1
|
Daems S, Shameer S, Ceusters N, Sweetlove L, Ceusters J. Metabolic modelling identifies mitochondrial Pi uptake and pyruvate efflux as key aspects of daytime metabolism and proton homeostasis in crassulacean acid metabolism leaves. THE NEW PHYTOLOGIST 2024; 244:159-175. [PMID: 39113419 DOI: 10.1111/nph.20032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/15/2024] [Indexed: 09/17/2024]
Abstract
Crassulacean acid metabolism (CAM) leaves are characterized by nocturnal acidification and diurnal deacidification processes related with the timed actions of phosphoenolpyruvate carboxylase and Rubisco, respectively. How CAM leaves manage cytosolic proton homeostasis, particularly when facing massive diurnal proton effluxes from the vacuole, remains unclear. A 12-phase flux balance analysis (FBA) model was constructed for a mature malic enzyme-type CAM mesophyll cell in order to predict diel kinetics of intracellular proton fluxes. The charge- and proton-balanced FBA model identified the mitochondrial phosphate carrier (PiC, Pi/H+ symport), which provides Pi to the matrix to sustain ATP biosynthesis, as a major consumer of cytosolic protons during daytime (> 50%). The delivery of Pi to the mitochondrion, co-transported with protons, is required for oxidative phosphorylation and allows sufficient ATP to be synthesized to meet the high energy demand during CAM Phase III. Additionally, the model predicts that mitochondrial pyruvate originating from decarboxylation of malate is exclusively exported to the cytosol, probably via a pyruvate channel mechanism, to fuel gluconeogenesis. In this biochemical cycle, glyceraldehyde 3-phosphate dehydrogenase (GAPDH) acts as another important cytosolic proton consumer. Overall, our findings emphasize the importance of mitochondria in CAM and uncover a hitherto unappreciated role in metabolic proton homeostasis.
Collapse
Affiliation(s)
- Stijn Daems
- Research Group for Sustainable Crop Production & Protection, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Geel, 2440, Belgium
- KU Leuven Plant Institute (LPI), KU Leuven, Leuven, 3000, Belgium
| | - Sanu Shameer
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
- Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, 695551, India
| | - Nathalie Ceusters
- Research Group for Sustainable Crop Production & Protection, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Geel, 2440, Belgium
| | - Lee Sweetlove
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - Johan Ceusters
- Research Group for Sustainable Crop Production & Protection, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Geel, 2440, Belgium
- KU Leuven Plant Institute (LPI), KU Leuven, Leuven, 3000, Belgium
- Centre for Environmental Sciences, Environmental Biology, UHasselt, Diepenbeek, 3590, Belgium
| |
Collapse
|
2
|
Siadjeu C, Kadereit G. C 4-like Sesuvium sesuvioides (Aizoaceae) exhibits CAM in cotyledons and putative C 4-like + CAM metabolism in adult leaves as revealed by transcriptome analysis. BMC Genomics 2024; 25:688. [PMID: 39003461 PMCID: PMC11245778 DOI: 10.1186/s12864-024-10553-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 06/21/2024] [Indexed: 07/15/2024] Open
Abstract
BACKGROUND The co-occurrence of C4 and CAM photosynthesis in a single species seems to be unusual and rare. This is likely due to the difficulty in effectively co-regulating both pathways. Here, we conducted a comparative transcriptomic analysis of leaves and cotyledons of the C4-like species Sesuvium sesuvioides (Aizoaceae) using RNA-seq. RESULTS When compared to cotyledons, phosphoenolpyruvate carboxylase 4 (PEPC4) and some key C4 genes were found to be up-regulated in leaves. During the day, the expression of NADP-dependent malic enzyme (NADP-ME) was significantly higher in cotyledons than in leaves. The titratable acidity confirmed higher acidity in the morning than in the previous evening indicating the induction of weak CAM in cotyledons by environmental conditions. Comparison of the leaves of S. sesuvioides (C4-like) and S. portulacastrum (C3) revealed that PEPC1 was significantly higher in S. sesuvioides, while PEPC3 and PEPC4 were up-regulated in S. portulacastrum. Finally, potential key regulatory elements involved in the C4-like and CAM pathways were identified. CONCLUSIONS These findings provide a new species in which C4-like and CAM co-occur and raise the question if this phenomenon is indeed so rare or just hard to detect and probably more common in succulent C4 lineages.
Collapse
Affiliation(s)
- Christian Siadjeu
- Prinzessin Therese von Bayern Lehrstuhl für Systematik, Biodiversität & Evolution der Pflanzen, Ludwig-Maximilans-Universität München, Menzinger Str. 67, Munich, 80638, Germany.
| | - Gudrun Kadereit
- Prinzessin Therese von Bayern Lehrstuhl für Systematik, Biodiversität & Evolution der Pflanzen, Ludwig-Maximilans-Universität München, Menzinger Str. 67, Munich, 80638, Germany
- Botanischer Garten München-Nymphenburg Und Botanische Staatssammlung München, Staatliche Naturwissenschaftliche Sammlungen Bayerns, Menzinger Str. 65, Munich, 80638, Germany
| |
Collapse
|
3
|
Perron N, Kirst M, Chen S. Bringing CAM photosynthesis to the table: Paving the way for resilient and productive agricultural systems in a changing climate. PLANT COMMUNICATIONS 2024; 5:100772. [PMID: 37990498 PMCID: PMC10943566 DOI: 10.1016/j.xplc.2023.100772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/27/2023] [Accepted: 11/20/2023] [Indexed: 11/23/2023]
Abstract
Modern agricultural systems are directly threatened by global climate change and the resulting freshwater crisis. A considerable challenge in the coming years will be to develop crops that can cope with the consequences of declining freshwater resources and changing temperatures. One approach to meeting this challenge may lie in our understanding of plant photosynthetic adaptations and water use efficiency. Plants from various taxa have evolved crassulacean acid metabolism (CAM), a water-conserving adaptation of photosynthetic carbon dioxide fixation that enables plants to thrive under semi-arid or seasonally drought-prone conditions. Although past research on CAM has led to a better understanding of the inner workings of plant resilience and adaptation to stress, successful introduction of this pathway into C3 or C4 plants has not been reported. The recent revolution in molecular, systems, and synthetic biology, as well as innovations in high-throughput data generation and mining, creates new opportunities to uncover the minimum genetic tool kit required to introduce CAM traits into drought-sensitive crops. Here, we propose four complementary research avenues to uncover this tool kit. First, genomes and computational methods should be used to improve understanding of the nature of variations that drive CAM evolution. Second, single-cell 'omics technologies offer the possibility for in-depth characterization of the mechanisms that trigger environmentally controlled CAM induction. Third, the rapid increase in new 'omics data enables a comprehensive, multimodal exploration of CAM. Finally, the expansion of functional genomics methods is paving the way for integration of CAM into farming systems.
Collapse
Affiliation(s)
- Noé Perron
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32608, USA
| | - Matias Kirst
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32608, USA; School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, FL 32603, USA.
| | - Sixue Chen
- Department of Biology, University of Mississippi, Oxford, MS 38677-1848, USA.
| |
Collapse
|
4
|
Ludwig M, Hartwell J, Raines CA, Simkin AJ. The Calvin-Benson-Bassham cycle in C 4 and Crassulacean acid metabolism species. Semin Cell Dev Biol 2024; 155:10-22. [PMID: 37544777 DOI: 10.1016/j.semcdb.2023.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/03/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023]
Abstract
The Calvin-Benson-Bassham (CBB) cycle is the ancestral CO2 assimilation pathway and is found in all photosynthetic organisms. Biochemical extensions to the CBB cycle have evolved that allow the resulting pathways to act as CO2 concentrating mechanisms, either spatially in the case of C4 photosynthesis or temporally in the case of Crassulacean acid metabolism (CAM). While the biochemical steps in the C4 and CAM pathways are known, questions remain on their integration and regulation with CBB cycle activity. The application of omic and transgenic technologies is providing a more complete understanding of the biochemistry of C4 and CAM species and will also provide insight into the CBB cycle in these plants. As the global population increases, new solutions are required to increase crop yields and meet demands for food and other bioproducts. Previous work in C3 species has shown that increasing carbon assimilation through genetic manipulation of the CBB cycle can increase biomass and yield. There may also be options to improve photosynthesis in species using C4 photosynthesis and CAM through manipulation of the CBB cycle in these plants. This is an underexplored strategy and requires more basic knowledge of CBB cycle operation in these species to enable approaches for increased productivity.
Collapse
Affiliation(s)
- Martha Ludwig
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia, Australia.
| | - James Hartwell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | | | - Andrew J Simkin
- University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK; School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| |
Collapse
|
5
|
Winter K, Holtum JAM. Shifting photosynthesis between the fast and slow lane: Facultative CAM and water-deficit stress. JOURNAL OF PLANT PHYSIOLOGY 2024; 294:154185. [PMID: 38373389 DOI: 10.1016/j.jplph.2024.154185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/28/2023] [Accepted: 01/20/2024] [Indexed: 02/21/2024]
Abstract
Five decades ago, the first report of a shift from C3 to CAM (crassulacean acid metabolism) photosynthesis following the imposition of stress was published in this journal. The annual, Mesembryanthemum crystallinum (Aizoaceae), was shown to be a C3 plant when grown under non-saline conditions, and a CAM plant when exposed to high soil salinity. This observation of environmentally triggered CAM eventually led to the introduction of the term facultative CAM, which categorises CAM that is induced or upregulated in response to water-deficit stress and is lost or downregulated when the stress is removed. Reversibility of C3-to-CAM shifts distinguishes stress-driven facultative-CAM responses from purely ontogenetic increases of CAM activity. We briefly review how the understanding of facultative CAM has developed, evaluate the current state of knowledge, and highlight questions of continuing interest. We demonstrate that the long-lived leaves of a perennial facultative-CAM arborescent species, Clusia pratensis, can repeatedly switch between C3 and CAM in response to multiple wet-dry-wet cycles. Undoubtedly, this is a dedicated response to environment, independent of ontogeny. We highlight the potential for engineering facultative CAM into C3 crops to provide a flexible capacity for drought tolerance.
Collapse
Affiliation(s)
- Klaus Winter
- Smithsonian Tropical Research Institute, PO Box 0843-03092, Panama City, Panama.
| | - Joseph A M Holtum
- College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
6
|
Gilman IS, Smith JAC, Holtum JAM, Sage RF, Silvera K, Winter K, Edwards EJ. The CAM lineages of planet Earth. ANNALS OF BOTANY 2023; 132:627-654. [PMID: 37698538 PMCID: PMC10799995 DOI: 10.1093/aob/mcad135] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/09/2023] [Accepted: 09/11/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND AND SCOPE The growth of experimental studies of crassulacean acid metabolism (CAM) in diverse plant clades, coupled with recent advances in molecular systematics, presents an opportunity to re-assess the phylogenetic distribution and diversity of species capable of CAM. It has been more than two decades since the last comprehensive lists of CAM taxa were published, and an updated survey of the occurrence and distribution of CAM taxa is needed to facilitate and guide future CAM research. We aimed to survey the phylogenetic distribution of these taxa, their diverse morphology, physiology and ecology, and the likely number of evolutionary origins of CAM based on currently known lineages. RESULTS AND CONCLUSIONS We found direct evidence (in the form of experimental or field observations of gas exchange, day-night fluctuations in organic acids, carbon isotope ratios and enzymatic activity) for CAM in 370 genera of vascular plants, representing 38 families. Further assumptions about the frequency of CAM species in CAM clades and the distribution of CAM in the Cactaceae and Crassulaceae bring the currently estimated number of CAM-capable species to nearly 7 % of all vascular plants. The phylogenetic distribution of these taxa suggests a minimum of 66 independent origins of CAM in vascular plants, possibly with dozens more. To achieve further insight into CAM origins, there is a need for more extensive and systematic surveys of previously unstudied lineages, particularly in living material to identify low-level CAM activity, and for denser sampling to increase phylogenetic resolution in CAM-evolving clades. This should allow further progress in understanding the functional significance of this pathway by integration with studies on the evolution and genomics of CAM in its many forms.
Collapse
Affiliation(s)
- Ian S Gilman
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | | | - Joseph A M Holtum
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Rowan F Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Katia Silvera
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panama
- Department of Botany & Plant Sciences, University of California, Riverside, CA, USA
| | - Klaus Winter
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panama
| | - Erika J Edwards
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
7
|
Holtum JAM. The diverse diaspora of CAM: a pole-to-pole sketch. ANNALS OF BOTANY 2023; 132:597-625. [PMID: 37303205 PMCID: PMC10800000 DOI: 10.1093/aob/mcad067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/13/2022] [Accepted: 06/09/2023] [Indexed: 06/13/2023]
Abstract
BACKGROUND Crassulacean acid metabolism (CAM) photosynthesis is a successful adaptation that has evolved often in angiosperms, gymnosperms, ferns and lycophytes. Present in ~5 % of vascular plants, the CAM diaspora includes all continents apart from Antarctica. Species with CAM inhabit most landscapes colonized by vascular plants, from the Arctic Circle to Tierra del Fuego, from below sea level to 4800 m a.s.l., from rainforests to deserts. They have colonized terrestrial, epiphytic, lithophytic, palustrine and aquatic systems, developing perennial, annual or geophyte strategies that can be structurally arborescent, shrub, forb, cladode, epiphyte, vine or leafless with photosynthetic roots. CAM can enhance survival by conserving water, trapping carbon, reducing carbon loss and/or via photoprotection. SCOPE This review assesses the phylogenetic diversity and historical biogeography of selected lineages with CAM, i.e. ferns, gymnosperms and eumagnoliids, Orchidaceae, Bromeliaceae, Crassulaceae, Euphorbiaceae, Aizoaceae, Portulacineae (Montiaceae, Basellaceae, Halophytaceae, Didiereaceae, Talinaceae, Portulacaceae, Anacampserotaceae and Cactaceae) and aquatics. CONCLUSIONS Most extant CAM lineages diversified after the Oligocene/Miocene, as the planet dried and CO2 concentrations dropped. Radiations exploited changing ecological landscapes, including Andean emergence, Panamanian Isthmus closure, Sundaland emergence and submergence, changing climates and desertification. Evidence remains sparse for or against theories that CAM biochemistry tends to evolve before pronounced changes in anatomy and that CAM tends to be a culminating xerophytic trait. In perennial taxa, any form of CAM can occur depending upon the lineage and the habitat, although facultative CAM appears uncommon in epiphytes. CAM annuals lack strong CAM. In CAM annuals, C3 + CAM predominates, and inducible or facultative CAM is common.
Collapse
Affiliation(s)
- Joseph A M Holtum
- College of Science and Engineering, James Cook University, Townsville, QLD4811, Australia
| |
Collapse
|
8
|
Wang X, Ma X, Yan G, Hua L, Liu H, Huang W, Liang Z, Chao Q, Hibberd JM, Jiao Y, Zhang M. Gene duplications facilitate C4-CAM compatibility in common purslane. PLANT PHYSIOLOGY 2023; 193:2622-2639. [PMID: 37587696 PMCID: PMC10663116 DOI: 10.1093/plphys/kiad451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 08/18/2023]
Abstract
Common purslane (Portulaca oleracea) integrates both C4 and crassulacean acid metabolism (CAM) photosynthesis pathways and is a promising model plant to explore C4-CAM plasticity. Here, we report a high-quality chromosome-level genome of nicotinamide adenine dinucleotide (NAD)-malic enzyme (ME) subtype common purslane that provides evidence for 2 rounds of whole-genome duplication (WGD) with an ancient WGD (P-β) in the common ancestor to Portulacaceae and Cactaceae around 66.30 million years ago (Mya) and another (Po-α) specific to common purslane lineage around 7.74 Mya. A larger number of gene copies encoding key enzymes/transporters involved in C4 and CAM pathways were detected in common purslane than in related species. Phylogeny, conserved functional site, and collinearity analyses revealed that the Po-α WGD produced the phosphoenolpyruvate carboxylase-encoded gene copies used for photosynthesis in common purslane, while the P-β WGD event produced 2 ancestral genes of functionally differentiated (C4- and CAM-specific) beta carbonic anhydrases involved in the C4 + CAM pathways. Additionally, cis-element enrichment analysis in the promoters showed that CAM-specific genes have recruited both evening and midnight circadian elements as well as the Abscisic acid (ABA)-independent regulatory module mediated by ethylene-response factor cis-elements. Overall, this study provides insights into the origin and evolutionary process of C4 and CAM pathways in common purslane, as well as potential targets for engineering crops by integrating C4 or CAM metabolism.
Collapse
Affiliation(s)
- Xiaoliang Wang
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Botanical Garden, Beijing 100093, China
| | - Xuxu Ma
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Botanical Garden, Beijing 100093, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ge Yan
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Botanical Garden, Beijing 100093, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Lei Hua
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Han Liu
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Wei Huang
- National Maize Improvement Center, China Agricultural University, Beijing 100193, China
| | - Zhikai Liang
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Qing Chao
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Yuannian Jiao
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Botanical Garden, Beijing 100093, China
| | - Mei Zhang
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Botanical Garden, Beijing 100093, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
9
|
Tan B, Chen S. Defining Mechanisms of C 3 to CAM Photosynthesis Transition toward Enhancing Crop Stress Resilience. Int J Mol Sci 2023; 24:13072. [PMID: 37685878 PMCID: PMC10487458 DOI: 10.3390/ijms241713072] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023] Open
Abstract
Global climate change and population growth are persistently posing threats to natural resources (e.g., freshwater) and agricultural production. Crassulacean acid metabolism (CAM) evolved from C3 photosynthesis as an adaptive form of photosynthesis in hot and arid regions. It features the nocturnal opening of stomata for CO2 assimilation, diurnal closure of stomata for water conservation, and high water-use efficiency. To cope with global climate challenges, the CAM mechanism has attracted renewed attention. Facultative CAM is a specialized form of CAM that normally employs C3 or C4 photosynthesis but can shift to CAM under stress conditions. It not only serves as a model for studying the molecular mechanisms underlying the CAM evolution, but also provides a plausible solution for creating stress-resilient crops with facultative CAM traits. This review mainly discusses the recent research effort in defining the C3 to CAM transition of facultative CAM plants, and highlights challenges and future directions in this important research area with great application potential.
Collapse
Affiliation(s)
| | - Sixue Chen
- Department of Biology, University of Mississippi, Oxford, MS 38677, USA;
| |
Collapse
|
10
|
Carrascosa A, Pascual JA, Ros M, Petropoulos SA, Alguacil MDM. Agronomical Practices and Management for Commercial Cultivation of Portulaca oleracea as a Crop: A Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:1246. [PMID: 36986934 PMCID: PMC10058561 DOI: 10.3390/plants12061246] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Soil is an essential resource, and its degradation is challenging modern agriculture, while its impact is expected to increase in the near future. One of the strategies to address this issue is to incorporate new alternative crops able to tolerate arduous conditions, as well as for the use of sustainable agricultural practices in order to recover and/or improve soil health. Additionally, the increasing market for new functional/healthy natural foods promotes the search for potential alternative crop species with promising bioactive compounds content. For this purpose, wild edible plants are a key option because they have already been consumed for hundreds of years in traditional gastronomy and there is well-established evidence of their health-promoting effects. Moreover, since they are not a cultivated species, they are able to grow under natural conditions without human intervention. Among them, common purslane is an interesting wild edible species and a good candidate for integration in commercial farming systems. With worldwide spread, it is able to tolerate drought, salinity and heat stress and is already used in traditional dishes, while it is highly appreciated for its high nutritional value due to its bioactive compound content, especially omega-3 fatty acids. In this review, we aim to present the breeding and cultivation practices of purslane, as well as the effects of abiotic stressors on yield and chemical composition of the edible parts. Finally, we present information that helps to optimize purslane cultivation and facilitate its management in degraded soils for their exploitation in the existing farming systems.
Collapse
Affiliation(s)
- Angel Carrascosa
- CSIC-Centro de Edafología y Biología Aplicada del Segura, Department of Soil and Water Conservation, Campus de Espinardo, P.O. Box 164, 30100 Murcia, Spain
| | - Jose Antonio Pascual
- CSIC-Centro de Edafología y Biología Aplicada del Segura, Department of Soil and Water Conservation, Campus de Espinardo, P.O. Box 164, 30100 Murcia, Spain
| | - Margarita Ros
- CSIC-Centro de Edafología y Biología Aplicada del Segura, Department of Soil and Water Conservation, Campus de Espinardo, P.O. Box 164, 30100 Murcia, Spain
| | - Spyridon A. Petropoulos
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Fytokou Street, 38446 Volos, Greece
| | - Maria del Mar Alguacil
- CSIC-Centro de Edafología y Biología Aplicada del Segura, Department of Soil and Water Conservation, Campus de Espinardo, P.O. Box 164, 30100 Murcia, Spain
| |
Collapse
|
11
|
Reyna-Llorens I, Aubry S. As right as rain: deciphering drought-related metabolic flexibility in the C4-CAM Portulaca. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4615-4619. [PMID: 35950459 PMCID: PMC9366322 DOI: 10.1093/jxb/erac179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This article comments on: Ferrari RC, Kawabata AB, Ferreira SS, Hartwell J, Freschi L. 2022. A matter of time: regulatory events behind the synchronization of C4 and crassulacean acid metabolism gene expression in Portulaca oleracea. Journal of Experimental Botany 73,4867–4885.
Collapse
|
12
|
Ferrari RC, Kawabata AB, Ferreira SS, Hartwell J, Freschi L. A matter of time: regulatory events behind the synchronization of C4 and crassulacean acid metabolism in Portulaca oleracea. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4867-4885. [PMID: 35439821 DOI: 10.1093/jxb/erac163] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Portulaca species can switch between C4 and crassulacean acid metabolism (CAM) depending on environmental conditions. However, the regulatory mechanisms behind this rare photosynthetic adaptation remain elusive. Using Portulaca oleracea as a model system, here we investigated the involvement of the circadian clock, plant hormones, and transcription factors in coordinating C4 and CAM gene expression. Free-running experiments in constant conditions suggested that C4 and CAM gene expression are intrinsically connected to the circadian clock. Detailed time-course, drought, and rewatering experiments revealed distinct time frames for CAM induction and reversion (days versus hours, respectively), which were accompanied by changes in abscisic acid (ABA) and cytokinin metabolism and signaling. Exogenous ABA and cytokinins were shown to promote and repress CAM expression in P. oleracea, respectively. Moreover, the drought-induced decline in C4 transcript levels was completely recovered upon cytokinin treatment. The ABA-regulated transcription factor genes HB7, NFYA7, NFYC9, TT8, and ARR12 were identified as likely candidate regulators of CAM induction following this approach, whereas NFYC4 and ARR9 were connected to C4 expression patterns. Therefore, we provide insights into the signaling events controlling C4-CAM transitions in response to water availability and over the day/night cycle, highlighting candidate genes for future functional studies in the context of facultative C4-CAM photosynthesis.
Collapse
Affiliation(s)
- Renata Callegari Ferrari
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, 05508-090, Brasil
| | - Aline Bastos Kawabata
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, 05508-090, Brasil
| | - Sávio Siqueira Ferreira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, 05508-090, Brasil
| | - James Hartwell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Luciano Freschi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, 05508-090, Brasil
| |
Collapse
|
13
|
Moreno-Villena JJ, Zhou H, Gilman IS, Tausta SL, Cheung CYM, Edwards EJ. Spatial resolution of an integrated C 4+CAM photosynthetic metabolism. SCIENCE ADVANCES 2022; 8:eabn2349. [PMID: 35930634 PMCID: PMC9355352 DOI: 10.1126/sciadv.abn2349] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 06/22/2022] [Indexed: 05/27/2023]
Abstract
C4 and CAM photosynthesis have repeatedly evolved in plants over the past 30 million years. Because both repurpose the same set of enzymes but differ in their spatial and temporal deployment, they have long been considered as distinct and incompatible adaptations. Portulaca contains multiple C4 species that perform CAM when droughted. Spatially explicit analyses of gene expression reveal that C4 and CAM systems are completely integrated in Portulaca oleracea, with CAM and C4 carbon fixation occurring in the same cells and CAM-generated metabolites likely incorporated directly into the C4 cycle. Flux balance analysis corroborates the gene expression findings and predicts an integrated C4+CAM system under drought. This first spatially explicit description of a C4+CAM photosynthetic metabolism presents a potential new blueprint for crop improvement.
Collapse
Affiliation(s)
- Jose J. Moreno-Villena
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, CT 06520, USA
| | - Haoran Zhou
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, CT 06520, USA
- School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Ian S. Gilman
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, CT 06520, USA
| | - S. Lori Tausta
- Department of Molecular Biophysics and Biochemistry, Yale University, 600 West Campus, West Haven, CT 06516, USA
| | | | - Erika J. Edwards
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, CT 06520, USA
| |
Collapse
|
14
|
Osmanoglu Ö, Khaled AlSeiari M, AlKhoori HA, Shams S, Bencurova E, Dandekar T, Naseem M. Topological Analysis of the Carbon-Concentrating CETCH Cycle and a Photorespiratory Bypass Reveals Boosted CO 2-Sequestration by Plants. Front Bioeng Biotechnol 2021; 9:708417. [PMID: 34790651 PMCID: PMC8591258 DOI: 10.3389/fbioe.2021.708417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/25/2021] [Indexed: 01/11/2023] Open
Abstract
Synthetically designed alternative photorespiratory pathways increase the biomass of tobacco and rice plants. Likewise, some in planta-tested synthetic carbon-concentrating cycles (CCCs) hold promise to increase plant biomass while diminishing atmospheric carbon dioxide burden. Taking these individual contributions into account, we hypothesize that the integration of bypasses and CCCs will further increase plant productivity. To test this in silico, we reconstructed a metabolic model by integrating photorespiration and photosynthesis with the synthetically designed alternative pathway 3 (AP3) enzymes and transporters. We calculated fluxes of the native plant system and those of AP3 combined with the inhibition of the glycolate/glycerate transporter by using the YANAsquare package. The activity values corresponding to each enzyme in photosynthesis, photorespiration, and for synthetically designed alternative pathways were estimated. Next, we modeled the effect of the crotonyl-CoA/ethylmalonyl-CoA/hydroxybutyryl-CoA cycle (CETCH), which is a set of natural and synthetically designed enzymes that fix CO₂ manifold more than the native Calvin-Benson-Bassham (CBB) cycle. We compared estimated fluxes across various pathways in the native model and under an introduced CETCH cycle. Moreover, we combined CETCH and AP3-w/plgg1RNAi, and calculated the fluxes. We anticipate higher carbon dioxide-harvesting potential in plants with an AP3 bypass and CETCH-AP3 combination. We discuss the in vivo implementation of these strategies for the improvement of C3 plants and in natural high carbon harvesters.
Collapse
Affiliation(s)
- Özge Osmanoglu
- Department of Bioinformatics, Functional Genomics and Systems Biology Group, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Mariam Khaled AlSeiari
- College of Natural and Health Sciences, Department of Life and Environmental Sciences, Zayed University, Abu Dhabi, UAE
| | - Hasa Abduljaleel AlKhoori
- College of Natural and Health Sciences, Department of Life and Environmental Sciences, Zayed University, Abu Dhabi, UAE
| | - Shabana Shams
- Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Elena Bencurova
- Department of Bioinformatics, Functional Genomics and Systems Biology Group, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, Functional Genomics and Systems Biology Group, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Muhammad Naseem
- Department of Bioinformatics, Functional Genomics and Systems Biology Group, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
- College of Natural and Health Sciences, Department of Life and Environmental Sciences, Zayed University, Abu Dhabi, UAE
| |
Collapse
|
15
|
Artur MAS, Kajala K. Convergent evolution of gene regulatory networks underlying plant adaptations to dry environments. PLANT, CELL & ENVIRONMENT 2021; 44:3211-3222. [PMID: 34196969 PMCID: PMC8518057 DOI: 10.1111/pce.14143] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 06/25/2021] [Indexed: 05/21/2023]
Abstract
Plants transitioned from an aquatic to a terrestrial lifestyle during their evolution. On land, fluctuations on water availability in the environment became one of the major problems they encountered. The appearance of morpho-physiological adaptations to cope with and tolerate water loss from the cells was undeniably useful to survive on dry land. Some of these adaptations, such as carbon concentrating mechanisms (CCMs), desiccation tolerance (DT) and root impermeabilization, appeared in multiple plant lineages. Despite being crucial for evolution on land, it has been unclear how these adaptations convergently evolved in the various plant lineages. Recent advances on whole genome and transcriptome sequencing are revealing that co-option of genes and gene regulatory networks (GRNs) is a common feature underlying the convergent evolution of these adaptations. In this review, we address how the study of CCMs and DT has provided insight into convergent evolution of GRNs underlying plant adaptation to dry environments, and how these insights could be applied to currently emerging understanding of evolution of root impermeabilization through different barrier cell types. We discuss examples of co-option, conservation and innovation of genes and GRNs at the cell, tissue and organ levels revealed by recent phylogenomic (comparative genomic) and comparative transcriptomic studies.
Collapse
Affiliation(s)
- Mariana A. S. Artur
- Laboratory of Plant PhysiologyWageningen UniversityWageningenThe Netherlands
- Plant Ecophysiology, Institute of Environmental BiologyUtrecht UniversityUtrechtThe Netherlands
| | - Kaisa Kajala
- Plant Ecophysiology, Institute of Environmental BiologyUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
16
|
Callegari Ferrari R, Pires Bittencourt P, Yumi Nagumo P, Silva Oliveira W, Aurineide Rodrigues M, Hartwell J, Freschi L. Developing Portulaca oleracea as a model system for functional genomics analysis of C 4/CAM photosynthesis. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:666-682. [PMID: 33256895 DOI: 10.1071/fp20202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/20/2020] [Indexed: 06/12/2023]
Abstract
Previously regarded as an intriguing photosynthetic curiosity, the occurrence of C4 and Crassulacean acid metabolism (CAM) photosynthesis within a single organism has recently emerged as a source of information for future biotechnological use. Among C4/CAM facultative species, Portulaca oleracea L. has been used as a model for biochemical and gene expression analysis of C4/CAM under field and laboratory conditions. In the present work, we focussed on developing molecular tools to facilitate functional genomics studies in this species, from the optimisation of RNA isolation protocols to a method for stable genetic transformation. Eleven variations of RNA extraction procedures were tested and compared for RNA quantity and quality. Also, 7 sample sets comprising total RNA from hormonal and abiotic stress treatments, distinct plant organs, leaf developmental stages, and subspecies were used to select, among 12 reference genes, the most stable reference genes for RT-qPCR analysis of each experimental condition. Furthermore, different explant sources, Agrobacterium tumefaciens strains, and regeneration and antibiotic selection media were tested in various combinations to optimise a protocol for stable genetic transformation of P. oleracea. Altogether, we provide essential tools for functional gene analysis in the context of C4/CAM photosynthesis, including an efficient RNA isolation method, preferred reference genes for RT-qPCR normalisation for a range of experimental conditions, and a protocol to produce P. oleracea stable transformants using A. tumefaciens.
Collapse
Affiliation(s)
- Renata Callegari Ferrari
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brasil
| | - Priscila Pires Bittencourt
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brasil
| | - Paula Yumi Nagumo
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brasil
| | - Willian Silva Oliveira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brasil
| | - Maria Aurineide Rodrigues
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brasil
| | - James Hartwell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Luciano Freschi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brasil; and Corresponding author.
| |
Collapse
|
17
|
Winter K. Diversity of CAM plant photosynthesis (crassulacean acid metabolism): a tribute to Barry Osmond. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:iii-ix. [PMID: 34099100 DOI: 10.1071/fpv48n7_fo] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This special issue is a tribute to the Australian plant biologist Professor Charles Barry Osmond - Fellow of the Australian Academy of Sciences, the Royal Society of London, and Leopoldina, the German National Academy of Sciences - and his many contributions to our understanding of the biochemistry and physiological ecology of CAM (crassulacean acid metabolism) photosynthesis. This water-conserving photosynthetic pathway is characterised by nocturnal uptake of atmospheric CO2 and typically enables succulent plants to perform and survive in warm semiarid terrestrial and epiphytic habitats. The idea for this issue is to mark the occasion of Barry's 80th birthday in 2019. The foreword highlights some of his outstanding contributions and introduces the research papers of the special issue.
Collapse
Affiliation(s)
- Klaus Winter
- Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancón, Republic of Panama.
| |
Collapse
|
18
|
Winter K, Garcia M, Virgo A, Ceballos J, Holtum JAM. Does the C 4 plant Trianthema portulacastrum (Aizoaceae) exhibit weakly expressed crassulacean acid metabolism (CAM)? FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:655-665. [PMID: 33213694 DOI: 10.1071/fp20247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
We examined whether crassulacean acid metabolism (CAM) is present in Trianthema portulacastrum L. (Aizoaceae), a pantropical, salt-tolerant C4 annual herb with atriplicoid-type Kranz anatomy in leaves but not in stems. The leaves of T. portulacastrum are slightly succulent and the stems are fleshy, similar to some species of Portulaca, the only genus known in which C4 and CAM co-occur. Low- level nocturnal acidification typical of weakly expressed, predominantly constitutive CAM was measured in plants grown for their entire life-cycle in an outdoor raised garden box. Acidification was greater in stems than in leaves. Plants showed net CO2 uptake only during the light irrespective of soil water availability. However, nocturnal traces of CO2 exchange exhibited curved kinetics of reduced CO2 loss during the middle of the night consistent with low-level CAM. Trianthema becomes the second genus of vascular land plants in which C4 and features of CAM have been demonstrated to co-occur in the same plant and the first C4 plant with CAM-type acidification described for the Aizoaceae. Traditionally the stems of herbs are not sampled in screening studies. Small herbs with mildly succulent leaves and fleshy stems might be a numerically significant component of CAM biodiversity.
Collapse
Affiliation(s)
- Klaus Winter
- Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancón, Republic of Panama; and Corresponding author.
| | - Milton Garcia
- Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancón, Republic of Panama
| | - Aurelio Virgo
- Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancón, Republic of Panama
| | - Jorge Ceballos
- Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancón, Republic of Panama
| | - Joseph A M Holtum
- Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancón, Republic of Panama; and College of Science and Engineering, James Cook University, Townsville, Qld 4811, Australia
| |
Collapse
|
19
|
Winter K, Virgo A, Garcia M, Aranda J, Holtum JAM. Constitutive and facultative crassulacean acid metabolism (CAM) in Cuban oregano, Coleus amboinicus (Lamiaceae). FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:647-654. [PMID: 32919492 DOI: 10.1071/fp20127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Plants exhibiting the water-conserving crassulacean acid metabolism (CAM) photosynthetic pathway provide some of the most intriguing examples of photosynthetic diversity and plasticity. Here, a largely unnoticed facet of CAM-plant photosynthesis is highlighted: the co-occurrence of ontogenetically controlled constitutive and environmentally controlled facultative CAM in a species. Both forms of CAM are displayed in leaves of Coleus amboinicus Lour. (Lamiaceae), a semi-succulent perennial plant with oregano-like flavour that is native to southern and eastern Africa and naturalised elsewhere in the tropics. Under well-watered conditions, leaves assimilate CO2 predominantly by the C3 pathway. They also display low levels of CO2 uptake at night accompanied by small nocturnal increases in leaf tissue acidity. This indicates the presence of weakly expressed constitutive CAM. CAM expression is strongly enhanced in response to drought stress. The drought-enhanced component of CAM is reversible upon rewatering and thus considered to be facultative. In contrast to C. amboinicus, the thin-leaved closely related Coleus scutellarioides (L.) Benth. exhibits net CO2 fixation solely in the light via the C3 pathway, both under well-watered and drought conditions. However, low levels of nocturnal acidification detected in leaves and stems indicate that the CAM cycle is present. The highly speciose mint family, which contains few known CAM-exhibiting species and is composed predominantly of C3 species, appears to be an excellent group of plants for studying the evolutionary origins of CAM and for determining the position of facultative CAM along the C3-full CAM trajectory.
Collapse
Affiliation(s)
- Klaus Winter
- Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancón, Republic of Panama; and Corresponding author.
| | - Aurelio Virgo
- Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancón, Republic of Panama
| | - Milton Garcia
- Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancón, Republic of Panama
| | - Jorge Aranda
- Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancón, Republic of Panama
| | - Joseph A M Holtum
- Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancón, Republic of Panama; and College of Science and Engineering, James Cook University, Townsville, Qld 4811, Australia
| |
Collapse
|
20
|
Hnilickova H, Kraus K, Vachova P, Hnilicka F. Salinity Stress Affects Photosynthesis, Malondialdehyde Formation, and Proline Content in Portulaca oleracea L. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10050845. [PMID: 33922210 PMCID: PMC8145623 DOI: 10.3390/plants10050845] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 05/26/2023]
Abstract
In this investigation, the effect of salt stress on Portulaca oleracea L. was monitored at salinity levels of 100 and 300 mM NaCl. At a concentration of 100 mM NaCl there was a decrease in stomatal conductance (gs) simultaneously with an increase in CO2 assimilation (A) at the beginning of salt exposure (day 3). However, the leaf water potential (ψw), the substomatal concentration of CO2 (Ci), the maximum quantum yield of photosystem II (Fv/Fm), and the proline and malondialdehyde (MDA) content remained unchanged. Exposure to 300 mM NaCl caused a decrease in gs from day 3 and a decrease in water potential, CO2 assimilation, and Fv/Fm from day 9. There was a large increase in proline content and a significantly higher MDA concentration on days 6 and 9 of salt stress compared to the control group. After 22 days of exposure to 300 mM NaCl, there was a transition from the C4 cycle to crassulacean acid metabolism (CAM), manifested by a rapid increase in substomatal CO2 concentration and negative CO2 assimilation values. These results document the tolerance of P. oleracea to a lower level of salt stress and the possibility of its use in saline localities.
Collapse
|
21
|
Ceusters N, Borland AM, Ceusters J. How to resolve the enigma of diurnal malate remobilisation from the vacuole in plants with crassulacean acid metabolism? THE NEW PHYTOLOGIST 2021; 229:3116-3124. [PMID: 33159327 DOI: 10.1111/nph.17070] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
Opening of stomata in plants with crassulacean acid metabolism (CAM) is mainly shifted to the night period when atmospheric CO2 is fixed by phosphoenolpyruvate carboxylase and stored as malic acid in the vacuole. As such, CAM plants ameliorate transpirational water losses and display substantially higher water-use efficiency compared with C3 and C4 plants. In the past decade significant technical advances have allowed an unprecedented exploration of genomes, transcriptomes, proteomes and metabolomes of CAM plants and efforts are ongoing to engineer the CAM pathway in C3 plants. Whilst research efforts have traditionally focused on nocturnal carboxylation, less information is known regarding the drivers behind diurnal malate remobilisation from the vacuole that liberates CO2 to be fixed by RuBisCo behind closed stomata. To shed more light on this process, we provide a stoichiometric analysis to identify potentially rate-limiting steps underpinning diurnal malate mobilisation and help direct future research efforts. Within this remit we address three key questions: Q1 Does light-dependent assimilation of CO2 via RuBisCo dictate the rate of malate mobilisation? Q2: Do the enzymes responsible for malate decarboxylation limit daytime mobilisation from the vacuole? Q3: Does malate efflux from the vacuole set the pace of decarboxylation?
Collapse
Affiliation(s)
- Nathalie Ceusters
- Faculty of Engineering Technology, Department of Biosystems, Division of Crop Biotechnics, Campus Geel, KU Leuven, Kleinhoefstraat 4, Geel, 2440, Belgium
| | - Anne M Borland
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne,, NE1 7RU, UK
| | - Johan Ceusters
- Faculty of Engineering Technology, Department of Biosystems, Division of Crop Biotechnics, Campus Geel, KU Leuven, Kleinhoefstraat 4, Geel, 2440, Belgium
- Centre for Environmental Sciences, Environmental Biology, UHasselt, Campus Diepenbeek, Agoralaan Building D, Diepenbeek, 3590, Belgium
| |
Collapse
|
22
|
Ferrari RC, Cruz BC, Gastaldi VD, Storl T, Ferrari EC, Boxall SF, Hartwell J, Freschi L. Exploring C 4-CAM plasticity within the Portulaca oleracea complex. Sci Rep 2020; 10:14237. [PMID: 32859905 PMCID: PMC7455729 DOI: 10.1038/s41598-020-71012-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/29/2020] [Indexed: 11/21/2022] Open
Abstract
Portulaca oleracea is a C4 herb capable of performing CAM under drought stress. It is distributed worldwide and is either considered a polymorphic species or a complex of subspecies, due to its numerous morphological variations. We evaluated CAM plasticity within P. oleracea genotypes since the complexity surrounding this species may be reflected in intraspecific variations in photosynthetic behavior. Eleven subspecies of P. oleracea from distant geographical locations and one cultivar were morphologically and physiologically characterized. C4 and CAM photosynthesis were monitored in plants exposed to well-watered, droughted and rewatered treatments, and data obtained were compared among individual genotypes. All subspecies expressed CAM in a fully-reversible manner. Transcript abundance of C4–CAM signature genes was shown to be a useful indicator of the C4–CAM–C4 switches in all genotypes. C4-related genes were down-regulated and subsequently fully expressed upon drought and rewatering, respectively. CAM-marker genes followed the opposite pattern. A gradient of morphological traits and drought-induced nighttime malate accumulation was observed across genotypes. Therefore, different combinations of CAM expression levels, plant sizes and shapes are available within the P. oleracea complex, which can be a valuable tool in the context of C4/CAM photosynthesis research.
Collapse
Affiliation(s)
- Renata Callegari Ferrari
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brasil
| | - Bruna Coelho Cruz
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brasil
| | | | - Thalyson Storl
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brasil
| | - Elisa Callegari Ferrari
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brasil
| | - Susanna F Boxall
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - James Hartwell
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Luciano Freschi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brasil.
| |
Collapse
|