1
|
Villa-Machío I, Heuertz M, Álvarez I, Nieto Feliner G. Demography-driven and adaptive introgression in a hybrid zone of the Armeria syngameon. Mol Ecol 2024; 33:e17167. [PMID: 37837272 DOI: 10.1111/mec.17167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
Syngameons represent networks of otherwise distinct species connected by limited gene exchange. Although most studies have focused on how species maintain their cohesiveness despite gene flow, there are additional relevant questions regarding the evolutionary dynamics of syngameons and their drivers, as well as the success of their members and the network as a whole. Using a ddRADseq approach, we analysed the genetic structure, genomic clines and demographic history of a coastal hybrid zone involving two species of the Armeria (Plumbaginaceae) syngameon in southern Spain. We inferred that a peripheral population of the sand dune-adapted A. pungens diverged from the rest of the conspecific populations and subsequently hybridized with a locally more abundant pinewood congener, A. macrophylla. Both species display extensive plastid DNA haplotype sharing. Genomic cline analysis identified bidirectional introgression, but more outlier loci with excess A. pungens than A. macrophylla ancestry, suggesting the possibility of selection for A. pungens alleles. This is consistent with the finding that the A. pungens phenotype is selected for in open habitats, and with the strong correlation found between ancestry and phenotype. Taken together, our analyses suggest an intriguing scenario in which bidirectional introgression may, on the one hand, help to avoid reduced levels of genetic diversity due to the small size and isolated location of the A. pungens range-edge population, thereby minimizing demographic risks of stochastic extinction. On the other hand, the data also suggest that introgression into A. macrophylla may allow individuals to grow in open, highly irradiated, deep sandy, salt-exposed habitats.
Collapse
Affiliation(s)
- Irene Villa-Machío
- Department of Biodiversity and Conservation, Real Jardín Botánico (RJB), CSIC, Madrid, Spain
| | | | - Inés Álvarez
- Department of Biodiversity and Conservation, Real Jardín Botánico (RJB), CSIC, Madrid, Spain
| | - Gonzalo Nieto Feliner
- Department of Biodiversity and Conservation, Real Jardín Botánico (RJB), CSIC, Madrid, Spain
| |
Collapse
|
2
|
Chen XY, Zhou BF, Shi Y, Liu H, Liang YY, Ingvarsson PK, Wang B. Evolution of the Correlated Genomic Variation Landscape Across a Divergence Continuum in the Genus Castanopsis. Mol Biol Evol 2024; 41:msae191. [PMID: 39248185 PMCID: PMC11421576 DOI: 10.1093/molbev/msae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024] Open
Abstract
The heterogeneous landscape of genomic variation has been well documented in population genomic studies. However, disentangling the intricate interplay of evolutionary forces influencing the genetic variation landscape over time remains challenging. In this study, we assembled a chromosome-level genome for Castanopsis eyrei and sequenced the whole genomes of 276 individuals from 12 Castanopsis species, spanning a broad divergence continuum. We found highly correlated genomic variation landscapes across these species. Furthermore, variations in genetic diversity and differentiation along the genome were strongly associated with recombination rates and gene density. These results suggest that long-term linked selection and conserved genomic features have contributed to the formation of a common genomic variation landscape. By examining how correlations between population summary statistics change throughout the species divergence continuum, we determined that background selection alone does not fully explain the observed patterns of genomic variation; the effects of recurrent selective sweeps must be considered. We further revealed that extensive gene flow has significantly influenced patterns of genomic variation in Castanopsis species. The estimated admixture proportion correlated positively with recombination rate and negatively with gene density, supporting a scenario of selection against gene flow. Additionally, putative introgression regions exhibited strong signals of positive selection, an enrichment of functional genes, and reduced genetic burdens, indicating that adaptive introgression has played a role in shaping the genomes of hybridizing species. This study provides insights into how different evolutionary forces have interacted in driving the evolution of the genomic variation landscape.
Collapse
Affiliation(s)
- Xue-Yan Chen
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Biao-Feng Zhou
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Yong Shi
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Hui Liu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Yi-Ye Liang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Pär K Ingvarsson
- Linnean Center for Plant Biology, Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Baosheng Wang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| |
Collapse
|
3
|
Gómez Quijano MJ, Gross BL, Etterson JR. Genetic differentiation across a steep and narrow environmental gradient: Quantitative genetic and genomic insights into Lake Superior populations of Quercus rubra. Mol Ecol 2024; 33:e17483. [PMID: 39056407 DOI: 10.1111/mec.17483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
Adaptive differentiation of traits and underlying loci can occur at a small geographical scale if natural selection is stronger than countervailing gene flow and drift. We investigated this hypothesis using coupled quantitative genetic and genomic approaches for a wind-pollinated tree species, Quercus rubra, along the steep, narrow gradient of the Lake Superior coast that encompasses four USDA Hardiness Zones within 100 km. For the quantitative genetic component of this study, we examined phenotypic differentiation among eight populations in a common garden, measuring seed mass, germination, height, stem diameter, leaf number, specific leaf area and survival. For the genomic component, we quantified genetic differentiation for 26 populations from the same region using RAD-seq. Because hybridisation with Quercus ellipsoidalis occurs in other parts of the species' range, we included two populations of this congener for comparison. In the common garden study, we found a strong signal of population differentiation that was significantly associated with at least one climate factor for nine of 10 measured traits. In contrast, we found no evidence of genomic differentiation among populations based on FST or any other measures. However, both distance-based and genotype-environment association analyses identified loci showing the signature of selection, with one locus in common across five analyses. This locus was associated with the minimum temperature of the coldest month, a factor that defines the climate zones and was also significant in the common garden analyses. In addition, we documented introgression from Q. ellipsoidalis into Q. rubra, with rates of introgression correlated with the climate gradient. In sum, this study reveals signatures of selection at the quantitative trait and genomic level consistent with climate adaptation, a pattern that is more often documented at a much broader geographical scale, especially in long-lived wind-pollinated species.
Collapse
Affiliation(s)
- María José Gómez Quijano
- Department of Biology, Queen's University, Kingston, Ontario, Canada
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota, USA
| | - Briana L Gross
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota, USA
| | - Julie R Etterson
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota, USA
| |
Collapse
|
4
|
Ma XG, Ren YB, Sun H. Introgression and incomplete lineage sorting blurred phylogenetic relationships across the genomes of sclerophyllous oaks from southwest China. Cladistics 2024; 40:357-373. [PMID: 38197450 DOI: 10.1111/cla.12570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 11/27/2023] [Accepted: 12/09/2023] [Indexed: 01/11/2024] Open
Abstract
Resolving evolutionary relationships among closely related species with interspecific gene flow is challenging. Genome-scale data provide opportunities to clarify complex evolutionary relationships in closely related species and to observe variations in species relationships across the genomes of such species. The Himalayan-Hengduan subalpine oaks have a nearly completely sympatric distribution in southwest China and probably constitute a syngameon. In this study, we mapped resequencing data from different species in this group to the Quercus aquifolioides reference genome to obtain a high-quality filtered single nucleotide polymorphism (SNP) dataset. We also assembled their plastomes. We reconstructed their phylogenetic relationships, explored the level and pattern of introgression among these species and investigated gene tree variation in the genomes of these species using sliding windows. The same or closely related plastomes were found to be shared extensively among different species within a specific geographical area. Phylogenomic analyses of genome-wide SNP data found that most oaks in the Himalayan-Hengduan subalpine clade showed genetic coherence, but several species were found to be connected by introgression. The gene trees obtained using sliding windows showed that the phylogenetic relationships in the genomes of oaks are highly heterogeneous and therefore highly obscured. Our study found that all the oaks of the Himalayan-Hengduan subalpine clade from southwest China form a syngameon. The obscured phylogenetic relationships observed empirically across the genome are best explained by interspecific gene flow in conjunction with incomplete lineage sorting.
Collapse
Affiliation(s)
- Xiang-Guang Ma
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yue-Bo Ren
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hang Sun
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
5
|
Li B, Huang K, Chen X, Qin C, Zhang X. Comparative and phylogenetic analysis of chloroplast genomes from four species in Quercus section Cyclobalanopsis. BMC Genom Data 2024; 25:57. [PMID: 38858616 PMCID: PMC11165809 DOI: 10.1186/s12863-024-01232-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 05/21/2024] [Indexed: 06/12/2024] Open
Abstract
The Quercus L. species is widely recognized as a significant group in the broad-leaved evergreen forests of tropical and subtropical East Asia. These plants hold immense economic value for their use as firewood, furniture, and street trees. However, the identification of Quercus species is considered challenging, and the relationships between these species remain unclear. In this study, we sequenced and assembled the chloroplast (cp.) genomes of four Quercus section Cyclobalanopsis species (Quercus disciformis, Quercus dinghuensis, Quercus blackei, and Quercus hui). Additionally, we retrieved six published cp. genome sequences of Cyclobalanopsis species (Quercus fleuryi, Quercus pachyloma, Quercus ningangensis, Quercus litseoides, Quercus gilva, and Quercus myrsinifolia). Our aim was to perform comparative genomics and phylogenetic analyses of the cp. whole genome sequences of ten Quercus section Cyclobalanopsis species. The results revealed that: (1) Quercus species exhibit a typical tetrad structure, with the cp. genome lengths of the newly sequenced species (Q. disciformis, Q. dinghuensis, Q. blakei, and Q. hui) being 160,805 bp, 160,801 bp, 160,787 bp, and 160,806 bp, respectively; (2) 469 SSRs were detected, among which A/T base repeats were the most common; (3) no rearrangements or inversions were detected within the chloroplast genomes. Genes with high nucleotide polymorphism, such as rps14-psaB, ndhJ-ndhK, rbcL-accD, and rps19-rpl2_2, provided potential reference loci for molecular identification within the Cyclobalanopsis section; (4) phylogenetic analysis showed that the four sections of Cyclobalanopsis were grouped into sister taxa, with Q. hui being the first to diverge from the evolutionary branch and Q. disciformis being the most closely related to Q. blackei. The results of this study form the basis for future studies on taxonomy and phylogenetics.
Collapse
Affiliation(s)
- Buyu Li
- College of Life Science, China West Normal University, Nanchong, 637000, China
| | - Ke Huang
- College of Life Science, China West Normal University, Nanchong, 637000, China
| | - Xiaoli Chen
- College of Life Science, China West Normal University, Nanchong, 637000, China
| | - Chun Qin
- College of Life Science, China West Normal University, Nanchong, 637000, China
| | - Xuemei Zhang
- College of Life Science, China West Normal University, Nanchong, 637000, China.
| |
Collapse
|
6
|
Morales-Saldaña S, Hipp AL, Valencia-Ávalos S, Hahn M, González-Elizondo MS, Gernandt DS, Pham KK, Oyama K, González-Rodríguez A. Divergence and reticulation in the Mexican white oaks: ecological and phylogenomic evidence on species limits and phylogenetic networks in the Quercus laeta complex (Fagaceae). ANNALS OF BOTANY 2024; 133:1007-1024. [PMID: 38428030 PMCID: PMC11089265 DOI: 10.1093/aob/mcae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/28/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND AND AIMS Introgressive hybridization poses a challenge to taxonomic and phylogenetic understanding of taxa, particularly when there are high numbers of co-occurring, intercrossable species. The genus Quercus exemplifies this situation. Oaks are highly diverse in sympatry and cross freely, creating syngameons of interfertile species. Although a well-resolved, dated phylogeny is available for the American oak clade, evolutionary relationships within many of the more recently derived clades remain to be defined, particularly for the young and exceptionally diverse Mexican white oak clade. Here, we adopted an approach bridging micro- and macroevolutionary scales to resolve evolutionary relationships in a rapidly diversifying clade endemic to Mexico. METHODS Ecological data and sequences of 155 low-copy nuclear genes were used to identify distinct lineages within the Quercus laeta complex. Concatenated and coalescent approaches were used to assess the phylogenetic placement of these lineages relative to the Mexican white oak clade. Phylogenetic network methods were applied to evaluate the timing and genomic significance of recent or historical introgression among lineages. KEY RESULTS The Q. laeta complex comprises six well-supported lineages, each restricted geographically and with mostly divergent climatic niches. Species trees corroborated that the different lineages are more closely related to other species of Mexican white oaks than to each other, suggesting that this complex is polyphyletic. Phylogenetic networks estimated events of ancient introgression that involved the ancestors of three present-day Q. laeta lineages. CONCLUSIONS The Q. laeta complex is a morphologically and ecologically related group of species rather than a clade. Currently, oak phylogenetics is at a turning point, at which it is necessary to integrate phylogenetics and ecology in broad regional samples to figure out species boundaries. Our study illuminates one of the more complicated of the Mexican white oak groups and lays groundwork for further taxonomic study.
Collapse
Affiliation(s)
- Saddan Morales-Saldaña
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México (UNAM), Antigua Carretera a Pátzcuaro No. 8701, Col. Ex-Hacienda de San José de la Huerta, Morelia, 58190, Michoacán, México
| | - Andrew L Hipp
- The Morton Arboretum, Lisle, IL 60532-1293, USA
- The Field Museum, Chicago, IL 60605, USA
| | - Susana Valencia-Ávalos
- Herbario de la Facultad de Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, México
| | | | | | - David S Gernandt
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, México
| | - Kasey K Pham
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Ken Oyama
- Escuela Nacional de Estudios Superiores Unidad Morelia, Universidad Nacional Autónoma de México (UNAM), Antigua Carretera a Pátzcuaro No. 8701, Col. Ex‐Hacienda de San José de la Huerta, Morelia, 58190, Michoacán, México
| | - Antonio González-Rodríguez
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México (UNAM), Antigua Carretera a Pátzcuaro No. 8701, Col. Ex-Hacienda de San José de la Huerta, Morelia, 58190, Michoacán, México
| |
Collapse
|
7
|
Fkiri S, Mohamed B, Khouja M, Stiti B, Ben Salem R, Nasr Z, Ben Slimane L, Nagaz K, Ghayth R, Khaldi A. Effect of geographical origin on the chemical characteristics of Q. canariensis acorns: profiling fatty acids, tocopherols, and phenolic composition. Nat Prod Res 2024:1-7. [PMID: 38557271 DOI: 10.1080/14786419.2024.2335355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
The impact of geographical origin on the chemical composition of acorns from Quercus species has significant attention. This study aimed to explore the phenolic composition of methanolic extracts, tocopherol content, and fatty acid composition of acorn oils from six different populations of Q. canariensis acorns. The obtained results revealed that acorn oil from BniMtir exhibited high levels of α-tocopherol (58 mg/kg). The fatty acids identified across all samples were Z-vaccenic + oleic acids (38.44-58.58%). In addition, the data highlighted the presence of quinic (32.514-60.216 µg/g DW) and gallic acids (1.674-10.849 µg/g DW), as well as catechin (+) (0.096-12.647 µg/g DW) in all populations. These variations in chemical composition from different regions are likely linked to their geographical origin. In conclusion, this study's finding should significance for the industry, offering valuable insights into the potential production of bioactive compounds from Q. canariensis acorns, which could have various applications.
Collapse
Affiliation(s)
- Sondes Fkiri
- National Institute for Researches on Rural Engineering, Water and Forests, INRGREF, Ariana, Tunisia
| | - Bagues Mohamed
- Laboratory of Drylands and Oases Cropping, Arid Regions Institute of Medenine, University of Gabes, Medenine, Tunisia
| | - Mariem Khouja
- Laboratory of Nanobiotechnology and Valorization of Medicinal Phytoresources, Department of Biology, National Institute of Applied Science and Technology, University of Carthage, Tunis Cedex, Tunisia
| | - Boutheina Stiti
- National Institute for Researches on Rural Engineering, Water and Forests, INRGREF, Ariana, Tunisia
| | - Ridha Ben Salem
- Laboratory of Organic Chemistry LR17ES08, Sciences Faculty of Sfax, University of Sfax, Sfax, Tunisia
| | - Zouhair Nasr
- National Institute for Researches on Rural Engineering, Water and Forests, INRGREF, Ariana, Tunisia
| | | | - Kamel Nagaz
- Laboratory of Drylands and Oases Cropping, Arid Regions Institute of Medenine, University of Gabes, Medenine, Tunisia
| | - Rigane Ghayth
- Laboratory of Organic Chemistry LR17ES08, Sciences Faculty of Sfax, University of Sfax, Sfax, Tunisia
- Chemistry-Physics Department, Sciences and Technology Faculty, University of Kairouan, Sidi Bouzid, Tunisia
| | - Abdelhamid Khaldi
- National Institute for Researches on Rural Engineering, Water and Forests, INRGREF, Ariana, Tunisia
| |
Collapse
|
8
|
Li X, Li Y, El-Kassaby YA, Fang Y. Spatial Distribution and Ecological Determinants of Coexisting Hybrid Oak Species: A Study in Yushan's Mixed Forest. PLANTS (BASEL, SWITZERLAND) 2024; 13:1000. [PMID: 38611529 PMCID: PMC11013232 DOI: 10.3390/plants13071000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024]
Abstract
Ecological niche partitioning is crucial in reducing interspecific competition, fostering species coexistence, and preserving biodiversity. Our research, conducted in a hybrid mixed oak forest in Yushan, Jiangsu, China, focuses on Quercus acutissima, Q. variabilis, Q. fabri, and Q. serrata var. brevipetiolata. Using Point Pattern Analysis, we investigated the spatial relationships and ecological trait autocorrelation, including total carbon (TC), nitrogen (TN), phosphorus (TP), potassium (TK), and breast height diameter (DBH). Our findings show aggregated distribution patterns within the oak populations. The Inhomogeneous Poisson Point model highlights the impact of environmental heterogeneity on Q. variabilis, leading to distinct distribution patterns, while other species showed wider dispersion. This study reveals aggregated interspecific interactions, with a notable dispersal pattern between Q. acutissima and Q. variabilis. We observed significant variability in nutrient elements, indicating distinct nutrient dynamics and uptake processes. The variations in total carbon (TC), nitrogen (TN), phosphorus (TP), and potassium (TK) suggest distinct nutrient dynamics, with TK showing the highest variability. Despite variations in TC, TK, and TP, the species did not form distinct classes, suggesting overlapping nutritional strategies and environmental adaptations. Furthermore, spatial autocorrelation analysis indicates strong positive correlations for DBH, TC, and TP, whereas TK and TN correlations are non-significant. The results suggest habitat filtering as a key driver in intraspecific relationships, with a finer spatial scale of ecological niche division through TC and TP, which is crucial for maintaining coexistence among these oak species.
Collapse
Affiliation(s)
- Xuan Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Science, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China;
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Yongfu Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China;
| | - Yousry A. El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Yanming Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Science, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China;
| |
Collapse
|
9
|
Mead A, Fitz-Gibbon ST, Escalona M, Beraut E, Sacco S, Marimuthu MPA, Nguyen O, Sork VL. The genome assembly of Island Oak (Quercus tomentella), a relictual island tree species. J Hered 2024; 115:221-229. [PMID: 38305464 PMCID: PMC10936553 DOI: 10.1093/jhered/esae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/01/2024] [Indexed: 02/03/2024] Open
Abstract
Island oak (Quercus tomentella) is a rare relictual island tree species that exists only on six islands off the coast of California and Mexico, but was once widespread throughout mainland California. Currently, this species is endangered by threats such as non-native plants, grazing animals, and human removal. Efforts for conservation and restoration of island oak currently underway could benefit from information about its range-wide genetic structure and evolutionary history. Here we present a high-quality genome assembly for Q. tomentella, assembled using PacBio HiFi and Omni-C sequencing, developed as part of the California Conservation Genomics Project (CCGP). The resulting assembly has a length of 781 Mb, with a contig N50 of 22.0 Mb and a scaffold N50 of 63.4 Mb. This genome assembly will provide a resource for genomics-informed conservation of this rare oak species. Additionally, this reference genome will be the first one available for a species in Quercus section Protobalanus, a unique oak clade present only in western North America.
Collapse
Affiliation(s)
- Alayna Mead
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles CA 90095-7239, United States
| | - Sorel T Fitz-Gibbon
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles CA 90095-7239, United States
| | - Merly Escalona
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, United States
| | - Eric Beraut
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, United States
| | - Samuel Sacco
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, United States
| | - Mohan P A Marimuthu
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California, Davis, CA 95616, United States
| | - Oanh Nguyen
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California, Davis, CA 95616, United States
| | - Victoria L Sork
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles CA 90095-7239, United States
- Institute of the Environment and Sustainability, University of California Los Angeles, Los Angeles CA 90095, United States
| |
Collapse
|
10
|
Song Y, Xu GB, Long KX, Wang CC, Chen R, Li H, Jiang XL, Deng M. Ensemble species distribution modeling and multilocus phylogeography provide insight into the spatial genetic patterns and distribution dynamics of a keystone forest species, Quercus glauca. BMC PLANT BIOLOGY 2024; 24:168. [PMID: 38438905 PMCID: PMC10910841 DOI: 10.1186/s12870-024-04830-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/16/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Forests are essential for maintaining species diversity, stabilizing local and global climate, and providing ecosystem services. Exploring the impact of paleogeographic events and climate change on the genetic structure and distribution dynamics of forest keystone species could help predict responses to future climate change. In this study, we combined an ensemble species distribution model (eSDM) and multilocus phylogeography to investigate the spatial genetic patterns and distribution change of Quercus glauca Thunb, a keystone of East Asian subtropical evergreen broad-leaved forest. RESULTS A total of 781 samples were collected from 77 populations, largely covering the natural distribution of Q. glauca. The eSDM showed that the suitable habitat experienced a significant expansion after the last glacial maximum (LGM) but will recede in the future under a general climate warming scenario. The distribution centroid will migrate toward the northeast as the climate warms. Using nuclear SSR data, two distinct lineages split between east and west were detected. Within-group genetic differentiation was higher in the West than in the East. Based on the identified 58 haplotypes, no clear phylogeographic structure was found. Populations in the Nanling Mountains, Wuyi Mountains, and the southwest region were found to have high genetic diversity. CONCLUSIONS A significant negative correlation between habitat stability and heterozygosity might be explained by the mixing of different lineages in the expansion region after LGM and/or hybridization between Q. glauca and closely related species. The Nanling Mountains may be important for organisms as a dispersal corridor in the west-east direction and as a refugium during the glacial period. This study provided new insights into spatial genetic patterns and distribution dynamics of Q. glauca.
Collapse
Affiliation(s)
- Ying Song
- College of Forestry, The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Gang-Biao Xu
- College of Forestry, The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Ke-Xin Long
- College of Forestry, The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Chun-Cheng Wang
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Ran Chen
- College of Forestry, The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - He Li
- College of Forestry, The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Xiao-Long Jiang
- College of Forestry, The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| | - Min Deng
- School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, 650500, China.
| |
Collapse
|
11
|
Gantsetseg A, Han EK, Lee JH. The complete chloroplast genome sequence of the North American sclerophyllous evergreen shrub, Quercus turbinella (Fagaceae). Mitochondrial DNA B Resour 2024; 9:123-127. [PMID: 38259356 PMCID: PMC10802804 DOI: 10.1080/23802359.2024.2305398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Quercus turbinella (section Quercus; Fagaceae) is an evergreen shrub characteristic in central Arizona and it concerns one of the most abundant and economically important genera of Quercus in the Northern Hemisphere. Here, we have sequenced the complete chloroplast genome to provide insight into the phylogenetic relationship of Q. turbinella. The whole genome is 161,208 bp in length with two inverted repeat regions of 25,827 bp each, which separate a large single-copy region of 90,552 bp and a small single-copy region of 19,002 bp. A total of 136 genes were annotated, including 88 protein-coding genes, eight ribosomal RNAs, and 40 transfer RNAs. The result of the maximum-likelihood phylogenetic analysis strongly suggested that Quercus turbinella had a close relationship to Quercus macrocarpa with strong bootstrap support.
Collapse
Affiliation(s)
- Amarsanaa Gantsetseg
- Department of Biology Education, Chonnam National University, Gwangju, Republic of Korea
| | - Eun-Kyeong Han
- Department of Biology Education, Chonnam National University, Gwangju, Republic of Korea
| | - Jung-Hyun Lee
- Department of Biology Education, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
12
|
Muniz AC, de Oliveira Buzatti RS, de Lemos-Filho JP, Heuertz M, Nazareno AG, Lovato MB. Genomic signatures of ecological divergence between savanna and forest populations of a Neotropical tree. ANNALS OF BOTANY 2023; 132:523-540. [PMID: 37642427 PMCID: PMC10667007 DOI: 10.1093/aob/mcad120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND AND AIMS In eastern Neotropical South America, the Cerrado, a large savanna vegetation, and the Atlantic Forest harbour high biodiversity levels, and their habitats are rather different from each other. The biomes have intrinsic evolutionary relationships, with high lineage exchange that can be attributed, in part, to a large contact zone between them. The genomic study of ecotypes, i.e. populations adapted to divergent habitats, can be a model to study the genomic signatures of ecological divergence. Here, we investigated two ecotypes of the tree Plathymenia reticulata, one from the Cerrado and the other from the Atlantic Forest, which have a hybrid zone in the ecotonal zone of Atlantic Forest-Cerrado. METHODS The ecotypes were sampled in the two biomes and their ecotone. The evolutionary history of the divergence of the species was analysed with double-digest restriction site-associated DNA sequencing. The genetic structure and the genotypic composition of the hybrid zone were determined. Genotype-association analyses were performed, and the loci under putative selection and their functions were investigated. KEY RESULTS High divergence between the two ecotypes was found, and only early-generation hybrids were found in the hybrid zone, suggesting a partial reproductive barrier. Ancient introgression between the Cerrado and Atlantic Forest was not detected. The soil and climate were associated with genetic divergence in Plathymenia ecotypes and outlier loci were found to be associated with the stress response, with stomatal and root development and with reproduction. CONCLUSIONS The high genomic, ecological and morphophysiological divergence between ecotypes, coupled with partial reproductive isolation, indicate that the ecotypes represent two species and should be managed as different evolutionary lineages. We advise that the forest species should be re-evaluated and restated as vulnerable. Our results provide insights into the genomic mechanisms underlying the diversification of species across savanna and forest habitats and the evolutionary forces acting in the species diversification in the Neotropics.
Collapse
Affiliation(s)
- André Carneiro Muniz
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, CP 486, Belo Horizonte, MG 31270-901, Brazil
| | | | - José Pires de Lemos-Filho
- Departamento de Botânica, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Myriam Heuertz
- Biogeco, INRAE, Univ. Bordeaux, 69 route d’Arcachon, 33610 Cestas, France
| | - Alison Gonçalves Nazareno
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, CP 486, Belo Horizonte, MG 31270-901, Brazil
| | - Maria Bernadete Lovato
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, CP 486, Belo Horizonte, MG 31270-901, Brazil
| |
Collapse
|
13
|
Qian H, Kessler M, Zhang J, Jin Y, Soltis DE, Qian S, Zhou Y, Soltis PS. Angiosperm phylogenetic diversity is lower in Africa than South America. SCIENCE ADVANCES 2023; 9:eadj1022. [PMID: 37967173 PMCID: PMC10651126 DOI: 10.1126/sciadv.adj1022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/13/2023] [Indexed: 11/17/2023]
Abstract
Although originating from a common Gondwanan flora, the diversity and composition of the floras of Africa and South America have greatly diverged since continental breakup of Africa from South America now having much higher plant species richness. However, the phylogenetic diversity of the floras and what this tells us about their evolution remained unexplored. We show that for a given species richness and considering land surface area, topography, and present-day climate, angiosperm phylogenetic diversity in South America is higher than in Africa. This relationship holds regardless of whether all climatically matched areas or only matched areas in tropical climates are considered. Phylogenetic diversity is high relative to species richness in refugial areas in Africa and in northwestern South America, once the gateway for immigration from the north. While species richness is strongly influenced by massive plant radiations in South America, we detect a pervasive influence of historical processes on the phylogenetic diversity of both the South American and African floras.
Collapse
Affiliation(s)
- Hong Qian
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Research and Collections Center, Illinois State Museum, 1011 East Ash Street, Springfield, IL 62703, USA
| | - Michael Kessler
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Jian Zhang
- Center for Global Change and Complex Ecosystems, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yi Jin
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang 550025, China
| | - Douglas E. Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL 32608, USA
- Biodiversity Institute, University of Florida, Gainesville, FL 32611, USA
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Shenhua Qian
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yadong Zhou
- School of Life Sciences, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Pamela S. Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL 32608, USA
- Biodiversity Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
14
|
Wang L, Li LL, Chen L, Zhang RG, Zhao SW, Yan H, Gao J, Chen X, Si YJ, Chen Z, Liu H, Xie XM, Zhao W, Han B, Qin X, Jia KH. Telomere-to-telomere and haplotype-resolved genome assembly of the Chinese cork oak ( Quercus variabilis). FRONTIERS IN PLANT SCIENCE 2023; 14:1290913. [PMID: 38023918 PMCID: PMC10652414 DOI: 10.3389/fpls.2023.1290913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
The Quercus variabilis, a deciduous broadleaved tree species, holds significant ecological and economical value. While a chromosome-level genome for this species has been made available, it remains riddled with unanchored sequences and gaps. In this study, we present a nearly complete comprehensive telomere-to-telomere (T2T) and haplotype-resolved reference genome for Q. variabilis. This was achieved through the integration of ONT ultra-long reads, PacBio HiFi long reads, and Hi-C data. The resultant two haplotype genomes measure 789 Mb and 768 Mb in length, with a contig N50 of 65 Mb and 56 Mb, and were anchored to 12 allelic chromosomes. Within this T2T haplotype-resolved assembly, we predicted 36,830 and 36,370 protein-coding genes, with 95.9% and 96.0% functional annotation for each haplotype genome. The availability of the T2T and haplotype-resolved reference genome lays a solid foundation, not only for illustrating genome structure and functional genomics studies but also to inform and facilitate genetic breeding and improvement of cultivated Quercus species.
Collapse
Affiliation(s)
- Longxin Wang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Lei-Lei Li
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Li Chen
- Shandong Saienfu Stem Cell Engineering Group Co., Ltd, Jinan, China
| | - Ren-Gang Zhang
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations/Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Shi-Wei Zhao
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Han Yan
- The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Jie Gao
- Chinese Academy of Sciences (CAS), Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, China
| | - Xue Chen
- Weifang Academy of Agricultural Sciences, Weifang, China
| | - Yu-Jun Si
- Weifang Academy of Agricultural Sciences, Weifang, China
| | - Zhe Chen
- InvoGenomics Biotechnology Co., Ltd., Jinan, China
| | - Haibo Liu
- Jinan Academy of Landscape and Forestry Science, Jinan, China
| | - Xiao-Man Xie
- Key Laboratory of State Forestry and Grassland Administration Conservation and Utilization of Warm Temperate Zone Forest and Grass Germplasm Resources, Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China
| | - Wei Zhao
- Department of Ecology and Environmental Science, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Biao Han
- Key Laboratory of State Forestry and Grassland Administration Conservation and Utilization of Warm Temperate Zone Forest and Grass Germplasm Resources, Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China
| | - Xiaochun Qin
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Kai-Hua Jia
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
15
|
Ke M, Si H, Qi Y, Sun Y, El-Kassaby YA, Wu Z, Li S, Liu K, Yu H, Hu R, Li Y. Characterization of pollen tube development in distant hybridization of Chinese cork oak (Quercus variabilis L.). PLANTA 2023; 258:110. [PMID: 37910223 DOI: 10.1007/s00425-023-04265-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/13/2023] [Indexed: 11/03/2023]
Abstract
MAIN CONCLUSION This work mainly found that the stigma and style of Q. variabilis did not completely lose the specific recognition towards heterologous pollen, a fact which is different from previous studies. Quercus is the foundation species in the Northern Hemisphere, with extreme prevalence for interspecific hybridization. It is not yet entirely understood whether or how the pollen tube-female tissue interaction contributes to the "extensive hybridization" in oaks. Pollen storage conditions correlate with distant hybridization. We conducted hybridization experiments with Q. variabilis as female and Q. variabilis and Q. mongolica as male parents. And the differences in pollen tube (PT) development between intra- and distant interspecific hybridization were studied by fluorescence microscopy and scanning electron microscopy (SEM). Our results showed that -20 °C allowed pollen of both species to maintain some viability. Both Q. variabilis and Q. mongolica pollen germinated profusely on the stigmas. SEM results indicated that in the intraspecific hybridization, Q. variabilis pollen started to germinate at 6 h after pollination (hap), PTs elongated significantly at 12 hap, and entered the stigma at 24 hap. By contrast, Q. mongolica pollen germinated at 15 hap, and the PTs entered the stigma at 27 hap. By fluorescence microscopical studies it was observed that some PTs of Q. variabilis gathered at the style-joining at 96 hap, unlike the Q. mongolica which reached the style junction at 144 hap. The above results indicate that the abundant germination of heterologous pollen (HP) on the stigma and the "Feeble specificity recognition" of the stigma and transmitting tract to HP may create opportunities for the "extensive hybridization" of oaks. This work provides a sexual developmental reference for clarifying the causes of Quercus "extensive hybridization".
Collapse
Affiliation(s)
- Meng Ke
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Huayu Si
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yongliang Qi
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yuhan Sun
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Zhiyong Wu
- Beijing Green Space Maintenance and Management Service Centre, Beijing, 102200, China
| | - Shian Li
- Beijing Green Space Maintenance and Management Service Centre, Beijing, 102200, China
| | - Kelin Liu
- Beijing Green Space Maintenance and Management Service Centre, Beijing, 102200, China
| | - Hai Yu
- Experimental Centre of Forestry in North China, Chinese Academy of Forestry, Beijing, 102399, China
| | - Ruiyang Hu
- Experimental Centre of Forestry in North China, Chinese Academy of Forestry, Beijing, 102399, China
| | - Yun Li
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
16
|
Di Marco G, D'Agostino A, Braglia R, Redi EL, Iacobelli S, Gismondi A, Canini A. Pollen variability in Quercus L. species and relative systematic implications. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108079. [PMID: 37862931 DOI: 10.1016/j.plaphy.2023.108079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/19/2023] [Accepted: 10/02/2023] [Indexed: 10/22/2023]
Abstract
This study aims to address one of the challenges related to the complexity of the Quercus L. genus, that is the identification of structural elements favouring the systematic identification of the oak pollen. Thus, in this contribution, we explored the variation of morphometric and chemical parameters in pollen samples collected from 47 different Quercus species and hybrids. Several qualitative (e.g., outline in polar view, class, aperture structures) and quantitative (e.g., diameter, exine and sporoderm thickness, autofluorescence, content in proteins and plant metabolites) features were evaluated by optic microscopy and spectrophotometric assays. Statistical analyses were also carried out to assess significant correlations and clustering effects among the studied taxa, based on phenotypical and biochemical data, to identify the parameters which could be useful for taxonomic discrimination at inter- and intra-specific level. Only few morphological traits showed the potentiality to be diagnostic, such as pollen diameter and outline in polar view. The intensity of pollen autofluorescence varied among the samples but it did not seem to correlate with protein, carotenoid, phenolic and flavonoid content. However, differences in protein and carotenoid levels were detected, suggesting them as possible taxonomic discriminants for oak pollen. Thus, our work represents a step forward in understanding morphology and biochemistry of oak pollen, constitutes an experimental set-up applicable in future systematic studies on other genera, and opens new perspectives for further molecular investigations on Quercus species.
Collapse
Affiliation(s)
| | | | - Roberto Braglia
- Department of Biology, University of Rome Tor Vergata, Rome, Italy.
| | | | - Simona Iacobelli
- Department of Biology, University of Rome Tor Vergata, Rome, Italy.
| | - Angelo Gismondi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy.
| | - Antonella Canini
- Department of Biology, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
17
|
Salvatore MM, Russo MT, Nicoletti R, Mahamedi AE, Berraf-Tebbal A, Cimmino A, Masi M, Andolfi A. Comparative Analysis of Secondary Metabolites in Diplodia corticola Strains with Different Virulence Degrees Associated with Canker and Dieback of Quercus spp. Molecules 2023; 28:6302. [PMID: 37687130 PMCID: PMC10489718 DOI: 10.3390/molecules28176302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/01/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Diplodia corticola is one of the most aggressive fungal pathogens of Quercus species involved in the decline of Mediterranean oak forests. In this study, three strains of D. corticola associated with holm (Quercus ilex) and cork (Quercus suber) oak trees exhibiting dieback symptoms and cankers in Algeria were selected to investigate the production of secondary metabolites. Metabolomic analyses revealed the production of several known compounds, such as sphaeropsidins, diplopyrones and diplofuranones. Moreover, the comparative investigation of secondary metabolites produced by the analyzed strains with different degrees of virulence revealed possible implications of these compounds in the fungal virulence. In particular, sphaeropsidins seem to be the main phytotoxic compounds of D. corticola involved in the infections of Quercus species, with a possible synergistic influence of the less representative compounds in the fungal virulence.
Collapse
Affiliation(s)
- Maria Michela Salvatore
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (M.M.S.); (M.T.R.); (A.C.); (M.M.)
- Institute for Sustainable Plant Protection, National Research Council, 80055 Portici, Italy
| | - Maria Teresa Russo
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (M.M.S.); (M.T.R.); (A.C.); (M.M.)
| | - Rosario Nicoletti
- Department of Agriculture, University of Naples Federico II, 80055 Portici, Italy;
- Council for Agricultural Research and Economics, Research Center for Olive, Fruit and Citrus Crops, 81100 Caserta, Italy
| | - Alla Eddine Mahamedi
- Department of Biology, Faculty of Natural Sciences, Life and Earth Sciences, University of Ghardaïa, Ghardaïa 47000, Algeria;
| | - Akila Berraf-Tebbal
- Mendeleum-Institute of Genetics and Plant Breeding, Faculty of Horticulture, Mendel University in Brno, 69144 Lednice, Czech Republic;
| | - Alessio Cimmino
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (M.M.S.); (M.T.R.); (A.C.); (M.M.)
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy
| | - Marco Masi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (M.M.S.); (M.T.R.); (A.C.); (M.M.)
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy
| | - Anna Andolfi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (M.M.S.); (M.T.R.); (A.C.); (M.M.)
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|
18
|
Eppe J, Bayrou C, Casalta H, Cassart D, Gille L, Stipulanti M, Versyp J, Sartelet A. Oak Acorn Poisoning in Cattle during Autumn 2022: A Case Series and Review of the Current Knowledge. Animals (Basel) 2023; 13:2678. [PMID: 37627469 PMCID: PMC10451953 DOI: 10.3390/ani13162678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/10/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023] Open
Abstract
Oak poisoning is a known intoxication in grazing animals, but is slightly described in the literature. This case report describes 7 cattle from 3 different farms admitted to the clinic for ruminants of the University of Liège for suspected acorn poisoning in the autumn of 2022. The clinical signs were, anorexia, apathy with polyuria with low density. Further investigations led to the diagnosis of renal failure (blood urea 162 ± 88 mg/dL; blood creatinine 12 ± 4 mg/L). Supportive treatment, based on infusions (NaCl 0.9%) and electrolyte rebalancing, was administered and renal values were assessed every 24-48 h. Of these animals, 5/7 were euthanized. At necropsy, digestive erosions and ulcerations, oedema and renal hemorrhages, between the pyloric/caliceal cavity and the medulla were observed. Histopathological examination revealed necrosis of the renal tubules. The renal values of the two remaining animals were reduced, their general condition improved, and they were discharged. Acorn poisoning is a serious disease with no specific antidote or characteristic symptoms. Animals are identified as sick too late, when renal failure is already established. Farmers should be made more aware in order to prevent exposure, especially in years when acorns are abundant. Furthermore, there is no antidote for this intoxication.
Collapse
Affiliation(s)
- Justine Eppe
- Fundamental and Applied Research for Animals and Health Research Unit (FARAH), Clinical Department of Production Animals, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 7A-7D, 4000 Liège, Belgium; (C.B.); (H.C.); (L.G.); (M.S.); (J.V.); (A.S.)
| | - Calixte Bayrou
- Fundamental and Applied Research for Animals and Health Research Unit (FARAH), Clinical Department of Production Animals, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 7A-7D, 4000 Liège, Belgium; (C.B.); (H.C.); (L.G.); (M.S.); (J.V.); (A.S.)
| | - Hélène Casalta
- Fundamental and Applied Research for Animals and Health Research Unit (FARAH), Clinical Department of Production Animals, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 7A-7D, 4000 Liège, Belgium; (C.B.); (H.C.); (L.G.); (M.S.); (J.V.); (A.S.)
| | - Dominique Cassart
- Fundamental and Applied Research for Animals and Health Research Unit (FARAH), Department of Animal Pathology, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 6, 4000 Liège, Belgium;
| | - Linde Gille
- Fundamental and Applied Research for Animals and Health Research Unit (FARAH), Clinical Department of Production Animals, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 7A-7D, 4000 Liège, Belgium; (C.B.); (H.C.); (L.G.); (M.S.); (J.V.); (A.S.)
| | - Margot Stipulanti
- Fundamental and Applied Research for Animals and Health Research Unit (FARAH), Clinical Department of Production Animals, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 7A-7D, 4000 Liège, Belgium; (C.B.); (H.C.); (L.G.); (M.S.); (J.V.); (A.S.)
| | - Jérôme Versyp
- Fundamental and Applied Research for Animals and Health Research Unit (FARAH), Clinical Department of Production Animals, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 7A-7D, 4000 Liège, Belgium; (C.B.); (H.C.); (L.G.); (M.S.); (J.V.); (A.S.)
| | - Arnaud Sartelet
- Fundamental and Applied Research for Animals and Health Research Unit (FARAH), Clinical Department of Production Animals, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 7A-7D, 4000 Liège, Belgium; (C.B.); (H.C.); (L.G.); (M.S.); (J.V.); (A.S.)
| |
Collapse
|
19
|
Chen X, Avia K, Forler A, Remoué C, Venon A, Rousselet A, Lucas G, Kwarteng AO, Rover R, Le Guilloux M, Belcram H, Combes V, Corti H, Olverà-Vazquez S, Falque M, Alins G, Kirisits T, Ursu TM, Roman A, Volk GM, Bazot S, Cornille A. Ecological and evolutionary drivers of phenotypic and genetic variation in the European crabapple [Malus sylvestris (L.) Mill.], a wild relative of the cultivated apple. ANNALS OF BOTANY 2023; 131:1025-1037. [PMID: 37148364 PMCID: PMC10332392 DOI: 10.1093/aob/mcad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND AIMS Studying the relationship between phenotypic and genetic variation in populations distributed across environmental gradients can help us to understand the ecological and evolutionary processes involved in population divergence. We investigated the patterns of genetic and phenotypic diversity in the European crabapple, Malus sylvestris, a wild relative of the cultivated apple (Malus domestica) that occurs naturally across Europe in areas subjected to different climatic conditions, to test for divergence among populations. METHODS Growth rates and traits related to carbon uptake in seedlings collected across Europe were measured in controlled conditions and associated with the genetic status of the seedlings, which was assessed using 13 microsatellite loci and the Bayesian clustering method. Isolation-by-distance, isolation-by-climate and isolation-by-adaptation patterns, which can explain genetic and phenotypic differentiation among M. sylvestris populations, were also tested. KEY RESULTS A total of 11.6 % of seedlings were introgressed by M. domestica, indicating that crop-wild gene flow is ongoing in Europe. The remaining seedlings (88.4 %) belonged to seven M. sylvestris populations. Significant phenotypic trait variation among M. sylvestris populations was observed. We did not observe significant isolation by adaptation; however, the significant association between genetic variation and the climate during the Last Glacial Maximum suggests that there has been local adaptation of M. sylvestris to past climates. CONCLUSIONS This study provides insight into the phenotypic and genetic differentiation among populations of a wild relative of the cultivated apple. This might help us to make better use of its diversity and provide options for mitigating the impact of climate change on the cultivated apple through breeding.
Collapse
Affiliation(s)
- X Chen
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - K Avia
- Université de Strasbourg, INRAE, SVQV UMR-A 1131, F-68000 Colmar, France
| | - A Forler
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - C Remoué
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - A Venon
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - A Rousselet
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - G Lucas
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette 91198, France
| | - A O Kwarteng
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - R Rover
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - M Le Guilloux
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - H Belcram
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - V Combes
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - H Corti
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - S Olverà-Vazquez
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - M Falque
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - G Alins
- Institut de Recerca i Tecnologia Agroalimentàries, IRTA-Fruit Production, PCiTAL, Parc 21 de Gardeny, edifici Fruitcentre, 25003 Lleida, Spain
| | - T Kirisits
- Institute of Forest Entomology, Forest Pathology and Forest Protection (IFFF), Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna (BOKU), Peter-Jordan-Straße 82 (Franz Schwackhöfer-Haus), A-1190 Vienna, Austria
| | - T M Ursu
- NIRDBS, Institute of Biological Research Cluj-Napoca, 48 Republicii St., Cluj-Napoca, Romania
| | - A Roman
- NIRDBS, Institute of Biological Research Cluj-Napoca, 48 Republicii St., Cluj-Napoca, Romania
| | - G M Volk
- USDA-ARS National Laboratory for Genetic Resources Preservation, 1111 South Mason Street, Fort Collins, CO 80521, USA
| | - S Bazot
- Ecologie Systématique et Evolution, CNRS, AgroParisTech, Ecologie Systématique Evolution, Université Paris‐Saclay, Orsay, France
| | - A Cornille
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| |
Collapse
|
20
|
Tóth EG, Cseke K, Benke A, Lados BB, Tomov VT, Zhelev P, Kámpel JD, Borovics A, Köbölkuti ZA. Key triggers of adaptive genetic variability of sessile oak [Q. petraea (Matt.) Liebl.] from the Balkan refugia: outlier detection and association of SNP loci from ddRAD-seq data. Heredity (Edinb) 2023:10.1038/s41437-023-00629-2. [PMID: 37316726 PMCID: PMC10382515 DOI: 10.1038/s41437-023-00629-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/16/2023] Open
Abstract
Knowledge on the genetic composition of Quercus petraea in south-eastern Europe is limited despite the species' significant role in the re-colonisation of Europe during the Holocene, and the diverse climate and physical geography of the region. Therefore, it is imperative to conduct research on adaptation in sessile oak to better understand its ecological significance in the region. While large sets of SNPs have been developed for the species, there is a continued need for smaller sets of SNPs that are highly informative about the possible adaptation to this varied landscape. By using double digest restriction site associated DNA sequencing data from our previous study, we mapped RAD-seq loci to the Quercus robur reference genome and identified a set of SNPs putatively related to drought stress-response. A total of 179 individuals from eighteen natural populations at sites covering heterogeneous climatic conditions in the southeastern natural distribution range of Q. petraea were genotyped. The detected highly polymorphic variant sites revealed three genetic clusters with a generally low level of genetic differentiation and balanced diversity among them but showed a north-southeast gradient. Selection tests showed nine outlier SNPs positioned in different functional regions. Genotype-environment association analysis of these markers yielded a total of 53 significant associations, explaining 2.4-16.6% of the total genetic variation. Our work exemplifies that adaptation to drought may be under natural selection in the examined Q. petraea populations.
Collapse
Affiliation(s)
- Endre Gy Tóth
- Department of Forest Tree Breeding, Forest Research Institute (UOS-FRI), University of Sopron, Várkerület 30/A, Sárvár, 9600, Hungary.
| | - Klára Cseke
- Department of Forest Tree Breeding, Forest Research Institute (UOS-FRI), University of Sopron, Várkerület 30/A, Sárvár, 9600, Hungary
| | - Attila Benke
- Department of Forest Tree Breeding, Forest Research Institute (UOS-FRI), University of Sopron, Várkerület 30/A, Sárvár, 9600, Hungary
| | - Botond B Lados
- Department of Forest Tree Breeding, Forest Research Institute (UOS-FRI), University of Sopron, Várkerület 30/A, Sárvár, 9600, Hungary
| | - Vladimir T Tomov
- Department of Landscape Architecture, Faculty of Ecology and Landscape Architecture, University of Forestry (UF), Kliment Ohridsky 10, Sofia, 1797, Bulgaria
| | - Petar Zhelev
- Department of Dendrology, Faculty of Forestry, University of Forestry (UF), Kliment Ohridsky 10, Sofia, 1797, Bulgaria
| | - József D Kámpel
- Ottó Herman Environmental and Agricultural Technical School, Vocational School and College (Agricultural Vocational Centre of the Kisalföld Region), Ernuszt Kelemen 1, Szombathely, 9700, Hungary
| | - Attila Borovics
- Department of Forest Tree Breeding, Forest Research Institute (UOS-FRI), University of Sopron, Várkerület 30/A, Sárvár, 9600, Hungary
| | - Zoltán A Köbölkuti
- Department of Forest Tree Breeding, Forest Research Institute (UOS-FRI), University of Sopron, Várkerület 30/A, Sárvár, 9600, Hungary
- Departement of Applied Forest Genetics Research, Bavarian Office for Forest Genetics (AWG), Forstamtsplatz 1, Teisendorf, 83317, Germany
| |
Collapse
|
21
|
Huang WC, Liao B, Liu H, Liang YY, Chen XY, Wang B, Xia H. A chromosome-scale genome assembly of Castanopsis hystrix provides new insights into the evolution and adaptation of Fagaceae species. FRONTIERS IN PLANT SCIENCE 2023; 14:1174972. [PMID: 37215286 PMCID: PMC10197965 DOI: 10.3389/fpls.2023.1174972] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/22/2023] [Indexed: 05/24/2023]
Abstract
Fagaceae species dominate forests and shrublands throughout the Northern Hemisphere, and have been used as models to investigate the processes and mechanisms of adaptation and speciation. Compared with the well-studied genus Quercus, genomic data is limited for the tropical-subtropical genus Castanopsis. Castanopsis hystrix is an ecologically and economically valuable species with a wide distribution in the evergreen broad-leaved forests of tropical-subtropical Asia. Here, we present a high-quality chromosome-scale reference genome of C. hystrix, obtained using a combination of Illumina and PacBio HiFi reads with Hi-C technology. The assembled genome size is 882.6 Mb with a contig N50 of 40.9 Mb and a BUSCO estimate of 99.5%, which are higher than those of recently published Fagaceae species. Genome annotation identified 37,750 protein-coding genes, of which 97.91% were functionally annotated. Repeat sequences constituted 50.95% of the genome and LTRs were the most abundant repetitive elements. Comparative genomic analysis revealed high genome synteny between C. hystrix and other Fagaceae species, despite the long divergence time between them. Considerable gene family expansion and contraction were detected in Castanopsis species. These expanded genes were involved in multiple important biological processes and molecular functions, which may have contributed to the adaptation of the genus to a tropical-subtropical climate. In summary, the genome assembly of C. hystrix provides important genomic resources for Fagaceae genomic research communities, and improves understanding of the adaptation and evolution of forest trees.
Collapse
Affiliation(s)
- Wei-Cheng Huang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Chinese Academy of Sciences (CAS), Guangzhou, China
| | - Borong Liao
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Hui Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Chinese Academy of Sciences (CAS), Guangzhou, China
| | - Yi-Ye Liang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Chinese Academy of Sciences (CAS), Guangzhou, China
| | - Xue-Yan Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Chinese Academy of Sciences (CAS), Guangzhou, China
| | - Baosheng Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Chinese Academy of Sciences (CAS), Guangzhou, China
| | - Hanhan Xia
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
22
|
Ramírez-Valiente JA, Solé-Medina A, Robledo-Arnuncio JJ, Ortego J. Genomic data and common garden experiments reveal climate-driven selection on ecophysiological traits in two Mediterranean oaks. Mol Ecol 2023; 32:983-999. [PMID: 36479963 DOI: 10.1111/mec.16816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Improving our knowledge of how past climate-driven selection has acted on present-day trait population divergence is essential to understand local adaptation processes and improve our predictions of evolutionary trajectories in the face of altered selection pressures resulting from climate change. In this study, we investigated signals of selection on traits related to drought tolerance and growth rates in two Mediterranean oak species (Quercus faginea and Q. lusitanica) with contrasting distribution ranges and climatic niches. We genotyped 182 individuals from 24 natural populations of the two species using restriction-site-associated DNA sequencing and conducted a thorough functional characterization in 1602 seedlings from 21 populations cultivated in common garden experiments under contrasting watering treatments. Our genomic data revealed that both Q. faginea and Q. lusitanica have very weak population genetic structure, probably as a result of high rates of pollen-mediated gene flow among populations and large effective population sizes. In contrast, common garden experiments showed evidence of climate-driven divergent selection among populations on traits related to leaf morphology, physiology and growth in both species. Overall, our study suggests that climate is an important selective factor for Mediterranean oaks and that ecophysiological traits have evolved in drought-prone environments even in a context of very high rates of gene flow among populations.
Collapse
Affiliation(s)
- José Alberto Ramírez-Valiente
- Ecological and Forestry Applications Research Centre, CREAF, Campus de Bellaterra (UAB), Cerdanyola del Vallès, Spain
| | - Aida Solé-Medina
- Instituto de Ciencias Forestales (ICIFOR-INIA), CSIC, Madrid, Spain
| | | | - Joaquín Ortego
- Department of Ecology and Evolution, Estación Biológica de Doñana, EBD-CSIC, Seville, Spain
| |
Collapse
|
23
|
Pfeilsticker TR, Jones RC, Steane DA, Vaillancourt RE, Potts BM. Molecular insights into the dynamics of species invasion by hybridisation in Tasmanian eucalypts. Mol Ecol 2023; 32:2913-2929. [PMID: 36807951 DOI: 10.1111/mec.16892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/26/2022] [Accepted: 01/26/2023] [Indexed: 02/22/2023]
Abstract
In plants where seed dispersal is limited compared with pollen dispersal, hybridisation may enhance gene exchange and species dispersal. We provide genetic evidence of hybridisation contributing to the expansion of the rare Eucalyptus risdonii into the range of the widespread Eucalyptus amygdalina. These closely related tree species are morphologically distinct, and observations suggest that natural hybrids occur along their distribution boundaries and as isolated trees or in small patches within the range of E. amygdalina. Hybrid phenotypes occur outside the range of normal dispersal for E. risdonii seed, yet in some hybrid patches small individuals resembling E. risdonii occur and are hypothesised to be a result of backcrossing. Using 3362 genome-wide SNPs assessed from 97 individuals of E. risdonii and E. amygdalina and 171 hybrid trees, we show that (i) isolated hybrids match the genotypes expected of F1 /F2 hybrids, (ii) there is a continuum in the genetic composition among the isolated hybrid patches from patches dominated by F1 /F2 -like genotypes to those dominated by E. risdonii-backcross genotypes, and (iii) the E. risdonii-like phenotypes in the isolated hybrid patches are most-closely related to proximal larger hybrids. These results suggest that the E. risdonii phenotype has been resurrected in isolated hybrid patches established from pollen dispersal, providing the first steps in its invasion of suitable habitat by long-distance pollen dispersal and complete introgressive displacement of E. amygdalina. Such expansion accords with the population demographics, common garden performance data, and climate modelling which favours E. risdonii and highlights a role of interspecific hybridisation in climate change adaptation and species expansion.
Collapse
Affiliation(s)
- Thais R Pfeilsticker
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
| | - Rebecca C Jones
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
| | - Dorothy A Steane
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
| | - René E Vaillancourt
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
| | - Brad M Potts
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
24
|
Schroeder H, Kersten B. A Small Set of Nuclear Markers for Reliable Differentiation of the Two Closely Related Oak Species Quercus Robur and Q. Petraea. PLANTS (BASEL, SWITZERLAND) 2023; 12:566. [PMID: 36771649 PMCID: PMC9919172 DOI: 10.3390/plants12030566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Quercus robur and Q. petraea are, in addition to Fagus sylvatica, the main economically used deciduous tree species in Europe. Identification of these two species is crucial because they differ in their ecological demands. Because of a changing climate, foresters must know more than ever which species will perform better under given environmental conditions. The search for differentiating molecular markers between these two species has already lasted for decades. Until now, differentiation has only been possible in approaches with a combination of several molecular markers and a subsequent statistical analysis to calculate the probability of being one or the other species. Here, we used MiSeq Illumina data from pools of Q. robur and Q. petraea specimens and identified nuclear SNPs and small InDels versus the Q. robur reference genome. Selected sequence variants with 100% allele frequency difference between the two pools were further validated in an extended set of Q. robur and Q. petraea specimens, and then the number of markers was deliberately reduced to the smallest possible set for species differentiation. A combination of six markers from four nuclear regions is enough to identify Q. robur, Q. petraea or hybrids between these two species quite well and represents a marker set that is cost-efficient and useable in every laboratory.
Collapse
|
25
|
Yuan S, Shi Y, Zhou BF, Liang YY, Chen XY, An QQ, Fan YR, Shen Z, Ingvarsson PK, Wang B. Genomic vulnerability to climate change in Quercus acutissima, a dominant tree species in East Asian deciduous forests. Mol Ecol 2023; 32:1639-1655. [PMID: 36626136 DOI: 10.1111/mec.16843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
Understanding the evolutionary processes that shape the landscape of genetic variation and influence the response of species to future climate change is critical for biodiversity conservation. Here, we sampled 27 populations across the distribution range of a dominant forest tree, Quercus acutissima, in East Asia, and applied genome-wide analyses to track the evolutionary history and predict the fate of populations under future climate. We found two genetic groups (East and West) in Q. acutissima that diverged during Pliocene. We also found a heterogeneous landscape of genomic variation in this species, which may have been shaped by population demography and linked selections. Using genotype-environment association analyses, we identified climate-associated SNPs in a diverse set of genes and functional categories, indicating a model of polygenic adaptation in Q. acutissima. We further estimated three genetic offset metrics to quantify genomic vulnerability of this species to climate change due to the complex interplay between local adaptation and migration. We found that marginal populations are under higher risk of local extinction because of future climate change, and may not be able to track suitable habitats to maintain the gene-environment relationships observed under the current climate. We also detected higher reverse genetic offsets in northern China, indicating that genetic variation currently present in the whole range of Q. acutissima may not adapt to future climate conditions in this area. Overall, this study illustrates how evolutionary processes have shaped the landscape of genomic variation, and provides a comprehensive genome-wide view of climate maladaptation in Q. acutissima.
Collapse
Affiliation(s)
- Shuai Yuan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, China.,South China National Botanical Garden, Guangzhou, China
| | - Yong Shi
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, China.,South China National Botanical Garden, Guangzhou, China
| | - Biao-Feng Zhou
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, China.,South China National Botanical Garden, Guangzhou, China
| | - Yi-Ye Liang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, China.,South China National Botanical Garden, Guangzhou, China
| | - Xue-Yan Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, China.,South China National Botanical Garden, Guangzhou, China
| | - Qing-Qing An
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, China.,South China National Botanical Garden, Guangzhou, China
| | - Yan-Ru Fan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, China.,South China National Botanical Garden, Guangzhou, China
| | - Zhao Shen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, China.,South China National Botanical Garden, Guangzhou, China
| | - Pär K Ingvarsson
- Department of Plant Biology, Linnean Center for Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Baosheng Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, China.,South China National Botanical Garden, Guangzhou, China
| |
Collapse
|
26
|
Kirsch A, Kaproth MA. Defining plant ecological specialists and generalists: Building a framework for identification and classification. Ecol Evol 2022; 12:e9527. [PMID: 36440310 PMCID: PMC9685674 DOI: 10.1002/ece3.9527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/22/2022] [Accepted: 10/24/2022] [Indexed: 09/08/2024] Open
Abstract
Specialization is a widespread but highly ambiguous and context-dependent ecological concept. This quality makes comparisons across related studies difficult and makes associated terms such as "specialist" and "generalist" scientifically obscure. Here, we present a metric-based framework to quantify specialization in 141 Quercus species using functional traits, biogeography, and species interactions. Rankings of specialization based on five metrics were used to answer questions about how specialization is used colloquially (i.e., individual species assessment by experts) and influenced by phylogenetics (Ancestral Character State Reconstruction, Automatic Shift Detection), biogeography (patterns of clustering by region and with climate), and species threat level (IUCN Red List). Metric-based ranking can be representative of specialization in a consistent and practical manner, correlating with IUCN Red List data, and the mean scores of individual expert assessments. Specialization is shown to be highly correlated with precipitation seasonality and only moderately influenced by evolutionary history. Data-deficient species were more likely to be highly specialized, and higher specialization was positively correlated with greater IUCN threat level. Frameworks for characterizing specialization and generalization can be done using metric ranking and can turn concepts that are often unclear into a definitive system. Metric-based rankings of specialization can also be used to reveal interesting insights about a clade's evolutionary history and geographic distribution when paired with the related phylogenetic and geographic data. Metric-based rankings can be applied to other systems and be a valuable tool for identifying species at risk and in need of conservation.
Collapse
Affiliation(s)
- Alex Kirsch
- Department of Biological SciencesMinnesota State University, MankatoMankatoMinnesotaUSA
| | - Matthew A. Kaproth
- Department of Biological SciencesMinnesota State University, MankatoMankatoMinnesotaUSA
| |
Collapse
|
27
|
Ward AKG, Bagley RK, Egan SP, Hood GR, Ott JR, Prior KM, Sheikh SI, Weinersmith KL, Zhang L, Zhang YM, Forbes AA. Speciation in Nearctic oak gall wasps is frequently correlated with changes in host plant, host organ, or both. Evolution 2022; 76:1849-1867. [PMID: 35819249 PMCID: PMC9541853 DOI: 10.1111/evo.14562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/21/2022] [Accepted: 04/28/2022] [Indexed: 01/22/2023]
Abstract
Quantifying the frequency of shifts to new host plants within diverse clades of specialist herbivorous insects is critically important to understand whether and how host shifts contribute to the origin of species. Oak gall wasps (Hymenoptera: Cynipidae: Cynipini) comprise a tribe of ∼1000 species of phytophagous insects that induce gall formation on various organs of trees in the family Fagacae-primarily the oaks (genus Quercus; ∼435 sp.). The association of oak gall wasps with oaks is ancient (∼50 my), and most oak species are galled by one or more gall wasp species. Despite the diversity of both gall wasp species and their plant associations, previous phylogenetic work has not identified the strong signal of host plant shifting among oak gall wasps that has been found in other phytophagous insect systems. However, most emphasis has been on the Western Palearctic and not the Nearctic where both oaks and oak gall wasps are considerably more species rich. We collected 86 species of Nearctic oak gall wasps from most of the major clades of Nearctic oaks and sequenced >1000 Ultraconserved Elements (UCEs) and flanking sequences to infer wasp phylogenies. We assessed the relationships of Nearctic gall wasps to one another and, by leveraging previously published UCE data, to the Palearctic fauna. We then used phylogenies to infer historical patterns of shifts among host tree species and tree organs. Our results indicate that oak gall wasps have moved between the Palearctic and Nearctic at least four times, that some Palearctic wasp clades have their proximate origin in the Nearctic, and that gall wasps have shifted within and between oak tree sections, subsections, and organs considerably more often than previous data have suggested. Given that host shifts have been demonstrated to drive reproductive isolation between host-associated populations in other phytophagous insects, our analyses of Nearctic gall wasps suggest that host shifts are key drivers of speciation in this clade, especially in hotspots of oak diversity. Although formal assessment of this hypothesis requires further study, two putatively oligophagous gall wasp species in our dataset show signals of host-associated genetic differentiation unconfounded by geographic distance, suggestive of barriers to gene flow associated with the use of alternative host plants.
Collapse
Affiliation(s)
| | - Robin K. Bagley
- Department of BiologyUniversity of IowaIowa CityIowa52245
- Department of Evolution, Ecology, and Organismal BiologyThe Ohio State UniversityLimaOhio45804
| | - Scott P. Egan
- Department of BioSciencesRice UniversityHoustonTexas77005
| | - Glen Ray Hood
- Department of BioSciencesRice UniversityHoustonTexas77005
- Department of Biological ScienceWayne State UniversityDetroitMichigan48202
| | - James R. Ott
- Department of BiologyTexas State UniversitySan MarcosTexas78666
| | - Kirsten M. Prior
- Department of Biological SciencesBinghamton UniversityBinghamtonNew York13902
| | - Sofia I. Sheikh
- Department of BiologyUniversity of IowaIowa CityIowa52245
- Department of Ecology and EvolutionUniversity of ChicagoChicagoIllinois60637
| | | | - Linyi Zhang
- Department of BioSciencesRice UniversityHoustonTexas77005
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoONM5S 3B2Canada
| | - Y. Miles Zhang
- Systematic Entomology Laboratory, USDA‐ARSc/o National Museum of Natural HistoryWashingtonD.C.20560
| | | |
Collapse
|
28
|
Meeussen C, De Pauw K, Sanczuk P, Brunet J, Cousins SAO, Gasperini C, Hedwall PO, Iacopetti G, Lenoir J, Plue J, Selvi F, Spicher F, Uria Diez J, Verheyen K, Vangansbeke P, De Frenne P. Initial oak regeneration responses to experimental warming along microclimatic and macroclimatic gradients. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:745-757. [PMID: 35373433 DOI: 10.1111/plb.13412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/27/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Quercus spp. are one of the most important tree genera in temperate deciduous forests in terms of biodiversity, economic and cultural perspectives. However, natural regeneration of oaks, depending on specific environmental conditions, is still not sufficiently understood. Oak regeneration dynamics are impacted by climate change, but these climate impacts will depend on local forest management and light and temperature conditions. Here, we studied germination, survival and seedling performance (i.e. aboveground biomass, height, root collar diameter and specific leaf area) of four oak species (Q. cerris, Q. ilex, Q. robur and Q. petraea). Acorns were sown across a wide latitudinal gradient, from Italy to Sweden, and across several microclimatic gradients located within and beyond the species' natural ranges. Microclimatic gradients were applied in terms of forest structure, distance to the forest edge and experimental warming. We found strong interactions between species and latitude, as well as between microclimate and latitude or species. The species thus reacted differently to local and regional changes in light and temperature ; in southern regions the temperate Q. robur and Q. petraea performed best in plots with a complex structure, whereas the Mediterranean Q. ilex and Q. cerris performed better in simply structured forests with a reduced microclimatic buffering capacity. The experimental warming treatment only enhanced height and aboveground biomass of Mediterranean species. Our results show that local microclimatic gradients play a key role in the initial stages of oak regeneration; however, one needs to consider the species-specific responses to forest structure and the macroclimatic context.
Collapse
Affiliation(s)
- C Meeussen
- Forest & Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Melle-Gontrode, Belgium
| | - K De Pauw
- Forest & Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Melle-Gontrode, Belgium
| | - P Sanczuk
- Forest & Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Melle-Gontrode, Belgium
| | - J Brunet
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - S A O Cousins
- Biogeography and Geomatics, Department of Physical Geography, Stockholm University, Stockholm, Sweden
| | - C Gasperini
- Forest & Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Melle-Gontrode, Belgium
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Florence, Italy
| | - P-O Hedwall
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - G Iacopetti
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Florence, Italy
| | - J Lenoir
- UMR CNRS 7058 « Ecologie et Dynamique des Systèmes Anthropisés » (EDYSAN), Université de Picardie Jules Verne, Amiens, France
| | - J Plue
- Biogeography and Geomatics, Department of Physical Geography, Stockholm University, Stockholm, Sweden
| | - F Selvi
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Florence, Italy
| | - F Spicher
- UMR CNRS 7058 « Ecologie et Dynamique des Systèmes Anthropisés » (EDYSAN), Université de Picardie Jules Verne, Amiens, France
| | - J Uria Diez
- Biogeography and Geomatics, Department of Physical Geography, Stockholm University, Stockholm, Sweden
| | - K Verheyen
- Forest & Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Melle-Gontrode, Belgium
| | - P Vangansbeke
- Forest & Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Melle-Gontrode, Belgium
| | - P De Frenne
- Forest & Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Melle-Gontrode, Belgium
| |
Collapse
|
29
|
Li Y, Wang L, Zhang X, Kang H, Liu C, Mao L, Fang Y. Extensive sharing of chloroplast haplotypes among East Asian Cerris oaks: The imprints of shared ancestral polymorphism and introgression. Ecol Evol 2022; 12:e9142. [PMID: 35923946 PMCID: PMC9339761 DOI: 10.1002/ece3.9142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/27/2022] [Accepted: 07/01/2022] [Indexed: 11/08/2022] Open
Abstract
Shared ancestral polymorphism and introgression are two main causes of chloroplast DNA (cpDNA) haplotype sharing among closely related angiosperms. In this study, we explored the roles of these two processes in shaping the phylogeographic patterns of East Asian Cerris oaks by examining the geographic distributions of randomly and locally distributed shared haplotypes, which coincide with the expectations of shared ancestry and introgression, respectively. We sequenced 1340 bp of non-coding cpDNA from Quercus acutissima (n = 418) and Q. chenii (n = 183) and compiled previously published sequence data of Q. variabilis (n = 439). The phylogenetic relationships among haplotypes were examined using a median-joining network. The geographic patterns of interspecifically shared haplotypes were assessed to test whether nearby populations have a higher degree of interspecific cpDNA sharing than distant ones. We identified a total of 27 haplotypes that were grouped into three non-species-specific lineages with overlapping distributions. Ancestral haplotypes were extensively shared and randomly distributed across populations of the three species. Some young haplotypes were locally shared in mountainous areas that may have been shared refugia. The local exchange of cpDNA resulted in an excess of similar haplotypes between nearby populations. Our study demonstrated that the haplotype sharing pattern among East Asian Cerris oaks reflected the imprints of both shared ancestral polymorphism and introgression. This pattern was also associated with the relatively stable climates and complex landscapes in East Asia, which not only allowed the long-term persistence of ancestral lineages but also connected the survived populations across refugia.
Collapse
Affiliation(s)
- Yao Li
- Co‐Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity ConservationCollege of Biology and the Environment, Nanjing Forestry UniversityNanjingChina
| | - Lu Wang
- Co‐Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity ConservationCollege of Biology and the Environment, Nanjing Forestry UniversityNanjingChina
| | - Xingwang Zhang
- School of Life SciencesHuaibei Normal UniversityHuaibeiChina
| | - Hongzhang Kang
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Chunjiang Liu
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Lingfeng Mao
- Co‐Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity ConservationCollege of Biology and the Environment, Nanjing Forestry UniversityNanjingChina
| | - Yanming Fang
- Co‐Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity ConservationCollege of Biology and the Environment, Nanjing Forestry UniversityNanjingChina
| |
Collapse
|
30
|
Deng M, Yao K, Shi C, Shao W, Li Q. Development of Quercus acutissima (Fagaceae) pollen tubes inside pistils during the sexual reproduction process. PLANTA 2022; 256:16. [PMID: 35737139 DOI: 10.1007/s00425-022-03937-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Extensive histology of pistillate flowers revealed two pollen tube arresting sites (the style-joining and micropyle) within the pistil of Quercus acutissima during the postpollination-prezygotic stage, which reflects a unique female and male gametophyte recognition/selection mechanism. Sexual reproduction is among the most delicate and essential stages in plant life cycles and involves a series of precise interactions between pistils and male gametophytes. Quercus is a woody genus that dominates Northern Hemisphere forests and is notorious for interspecific hybridization, but its sexual reproduction is poorly understood, especially its pollen tube (PT) growth dynamics within pistils. This study used microtome techniques and scanning electron microscopy to observe the postpollination-prezygotic process in the biennially fruiting oak Quercus acutissima. Many pollen grains germinated at anthesis instantly, and PTs penetrated stigmatic surfaces and elongated through the stylar transmitting tissue, then arrested at style-joining for about 12-13 months. Few PTs resumed growth along the compitum in the upper ovarian locule wall in the subsequent April, concurrent with the rapid growth of rudimentary ovules. PTs arrived in the micropyle, and upper septum during megaspore mother cell meiosis, then arrested again for 7-10 days waiting for the embryo sac maturation. Fertilization occurred one week later. Our study shows a clear female dominant crosstalk growth pattern between PT and the ovule. The intermittent PT growth might reflect a unique male gametophyte recognition/selection mechanism to avoid self-pollination and enhance PT competition while increasing interspecific hybridization.
Collapse
Affiliation(s)
- Min Deng
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, Yunnan, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, Yunnan University, Kunming, 650504, Yunnan, China
- Yunnan Key Laboratory for Integrative Conservation of Plant Species With Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Kaiping Yao
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, Yunnan, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, Yunnan University, Kunming, 650504, Yunnan, China
- Yunnan Key Laboratory for Integrative Conservation of Plant Species With Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Chengcheng Shi
- Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Wen Shao
- Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Qiansheng Li
- Horticultural Sciences Department, University of Florida, FL, 32611, USA.
| |
Collapse
|
31
|
Genome-wide analyses of introgression between two sympatric Asian oak species. Nat Ecol Evol 2022; 6:924-935. [PMID: 35513577 DOI: 10.1038/s41559-022-01754-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/29/2022] [Indexed: 12/13/2022]
Abstract
Introgression can be an important source of new alleles for adaption under rapidly changing environments, perhaps even more important than standing variation. Though introgression has been extensively studied in many plants and animals, key questions on the underlying mechanisms of introgression still remain unanswered. In particular, we are yet to determine the genomic distribution of introgressed regions along the genome; whether the extent and patterns of introgression are influenced by ecological factors; and when and how introgression contributes to adaptation. Here, we generated high-quality genomic resources for two sympatric widespread Asian oak species, Quercus acutissima and Q. variabilis, sampled in multiple forests to study introgression between them. We show that introgressed regions are broadly distributed across the genome. Introgression was affected by genetic divergence between pairs of populations and by the similarity of the environments in which they live-populations occupying similar ecological sites tended to share the same introgressed regions. Introgressed genomic footprints of adaptation were preferentially located in regions with suppressed recombination rate. Introgression probably confers adaptation in these oak populations by introducing allelic variation in cis-regulatory elements, in particular through transposable element insertions, thereby altering the regulation of genes related to stress. Our results provide new avenues of research for uncovering mechanisms of adaptation due to hybridization in sympatric species.
Collapse
|
32
|
Sork VL, Cokus SJ, Fitz-Gibbon ST, Zimin AV, Puiu D, Garcia JA, Gugger PF, Henriquez CL, Zhen Y, Lohmueller KE, Pellegrini M, Salzberg SL. High-quality genome and methylomes illustrate features underlying evolutionary success of oaks. Nat Commun 2022; 13:2047. [PMID: 35440538 PMCID: PMC9018854 DOI: 10.1038/s41467-022-29584-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 03/11/2022] [Indexed: 02/01/2023] Open
Abstract
The genus Quercus, which emerged ∼55 million years ago during globally warm temperatures, diversified into ∼450 extant species. We present a high-quality de novo genome assembly of a California endemic oak, Quercus lobata, revealing features consistent with oak evolutionary success. Effective population size remained large throughout history despite declining since early Miocene. Analysis of 39,373 mapped protein-coding genes outlined copious duplications consistent with genetic and phenotypic diversity, both by retention of genes created during the ancient γ whole genome hexaploid duplication event and by tandem duplication within families, including numerous resistance genes and a very large block of duplicated DUF247 genes, which have been found to be associated with self-incompatibility in grasses. An additional surprising finding is that subcontext-specific patterns of DNA methylation associated with transposable elements reveal broadly-distributed heterochromatin in intergenic regions, similar to grasses. Collectively, these features promote genetic and phenotypic variation that would facilitate adaptability to changing environments.
Collapse
Affiliation(s)
- Victoria L Sork
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095-1438, USA.
- Institute of the Environment and Sustainability, University of California, Los Angeles, CA, 90095, USA.
| | - Shawn J Cokus
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, 90095-7239, USA
| | - Sorel T Fitz-Gibbon
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095-1438, USA
| | - Aleksey V Zimin
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Daniela Puiu
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Jesse A Garcia
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095-1438, USA
| | - Paul F Gugger
- Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, MD, 21532, USA
| | - Claudia L Henriquez
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095-1438, USA
| | - Ying Zhen
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095-1438, USA
| | - Kirk E Lohmueller
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095-1438, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, 90095-7239, USA
| | - Steven L Salzberg
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Departments of Biomedical Engineering, Computer Science, and Biostatistics, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
33
|
Ai W, Liu Y, Mei M, Zhang X, Tan E, Liu H, Han X, Zhan H, Lu X. A chromosome-scale genome assembly of the Mongolian oak (Quercus mongolica). Mol Ecol Resour 2022; 22:2396-2410. [PMID: 35377556 DOI: 10.1111/1755-0998.13616] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/13/2022] [Accepted: 03/29/2022] [Indexed: 11/26/2022]
Abstract
Mongolian oak (Quercus mongolica Fisch.) is an ecologically and economically important white oak species native to and widespread in the temperate zone of East Asia. Here, we present a chromosome-scale reference genome assembly of Q. mongolica, a representative white oak species, by combining Illumina and PacBio data with Hi-C mapping technologies that is the first reference genome created for an Asian oak. Our results showed that the PacBio draft genome size was 809.84 Mb, with a BUSCO complete gene percentage of 92.71%. Hi-C scaffolding anchored 774.59 Mb contigs (95.65% of draft assembly) onto 12 pseudochromosomes. The contig N50 and scaffold N50 were 2.64 Mb and 66.74 Mb, respectively. Of the 36,553 protein-coding genes predicted in the study, approximately 95% had functional annotations in public databases. A total of 435.34 Mb (53.75% of the genome) of repetitive sequences were predicted in the assembled genome. Genome evolution analysis showed that Q. mongolica is closely related to Q. robur from Europe, and they shared a common ancestor ~11.8 million years ago. Gene family evolution analysis of Q. mongolica revealed that the nucleotide-binding site (NBS)-encoding gene family related to disease resistance was significantly contracted, whereas the ECERIFERUM 1 (CER1) homologous genes related to cuticular wax biosynthesis was significantly expanded. This pioneering Asian oak genome resource represents an important supplement to the oak genomics community and will improve our understanding of Asian white oak biology and evolution.
Collapse
Affiliation(s)
- Wanfeng Ai
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Yanqun Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Mei Mei
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.,Biotechnology and Analysis Test Center, Liaoning Academy of Forest Science, Shenyang, 110032, Liaoning, China
| | - Xiaolin Zhang
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Enguang Tan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Hanzhang Liu
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Xiaoyi Han
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Hao Zhan
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Xiujun Lu
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.,College of Forestry, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| |
Collapse
|
34
|
Zhou BF, Yuan S, Crowl AA, Liang YY, Shi Y, Chen XY, An QQ, Kang M, Manos PS, Wang B. Phylogenomic analyses highlight innovation and introgression in the continental radiations of Fagaceae across the Northern Hemisphere. Nat Commun 2022; 13:1320. [PMID: 35288565 PMCID: PMC8921187 DOI: 10.1038/s41467-022-28917-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/16/2022] [Indexed: 12/12/2022] Open
Abstract
Northern Hemisphere forests changed drastically in the early Eocene with the diversification of the oak family (Fagaceae). Cooling climates over the next 20 million years fostered the spread of temperate biomes that became increasingly dominated by oaks and their chestnut relatives. Here we use phylogenomic analyses of nuclear and plastid genomes to investigate the timing and pattern of major macroevolutionary events and ancient genome-wide signatures of hybridization across Fagaceae. Innovation related to seed dispersal is implicated in triggering waves of continental radiations beginning with the rapid diversification of major lineages and resulting in unparalleled transformation of forest dynamics within 15 million years following the K-Pg extinction. We detect introgression at multiple time scales, including ancient events predating the origination of genus-level diversity. As oak lineages moved into newly available temperate habitats in the early Miocene, secondary contact between previously isolated species occurred. This resulted in adaptive introgression, which may have further amplified the diversification of white oaks across Eurasia.
Collapse
Affiliation(s)
- Biao-Feng Zhou
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
- University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Shuai Yuan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Andrew A Crowl
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Yi-Ye Liang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Yong Shi
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Xue-Yan Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Qing-Qing An
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Ming Kang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Paul S Manos
- Department of Biology, Duke University, Durham, NC, 27708, USA.
| | - Baosheng Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China.
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, 510650, Guangzhou, China.
| |
Collapse
|
35
|
Li Y, Zhang X, Wang L, Sork VL, Mao L, Fang Y. Influence of Pliocene and Pleistocene climates on hybridization patterns between two closely related oak species in China. ANNALS OF BOTANY 2022; 129:231-245. [PMID: 34893791 PMCID: PMC8796672 DOI: 10.1093/aob/mcab140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/31/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND AIMS Contemporary patterns of genetic admixture reflect imprints of both ancient and recent gene flow, which can provide us with valuable information on hybridization history in response to palaeoclimate change. Here, we examine the relationships between present admixture patterns and past climatic niche suitability of two East Asian Cerris oaks (Quercus acutissima and Q. chenii) to test the hypothesis that the mid-Pliocene warm climate promoted while the Pleistocene cool climate limited hybridization among local closely related taxa. METHODS We analyse genetic variation at seven nuclear microsatellites (1111 individuals) and three chloroplast intergenic spacers (576 individuals) to determine the present admixture pattern and ancient hybridization history. We apply an information-theoretic model selection approach to explore the associations of genetic admixture degree with past climatic niche suitability at multiple spatial scales. KEY RESULTS More than 70 % of the hybrids determined by Bayesian clustering analysis and more than 90 % of the individuals with locally shared chloroplast haplotypes are concentrated within a mid-Pliocene contact zone between ~30°N and 35°N. Climatic niche suitabilities for Q. chenii during the mid-Pliocene Warm Period [mPWP, ~3.264-3.025 million years ago (mya)] and during the Last Glacial Maximum (LGM, ~0.022 mya) best explain the admixture patterns across all Q. acutissima populations and across those within the ancient contact zone, respectively. CONCLUSIONS Our results highlight that palaeoclimate change shapes present admixture patterns by influencing the extent of historical range overlap. Specifically, the mid-Pliocene warm climate promoted ancient contact, allowing widespread hybridization throughout central China. In contrast, the Pleistocene cool climate caused the local extinction of Q. chenii, reducing the probability of interspecific gene flow in most areas except those sites having a high level of ecological stability.
Collapse
Affiliation(s)
- Yao Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Laboratory of Biodiversity and Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xingwang Zhang
- School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Lu Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Victoria L Sork
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095-7239, USA
- Institute of the Environment and Sustainability, University of California, Los Angeles, CA 90095-1496, USA
| | - Lingfeng Mao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Laboratory of Biodiversity and Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yanming Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
36
|
Saleh D, Chen J, Leplé J, Leroy T, Truffaut L, Dencausse B, Lalanne C, Labadie K, Lesur I, Bert D, Lagane F, Morneau F, Aury J, Plomion C, Lascoux M, Kremer A. Genome-wide evolutionary response of European oaks during the Anthropocene. Evol Lett 2022; 6:4-20. [PMID: 35127134 PMCID: PMC8802238 DOI: 10.1002/evl3.269] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 11/26/2021] [Accepted: 12/02/2021] [Indexed: 12/23/2022] Open
Abstract
The pace of tree microevolution during Anthropocene warming is largely unknown. We used a retrospective approach to monitor genomic changes in oak trees since the Little Ice Age (LIA). Allelic frequency changes were assessed from whole-genome pooled sequences for four age-structured cohorts of sessile oak (Quercus petraea) dating back to 1680, in each of three different oak forests in France. The genetic covariances of allelic frequency changes increased between successive time periods, highlighting genome-wide effects of linked selection. We found imprints of parallel linked selection in the three forests during the late LIA, and a shift of selection during more recent time periods of the Anthropocene. The changes in allelic covariances within and between forests mirrored the documented changes in the occurrence of extreme events (droughts and frosts) over the last 300 years. The genomic regions with the highest covariances were enriched in genes involved in plant responses to pathogens and abiotic stresses (temperature and drought). These responses are consistent with the reported sequence of frost (or drought) and disease damage ultimately leading to the oak dieback after extreme events. They provide support for adaptive evolution of long-lived species during recent climatic changes. Although we acknowledge that other sources (e.g., gene flow, generation overlap) may have contributed to temporal covariances of allelic frequency changes, the consistent and correlated response across the three forests lends support to the existence of a systematic driving force such as natural selection.
Collapse
Affiliation(s)
- Dounia Saleh
- UMR BIOGECO, INRAEUniversité de BordeauxCestas33612France
| | - Jun Chen
- College of Life SciencesZhejiang UniversityHangzhou310058China
| | | | - Thibault Leroy
- Department of Botany and Biodiversity ResearchUniversity of ViennaVienna1010Austria
| | - Laura Truffaut
- UMR BIOGECO, INRAEUniversité de BordeauxCestas33612France
| | | | - Céline Lalanne
- UMR BIOGECO, INRAEUniversité de BordeauxCestas33612France
| | - Karine Labadie
- Genoscope, Institut de Biologie François Jacob, Commissariat à l’énergie atomique (CEA)Université de Paris‐SaclayEvry91057France
| | | | - Didier Bert
- UMR BIOGECO, INRAEUniversité de BordeauxCestas33612France
| | | | - François Morneau
- Département Recherche Développement InnovationOffice National des ForêtsBoigny‐Sur‐Bionne45760France,Current Address: Service de l'Information Statistique Forestière et EnvironnementaleInstitut National de l'Information géographique et ForestièreNogent‐sur‐Vernisson45290France
| | - Jean‐Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRSUniv Evry, Université Paris‐SaclayEvry91057France
| | | | - Martin Lascoux
- Department of Ecology and Genetics, Evolutionary Biology CentreUppsala UniversityUppsalaSE‐75236Sweden
| | - Antoine Kremer
- UMR BIOGECO, INRAEUniversité de BordeauxCestas33612France
| |
Collapse
|
37
|
Liang YY, Shi Y, Yuan S, Zhou BF, Chen XY, An QQ, Ingvarsson PK, Plomion C, Wang B. Linked selection shapes the landscape of genomic variation in three oak species. THE NEW PHYTOLOGIST 2022; 233:555-568. [PMID: 34637540 DOI: 10.1111/nph.17793] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Natural selection shapes genome-wide patterns of diversity within species and divergence between species. However, quantifying the efficacy of selection and elucidating the relative importance of different types of selection in shaping genomic variation remain challenging. We sequenced whole genomes of 101 individuals of three closely related oak species to track the divergence history, and to dissect the impacts of selective sweeps and background selection on patterns of genomic variation. We estimated that the three species diverged around the late Neogene and experienced a bottleneck during the Pleistocene. We detected genomic regions with elevated relative differentiation ('FST -islands'). Population genetic inferences from the site frequency spectrum and ancestral recombination graph indicated that FST -islands were formed by selective sweeps. We also found extensive positive selection; the fixation of adaptive mutations and reduction neutral diversity around substitutions generated a signature of selective sweeps. Prevalent negative selection and background selection have reduced genetic diversity in both genic and intergenic regions, and contributed substantially to the baseline variation in genetic diversity. Our results demonstrate the importance of linked selection in shaping genomic variation, and illustrate how the extent and strength of different selection models vary across the genome.
Collapse
Affiliation(s)
- Yi-Ye Liang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Shi
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Shuai Yuan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Biao-Feng Zhou
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xue-Yan Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Qing-Qing An
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Pär K Ingvarsson
- Department of Plant Biology, Linnean Center for Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, SE-75007, Sweden
| | | | - Baosheng Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China
| |
Collapse
|
38
|
Larson DA, Vargas OM, Vicentini A, Dick CW. Admixture may be extensive among hyperdominant Amazon rainforest tree species. THE NEW PHYTOLOGIST 2021; 232:2520-2534. [PMID: 34389989 PMCID: PMC9292926 DOI: 10.1111/nph.17675] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/04/2021] [Indexed: 05/25/2023]
Abstract
Admixture is a mechanism by which species of long-lived plants may acquire novel alleles. However, the potential role of admixture in the origin and maintenance of tropical plant diversity is unclear. We ask whether admixture occurs in an ecologically important clade of Eschweilera (Parvifolia clade, Lecythidaceae), which includes some of the most widespread and abundant tree species in Amazonian forests. Using target capture sequencing, we conducted a detailed phylogenomic investigation of 33 species in the Parvifolia clade and investigated specific hypotheses of admixture within a robust phylogenetic framework. We found strong evidence of admixture among three ecologically dominant species, E. coriacea, E. wachenheimii and E. parviflora, but a lack of evidence for admixture among other lineages. Accepted species were largely distinguishable from one another, as was geographic structure within species. We show that hybridization may play a role in the evolution of the most widespread and ecologically variable Amazonian tree species. While admixture occurs among some species of Eschweilera, it has not led to widespread erosion of most species' genetic or morphological identities. Therefore, current morphological based species circumscriptions appear to provide a useful characterization of the clade's lineage diversity.
Collapse
Affiliation(s)
- Drew A. Larson
- Department of Ecology & Evolutionary BiologyUniversity of MichiganAnn ArborMI48109USA
| | - Oscar M. Vargas
- Department of Biological SciencesHumboldt State UniversityArcataCA95521USA
| | - Alberto Vicentini
- Instituto Nacional de Pesquisas da Amazônia (INPA)ManausAMCEP 69067‐375Brazil
| | - Christopher W. Dick
- Department of Ecology & Evolutionary BiologyUniversity of MichiganAnn ArborMI48109USA
- Smithsonian Tropical Research InstitutePanama CityRepublic of Panama
| |
Collapse
|
39
|
Royer‐Tardif S, Boisvert‐Marsh L, Godbout J, Isabel N, Aubin I. Finding common ground: Toward comparable indicators of adaptive capacity of tree species to a changing climate. Ecol Evol 2021; 11:13081-13100. [PMID: 34646454 PMCID: PMC8495821 DOI: 10.1002/ece3.8024] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 07/26/2021] [Indexed: 01/09/2023] Open
Abstract
Adaptive capacity, one of the three determinants of vulnerability to climate change, is defined as the capacity of species to persist in their current location by coping with novel environmental conditions through acclimation and/or evolution. Although studies have identified indicators of adaptive capacity, few have assessed this capacity in a quantitative way that is comparable across tree species. Yet, such multispecies assessments are needed by forest management and conservation programs to refine vulnerability assessments and to guide the choice of adaptation measures. In this paper, we propose a framework to quantitatively evaluate five key components of tree adaptive capacity to climate change: individual adaptation through phenotypic plasticity, population phenotypic diversity as influenced by genetic diversity, genetic exchange within populations, genetic exchange between populations, and genetic exchange between species. For each component, we define the main mechanisms that underlie adaptive capacity and present associated metrics that can be used as indices. To illustrate the use of this framework, we evaluate the relative adaptive capacity of 26 northeastern North American tree species using values reported in the literature. Our results show adaptive capacity to be highly variable among species and between components of adaptive capacity, such that no one species ranks consistently across all components. On average, the conifer Picea glauca and the broadleaves Acer rubrum and A. saccharinum show the greatest adaptive capacity among the 26 species we documented, whereas the conifers Picea rubens and Thuja occidentalis, and the broadleaf Ostrya virginiana possess the lowest. We discuss limitations that arise when comparing adaptive capacity among species, including poor data availability and comparability issues in metrics derived from different methods or studies. The breadth of data required for such an assessment exemplifies the multidisciplinary nature of adaptive capacity and the necessity of continued cross-collaboration to better anticipate the impacts of a changing climate.
Collapse
Affiliation(s)
- Samuel Royer‐Tardif
- Natural Resources CanadaCanadian Forest ServiceGreat Lakes Forestry CentreSault Sainte MarieONCanada
- Centre d'enseignement et de recherche en foresterie de Sainte‐Foy inc. (CERFO)QuébecQCCanada
| | - Laura Boisvert‐Marsh
- Natural Resources CanadaCanadian Forest ServiceGreat Lakes Forestry CentreSault Sainte MarieONCanada
| | - Julie Godbout
- Ministère des Forêts de la Faune et des Parcs du QuébecDirection de la recherche forestièreQuébecQCCanada
| | - Nathalie Isabel
- Natural Resources CanadaCanadian Forest ServiceLaurentian Forestry CentreQuébecQCCanada
| | - Isabelle Aubin
- Natural Resources CanadaCanadian Forest ServiceGreat Lakes Forestry CentreSault Sainte MarieONCanada
- Centre for Forest ResearchUniversité du Québec à MontréalMontréalQCCanada
| |
Collapse
|
40
|
Furze ME, Wainwright DK, Huggett BA, Knipfer T, McElrone AJ, Brodersen CR. Ecologically driven selection of nonstructural carbohydrate storage in oak trees. THE NEW PHYTOLOGIST 2021; 232:567-578. [PMID: 34235751 DOI: 10.1111/nph.17605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/26/2021] [Indexed: 06/13/2023]
Abstract
Leaf habit is a major axis of plant diversity that has consequences for carbon balance since the leaf is the primary site of photosynthesis. Nonstructural carbohydrates (NSCs) produced by photosynthesis can be allocated to storage and serve as a resiliency mechanism to future abiotic and biotic stress. However, how leaf habit affects NSC storage in an evolutionary context has not been shown. Using a comparative physiological framework and an analysis of evolutionary model fitting, we examined if variation in NSC storage is explained by leaf habit. We measured sugar and starch concentrations in 51 oak species (Quercus spp.) growing in a common garden and representing multiple evolutions of three different leaf habits (deciduous, brevideciduous and evergreen). The best fitting evolutionary models indicated that deciduous oak species are evolving towards higher NSC concentrations than their brevideciduous and evergreen relatives. Notably, this was observed for starch (the primary storage molecule) in the stem (a long-term C storage organ). Overall, our work provides insight into the evolutionary drivers of NSC storage and suggests that a deciduous strategy may confer an advantage against stress associated with a changing world. Future work should examine additional clades to further corroborate this idea.
Collapse
Affiliation(s)
- Morgan E Furze
- School of the Environment, Yale University, New Haven, CT, 06511, USA
| | - Dylan K Wainwright
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06511, USA
| | - Brett A Huggett
- Department of Biology, Bates College, Lewiston, ME, 04240, USA
| | - Thorsten Knipfer
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, 95616, USA
| | - Andrew J McElrone
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, 95616, USA
- US Department of Agriculture - Agricultural Research Service, Crops Pathology and Genetics Research Unit, Davis, CA, 95618, USA
| | - Craig R Brodersen
- School of the Environment, Yale University, New Haven, CT, 06511, USA
| |
Collapse
|
41
|
Genetic Differentiation and Demographic History of Three Cerris Oak Species in China Based on Nuclear Microsatellite Makers. FORESTS 2021. [DOI: 10.3390/f12091164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Knowledge of interspecific divergence and population expansions/contractions of dominant forest trees in response to geological events and climatic oscillations is of major importance to understand their evolution and demography. However, the interspecific patterns of genetic differentiation and spatiotemporal population dynamics of three deciduous Cerris oak species (Q. acutissima, Q. variabilis and Q. chenii) that are widely distributed in China remain poorly understood. In this study, we genotyped 16 nuclear loci in 759 individuals sampled from 44 natural populations of these three sibling species to evaluate the plausible demographical scenarios of the closely related species. We also tested the hypothesis that macro- and microevolutionary processes of the three species had been triggered and molded by Miocene–Pliocene geological events and Quaternary climatic change. The Bayesian cluster analysis showed that Q. acutissima and Q. chenii were clustered in the same group, whereas Q. variabilis formed a different genetic cluster. An approximate Bayesian computation (ABC) analyses suggested that Q. variabilis and Q. acutissima diverged from their most common ancestor around 19.84 Ma, and subsequently Q. chenii diverged from Q. acutissima at about 9.6 Ma, which was significantly associated with the episodes of the Qinghai–Tibetan Plateau (QTP). In addition, ecological niche modeling and population history analysis showed that these three Cerris oak species repeatedly underwent considerable ‘expansion–contraction’ during the interglacial and glacial periods of the Pleistocene, although they have varying degrees of tolerance for the climatic change. Overall, these findings indicated geological and climatic changes during the Miocene–Pliocene and Pleistocene as causes of species divergence and range shifts of dominant tree species in the subtropical and warm temperature areas in China.
Collapse
|
42
|
Abstract
Quercus species (oaks) have been an integral part of the landscape in the northern hemisphere for millions of years. Their ability to adapt and spread across different environments and their contributions to many ecosystem services is well documented. Human activity has placed many oak species in peril by eliminating or adversely modifying habitats through exploitative land usage and by practices that have exacerbated climate change. The goal of this review is to compile a list of oak species of conservation concern, evaluate the genetic data that is available for these species, and to highlight the gaps that exist. We compiled a list of 124 Oaks of Concern based on the Red List of Oaks 2020 and the Conservation Gap Analysis for Native U.S. Oaks and their evaluations of each species. Of these, 57% have been the subject of some genetic analysis, but for most threatened species (72%), the only genetic analysis was done as part of a phylogenetic study. While nearly half (49%) of published genetic studies involved population genetic analysis, only 16 species of concern (13%) have been the subject of these studies. This is a critical gap considering that analysis of intraspecific genetic variability and genetic structure are essential for designing conservation management strategies. We review the published population genetic studies to highlight their application to conservation. Finally, we discuss future directions in Quercus conservation genetics and genomics.
Collapse
|
43
|
Olsson S, Lorenzo Z, Zabal-Aguirre M, Piotti A, Vendramin GG, González-Martínez SC, Grivet D. Evolutionary history of the mediterranean Pinus halepensis-brutia species complex using gene-resequencing and transcriptomic approaches. PLANT MOLECULAR BIOLOGY 2021; 106:367-380. [PMID: 33934278 DOI: 10.1007/s11103-021-01155-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Complementary gene-resequencing and transcriptomic approaches reveal contrasted evolutionary histories in a species complex. Pinus halepensis and Pinus brutia are closely related species that can intercross, but occupy different geographical ranges and bioclimates. To study the evolution of this species complex and to provide genomic resources for further research, we produce and analyze two new complementary sets of genetic resources: (i) a set of 172 re-sequenced genomic target loci analyzed in 45 individuals, and (ii) a set of 11 transcriptome assemblies. These two datasets provide insights congruent with previous studies: P. brutia displays high level of genetic diversity and no genetic sub-structure, while P. halepensis shows three main genetic clusters, the western Mediterranean and North African clusters displaying much lower genetic diversity than the eastern Mediterranean cluster, the latter cluster having similar genetic diversity to P. brutia. In addition, these datasets provide new insights on the timing of the species-complex history: the two species would have split at the end of the tertiary, and the changing climatic conditions of the Mediterranean region at the end of the Tertiary-beginning of the Quaternary, together with the distinct species tolerance to harsh climatic conditions would have resulted in different geographic distributions, demographic histories and genetic patterns of the two pines. The multiple glacial-interglacial cycles during the Quaternary would have led to the expansion of P. brutia in the Middle East, while P. halepensis would have been through bottlenecks. The last glaciations, from 0.6 Mya on, would have affected further the Western genetic pool of P. halepensis.
Collapse
Affiliation(s)
- Sanna Olsson
- Department of Forest Ecology & Genetics, Forest Research Centre, INIA-CSIC, Carretera de la Coruña km 7.5, 28040, Madrid, Spain.
| | - Zaida Lorenzo
- Department of Forest Ecology & Genetics, Forest Research Centre, INIA-CSIC, Carretera de la Coruña km 7.5, 28040, Madrid, Spain
| | - Mario Zabal-Aguirre
- Department of Forest Ecology & Genetics, Forest Research Centre, INIA-CSIC, Carretera de la Coruña km 7.5, 28040, Madrid, Spain
| | - Andrea Piotti
- Institute of Biosciences and Bioresources, Division of Florence, National Research Council, 50019, Sesto Fiorentino, Florence, Italy
| | - Giovanni G Vendramin
- Institute of Biosciences and Bioresources, Division of Florence, National Research Council, 50019, Sesto Fiorentino, Florence, Italy
| | - Santiago C González-Martínez
- UMR BIOGECO, INRAE, University of Bordeaux, 33610, Cestas, France
- Sustainable Forest Management Research Institute, INIA - University of Valladolid, Avda. Madrid 44, 34004, Palencia, Spain
| | - Delphine Grivet
- Department of Forest Ecology & Genetics, Forest Research Centre, INIA-CSIC, Carretera de la Coruña km 7.5, 28040, Madrid, Spain.
- Sustainable Forest Management Research Institute, INIA - University of Valladolid, Avda. Madrid 44, 34004, Palencia, Spain.
| |
Collapse
|
44
|
An Updated Infrageneric Classification of the North American Oaks (Quercus Subgenus Quercus): Review of the Contribution of Phylogenomic Data to Biogeography and Species Diversity. FORESTS 2021. [DOI: 10.3390/f12060786] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The oak flora of North America north of Mexico is both phylogenetically diverse and species-rich, including 92 species placed in five sections of subgenus Quercus, the oak clade centered on the Americas. Despite phylogenetic and taxonomic progress on the genus over the past 45 years, classification of species at the subsectional level remains unchanged since the early treatments by WL Trelease, AA Camus, and CH Muller. In recent work, we used a RAD-seq based phylogeny including 250 species sampled from throughout the Americas and Eurasia to reconstruct the timing and biogeography of the North American oak radiation. This work demonstrates that the North American oak flora comprises mostly regional species radiations with limited phylogenetic affinities to Mexican clades, and two sister group connections to Eurasia. Using this framework, we describe the regional patterns of oak diversity within North America and formally classify 62 species into nine major North American subsections within sections Lobatae (the red oaks) and Quercus (the white oaks), the two largest sections of subgenus Quercus. We also distill emerging evolutionary and biogeographic patterns based on the impact of phylogenomic data on the systematics of multiple species complexes and instances of hybridization.
Collapse
|
45
|
Zorrilla‐Azcué S, González‐Rodríguez A, Oyama K, González MA, Rodríguez‐Correa H. The DNA history of a lonely oak: Quercus humboldtii phylogeography in the Colombian Andes. Ecol Evol 2021; 11:6814-6828. [PMID: 34141258 PMCID: PMC8207385 DOI: 10.1002/ece3.7529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 02/22/2021] [Accepted: 03/15/2021] [Indexed: 11/06/2022] Open
Abstract
The climatic and geological changes that occurred during the Quaternary, particularly the fluctuations during the glacial and interglacial periods of the Pleistocene, shaped the population demography and geographic distribution of many species. These processes have been studied in several groups of organisms in the Northern Hemisphere, but their influence on the evolution of Neotropical montane species and ecosystems remains unclear. This study contributes to the understanding of the effect of climatic fluctuations during the late Pleistocene on the evolution of Andean mountain forests. First, we describe the nuclear and plastidic DNA patterns of genetic diversity, structure, historical demography, and landscape connectivity of Quercus humboldtii, which is a typical species in northern Andean montane forests. Then, these patterns were compared with the palynological and evolutionary hypotheses postulated for montane forests of the Colombian Andes under climatic fluctuation scenarios during the Quaternary. Our results indicated that populations of Q. humboldtii have high genetic diversity and a lack of genetic structure and that they have experienced a historical increase in connectivity from the last glacial maximum (LGM) to the present. Furthermore, our results showed a dramatic reduction in the effective population size followed by an expansion before the LGM, which is consistent with the results found by palynological studies, suggesting a change in dominance in Andean forests that may be related to ecological factors rather than climate change.
Collapse
Affiliation(s)
- Sofía Zorrilla‐Azcué
- Escuela Nacional de Estudios Superiores (ENES) Unidad MoreliaUniversidad Nacional Autónoma de México (UNAM)MoreliaMexico
- Posgrado en Ciencias BiológicasUniversidad Nacional Autónoma de México (UNAM)CoyoacánMexico
| | - Antonio González‐Rodríguez
- Instituto de Investigaciones en Ecosistemas y SustentabilidadUniversidad Nacional Autónoma de México (UNAM)MoreliaMexico
| | - Ken Oyama
- Escuela Nacional de Estudios Superiores (ENES) Unidad MoreliaUniversidad Nacional Autónoma de México (UNAM)MoreliaMexico
| | - Mailyn A. González
- Laboratorio de Genética de la ConservaciónInstituto de Investigación de Recursos Biológicos Alexander von HumboldtBogotáColombia
| | - Hernando Rodríguez‐Correa
- Escuela Nacional de Estudios Superiores (ENES) Unidad MoreliaUniversidad Nacional Autónoma de México (UNAM)MoreliaMexico
| |
Collapse
|
46
|
Aranda I, Cadahía E, Fernández de Simón B. Specific leaf metabolic changes that underlie adjustment of osmotic potential in response to drought by four Quercus species. TREE PHYSIOLOGY 2021; 41:728-743. [PMID: 33231684 DOI: 10.1093/treephys/tpaa157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/11/2020] [Indexed: 05/14/2023]
Abstract
Osmotic adjustment is almost ubiquitous as a mechanism of response to drought in many forest species. Recognized as an important mechanism of increasing turgor under water stress, the metabolic basis for osmotic adjustment has been described in only a few species. We set an experiment with four species of the genus Quercus ranked according to drought tolerance and leaf habit from evergreen to broad-leaved deciduous. A cycle of watering deprivation was imposed on seedlings, resulting in well-watered (WW) and water-stressed (WS) treatments, and their water relations were assessed from pressure-volume curves. Leaf predawn water potential (Ψpd) significantly decreased in WS seedlings, which was followed by a drop in leaf osmotic potential at full turgor (Ψπ100). The lowest values of Ψπ100 followed the ranking of decreasing drought tolerance: Quercus ilex L. < Quercus faginea Lam. < Quercus pyrenaica Willd. < Quercus petraea Matt. Liebl. The leaf osmotic potential at the turgor loss point (ΨTLP) followed the same pattern as Ψπ100 across species and treatments. The pool of carbohydrates, some organic acids and cyclitols were the main osmolytes explaining osmotic potential across species, likewise to the osmotic adjustment assessed from the decrease in leaf Ψπ100 between WW and WS seedlings. Amino acids were very responsive to WS, particularly γ-aminobutyric acid in Q. pyrenaica, but made a relatively minor contribution to osmotic potential compared with other groups of compounds. In contrast, the cyclitol proto-quercitol made a prominent contribution to the changes in osmotic potential regardless of watering treatment or species. However, different metabolites, such as quinic acid, played a more important role in osmotic adjustment in Q. ilex, distinguishing it from the other species studied. In conclusion, while osmotic adjustment was present in all four Quercus species, the molecular processes underpinning this response differed according to their phylogenetic history and specific ecology.
Collapse
Affiliation(s)
- Ismael Aranda
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación Forestal, Carretera Coruña Km 7.5, E-28040 Madrid, Spain
- INAGEA, Instituto de Investigaciones Agroambientales y de Economía del Agua, 07122 Palma de Mallorca, Spain
| | - Estrella Cadahía
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación Forestal, Carretera Coruña Km 7.5, E-28040 Madrid, Spain
| | - Brígida Fernández de Simón
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación Forestal, Carretera Coruña Km 7.5, E-28040 Madrid, Spain
| |
Collapse
|
47
|
Jeannine Cavender-Bares. THE NEW PHYTOLOGIST 2021; 229:1861-1863. [PMID: 33462850 DOI: 10.1111/nph.16852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
|
48
|
Cho WB, Han EK, Choi IS, Kwak M, Kim JH, Kim BY, Lee JH. The complete plastid genome sequence of Quercus acuta (Fagaceae), an evergreen broad-leaved oak endemic to East Asia. Mitochondrial DNA B Resour 2021; 6:320-322. [PMID: 33659663 PMCID: PMC7872549 DOI: 10.1080/23802359.2020.1866449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
We are reporting the complete plastid genome (plastome) of Quercus acuta, an evergreen broad-leaved oak endemic to East Asia. This species is important for maintaining the warm-temperate evergreen forest biome in East Asia. The Q. acuta plastome is 160,522 base pairs (bp) long, with two inverted repeat (IR) regions (25,839 bp each) that separate a large single copy (LSC) region (90,199 bp) and a small single copy (SSC) region (18,645 bp). The phylogenetic tree shows that Quercus acuta is closely related to Quercus sichourensis with strong bootstrap support.
Collapse
Affiliation(s)
- Won-Bum Cho
- Department of Biology Education, Chonnam National University, Gwangju, Republic of Korea
| | - Eun-Kyeong Han
- Department of Biological Sciences and Biotechnology, Chonnam National University, Gwangju, Republic of Korea
| | - In-Su Choi
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Myounghai Kwak
- Biological and Genetic Resources Utilization Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Jung-Hyun Kim
- Plant Resources Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Bo-Yun Kim
- Plant Resources Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Jung-Hyun Lee
- Department of Biology Education, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
49
|
Klápště J, Kremer A, Burg K, Garnier-Géré P, El-Dien OG, Ratcliffe B, El-Kassaby YA, Porth I. Quercus species divergence is driven by natural selection on evolutionarily less integrated traits. Heredity (Edinb) 2021; 126:366-382. [PMID: 33110229 PMCID: PMC8027598 DOI: 10.1038/s41437-020-00378-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 11/09/2022] Open
Abstract
Functional traits are organismal attributes that can respond to environmental cues, thereby providing important ecological functions. In addition, an organism's potential for adaptation is defined by the patterns of covariation among groups of functionally related traits. Whether an organism is evolutionarily constrained or has the potential for adaptation is based on the phenotypic integration or modularity of these traits. Here, we revisited leaf morphology in two European sympatric white oaks (Quercus petraea (Matt.) Liebl. and Quercus robur L.), sampling 2098 individuals, across much of their geographical distribution ranges. At the phenotypic level, leaf morphology traditionally encompasses discriminant attributes among different oak species. Here, we estimated in situ heritability, genetic correlation, and integration across such attributes. Also, we performed Selection Response Decomposition to test these traits for potential differences in oak species' evolutionary responses. Based on the uncovered functional units of traits (modules) in our study, the morphological module "leaf size gradient" was highlighted among functionally integrated traits. Equally, this module was defined in both oaks as being under "global regulation" in vegetative bud establishment and development. Lamina basal shape and intercalary veins' number were not, or, less integrated within the initially defined leaf functional unit, suggesting more than one module within the leaf traits' ensemble. Since these traits generally show the greatest species discriminatory power, they potentially underwent effective differential response to selection among oaks. Indeed, the selection of these traits could have driven the ecological preferences between the two sympatric oaks growing under different microclimates.
Collapse
Affiliation(s)
- Jaroslav Klápště
- Department of Genetics and Physiology of Forest Trees, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences in Prague, Kamýcká 129, 165 21, Prague 6, Czechia.
- Scion (New Zealand Forest Research Institute Ltd.), 49 Sala Street, Whakarewarewa, Rotorua, 3010, New Zealand.
| | - Antoine Kremer
- INRA, UMR Biodiversité Gènes et Communautés, 69 route d'Arcachon, 33612, Cestas Cedex, France
- University of Bordeaux, UMR 1202, Biodiversité Gènes et Communautés, F-33400, Talence, France
| | - Kornel Burg
- Department of Health and Environment (Bioresources), AIT Austrian Institute of Technology, Konrad-Lorenz-Straβe 24, 3430, Tulln, Austria
| | - Pauline Garnier-Géré
- INRA, UMR Biodiversité Gènes et Communautés, 69 route d'Arcachon, 33612, Cestas Cedex, France
- University of Bordeaux, UMR 1202, Biodiversité Gènes et Communautés, F-33400, Talence, France
| | - Omnia Gamal El-Dien
- Pharmacognosy Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Blaise Ratcliffe
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Ilga Porth
- Département des sciences du bois et de la forêt, Université Laval, 1030, Avenue de la Médecine, Québec, QC, G1V 0A6, Canada
| |
Collapse
|
50
|
Semerikova SA, Isakov IY, Semerikov VL. Chloroplast DNA Variation and Phylogeography of Pedunculate Oak Quercus robur L. in the Eastern Part of the Range. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421010130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|