3
|
Irisarri I, Lorente-Martínez H, Strassert JFH, Agorreta A, Zardoya R, San Mauro D, de Vries J. Early Diversification of Membrane Intrinsic Proteins (MIPs) in Eukaryotes. Genome Biol Evol 2024; 16:evae164. [PMID: 39058319 PMCID: PMC11316224 DOI: 10.1093/gbe/evae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 07/01/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Membrane intrinsic proteins (MIPs), including aquaporins (AQPs) and aquaglyceroporins (GLPs), form an ancient family of transporters for water and small solutes across biological membranes. The evolutionary history and functions of MIPs have been extensively studied in vertebrates and land plants, but their widespread presence across the eukaryotic tree of life suggests both a more complex evolutionary history and a broader set of functions than previously thought. That said, the early evolution of MIPs remains obscure. The presence of one GLP and four AQP clades across both bacteria and archaea suggests that the first eukaryotes could have possessed up to five MIPs. Here, we report on a previously unknown richness in MIP diversity across all major eukaryotic lineages, including unicellular eukaryotes, which make up the bulk of eukaryotic diversity. Three MIP clades have likely deep evolutionary origins, dating back to the last eukaryotic common ancestor (LECA), and support the presence of a complex MIP repertoire in early eukaryotes. Overall, our findings highlight the growing complexity of the reconstructed LECA genome: the dynamic evolutionary history of MIPs was set in motion when eukaryotes were in their infancy followed by radiative bursts across all main eukaryotic lineages.
Collapse
Affiliation(s)
- Iker Irisarri
- Department of Applied Bioinformatics, University of Goettingen, Institute for Microbiology and Genetics, 37077 Göttingen, Germany
- Campus Institute Data Science (CIDAS), 37077 Göttingen, Germany
- Section Phylogenomics, Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change (LIB), Museum of Nature, 20146 Hamburg, Germany
| | - Héctor Lorente-Martínez
- Department of Biodiversity Ecology and Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jürgen F H Strassert
- Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587 Berlin, Germany
| | - Ainhoa Agorreta
- Department of Biodiversity Ecology and Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| | - Rafael Zardoya
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), 28006 Madrid, Spain
| | - Diego San Mauro
- Department of Biodiversity Ecology and Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jan de Vries
- Department of Applied Bioinformatics, University of Goettingen, Institute for Microbiology and Genetics, 37077 Göttingen, Germany
- Campus Institute Data Science (CIDAS), 37077 Göttingen, Germany
- Goettingen Center for Molecular Biosciences (GZMB), Department of Applied Bioinformatics, University of Goettingen, 37077 Göttingen, Germany
| |
Collapse
|
4
|
Wan Q, Li Y, Cheng J, Wang Y, Ge J, Liu T, Ma L, Li Y, Liu J, Zhou C, Li H, Sun X, Chen X, Li QX, Yu X. Two aquaporins, PIP1;1 and PIP2;1, mediate the uptake of neonicotinoid pesticides in plants. PLANT COMMUNICATIONS 2024; 5:100830. [PMID: 38297839 PMCID: PMC11121740 DOI: 10.1016/j.xplc.2024.100830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/05/2023] [Accepted: 01/29/2024] [Indexed: 02/02/2024]
Abstract
Neonicotinoids (NEOs), a large class of organic compounds, are a type of commonly used pesticide for crop protection. Their uptake and accumulation in plants are prerequisites for their intra- and intercellular movements, transformation, and function. Understanding the molecular mechanisms that underpin NEO uptake by plants is crucial for effective application, which remains elusive. Here, we demonstrate that NEOs enter plant cells primarily through the transmembrane symplastic pathway and accumulate mainly in the cytosol. Two plasma membrane intrinsic proteins discovered in Brassica rapa, BraPIP1;1 and BraPIP2;1, were found to encode aquaporins (AQPs) that are highly permeable to NEOs in different plant species and facilitate NEO subcellular diffusion and accumulation. Their conserved transport function was further demonstrated in Xenopus laevis oocyte and yeast assays. BraPIP1;1 and BraPIP2;1 gene knockouts and interaction assays suggested that their proteins can form functional heterotetramers. Assessment of the potential of mean force indicated a negative correlation between NEO uptake and the energy barrier of BraPIP1;1 channels. This study shows that AQPs transport organic compounds with greater osmolarity than previously thought, providing new insight into the molecular mechanisms of organic compound uptake and facilitating innovations in systemic pesticides.
Collapse
Affiliation(s)
- Qun Wan
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing 210014, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Yixin Li
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Jinjin Cheng
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing 210014, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Ya Wang
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing 210014, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Jing Ge
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing 210014, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Tingli Liu
- Jiangsu Provincial Key Construction Laboratory of Special Biomass Resource Utilization, Nanjing Xiaozhuang University, 3601 Hongjin Avenue, Nanjing 211171, China
| | - Liya Ma
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing 210014, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Yong Li
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing 210014, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Jianan Liu
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Chunli Zhou
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Haocong Li
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Xing Sun
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing 210014, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Xiaolong Chen
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing 210014, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Xiangyang Yu
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing 210014, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China.
| |
Collapse
|
5
|
Zou R, Zhou J, Cheng B, Wang G, Fan J, Li X. Aquaporin LjNIP1;5 positively modulates drought tolerance by promoting arbuscular mycorrhizal symbiosis in Lotus japonicus. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112036. [PMID: 38365002 DOI: 10.1016/j.plantsci.2024.112036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/21/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
Drought stress often affects crop growth and even causes crop death, while aquaporins can maintain osmotic balance by transporting water across membranes, so it is important to study how to improve drought tolerance of crops by using aquaporins. In this work, we characterize a set of subfamily members named NIPs belonging to the family of aquaporins in Lotus japonicus, grouping 14 family members based on the sequence similarity in the aromatic/arginine (Ar/R) region. Among these members, LjNIP1;5 is one of the genes with the highest expression in roots which is induced by the AM fungus. In Lotus japonicus, LjNIP1;5 is highly expressed in symbiotic roots, and its promoter can be induced by drought stress and AM fungus. Root colonization analysis reveals that ljnip1:5 mutant exhibits lower mycorrhizal colonization than the wild type, with increasing the proportion of large arbuscule, and fewer arbuscule produced by symbiosis under drought stress. In the LjNIP1;5OE plant, we detected a strong antioxidant capacity compared to the control, and LjNIP1;5OE showed higher stem length under drought stress. Taken together, the current results facilitate our comprehensive understanding of the plant adaptive to drought stress with the coordination of the specific fungi.
Collapse
Affiliation(s)
- Ruifan Zou
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China
| | - Jing Zhou
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China
| | - Beijiu Cheng
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China
| | - Guoqing Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China
| | - Jun Fan
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China.
| | - Xiaoyu Li
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
6
|
Kong W, Huang H, Du W, Jiang Z, Luo Y, Yi D, Yang G, Pang Y. Overexpression of MsNIP2 improves salinity tolerance in Medicago sativa. JOURNAL OF PLANT PHYSIOLOGY 2024; 295:154207. [PMID: 38430574 DOI: 10.1016/j.jplph.2024.154207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/24/2024] [Accepted: 02/24/2024] [Indexed: 03/04/2024]
Abstract
Alfalfa (Medicago sativa) is one of the most widely cultivated forage crops in the world. However, alfalfa yield and quality are adversely affected by salinity stress. Nodulin 26-like intrinsic proteins (NIPs) play essential roles in water and small molecules transport and response to salt stress. Here, we isolated a salt stress responsive MsNIP2 gene and demonstrated its functions by overexpression in alfalfa. The open reading frame of MsNIP2 is 816 bp in length, and it encodes 272 amino acids. It has six transmembrane domains and two NPA motifs. MsNIP2 showed high identity to other known NIP proteins, and its tertiary model was similar to the crystal structure of OsNIP2-1 (7cjs) tetramer. Subcellular localization analysis showed that MsNIP2 protein fused with green fluorescent protein (GFP) was localized to the plasma membrane. Transgenic alfalfa lines overexpressing MsNIP2 showed significantly higher height and branch number compared with the non-transgenic control. The POD and CAT activity of the transgenic alfalfa lines was significantly increased and their MDA content was notably reduced compared with the control group under the treatment of NaCl. The transgenic lines showed higher capability in scavenging oxygen radicals with lighter NBT staining than the control under salt stress. The transgenic lines showed relative lower water loss rate and electrolyte leakage, but relatively higher Na+ content than the control line under salt stress. The relative expression levels of abiotic-stress-related genes (MsHSP23, MsCOR47, MsATPase, and MsRD2) in three transgenic lines were compared with the control, among them, only the expression of MsCOR47 was up-regulated. Consequently, this study offers a novel perspective for exploring the function of MsNIP2 in improving salt tolerance of alfalfa.
Collapse
Affiliation(s)
- Weiye Kong
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Haijun Huang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wenxuan Du
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhihu Jiang
- West Arid Region Grassland Resource and Ecology Key Laboratory, College of Grassland and Environmental Sciences, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Yijing Luo
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Dengxia Yi
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Guofeng Yang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China.
| | - Yongzhen Pang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
7
|
Charagh S, Hui S, Wang J, Raza A, Zhou L, Xu B, Zhang Y, Sheng Z, Tang S, Hu S, Hu P. Unveiling Innovative Approaches to Mitigate Metals/Metalloids Toxicity for Sustainable Agriculture. PHYSIOLOGIA PLANTARUM 2024; 176:e14226. [PMID: 38410873 DOI: 10.1111/ppl.14226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/21/2024] [Accepted: 01/30/2024] [Indexed: 02/28/2024]
Abstract
Due to anthropogenic activities, environmental pollution of heavy metals/metalloids (HMs) has increased and received growing attention in recent decades. Plants growing in HM-contaminated soils have slower growth and development, resulting in lower agricultural yield. Exposure to HMs leads to the generation of free radicals (oxidative stress), which alters plant morpho-physiological and biochemical pathways at the cellular and tissue levels. Plants have evolved complex defense mechanisms to avoid or tolerate the toxic effects of HMs, including HMs absorption and accumulation in cell organelles, immobilization by forming complexes with organic chelates, extraction via numerous transporters, ion channels, signaling cascades, and transcription elements, among others. Nonetheless, these internal defensive mechanisms are insufficient to overcome HMs toxicity. Therefore, unveiling HMs adaptation and tolerance mechanisms is necessary for sustainable agriculture. Recent breakthroughs in cutting-edge approaches such as phytohormone and gasotransmitters application, nanotechnology, omics, and genetic engineering tools have identified molecular regulators linked to HMs tolerance, which may be applied to generate HMs-tolerant future plants. This review summarizes numerous systems that plants have adapted to resist HMs toxicity, such as physiological, biochemical, and molecular responses. Diverse adaptation strategies have also been comprehensively presented to advance plant resilience to HMs toxicity that could enable sustainable agricultural production.
Collapse
Affiliation(s)
- Sidra Charagh
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Suozhen Hui
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Jingxin Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Ali Raza
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Liang Zhou
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Bo Xu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Yuanyuan Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Zhonghua Sheng
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Shikai Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Peisong Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| |
Collapse
|
8
|
Venkataraghavan A, Schwerdt JG, Tyerman SD, Hrmova M. Barley Nodulin 26-like intrinsic protein permeates water, metalloids, saccharides, and ion pairs due to structural plasticity and diversification. J Biol Chem 2023; 299:105410. [PMID: 37913906 PMCID: PMC10716587 DOI: 10.1016/j.jbc.2023.105410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/22/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023] Open
Abstract
Aquaporins can facilitate the passive movement of water, small polar molecules, and some ions. Here, we examined solute selectivity for the barley Nodulin 26-like Intrinsic Protein (HvNIP2;1) embedded in liposomes and examined through stopped-flow light scattering spectrophotometry and Xenopus laevis oocyte swelling assays. We found that HvNIP2;1 permeates water, boric and germanic acids, sucrose, and lactose but not d-glucose or d-fructose. Other saccharides, such as neutral (d-mannose, d-galactose, d-xylose, d-mannoheptaose) and charged (N-acetyl d-glucosamine, d-glucosamine, d-glucuronic acid) aldoses, disaccharides (cellobiose, gentiobiose, trehalose), trisaccharide raffinose, and urea, glycerol, and acyclic polyols, were permeated to a much lower extent. We observed apparent permeation of hydrated KCl and MgSO4 ions, while CH3COONa and NaNO3 permeated at significantly lower rates. Our experiments with boric acid and sucrose revealed no apparent interaction between solutes when permeated together, and AgNO3 or H[AuCl4] blocked the permeation of all solutes. Docking of sucrose in HvNIP2;1 and spinach water-selective SoPIP2;1 aquaporins revealed the structural basis for sucrose permeation in HvNIP2;1 but not in SoPIP2;1, and defined key residues interacting with this permeant. In a biological context, sucrose transport could constitute a novel element of plant saccharide-transporting machinery. Phylogenomic analyses of 164 Viridiplantae and 2993 Archaean, bacterial, fungal, and Metazoan aquaporins rationalized solute poly-selectivity in NIP3 sub-clade entries and suggested that they diversified from other sub-clades to acquire a unique specificity of saccharide transporters. Solute specificity definition in NIP aquaporins could inspire developing plants for food production.
Collapse
Affiliation(s)
- Akshayaa Venkataraghavan
- School of Agriculture, Food and Wine, and Waite Research Institute, Waite Research Precinct, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Julian G Schwerdt
- School of Agriculture, Food and Wine, and Waite Research Institute, Waite Research Precinct, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Stephen D Tyerman
- School of Agriculture, Food and Wine, and Waite Research Institute, Waite Research Precinct, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Maria Hrmova
- School of Agriculture, Food and Wine, and Waite Research Institute, Waite Research Precinct, University of Adelaide, Glen Osmond, South Australia, Australia.
| |
Collapse
|
9
|
Zou Z, Zheng Y, Xie Z. Analysis of Carica papaya Informs Lineage-Specific Evolution of the Aquaporin (AQP) Family in Brassicales. PLANTS (BASEL, SWITZERLAND) 2023; 12:3847. [PMID: 38005748 PMCID: PMC10674200 DOI: 10.3390/plants12223847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/15/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023]
Abstract
Aquaporins (AQPs), a type of intrinsic membrane proteins that transport water and small solutes across biological membranes, play crucial roles in plant growth and development. This study presents a first genome-wide identification and comparative analysis of the AQP gene family in papaya (Carica papaya L.), an economically and nutritionally important fruit tree of tropical and subtropical regions. A total of 29 CpAQP genes were identified, which represent five subfamilies, i.e., nine plasma intrinsic membrane proteins (PIPs), eight tonoplast intrinsic proteins (TIPs), seven NOD26-like intrinsic proteins (NIPs), two X intrinsic proteins (XIPs), and three small basic intrinsic proteins (SIPs). Although the family is smaller than the 35 members reported in Arabidopsis, it is highly diverse, and the presence of CpXIP genes as well as orthologs in Moringa oleifera and Bretschneidera sinensis implies that the complete loss of the XIP subfamily in Arabidopsis is lineage-specific, sometime after its split with papaya but before Brassicaceae-Cleomaceae divergence. Reciprocal best hit-based sequence comparison of 530 AQPs and synteny analyses revealed that CpAQP genes belong to 29 out of 61 identified orthogroups, and lineage-specific evolution was frequently observed in Brassicales. Significantly, the well-characterized NIP3 group was completely lost; lineage-specific loss of the NIP8 group in Brassicaceae occurred sometime before the divergence with Cleomaceae, and lineage-specific loss of NIP2 and SIP3 groups in Brassicaceae occurred sometime after the split with Cleomaceae. In contrast to a predominant role of recent whole-genome duplications (WGDs) on the family expansion in B. sinensis, Tarenaya hassleriana, and Brassicaceae plants, no recent AQP repeats were identified in papaya, and ancient WGD repeats are mainly confined to the PIP subfamily. Subfamily even group-specific evolution was uncovered via comparing exon-intron structures, conserved motifs, the aromatic/arginine selectivity filter, and gene expression profiles. Moreover, down-regulation during fruit ripening and expression divergence of duplicated CpAQP genes were frequently observed in papaya. These findings will not only improve our knowledge on lineage-specific family evolution in Brassicales, but also provide valuable information for further studies of AQP genes in papaya and species beyond.
Collapse
Affiliation(s)
- Zhi Zou
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Biosciences and Biotechnology/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.Z.); (Z.X.)
| | | | | |
Collapse
|
10
|
Peng YJ, Hu CY, Li W, Dai ZH, Liu CJ, Ma LQ. Arsenic induced plant growth by increasing its nutrient uptake in As-hyperaccumulator Pteris vittata: Comparison of arsenate and arsenite. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121168. [PMID: 36740166 DOI: 10.1016/j.envpol.2023.121168] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/04/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Arsenic-hyperaccumulator Pteris vittata is efficient in taking up arsenate (AsV) and arsenite (AsIII), however, their impacts on P. vittata growth and nutrient uptake remain unclear. The uptake of AsV and AsIII, their influences on nutrient uptake and plant biomass, and As speciation were investigated in P. vittata after exposing to 5 or 50 μM AsV or AsIII for 12 d under hydroponics. The results show that AsV uptake in P. vittata was 1.2 times more efficient than AsIII, corresponding to 1.7-2.1 fold greater biomass than the control at 50 μM As. While AsV was dominant in the roots at ∼60%, AsIII was more dominant in the fronds at ∼70% in all treatments. Macronutrients P, K, Ca, and S were increased by 118-185% at 50 μM As, with greater uptake of micronutrients Fe, Mn, Cu, and Zn at 5 μM As. Further, positive correlations between P. vittata biomass and its As contents (r = 0.97), and P. vittata biomass and its S, Mg, P, or Ca contents (r = 0.70-0.98) were observed. Our results suggest that its increased nutrient uptake probably enhanced P. vittata growth under As exposure.
Collapse
Affiliation(s)
- You-Jing Peng
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, and Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Chun-Yan Hu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, and Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Wei Li
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, and Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Zhi-Hua Dai
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Chen-Jing Liu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, and Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, and Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
11
|
Wang X, Song B, Wu Z, Zhao X, Song X, Adil MF, Riaz M, Lal MK, Huang W. Insights into physiological and molecular mechanisms underlying efficient utilization of boron in different boron efficient Beta vulgaris L. varieties. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107619. [PMID: 36931121 DOI: 10.1016/j.plaphy.2023.02.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/10/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Boron (B) deficiency and consequent limitation of plant yield and quality, particularly of sugar beet (Beta vulgaris L.) has emerged as a maior problem,which is exacerbating due to cultivar dependent variability in B deficiency tolerance. Pertinently, the current study was designed to elucidate the physiological and molecular mechanisms of B deficiency tolerance of sugar beet varieties KWS1197 (B-efficient variety) and KWS0143 (B-inefficient variety). A hydroponic experiment was conducted employing two B levels B0.1 (0.1 μM L-1 H3BO3, deficiency) and B50 (50 μM L-1 H3BO3, adequacy). Boron deficiency greatly inhibited root elongation and dry matter accumulation; however, formation of lateral roots stimulated and average root diameter was increased. Results exhibited that by up-regulating the expression of NIP5-1, NIP6-1, and BOR2, and suppressing the expression of BOR4, cultivar KWS1197, in contrast to KWS0143, managed to transfer sufficient amount of B to the aboveground plant parts, facilitating its effective absorption and utilization. Accumulation of malondialdehyde (MDA) and reactive oxygen species (ROS) was also mellowed in KWS1197, as well as the oxidative damage to root cells via preservation of the antioxidant enzyme system. Additionally, the expression of essential enzymes for biosynthesis of phytohormone (PYR/PYL) and lignin (COMT, POX, and CCoAOMT) were found to be highly up-regulated in KWS1197. Deductively, through effective B absorption and transportation, balanced nutrient accumulation, and an activated antioxidant enzyme system, B-efficient cultivars may cope with B deficiency while retaining a superior cellular structure to enable root development.
Collapse
Affiliation(s)
- Xiangling Wang
- Sugar Beet Engineering Research Center of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China
| | - Baiquan Song
- Sugar Beet Engineering Research Center of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China.
| | - Zhenzhen Wu
- Sugar Beet Engineering Research Center of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China
| | - Xiaoyu Zhao
- Sugar Beet Engineering Research Center of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China
| | - Xin Song
- Sugar Beet Engineering Research Center of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China
| | - Muhammad Faheem Adil
- Zhejiang Key Laboratory of Crop Germplasm Resources, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Riaz
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Milan Kumar Lal
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Wengong Huang
- Heilongjiang Academy of Agricultural Sciences, Safety and Quality Institute of Agricultural Products, Harbin, 150086, China
| |
Collapse
|
12
|
Ishibashi K, Tanaka Y, Morishita Y. Evolutionary Overview of Aquaporin Superfamily. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:81-98. [PMID: 36717488 DOI: 10.1007/978-981-19-7415-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Aquaporins (AQPs) are present not only in three domains of life, bacteria, eukaryotes, and archaea, but also in viruses. With the accumulating arrays of AQP superfamily, the evolutional relationship has attracted much attention with multiple publications on "the genome-wide identification and phylogenetic analysis" of AQP superfamily. A pair of NPA boxes forming a pore is highly conserved throughout the evolution and renders key residues for the classification of AQP superfamily into four groups: AQP1-like, AQP3-like, AQP8-like, and AQP11-like. The complexity of AQP family has mostly been achieved in nematodes and subsequent evolution has been directed toward increasing the number of AQPs through whole-genome duplications (WGDs) to extend the tissue specific expression and regulation. The discovery of the intracellular AQP (iAQP: AQP8-like and AQP11-like) and substrate transports by the plasma membrane AQP (pAQP: AQP1-like and AQP3-like) have accelerated the AQP research much more toward the transport of substrates with complex profiles. This evolutionary overview based on a simple classification of AQPs into four subfamilies will provide putative structural, functional, and localization information and insights into the role of AQP as well as clues to understand the complex diversity of AQP superfamily.
Collapse
Affiliation(s)
- Kenichi Ishibashi
- Division of Pathophysiology, Meiji Pharmaceutical University, Tokyo, Japan.
| | - Yasuko Tanaka
- Division of Pathophysiology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Yoshiyuki Morishita
- Division of Nephrology, Saitama Medical Center, Jichi Medical University, Ohmiya, Saitama-City, Saitama, Japan
| |
Collapse
|
13
|
Gui JY, Rao S, Huang X, Liu X, Cheng S, Xu F. Interaction between selenium and essential micronutrient elements in plants: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158673. [PMID: 36096215 DOI: 10.1016/j.scitotenv.2022.158673] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Nutrient imbalance (i.e., deficiency and toxicity) of microelements is an outstanding environmental issue that influences each aspect of ecosystems. Although the crucial roles of microelements in entire lifecycle of plants have been widely acknowledged, the effective control of microelements is still neglected due to the narrow safe margins. Selenium (Se) is an essential element for humans and animals. Although it is not believed to be indispensable for plants, many literatures have reported the significance of Se in terms of the uptake, accumulation, and detoxification of essential microelements in plants. However, most papers only concerned on the antagonistic effect of Se on metal elements in plants and ignored the underlying mechanisms. There is still a lack of systematic review articles to summarize the comprehensive knowledge on the connections between Se and microelements in plants. In this review, we conclude the bidirectional effects of Se on micronutrients in plants, including iron, zinc, copper, manganese, nickel, molybdenum, sodium, chlorine, and boron. The regulatory mechanisms of Se on these micronutrients are also analyzed. Moreover, we further emphasize the role of Se in alleviating element toxicity and adjusting the concentration of micronutrients in plants by altering the soil conditions (e.g., adsorption, pH, and organic matter), promoting microbial activity, participating in vital physiological and metabolic processes, generating element competition, stimulating metal chelation, organelle compartmentalization, and sequestration, improving the antioxidant defense system, and controlling related genes involved in transportation and tolerance. Based on the current understanding of the interaction between Se and these essential elements, future directions for research are suggested.
Collapse
Affiliation(s)
- Jia-Ying Gui
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Shen Rao
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xinru Huang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Xiaomeng Liu
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shuiyuan Cheng
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| |
Collapse
|
14
|
Prasad A, Chirom O, Prasad M. Horizontal gene transfer and the evolution of land plants. TRENDS IN PLANT SCIENCE 2022; 27:1203-1205. [PMID: 36085101 DOI: 10.1016/j.tplants.2022.08.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Horizontal gene transfer (HGT) is the transfer of genetic material between organisms. It has been known for some time that HGT in eukaryotes is not a rare phenomenon. A recent study by Ma et al. has shown that HGT has played a crucial role in shaping the evolution of land plants.
Collapse
Affiliation(s)
- Ashish Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Oceania Chirom
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India; Department of Plant Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India.
| |
Collapse
|
15
|
Genomic Landscape Highlights Molecular Mechanisms Involved in Silicate Solubilization, Stress Tolerance, and Potential Growth-Promoting Activity of Bacterium Enterobacter sp. LR6. Cells 2022; 11:cells11223622. [PMID: 36429050 PMCID: PMC9688052 DOI: 10.3390/cells11223622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Silicon (Si) is gaining widespread attention due to its prophylactic activity to protect plants under stress conditions. Despite Si's abundance in the earth's crust, most soils do not have enough soluble Si for plants to absorb. In the present study, a silicate-solubilizing bacterium, Enterobacter sp. LR6, was isolated from the rhizospheric soil of rice and subsequently characterized through whole-genome sequencing. The size of the LR6 genome is 5.2 Mb with a GC content of 54.9% and 5182 protein-coding genes. In taxogenomic terms, it is similar to E. hormaechei subsp. xiangfangensis based on average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH). LR6 genomic data provided insight into potential genes involved in stress response, secondary metabolite production, and growth promotion. The LR6 genome contains two aquaporins, of which the aquaglyceroporin (GlpF) is responsible for the uptake of metalloids including arsenic (As) and antimony (Sb). The yeast survivability assay confirmed the metalloid transport activity of GlpF. As a biofertilizer, LR6 isolate has a great deal of tolerance to high temperatures (45 °C), salinity (7%), and acidic environments (pH 9). Most importantly, the present study provides an understanding of plant-growth-promoting activity of the silicate-solubilizing bacterium, its adaptation to various stresses, and its uptake of different metalloids including As, Ge, and Si.
Collapse
|
16
|
Saitoh Y, Suga M. Structure and function of a silicic acid channel Lsi1. FRONTIERS IN PLANT SCIENCE 2022; 13:982068. [PMID: 36172553 PMCID: PMC9510833 DOI: 10.3389/fpls.2022.982068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/24/2022] [Indexed: 05/26/2023]
Abstract
Silicon is a beneficial element for plant growth and production, especially in rice. Plant roots take up silicon in the form of silicic acid. Silicic acid channels, which belong to the NIP subfamily of aquaporins, are responsible for silicic acid uptake. Accumulated experimental results have deepened our understanding of the silicic acid channel for its uptake mechanism, physiological function, localization, and other aspects. However, how the silicic acid channel efficiently and selectively permeates silicic acid remains to be elucidated. Recently reported crystal structures of the silicic acid channel enabled us to discuss the mechanism of silicic acid uptake by plant roots at an atomic level. In this mini-review, we focus on the crystal structures of the silicic acid channel and provide a detailed description of the structural determinants of silicic acid permeation and its transport mechanism, which are crucial for the rational creation of secure and sustainable crops.
Collapse
Affiliation(s)
- Yasunori Saitoh
- Research Institute for Interdisciplinary Science, Okayama University, Okayama, Japan
| | - Michihiro Suga
- Research Institute for Interdisciplinary Science, Okayama University, Okayama, Japan
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| |
Collapse
|
17
|
Yan G, Fu L, Lu X, Xie Y, Zhao J, Tang J, Zhou D. Microalgae tolerant of boron stress and bioresources accumulation during the boron removal process. ENVIRONMENTAL RESEARCH 2022; 208:112639. [PMID: 34995545 DOI: 10.1016/j.envres.2021.112639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Boron (B) industry and consuming produce large amounts of B-containing wastewater. Low tolerance of microorganisms and plants resulted in the biological removal of B was limited. Microalgae show high adaptability in adverse environments. Whether microalgae able to be utilized in B removal meanwhile produce bioresources, and the B tolerant mechanisms and regulation pathway of microalgae are unclear. In this study, the cell growth, B removal, and lipid/starch production of Chlorella regularis under different levels of B stress (0.5, 10, 25, and 50 mg/L) were examined. The mechanisms of signal perception and response were explored by transcriptome and network analysis. Microalgae tolerated 25 mg/L high B stress, cell growth showed no decline and biomass reach up to 4.5 g/L. Microalgae took in B with 3.35 mg/g and bonded them to protein and carbon components in cells, the B removal capability was higher than some special adsorbents. Microalgae produced 188.65 mg/(L∙d) lipids and 305.35 mg/(L∙d) starch. The mitogen-activated protein-kinase signaling pathway was involved in the B tolerance of microalgae and regulated B efflux, glycolysis, and lipid/starch accumulation to relieve B stress. This study provides potential biological technique for B removal in wastewater and promotes new insight into signal role in toxic pollutants biological treatment.
Collapse
Affiliation(s)
- Ge Yan
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, Jilin, China
| | - Liang Fu
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, Jilin, China.
| | - Xin Lu
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, Jilin, China
| | - Yutong Xie
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, Jilin, China
| | - Jiayi Zhao
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, Jilin, China
| | - Jiaqing Tang
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, Jilin, China
| | - Dandan Zhou
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, Jilin, China
| |
Collapse
|
18
|
Luo Y, Ma L, Du W, Yan S, Wang Z, Pang Y. Identification and Characterization of Salt- and Drought-Responsive AQP Family Genes in Medicagosativa L. Int J Mol Sci 2022; 23:ijms23063342. [PMID: 35328763 PMCID: PMC8950044 DOI: 10.3390/ijms23063342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/05/2023] Open
Abstract
Aquaporins (AQP) are distributed ubiquitously in plants, and they play important roles in multiple aspects of plant growth and development, as well as in plant resistance to various environmental stresses. In this study, 43 MsAQP genes were identified in the forage crop Medicago sativa. All the MsAQP proteins were clustered into four subfamilies based on sequence similarity and phylogenetic relationship, including 17 TIPs, 14 NIPs, 9 PIPs and 3 SIPs. Analyses of gene structure and conserved domains indicated that the majority of the deduced MsAQP proteins contained the signature transmembrane domains and the NPA motifs. Analyses on cis-acting elements in the promoter region of MsAQP genes revealed the presence of multiple and diverse stress-responsive and hormone-responsive cis-acting elements. In addition, by analyzing the available and comprehensive gene expression data of M. truncatula, we screened ten representative MtAQP genes that were responsive to NaCl or drought stress. By analyzing the sequence similarity and phylogenetic relationship, we finally identified the corresponding ten salt- or drought-responsive AQP genes in M. sativa, including three MsTIPs, three MsPIPs and four MsNIPs. The qPCRs showed that the relative expression levels of these ten selected MsAQP genes responded differently to NaCl or drought treatment in M. sativa. Gene expression patterns showed that most MsAQP genes were preferentially expressed in roots or in leaves, which may reflect their tissue-specific functions associated with development. Our results lay an important foundation for the future characterization of the functions of MsAQP genes, and provide candidate genes for stress resistance improvement through genetic breeding in M. sativa.
Collapse
Affiliation(s)
- Yijing Luo
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.L.); (S.Y.)
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (L.M.); (W.D.)
| | - Lin Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (L.M.); (W.D.)
| | - Wenxuan Du
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (L.M.); (W.D.)
| | - Su Yan
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.L.); (S.Y.)
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (L.M.); (W.D.)
| | - Zengyu Wang
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.L.); (S.Y.)
- Correspondence: (Z.W.); (Y.P.)
| | - Yongzhen Pang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (L.M.); (W.D.)
- Correspondence: (Z.W.); (Y.P.)
| |
Collapse
|
19
|
Shivaraj SM, Mandlik R, Bhat JA, Raturi G, Elbaum R, Alexander L, Tripathi DK, Deshmukh R, Sonah H. Outstanding Questions on the Beneficial Role of Silicon in Crop Plants. PLANT & CELL PHYSIOLOGY 2022; 63:4-18. [PMID: 34558628 DOI: 10.1093/pcp/pcab145] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Silicon (Si) is widely accepted as a beneficial element for plants. Despite the substantial progress made in understanding Si transport mechanisms and modes of action in plants, several questions remain unanswered. In this review, we discuss such outstanding questions and issues commonly encountered by biologists studying the role of Si in plants in relation to Si bioavailability. In recent years, advances in our understanding of the role of Si-solubilizing bacteria and the efficacy of Si nanoparticles have been made. However, there are many unknown aspects associated with structural and functional features of Si transporters, Si loading into the xylem, and the role of specialized cells like silica cells and compounds preventing Si polymerization in plant tissues. In addition, despite several 1,000 reports showing the positive effects of Si in high as well as low Si-accumulating plant species, the exact roles of Si at the molecular level are yet to be understood. Some evidence suggests that Si regulates hormonal pathways and nutrient uptake, thereby explaining various observed benefits of Si uptake. However, how Si modulates hormonal pathways or improves nutrient uptake remains to be explained. Finally, we summarize the knowledge gaps that will provide a roadmap for further research on plant silicon biology, leading to an exploration of the benefits of Si uptake to enhance crop production.
Collapse
Affiliation(s)
- S M Shivaraj
- National Agri-Food Biotechnology Institute (NABI), Sector 81, SAS Nagar, Mohali, Punjab 140308, India
| | - Rushil Mandlik
- National Agri-Food Biotechnology Institute (NABI), Sector 81, SAS Nagar, Mohali, Punjab 140308, India
- Department of Biotechnology, Panjab University, Chandigarh, Punjab 160014, India
| | - Javaid Akhter Bhat
- National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
| | - Gaurav Raturi
- National Agri-Food Biotechnology Institute (NABI), Sector 81, SAS Nagar, Mohali, Punjab 140308, India
- Department of Biotechnology, Panjab University, Chandigarh, Punjab 160014, India
| | - Rivka Elbaum
- R H Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Lux Alexander
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Bratislava SK-84215, Slovakia
| | - Durgesh Kumar Tripathi
- Amity Institute of Organic Agriculture, Amity University, Noida, Uttar Pradesh 201313, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Sector 81, SAS Nagar, Mohali, Punjab 140308, India
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Sector 81, SAS Nagar, Mohali, Punjab 140308, India
| |
Collapse
|
20
|
Zhao FJ, Tang Z, Song JJ, Huang XY, Wang P. Toxic metals and metalloids: Uptake, transport, detoxification, phytoremediation, and crop improvement for safer food. MOLECULAR PLANT 2022; 15:27-44. [PMID: 34619329 DOI: 10.1016/j.molp.2021.09.016] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 05/20/2023]
Abstract
Agricultural soils are under threat of toxic metal/metalloid contamination from anthropogenic activities, leading to excessive accumulation of arsenic (As), cadmium (Cd), lead (Pb), and mercury (Hg) in food crops that poses significant risks to human health. Understanding how these toxic metals and their methylated species are taken up, translocated, and detoxified is prerequisite to developing strategies to limit their accumulation for safer food. Toxic metals are taken up and transported across different cellular compartments and plant tissues via various transporters for essential or beneficial nutrients, e.g. As by phosphate and silicon transporters, and Cd by manganese (Mn), zinc (Zn), and iron (Fe) transporters. These transport processes are subjected to interactions with nutrients and the regulation at the transcriptional and post-translational levels. Complexation with thiol-rich compounds, such as phytochelatins, and sequestration in the vacuoles are the common mechanisms for detoxification and for limiting their translocation. A number of genes involved in toxic metal uptake, transport, and detoxification have been identified, offering targets for genetic manipulation via gene editing or transgenic technologies. Natural variations in toxic metal accumulation exist within crop germplasm, and some of the quantitative trait loci underlying these variations have been cloned, paving the way for marker-assisted breeding of low metal accumulation crops. Using plants to extract and remove toxic metals from soil is also possible, but this phytoremediation approach requires metal hyperaccumulation for efficiency. Knowledge gaps and future research needs are also discussed.
Collapse
Affiliation(s)
- Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Zhong Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jia-Jun Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xin-Yuan Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Peng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
21
|
Beamer ZG, Routray P, Choi WG, Spangler MK, Lokdarshi A, Roberts DM. Aquaporin family lactic acid channel NIP2;1 promotes plant survival under low oxygen stress in Arabidopsis. PLANT PHYSIOLOGY 2021; 187:2262-2278. [PMID: 34890456 PMCID: PMC8644545 DOI: 10.1093/plphys/kiab196] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/28/2021] [Indexed: 05/05/2023]
Abstract
Under anaerobic stress, Arabidopsis thaliana induces the expression of a collection of core hypoxia genes that encode proteins for an adaptive response. Among these genes is NIP2;1, which encodes a member of the "Nodulin 26-like Intrinsic Protein" (NIP) subgroup of the aquaporin superfamily of membrane channel proteins. NIP2;1 expression is limited to the "anoxia core" region of the root stele under normal growth conditions, but shows substantial induction (up to 1,000-fold by 2-4 h of hypoxia) by low oxygen stress, and accumulation in all root tissues. During hypoxia, NIP2;1-GFP accumulates predominantly on the plasma membrane by 2 h, is distributed between the plasma and internal membranes during sustained hypoxia, and remains elevated in root tissues through 4 h of reoxygenation recovery. In response to hypoxia challenge, T-DNA insertion mutant nip2;1 plants exhibit elevated lactic acid within root tissues, reduced efflux of lactic acid, and reduced acidification of the external medium compared to wild-type plants. Previous biochemical evidence demonstrates that NIP2;1 has lactic acid channel activity, and our work supports the hypothesis that NIP2;1 prevents lactic acid toxicity by facilitating release of cellular lactic acid from the cytosol to the apoplast, supporting eventual efflux to the rhizosphere. In evidence, nip2;1 plants demonstrate poorer survival during argon-induced hypoxia stress. Expressions of the ethanolic fermentation transcript Alcohol Dehydrogenase1 and the core hypoxia-induced transcript Alanine Aminotransferase1 are elevated in nip2;1, and expression of the Glycolate Oxidase3 transcript is reduced, suggesting NIP2;1 lactic acid efflux regulates other pyruvate and lactate metabolism pathways.
Collapse
Affiliation(s)
- Zachary G Beamer
- Department of Biochemistry and Cellular, and Molecular Biology, the University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | - Won-Gyu Choi
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, Nevada 89557, USA
| | - Margaret K Spangler
- Department of Biochemistry and Cellular, and Molecular Biology, the University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Ansul Lokdarshi
- Department of Biochemistry and Cellular, and Molecular Biology, the University of Tennessee, Knoxville, Tennessee 37996, USA
| | | |
Collapse
|
22
|
Yamaji N, Ma JF. Metalloid transporters and their regulation in plants. PLANT PHYSIOLOGY 2021; 187:1929-1939. [PMID: 35235670 PMCID: PMC8644474 DOI: 10.1093/plphys/kiab326] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/21/2021] [Indexed: 05/27/2023]
Abstract
Transport of metalloids including B, Si, and As is mediated by a combination of channels and efflux transporters in plants, which are strictly regulated in response to environmental changes.
Collapse
Affiliation(s)
- Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| |
Collapse
|
23
|
van den Berg B, Pedebos C, Bolla JR, Robinson CV, Baslé A, Khalid S. Structural Basis for Silicic Acid Uptake by Higher Plants. J Mol Biol 2021; 433:167226. [PMID: 34487790 DOI: 10.1016/j.jmb.2021.167226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/11/2021] [Accepted: 08/28/2021] [Indexed: 11/18/2022]
Abstract
Many of the world's most important food crops such as rice, barley and maize accumulate silicon (Si) to high levels, resulting in better plant growth and crop yields. The first step in Si accumulation is the uptake of silicic acid by the roots, a process mediated by the structurally uncharacterised NIP subfamily of aquaporins, also named metalloid porins. Here, we present the X-ray crystal structure of the archetypal NIP family member from Oryza sativa (OsNIP2;1). The OsNIP2;1 channel is closed in the crystal structure by the cytoplasmic loop D, which is known to regulate channel opening in classical plant aquaporins. The structure further reveals a novel, five-residue extracellular selectivity filter with a large diameter. Unbiased molecular dynamics simulations show a rapid opening of the channel and visualise how silicic acid interacts with the selectivity filter prior to transmembrane diffusion. Our results will enable detailed structure-function studies of metalloid porins, including the basis of their substrate selectivity.
Collapse
Affiliation(s)
- Bert van den Berg
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK. https://twitter.com/ConradoPedebos
| | - Conrado Pedebos
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK; The Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Jani R Bolla
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK; The Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford OX1 3QU, UK
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK; The Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford OX1 3QU, UK
| | - Arnaud Baslé
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Syma Khalid
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK; The Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK. https://twitter.com/ProfSyk
| |
Collapse
|
24
|
Lv A, Wen W, Fan N, Su L, Zhou P, An Y. Dehydrin MsDHN1 improves aluminum tolerance of alfalfa (Medicago sativa L.) by affecting oxalate exudation from root tips. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:441-458. [PMID: 34363255 DOI: 10.1111/tpj.15451] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 07/21/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
A SK3 -type dehydrin MsDHN1 was cloned from alfalfa (Medicago sativa L.). Its function and gene regulatory pathways were studied via overexpression and suppression of MsDHN1 in alfalfa seedlings or hairy roots. The results showed that MsDHN1 is a typical intrinsically disordered protein that exists in the form of monomers and homodimers in alfalfa. The plant growth rates increased as a result of MsDHN1 overexpression (MsDHN1-OE) and decreased upon MsDHN1 suppression (MsDHN1-RNAi) in seedlings or hairy roots of alfalfa compared with the wild-type or the vector line under Al stress. MsDHN1 interacting with aquaporin (AQP) MsPIP2;1 and MsTIP1;1 positively affected oxalate secretion from root tips and Al accumulation in root tips. MsABF2 was proven to be an upstream transcription factor of MsDHN1 and activated MsDHN1 expression by binding to the ABRE element of the MsDHN1 promoter. The transcriptional regulation of MsABF2 on MsDHN1 was dependent on the abscisic acid signaling pathway. These results indicate that MsDHN1 can increase alfalfa tolerance to Al stress via increasing oxalate secretion from root tips, which may involve in the interaction of MsDHN1 with two AQP.
Collapse
Affiliation(s)
- Aimin Lv
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wuwu Wen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Nana Fan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liantai Su
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Peng Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuan An
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture, Shanghai, 201101, China
| |
Collapse
|
25
|
Onuh AF, Miwa K. Regulation, Diversity and Evolution of Boron Transporters in Plants. PLANT & CELL PHYSIOLOGY 2021; 62:590-599. [PMID: 33570563 DOI: 10.1093/pcp/pcab025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Boron (B) is an essential trace element in plants, and borate cross-linking of pectic polysaccharide rhamnogalacturonan-II (RG-II) in cell walls is required for normal cell growth. High concentrations of B are toxic to cells. Therefore, plants need to control B transport to respond to B conditions in the environment. Over the past two decades, genetic analyses of Arabidopsis thaliana have revealed that B transport is governed by two types of membrane transport molecules: NIPs (nodulin-26-like intrinsic proteins), which facilitate boric acid permeation, and BORs, which export borate from cells. In this article, we review recent findings on the (i) regulation at the cell level, (ii) diversity among plant species and (iii) evolution of these B transporters in plants. We first describe the systems regulating these B transporters at the cell level, focusing on the molecular mechanisms underlying the polar localization of proteins and B-dependent expression, as well as their physiological significance in A. thaliana. Then, we examine the presence of homologous genes and characterize the functions of NIPs and BORs in B homeostasis, in a wide range of plant species, including Brassica napus, Oryza sativa and Zea mays. Finally, we discuss the evolutionary aspects of NIPs and BORs as B transporters, and the possible relationship between the diversification of B transport and the occurrence of RG-II in plants. This review considers the sophisticated systems of B transport that are conserved among various plant species, which were established to meet mineral nutrient requirements.
Collapse
Affiliation(s)
- Amarachukwu Faith Onuh
- Division of Biosphere Science, Graduate School of Environmental Science, Hokkaido University, North-10, West-5, Kita-ku, Sapporo, 060-0810 Japan
| | - Kyoko Miwa
- Division of Biosphere Science, Graduate School of Environmental Science, Hokkaido University, North-10, West-5, Kita-ku, Sapporo, 060-0810 Japan
| |
Collapse
|
26
|
AQPX-cluster aquaporins and aquaglyceroporins are asymmetrically distributed in trypanosomes. Commun Biol 2021; 4:953. [PMID: 34376792 PMCID: PMC8355241 DOI: 10.1038/s42003-021-02472-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023] Open
Abstract
Major Intrinsic Proteins (MIPs) are membrane channels that permeate water and other small solutes. Some trypanosomatid MIPs mediate the uptake of antiparasitic compounds, placing them as potential drug targets. However, a thorough study of the diversity of these channels is still missing. Here we place trypanosomatid channels in the sequence-function space of the large MIP superfamily through a sequence similarity network. This analysis exposes that trypanosomatid aquaporins integrate a distant cluster from the currently defined MIP families, here named aquaporin X (AQPX). Our phylogenetic analyses reveal that trypanosomatid MIPs distribute exclusively between aquaglyceroporin (GLP) and AQPX, being the AQPX family expanded in the Metakinetoplastina common ancestor before the origin of the parasitic order Trypanosomatida. Synteny analysis shows how African trypanosomes specifically lost AQPXs, whereas American trypanosomes specifically lost GLPs. AQPXs diverge from already described MIPs on crucial residues. Together, our results expose the diversity of trypanosomatid MIPs and will aid further functional, structural, and physiological research needed to face the potentiality of the AQPXs as gateways for trypanocidal drugs.
Collapse
|
27
|
Coskun D, Deshmukh R, Shivaraj SM, Isenring P, Bélanger RR. Lsi2: A black box in plant silicon transport. PLANT AND SOIL 2021; 466:1-20. [PMID: 34720209 PMCID: PMC8550040 DOI: 10.1007/s11104-021-05061-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/22/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Silicon (Si) is widely considered a non-essential but beneficial element for higher plants, providing broad protection against various environmental stresses (both biotic and abiotic), particularly in species that can readily absorb the element. Two plasma-membrane proteins are known to coordinate the radial transport of Si (in the form of Si(OH)4) from soil to xylem within roots: the influx channel Lsi1 and the efflux transporter Lsi2. From a structural and mechanistic perspective, much more is known about Lsi1 (a member of the NIP-III subgroup of the Major Intrinsic Proteins) compared to Lsi2 (a putative Si(OH)4/H+ antiporter, with some homology to bacterial anion transporters). SCOPE Here, we critically review the current state of understanding regarding the physiological role and molecular characteristics of Lsi2. We demonstrate that the structure-function relationship of Lsi2 is largely uncharted and that the standing transport model requires much better supportive evidence. We also provide (to our knowledge) the most current and extensive phylogenetic analysis of Lsi2 from all fully sequenced higher-plant genomes. We end by suggesting research directions and hypotheses to elucidate the properties of Lsi2. CONCLUSIONS Given that Lsi2 is proposed to mediate xylem Si loading and thus root-to-shoot translocation and biosilicification, it is imperative that the field of Si transport focus its efforts on a better understanding of this important topic. With this review, we aim to stimulate and advance research in the field of Si transport and thus better exploit Si to improve crop resilience and agricultural output. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11104-021-05061-1.
Collapse
Affiliation(s)
- Devrim Coskun
- Département de Phytologie, Faculté Des Sciences de L’Agriculture Et de L’Alimentation (FSAA), Université Laval, Québec, Québec Canada
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - S. M. Shivaraj
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
- CSIR-National Chemical Laboratory, Pune, India
| | - Paul Isenring
- Département de Médecine, Faculté de Médecine, Université Laval, Québec, Québec Canada
| | - Richard R. Bélanger
- Département de Phytologie, Faculté Des Sciences de L’Agriculture Et de L’Alimentation (FSAA), Université Laval, Québec, Québec Canada
| |
Collapse
|
28
|
Zhang M, Liu R, Liu H, Yang H, Li X, Wang P, Zhu F, Xu R, Xue S, Cheng Y. Citrus NIP5;1 aquaporin regulates cell membrane water permeability and alters PIPs plasma membrane localization. PLANT MOLECULAR BIOLOGY 2021; 106:449-462. [PMID: 34173150 DOI: 10.1007/s11103-021-01164-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/11/2021] [Indexed: 05/29/2023]
Abstract
The ER or donut-like structures localized aquaporin NIP5;1, which interacts with PIPs and alters their localization from plasma membrane to donut-like structures, regulates water permeability. NOD26-like intrinsic proteins (NIPs) play important roles in nutrient uptake and response to various stresses. However, there have been few studies of their functions in water transportation in citrus. Here, we demonstrate the functions of a novel citrus NIP aquaporin (CsNIP5;1) via multiple physiological and biochemical experiments. CsNIP5;1 showed high water permeability when expressed in Xenopus laevis oocytes and yeast. However, subcellular localization assays showed that this protein was localized in the endoplasmic reticulum (ER) or donut-like structures in citrus callus and tobacco leaf. Meanwhile, overexpression of CsNIP5;1 led to a reduction in the water permeability of citrus callus. Protein-protein interaction experiments and subcellular localization assays further revealed that CsNIP5;1 physically interacted with PIPs (CsPIP1;1 and AtPIP2;1), which altered their subcellular localization from the plasma membrane to donut-like structures. Together, CsNIP5;1 was identified as a good water channel when expressed in oocytes and yeast. Meanwhile, CsNIP5;1 participated in the regulation of water permeability of citrus callus, which may be associated with CsNIP5;1-induced re-localization of water channels PIPs. In summary, these results provide new insights into the regulatory mechanism of AQPs-mediated water diffusion.
Collapse
Affiliation(s)
- Mingfei Zhang
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Ruilian Liu
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Hai Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hongbin Yang
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xin Li
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Ping Wang
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Feng Zhu
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Rangwei Xu
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Shaowu Xue
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yunjiang Cheng
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
29
|
Tyerman SD, McGaughey SA, Qiu J, Yool AJ, Byrt CS. Adaptable and Multifunctional Ion-Conducting Aquaporins. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:703-736. [PMID: 33577345 DOI: 10.1146/annurev-arplant-081720-013608] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Aquaporins function as water and neutral solute channels, signaling hubs, disease virulence factors, and metabolon components. We consider plant aquaporins that transport ions compared to some animal counterparts. These are candidates for important, as yet unidentified, cation and anion channels in plasma, tonoplast, and symbiotic membranes. For those individual isoforms that transport ions, water, and gases, the permeability spans 12 orders of magnitude. This requires tight regulation of selectivity via protein interactions and posttranslational modifications. A phosphorylation-dependent switch between ion and water permeation in AtPIP2;1 might be explained by coupling between the gates of the four monomer water channels and the central pore of the tetramer. We consider the potential for coupling between ion and water fluxes that could form the basis of an electroosmotic transducer. A grand challenge in understanding the roles of ion transporting aquaporins is their multifunctional modes that are dependent on location, stress, time, and development.
Collapse
Affiliation(s)
- Stephen D Tyerman
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia 5064, Australia; ,
| | - Samantha A McGaughey
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, Australian National University, Acton, Australian Capital Territory 0200, Australia; ,
| | - Jiaen Qiu
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia 5064, Australia; ,
| | - Andrea J Yool
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5005, Australia;
| | - Caitlin S Byrt
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, Australian National University, Acton, Australian Capital Territory 0200, Australia; ,
| |
Collapse
|
30
|
Plant transporters involved in combating boron toxicity: beyond 3D structures. Biochem Soc Trans 2021; 48:1683-1696. [PMID: 32779723 PMCID: PMC7458394 DOI: 10.1042/bst20200164] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/12/2022]
Abstract
Membrane transporters control the movement and distribution of solutes, including the disposal or compartmentation of toxic substances that accumulate in plants under adverse environmental conditions. In this minireview, in the light of the approaching 100th anniversary of unveiling the significance of boron to plants (K. Warington, 1923; Ann. Bot.37, 629) we discuss the current state of the knowledge on boron transport systems that plants utilise to combat boron toxicity. These transport proteins include: (i) nodulin-26-like intrinsic protein-types of aquaporins, and (ii) anionic efflux (borate) solute carriers. We describe the recent progress made on the structure–function relationships of these transport proteins and point out that this progress is integral to quantitative considerations of the transporter's roles in tissue boron homeostasis. Newly acquired knowledge at the molecular level has informed on the transport mechanics and conformational states of boron transport systems that can explain their impact on cell biology and whole plant physiology. We expect that this information will form the basis for engineering transporters with optimised features to alleviate boron toxicity tolerance in plants exposed to suboptimal soil conditions for sustained food production.
Collapse
|
31
|
Catalán-García M, Chauvigné F, Stavang JA, Nilsen F, Cerdà J, Finn RN. Lineage-level divergence of copepod glycerol transporters and the emergence of isoform-specific trafficking regulation. Commun Biol 2021; 4:643. [PMID: 34059783 PMCID: PMC8167128 DOI: 10.1038/s42003-021-01921-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/26/2021] [Indexed: 02/04/2023] Open
Abstract
Transmembrane conductance of small uncharged solutes such as glycerol typically occurs through aquaglyceroporins (Glps), which are commonly encoded by multiple genes in metazoan organisms. To date, however, little is known concerning the evolution of Glps in Crustacea or what forces might underly such apparent gene redundancy. Here, we show that Glp evolution in Crustacea is highly divergent, ranging from single copy genes in species of pedunculate barnacles, tadpole shrimps, isopods, amphipods and decapods to up to 10 copies in diplostracan water fleas although with monophyletic origins in each lineage. By contrast the evolution of Glps in Copepoda appears to be polyphyletic, with surprisingly high rates of gene duplication occurring in a genera- and species-specific manner. Based upon functional experiments on the Glps from a parasitic copepod (Lepeophtheirus salmonis), we show that such lineage-level gene duplication and splice variation is coupled with a high rate of neofunctionalization. In the case of L. salmonis, splice variation of a given gene resulted in tissue- or sex-specific expression of the channels, with each variant evolving unique sites for protein kinase C (PKC)- or protein kinase A (PKA)-regulation of intracellular membrane trafficking. The combined data sets thus reveal that mutations favouring a high fidelity control of intracellular trafficking regulation can be a selection force for the evolution and retention of multiple Glps in copepods.
Collapse
Affiliation(s)
- Marc Catalán-García
- Department of Biological Sciences, Bergen High Technology Centre, University of Bergen, Bergen, Norway
- IRTA-Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Spain
| | - François Chauvigné
- IRTA-Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Spain
| | - Jon Anders Stavang
- Department of Biological Sciences, Bergen High Technology Centre, University of Bergen, Bergen, Norway
| | - Frank Nilsen
- Department of Biological Sciences, Bergen High Technology Centre, University of Bergen, Bergen, Norway
| | - Joan Cerdà
- IRTA-Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Spain.
| | - Roderick Nigel Finn
- Department of Biological Sciences, Bergen High Technology Centre, University of Bergen, Bergen, Norway.
- IRTA-Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Spain.
| |
Collapse
|
32
|
Deng F, Zeng F, Chen G, Feng X, Riaz A, Wu X, Gao W, Wu F, Holford P, Chen ZH. Metalloid hazards: From plant molecular evolution to mitigation strategies. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124495. [PMID: 33187800 DOI: 10.1016/j.jhazmat.2020.124495] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/22/2020] [Accepted: 11/03/2020] [Indexed: 05/25/2023]
Abstract
Metalloids such as boron and silicon are key elements for plant growth and crop productivity. However, toxic metalloids such as arsenic are increasing in the environment due to inputs from natural sources and human activities. These hazardous metalloids can cause serious health risks to humans and animals if they enter the food chain. Plants have developed highly regulated mechanisms to alleviate the toxicity of metalloids during their 500 million years of evolution. A better understanding the molecular mechanisms underlying the transport and detoxification of toxic metalloids in plants will shed light on developing mitigation strategies. Key transporters and regulatory proteins responsive to toxic metalloids have been identified through evolutionary and molecular analyses. Moreover, knowledge of the regulatory proteins and their pathways can be used in the breeding of crops with lower accumulation of metalloids. These findings can also assist phytoremediation by the exploration of plants such as fern species that hyperaccumulate metalloids from soils and water, and can be used to engineer plants with elevated uptake and storage capacity of toxic metalloids. In summary, there are solutions to remediate contamination due to toxic metalloids by combining the research advances and industrial technologies with agricultural and environmental practices.
Collapse
Affiliation(s)
- Fenglin Deng
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Fanrong Zeng
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China; College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Guang Chen
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China; College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xue Feng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Adeel Riaz
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Xiaojian Wu
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Wei Gao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China
| | - Feibo Wu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Paul Holford
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, Australia; Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia.
| |
Collapse
|
33
|
Chen X, Jiang W, Tong T, Chen G, Zeng F, Jang S, Gao W, Li Z, Mak M, Deng F, Chen ZH. Molecular Interaction and Evolution of Jasmonate Signaling With Transport and Detoxification of Heavy Metals and Metalloids in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:665842. [PMID: 33936156 PMCID: PMC8079949 DOI: 10.3389/fpls.2021.665842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
An increase in environmental pollution resulting from toxic heavy metals and metalloids [e.g., cadmium (Cd), arsenic (As), and lead (Pb)] causes serious health risks to humans and animals. Mitigation strategies need to be developed to reduce the accumulation of the toxic elements in plant-derived foods. Natural and genetically-engineered plants with hyper-tolerant and hyper-accumulating capacity of toxic minerals are valuable for phytoremediation. However, the molecular mechanisms of detoxification and accumulation in plants have only been demonstrated in very few plant species such as Arabidopsis and rice. Here, we review the physiological and molecular aspects of jasmonic acid and the jasmonate derivatives (JAs) in response to toxic heavy metals and metalloids. Jasmonates have been identified in, limiting the accumulation and enhancing the tolerance to the toxic elements, by coordinating the ion transport system, the activity of antioxidant enzymes, and the chelating capacity in plants. We also propose the potential involvement of Ca2+ signaling in the stress-induced production of jasmonates. Comparative transcriptomics analyses using the public datasets reveal the key gene families involved in the JA-responsive routes. Furthermore, we show that JAs may function as a fundamental phytohormone that protects plants from heavy metals and metalloids as demonstrated by the evolutionary conservation and diversity of these gene families in a large number of species of the major green plant lineages. Using ATP-Binding Cassette G (ABCG) transporter subfamily of six representative green plant species, we propose that JA transporters in Subgroup 4 of ABCGs may also have roles in heavy metal detoxification. Our paper may provide guidance toward the selection and development of suitable plant and crop species that are tolerant to toxic heavy metals and metalloids.
Collapse
Affiliation(s)
- Xuan Chen
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Wei Jiang
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Tao Tong
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Guang Chen
- Central Laboratory, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Fanrong Zeng
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Sunghoon Jang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Wei Gao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China
| | - Zhen Li
- School of Agriculture, Jinhua Polytechnic, Jinhua, China
| | - Michelle Mak
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Fenglin Deng
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
34
|
Jia Z, Bienert MD, von Wirén N, Bienert GP. Genome-wide association mapping identifies HvNIP2;2/HvLsi6 accounting for efficient boron transport in barley. PHYSIOLOGIA PLANTARUM 2021; 171:809-822. [PMID: 33481273 DOI: 10.1111/ppl.13340] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/18/2020] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
Boron (B) is an essential mineral element for plant growth, and the seed B pool of crops can be crucial when seedlings need to establish on low-B soils. To date, it is poorly understood how B accumulation in grain crops is genetically controlled. Here, we assessed the genotypic variation of the B concentration in grains of a spring barley (Hordeum vulgare L.) association panel that represents broad genetic diversity. We found a large genetic variation of the grain B concentration and detected in total 23 quantitative trait loci (QTLs) using genome-wide association mapping. HvNIP2;2/HvLsi6, encoding a potential B-transporting membrane protein, mapped closely to a major-effect QTL accounting for the largest proportion of grain B variation. Based on transport studies using heterologous expression systems and gene expression analysis, we demonstrate that HvNIP2;2/HvLsi6 represents a functional B channel and that expression variation in its transcript level associates with root and shoot B concentrations as well as with root dry mass formation under B-deficient conditions.
Collapse
Affiliation(s)
- Zhongtao Jia
- Department of Physiology and Cell Biology, Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Manuela Désirée Bienert
- Department of Physiology and Cell Biology, Metalloid Transport, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- Crop Physiology, Department of Molecular Life Sciences, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Nicolaus von Wirén
- Department of Physiology and Cell Biology, Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Gerd Patrick Bienert
- Department of Physiology and Cell Biology, Metalloid Transport, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- Crop Physiology, Department of Molecular Life Sciences, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
35
|
Li Q, Tong T, Jiang W, Cheng J, Deng F, Wu X, Chen ZH, Ouyang Y, Zeng F. Highly Conserved Evolution of Aquaporin PIPs and TIPs Confers Their Crucial Contribution to Flowering Process in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:761713. [PMID: 35058944 PMCID: PMC8764411 DOI: 10.3389/fpls.2021.761713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/22/2021] [Indexed: 05/10/2023]
Abstract
Flowering is the key process for the sexual reproduction in seed plants. In gramineous crops, the process of flowering, which includes the actions of both glume opening and glume closing, is directly driven by the swelling and withering of lodicules due to the water flow into and out of lodicule cells. All these processes are considered to be controlled by aquaporins, which are the essential transmembrane proteins that facilitate the transport of water and other small molecules across the biological membranes. In the present study, the evolution of aquaporins and their contribution to flowering process in plants were investigated via an integration of genome-wide analysis and gene expression profiling. Across the barley genome, we found that HvTIP1;1, HvTIP1;2, HvTIP2;3, and HvPIP2;1 were the predominant aquaporin genes in lodicules and significantly upregulated in responding to glume opening and closing, suggesting the importance of them in the flowering process of barley. Likewise, the putative homologs of the above four aquaporin genes were also abundantly expressed in lodicules of the other monocots like rice and maize and in petals of eudicots like cotton, tobacco, and tomato. Furthermore, all of them were mostly upregulated in responding to the process of floret opening, indicating a conserved function of these aquaporin proteins in plant flowering. The phylogenetic analysis based on the OneKP database revealed that the homologs of TIP1;1, TIP1;2, TIP2;3, and PIP2;1 were highly conserved during the evolution, especially in the angiosperm species, in line with their conserved function in controlling the flowering process. Taken together, it could be concluded that the highly evolutionary conservation of TIP1;1, TIP1;2, TIP2;3 and PIP2;1 plays important roles in the flowering process for both monocots and eudicots.
Collapse
Affiliation(s)
- Qi Li
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Tao Tong
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Wei Jiang
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Jianhui Cheng
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Fenglin Deng
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Xiaojian Wu
- Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Younan Ouyang
- China National Rice Research Institute, Hangzhou, China
| | - Fanrong Zeng
- Institute of Crop Science, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
- *Correspondence: Fanrong Zeng,
| |
Collapse
|
36
|
Hodson MJ, Evans DE. Aluminium-silicon interactions in higher plants: an update. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6719-6729. [PMID: 31950161 PMCID: PMC7709911 DOI: 10.1093/jxb/eraa024] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/13/2020] [Indexed: 05/04/2023]
Abstract
Aluminium (Al) and silicon (Si) are abundant in soils, but their availability for plant uptake is limited by low solubility. However, Al toxicity is a major problem in naturally occurring acid soils and in soils affected by acidic precipitation. When, in 1995, we reviewed this topic for the Journal of Experimental Botany, it was clear that under certain circumstances soluble Si could ameliorate the toxic effects of Al, an effect mirrored in organisms beyond the plant kingdom. In the 25 years since our review, it has become evident that the amelioration phenomenon occurs in the root apoplast, with the formation of hydroxyaluminosilicates being part of the mechanism. A much better knowledge of the molecular basis for Si and Al uptake by plants and of Al toxicity mechanisms has been developed. However, relating this work to amelioration by Si is at an early stage. It is now clear that co-deposition of Al and Si in phytoliths is a fairly common phenomenon in the plant kingdom, and this may be important in detoxification of Al. Relatively little work on Al-Si interactions in field situations has been done in the last 25 years, and this is a key area for future development.
Collapse
Affiliation(s)
- Martin J Hodson
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Headington, Oxford, UK
| | - David E Evans
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Headington, Oxford, UK
| |
Collapse
|
37
|
Corrigendum. THE NEW PHYTOLOGIST 2020; 228:1690. [PMID: 33460125 DOI: 10.1111/nph.16466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 01/31/2020] [Indexed: 06/12/2023]
|
38
|
Nawaz MA, Azeem F, Zakharenko AM, Lin X, Atif RM, Baloch FS, Chan TF, Chung G, Ham J, Sun S, Golokhvast KS. In-silico Exploration of Channel Type and Efflux Silicon Transporters and Silicification Proteins in 80 Sequenced Viridiplantae Genomes. PLANTS 2020; 9:plants9111612. [PMID: 33233677 PMCID: PMC7709012 DOI: 10.3390/plants9111612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/29/2022]
Abstract
Silicon (Si) accumulation protects plants from biotic and abiotic stresses. It is transported and distributed within the plant body through a cooperative system of channel type (e.g., OsLsi1) and efflux (Lsi2s e.g., OsLsi2) Si transporters (SITs) that belong to Noduline-26 like intrinsic protein family of aquaporins and an uncharacterized anion transporter family, respectively. Si is deposited in plant tissues as phytoliths and the process is known as biosilicification but the knowledge about the proteins involved in this process is limited. In the present study, we explored channel type SITs and Lsi2s, and siliplant1 protein (Slp1) in 80 green plant species. We found 80 channel type SITs and 133 Lsi2s. The channel type SITs characterized by the presence of two NPA motifs, GSGR or STAR selectivity filter, and 108 amino acids between two NPA motifs were absent from Chlorophytes, while Streptophytes evolved two different types of channel type SITs with different selectivity filters. Both channel type SITs and Lsi2s evolved two types of gene structures each, however, Lsi2s are ancient and were also found in Chlorophyta. Homologs of Slp1 (225) were present in almost all Streptophytes regardless of their Si accumulation capacity. In Si accumulator plant species, the Slp1s were characterized by the presence of H, D-rich domain, P, K, E-rich domain, and P, T, Y-rich domain, while moderate Si accumulators lacked H, D-rich domain and P, T, Y-rich domains. The digital expression analysis and coexpression networks highlighted the role of channel type and Lsi2s, and how Slp1 homologs were ameliorating plants’ ability to withstand different stresses by co-expressing with genes related to structural integrity and signaling. Together, the in-silico exploration made in this study increases our knowledge of the process of biosilicification in plants.
Collapse
Affiliation(s)
- Muhammad Amjad Nawaz
- Laboratory of Bio-Economics and Biotechnology, Department of Bio-Economics and Food Safety, School of Economics and Management, Far Eastern Federal University, 690950 Vladivostok, Russia;
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan;
| | | | - Xiao Lin
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong SAR, Hong Kong 999077, China; (X.L.); (T.-F.C.)
| | - Rana Muhammad Atif
- US-Pakistan Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Faheem Shehzad Baloch
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas 58140, Turkey;
| | - Ting-Fung Chan
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong SAR, Hong Kong 999077, China; (X.L.); (T.-F.C.)
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Chonnam 59626, Korea;
| | - Junghee Ham
- Department of Health Policy and Management, Wonkwang University, Iksan, Jeonbuk 54538, Korea;
| | - Sangmi Sun
- Department of Biotechnology, Chonnam National University, Chonnam 59626, Korea;
- Correspondence: (S.S.); (K.S.G.)
| | - Kirill S. Golokhvast
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 42, 44 Bolshaya Morskaya Street, 190000 St. Petersburg, Russia;
- Education and Scientific Center of Nanotechnology, Far Eastern Federal University, 690950 Vladivostok, Russia
- Pacific Geographical Institute, FEB RAS, 7 Radio street, 690014 Vladivostok, Russia
- Correspondence: (S.S.); (K.S.G.)
| |
Collapse
|
39
|
Unravelling the Complex Duplication History of Deuterostome Glycerol Transporters. Cells 2020; 9:cells9071663. [PMID: 32664262 PMCID: PMC7408487 DOI: 10.3390/cells9071663] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/12/2022] Open
Abstract
Transmembrane glycerol transport is an ancient biophysical property that evolved in selected subfamilies of water channel (aquaporin) proteins. Here, we conducted broad level genome (>550) and transcriptome (>300) analyses to unravel the duplication history of the glycerol-transporting channels (glps) in Deuterostomia. We found that tandem duplication (TD) was the major mechanism of gene expansion in echinoderms and hemichordates, which, together with whole genome duplications (WGD) in the chordate lineage, continued to shape the genomic repertoires in craniates. Molecular phylogenies indicated that aqp3-like and aqp13-like channels were the probable stem subfamilies in craniates, with WGD generating aqp9 and aqp10 in gnathostomes but aqp7 arising through TD in Osteichthyes. We uncovered separate examples of gene translocations, gene conversion, and concerted evolution in humans, teleosts, and starfishes, with DNA transposons the likely drivers of gene rearrangements in paleotetraploid salmonids. Currently, gene copy numbers and BLAST are poor predictors of orthologous relationships due to asymmetric glp gene evolution in the different lineages. Such asymmetries can impact estimations of divergence times by millions of years. Experimental investigations of the salmonid channels demonstrated that approximately half of the 20 ancestral paralogs are functional, with neofunctionalization occurring at the transcriptional level rather than the protein transport properties. The combined findings resolve the origins and diversification of glps over >800 million years old and thus form the novel basis for proposing a pandeuterostome glp gene nomenclature.
Collapse
|
40
|
Becker M, Ngo NS, Schenk MKA. Silicon reduces the iron uptake in rice and induces iron homeostasis related genes. Sci Rep 2020; 10:5079. [PMID: 32193423 PMCID: PMC7081191 DOI: 10.1038/s41598-020-61718-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 03/02/2020] [Indexed: 12/13/2022] Open
Abstract
Gramineous plants take up silicon (Si) that enhances the formation of exodermal Casparian bands (CBs) in the roots of rice (Oryza sativa L.). Furthermore, it is known that Si supply reduces the concentration of Fe in rice shoots. We hypothesized that the Si-enhanced CB formation in the exodermis reduces in the flux of Fe in the apoplast and the uptake of Fe loaded deoxymugineic acid. Thus, the effect of silicic acid supply at varied Fe concentrations and Fe forms was investigated in nutrient solution. The Fe concentrations in the shoot and apoplastic Fe concentrations in the root were determined and an Affymetrix GeneChip experiment was carried out together with qRT-PCR measurements for observation of transcriptomic reactions. Additionally, the Fe uptake of an overexpression mutant of OsABCG25 with an enhanced exodermal CB formation was investigated. The application of silicic acid reduced the Fe concentrations in shoot DM independently of the supplied Fe concentration and Fe form. As a reaction to the Fe shortage, the full cascade of Fe-homeostasis-related genes in the roots was upregulated. Silicic acid supply also decreased the apoplastic Fe concentrations in roots. In addition, an overexpression mutant of OsABCG25 with an enhanced CB formation showed a reduced uptake of Fe in excess Fe conditions. The results suggest that the Si-induced CB formation in the exodermis hampers the flux of Fe into the apoplast of the cortex and, thus, Fe uptake of rice grown in nutrient solution which is reflected in the upregulation of Fe homeostasis-related genes.
Collapse
Affiliation(s)
- Martin Becker
- Institute of Plant Nutrition, Faculty of Natural Sciences, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany.
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Plant Reproductive Biology; Corrensstr. 3; D-06466 Seeland/OT, Gatersleben, Germany.
| | - Ngoc Sang Ngo
- Institute of Plant Nutrition, Faculty of Natural Sciences, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Manfred Karl Adolf Schenk
- Institute of Plant Nutrition, Faculty of Natural Sciences, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| |
Collapse
|
41
|
Arsenic Uptake and Accumulation Mechanisms in Rice Species. PLANTS 2020; 9:plants9020129. [PMID: 31972985 PMCID: PMC7076356 DOI: 10.3390/plants9020129] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 12/15/2022]
Abstract
Rice consumption is a source of arsenic (As) exposure, which poses serious health risks. In this study, the accumulation of As in rice was studied. Research shows that As accumulation in rice in Taiwan and Bangladesh is higher than that in other countries. In addition, the critical factors influencing the uptake of As into rice crops are defined. Furthermore, determining the feasibility of using effective ways to reduce the accumulation of As in rice was studied. AsV and AsIII are transported to the root through phosphate transporters and nodulin 26-like intrinsic channels. The silicic acid transporter may have a vital role in the entry of methylated As, dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA), into the root. Amongst As species, DMA(V) is particularly mobile in plants and can easily transfer from root to shoot. The OsPTR7 gene has a key role in moving DMA in the xylem or phloem. Soil properties can affect the uptake of As by plants. An increase in organic matter and in the concentrations of sulphur, iron, and manganese reduces the uptake of As by plants. Amongst the agronomic strategies in diminishing the uptake and accumulation of As in rice, using microalgae and bacteria is the most efficient.
Collapse
|
42
|
Molecular and Functional Characterization of Grapevine NIPs through Heterologous Expression in aqy-Null Saccharomyces cerevisiae. Int J Mol Sci 2020; 21:ijms21020663. [PMID: 31963923 PMCID: PMC7013980 DOI: 10.3390/ijms21020663] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/13/2020] [Accepted: 01/17/2020] [Indexed: 11/17/2022] Open
Abstract
Plant Nodulin 26-like Intrinsic Proteins (NIPs) are multifunctional membrane channels of the Major Intrinsic Protein (MIP) family. Unlike other homologs, they have low intrinsic water permeability. NIPs possess diverse substrate selectivity, ranging from water to glycerol and to other small solutes, depending on the group-specific amino acid composition at aromatic/Arg (ar/R) constriction. We cloned three NIPs (NIP1;1, NIP5;1, and NIP6;1) from grapevine (cv. Touriga Nacional). Their expression in the membrane of aqy-null Saccharomyces cerevisiae enabled their functional characterization for water and glycerol transport through stopped-flow spectroscopy. VvTnNIP1;1 demonstrated high water as well as glycerol permeability, whereas VvTnNIP6;1 was impermeable to water but presented high glycerol permeability. Their transport activities were declined by cytosolic acidification, implying that internal-pH can regulate NIPs gating. Furthermore, an extension of C-terminal in VvTnNIP6;1M homolog, led to improved channel activity, suggesting that NIPs gating is putatively regulated by C-terminal. Yeast growth assays in the presence of diverse substrates suggest that the transmembrane flux of metalloids (As, B, and Se) and the heavy metal (Cd) are facilitated through grapevine NIPs. This is the first molecular and functional characterization of grapevine NIPs, providing crucial insights into understanding their role for uptake and translocation of small solutes, and extrusion of toxic compounds in grapevine.
Collapse
|
43
|
Hu B, Deng F, Chen G, Chen X, Gao W, Long L, Xia J, Chen ZH. Evolution of Abscisic Acid Signaling for Stress Responses to Toxic Metals and Metalloids. FRONTIERS IN PLANT SCIENCE 2020; 11:909. [PMID: 32765540 PMCID: PMC7379394 DOI: 10.3389/fpls.2020.00909] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/03/2020] [Indexed: 05/02/2023]
Abstract
Toxic heavy metals and metalloids in agricultural ecosystems are crucial factors that limit global crop productivity and food safety. Industrial toxic heavy metals and metalloids such as cadmium, lead, and arsenic have contaminated large areas of arable land in the world and their accumulation in the edible parts of crops is causing serious health risks to humans and animals. Plants have co-evolved with various concentrations of these toxic metals and metalloids in soil and water. Some green plant species have significant innovations in key genes for the adaptation of abiotic stress tolerance pathways that are able to tolerate heavy metals and metalloids. Increasing evidence has demonstrated that phytohormone abscisic acid (ABA) plays a vital role in the alleviation of heavy metal and metalloid stresses in plants. Here, we trace the evolutionary origins of the key gene families connecting ABA signaling with tolerance to heavy metals and metalloids in green plants. We also summarize the molecular and physiological aspects of ABA in the uptake, root-to-shoot translocation, chelation, sequestration, reutilization, and accumulation of key heavy metals and metalloids in plants. The molecular evolution and interaction between the ABA signaling pathway and mechanisms for heavy metal and metalloid tolerance are highlighted in this review. Therefore, we propose that it is promising to manipulate ABA signaling in plant tissues to reduce the uptake and accumulation of toxic heavy metals and metalloids in crops through the application of ABA-producing bacteria or ABA analogues. This may lead to improvements in tolerance of major crops to heavy metals and metalloids.
Collapse
Affiliation(s)
- Beibei Hu
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
| | - Fenglin Deng
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
- *Correspondence: Fenglin Deng, ; Zhong-Hua Chen,
| | - Guang Chen
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
| | - Xuan Chen
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
| | - Wei Gao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China
| | - Lu Long
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China
| | - Jixing Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- *Correspondence: Fenglin Deng, ; Zhong-Hua Chen,
| |
Collapse
|