1
|
Aryal S, Grießinger J, Gaire NP, Bhattarai T, Bräuning A. Drought, temperature, and moisture availability: understanding the drivers of isotopic decoupling in native pine species of the Nepalese Himalaya. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:1093-1108. [PMID: 38441667 PMCID: PMC11108894 DOI: 10.1007/s00484-024-02647-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 02/12/2024] [Accepted: 02/28/2024] [Indexed: 05/22/2024]
Abstract
The Himalayas experienced long-term climate changes and recent extreme weather events that affected plant growth and the physiology of tree species at high-elevation sites. This study presents the first statistically robust δ18OTR chronologies for two native pine species, Pinus roxburghii, and Pinus wallichiana, in the lower Nepalese Himalaya. The isotope chronologies exhibited 0.88‰ differences in overall mean isotope values attributed to varying elevations (460-2000 m asl). Comparative analysis of climate response using data sets from different sources and resolutions revealed the superiority of the APHRODITE (Asian Precipitation - Highly-Resolved Observational Data Integration Towards Evaluation) data set calibrated for the South Asian Summer Monsoon (SASM)-dominated region. Both species exhibited negative correlations with monsoon precipitation and positive correlations with temperature. However, during the peak monsoon season (July-August), daily resolved climate data disentangled statistically insignificant relationships, and revealed that δ18OTR is influenced by atmospheric moisture. Both congeneric species showed a decoupling between the chronologies after 1995. However, no significant change in air moisture origin and monsoon regime between the study sites was observed, indicating a consistent dominant moisture source during different monsoon seasons. Besides, we also observed the decreased inter-series correlation of both δ18OTR chronologies after 1995, with P. wallichiana experiencing a steeper decrease than P. roxburghii. The weakening correlations between and within the chronologies coincided with a regional drought during 1993-1995 in both sites, highlighting the strong regulation of local climate on the impact of regional extreme climate events. Our findings emphasise the importance of employing climate data with optimal spatial and temporal resolution for improved δ18OTR-climate relationships at the intra-annual scale while considering the influence of site-specific local environmental conditions. Assessing climate data sets with station data is vital for accurately interpreting climate change's impact on forest response and long-term climate reconstructions.
Collapse
Affiliation(s)
- Sugam Aryal
- Institute für Geographie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Wetterkreuz 15, 91058, Erlangen, Germany.
| | - Jussi Grießinger
- Institute für Geographie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Wetterkreuz 15, 91058, Erlangen, Germany
- Department of Environment and Biodiversity, University Salzburg, Salzburg, Austria
| | | | | | - Achim Bräuning
- Institute für Geographie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Wetterkreuz 15, 91058, Erlangen, Germany
| |
Collapse
|
2
|
Lehmann MM, Diao H, Ouyang S, Gessler A. Different responses of oxygen and hydrogen isotopes in leaf and tree-ring organic matter to lethal soil drought. TREE PHYSIOLOGY 2024; 44:tpae043. [PMID: 38618738 DOI: 10.1093/treephys/tpae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/02/2024] [Accepted: 03/23/2024] [Indexed: 04/16/2024]
Abstract
The oxygen and hydrogen isotopic composition (δ18O, δ2H) of plant tissues are key tools for the reconstruction of hydrological and plant physiological processes and may therefore be used to disentangle the reasons for tree mortality. However, how both elements respond to soil drought conditions before death has rarely been investigated. To test this, we performed a greenhouse study and determined predisposing fertilization and lethal soil drought effects on δ18O and δ2H values of organic matter in leaves and tree rings of living and dead saplings of five European tree species. For mechanistic insights, we additionally measured isotopic (i.e. δ18O and δ2H values of leaf and twig water), physiological (i.e. leaf water potential and gas-exchange) and metabolic traits (i.e. leaf and stem non-structural carbohydrate concentration, carbon-to-nitrogen ratios). Across all species, lethal soil drought generally caused a homogenous 2H-enrichment in leaf and tree-ring organic matter, but a low and heterogenous δ18O response in the same tissues. Unlike δ18O values, δ2H values of tree-ring organic matter were correlated with those of leaf and twig water and with plant physiological traits across treatments and species. The 2H-enrichment in plant organic matter also went along with a decrease in stem starch concentrations under soil drought compared with well-watered conditions. In contrast, the predisposing fertilization had generally no significant effect on any tested isotopic, physiological and metabolic traits. We propose that the 2H-enrichment in the dead trees is related to (i) the plant water isotopic composition, (ii) metabolic processes shaping leaf non-structural carbohydrates, (iii) the use of carbon reserves for growth and (iv) species-specific physiological adjustments. The homogenous stress imprint on δ2H but not on δ18O suggests that the former could be used as a proxy to reconstruct soil droughts and underlying processes of tree mortality.
Collapse
Affiliation(s)
- Marco M Lehmann
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Haoyu Diao
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Shengnan Ouyang
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
- Institute for Forest Resources and Environment of Guizhou, Guizhou University, Jiaxiu South Road, Huaxi District, Guiyang 550025, China
| | - Arthur Gessler
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
- Institute of Terrestrial Ecosystems, ETH Zurich, Universitätstrasse 16, 8092 Zurich, Switzerland
| |
Collapse
|
3
|
Pan Y, Li F, Lin W, Zhou Y, Song X. Quantifying isotope parameters associated with carbonyl-water oxygen exchange during sucrose translocation in tree phloem. THE NEW PHYTOLOGIST 2024; 242:975-987. [PMID: 38439696 DOI: 10.1111/nph.19654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/19/2024] [Indexed: 03/06/2024]
Abstract
Stable oxygen isotope ratio of tree-ring α-cellulose (δ18Ocel) yields valuable information on many aspects of tree-climate interactions. However, our current understanding of the mechanistic controls on δ18Ocel is incomplete, with a knowledge gap existent regarding the fractionation effect characterizing carbonyl-water oxygen exchange during sucrose translocation from leaf to phloem. To address this insufficiency, we set up an experimental system integrating a vapor 18O-labeling feature to manipulate leaf-level isotopic signatures in tree saplings enclosed within whole-canopy gas-exchange cuvettes. We applied this experimental system to three different tree species to determine their respective relationships between 18O enrichment of sucrose in leaf lamina (Δ18Ol_suc) and petiole phloem (Δ18Ophl_suc) under environmentally/physiologically stable conditions. Based on the determined Δ18Ophl_suc-Δ18Ol_suc relationships, we estimated that on average, at least 25% of the oxygen atoms in sucrose undergo isotopic exchange with water along the leaf-to-phloem translocation path and that the biochemical fractionation factor accounting for such exchange is c. 34‰, markedly higher than the conventionally assumed value of 27‰. Our study represents a significant step toward quantitative elucidation of the oxygen isotope dynamics during sucrose translocation in trees. This has important implications with respect to improving the δ18Ocel model and its related applications in paleoclimatic and ecophysiological contexts.
Collapse
Affiliation(s)
- Yonghui Pan
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Fang Li
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
- Huzhou Vocational & Technical College, Huzhou, 313000, China
| | - Wen Lin
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Youping Zhou
- Department of Marine Science and Technology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xin Song
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
4
|
Martínez-Sancho E, Cernusak LA, Fonti P, Gregori A, Ullrich B, Pannatier EG, Gessler A, Lehmann MM, Saurer M, Treydte K. Unenriched xylem water contribution during cellulose synthesis influenced by atmospheric demand governs the intra-annual tree-ring δ 18 O signature. THE NEW PHYTOLOGIST 2023; 240:1743-1757. [PMID: 37753542 DOI: 10.1111/nph.19278] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/16/2023] [Indexed: 09/28/2023]
Abstract
The oxygen isotope composition (δ18 O) of tree-ring cellulose is used to evaluate tree physiological responses to climate, but their interpretation is still limited due to the complexity of the isotope fractionation pathways. We assessed the relative contribution of seasonal needle and xylem water δ18 O variations to the intra-annual tree-ring cellulose δ18 O signature of larch trees at two sites with contrasting soil water availability in the Swiss Alps. We combined biweekly δ18 O measurements of soil water, needle water, and twig xylem water with intra-annual δ18 O measurements of tree-ring cellulose, xylogenesis analysis, and mechanistic and structural equation modeling. Intra-annual cellulose δ18 O values resembled source water δ18 O mean levels better than needle water δ18 O. Large parts of the rings were formed under high proportional exchange with unenriched xylem water (pex ). Maximum pex values were achieved in August and imprinted on sections at 50-75% of the ring. High pex values were associated with periods of high atmospheric evaporative demand (VPD). While VPD governed needle water δ18 O variability, we estimated a limited Péclet effect at both sites. Due to a variable pex , source water has a strong influence over large parts of the intra-annual tree-ring cellulose δ18 O variations, potentially masking signals coming from needle-level processes.
Collapse
Affiliation(s)
- Elisabet Martínez-Sancho
- Research Unit Forest Dynamics, Swiss Federal Institute for Forest Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
- Department of Biological Evolution, Ecology and Environmental Sciences, University of Barcelona, Diagonal 643, Barcelona, 08028, Spain
| | - Lucas A Cernusak
- College of Science and Engineering, James Cook University, Cairns, QLD, 4878, Australia
| | - Patrick Fonti
- Research Unit Forest Dynamics, Swiss Federal Institute for Forest Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
| | - Alessandro Gregori
- Research Unit Forest Dynamics, Swiss Federal Institute for Forest Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
| | - Bastian Ullrich
- Research Unit Forest Dynamics, Swiss Federal Institute for Forest Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
| | - Elisabeth Graf Pannatier
- Research Unit Forest Dynamics, Swiss Federal Institute for Forest Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
| | - Arthur Gessler
- Research Unit Forest Dynamics, Swiss Federal Institute for Forest Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
| | - Marco M Lehmann
- Research Unit Forest Dynamics, Swiss Federal Institute for Forest Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
| | - Matthias Saurer
- Research Unit Forest Dynamics, Swiss Federal Institute for Forest Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
| | - Kerstin Treydte
- Research Unit Forest Dynamics, Swiss Federal Institute for Forest Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
| |
Collapse
|
5
|
Xu G, Liu X, Hu J, Dorado-Liñán I, Gagen M, Szejner P, Chen T, Trouet V. Intra-annual tree-ring δ18O and δ13C reveal a trade-off between isotopic source and humidity in moist environments. TREE PHYSIOLOGY 2022; 42:2203-2223. [PMID: 35796563 DOI: 10.1093/treephys/tpac076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Tree-ring intra-annual stable isotopes (δ13C and δ18O) are powerful tools for revealing plant ecophysiological responses to climatic extremes. We analyzed interannual and fine-scale intra-annual variability of tree-ring δ13C and δ18O in Chinese red pine (Pinus massoniana) from southeastern China to explore environmental drivers and potential trade-offs between the main physiological controls. We show that wet season relative humidity (May-October RH) drove interannual variability of δ18O and intra-annual variability of tree-ring δ18O. It also drove intra-annual variability of tree-ring δ13C, whereas interannual variability was mainly controlled by February-May temperature and September-October RH. Furthermore, intra-annual tree-ring δ18O variability was larger during wet years compared with dry years, whereas δ13C variability was lower during wet years compared with dry years. As a result of these differences in intra-annual variability amplitude, process-based models (we used the Roden model for δ18O and the Farquhar model for δ13C) captured the intra-annual δ18O pattern better in wet years compared with dry years, whereas intra-annual δ13C pattern was better simulated in dry years compared with wet years. This result suggests a potential asymmetric bias in process-based models in capturing the interplay of the different mechanistic processes (i.e., isotopic source and leaf-level enrichment) operating in dry versus wet years. We therefore propose an intra-annual conceptual model considering a dynamic trade-off between the isotopic source and leaf-level enrichment in different tree-ring parts to understand how climate and ecophysiological processes drive intra-annual tree-ring stable isotopic variability under humid climate conditions.
Collapse
Affiliation(s)
- Guobao Xu
- National Field Science Observation and Research Station of Yulong Mountain Cryosphere and Sustainable Development, State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Laboratory of Tree-Ring Research, University of Arizona, Tucson 85721, USA
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Xiaohong Liu
- National Field Science Observation and Research Station of Yulong Mountain Cryosphere and Sustainable Development, State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Jia Hu
- Laboratory of Tree-Ring Research, University of Arizona, Tucson 85721, USA
- School of Natural Resources and the Environment, University of Arizona, Tucson 85721, USA
| | - Isabel Dorado-Liñán
- Dpto. de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, Madrid, Spain
| | - Mary Gagen
- Department of Geography, Swansea University, Singleton Park, Swansea SA28PP, UK
| | - Paul Szejner
- Laboratory of Tree-Ring Research, University of Arizona, Tucson 85721, USA
- Instituto de Geología, Universidad Nacional Autónoma de México, México City 04510, México
| | - Tuo Chen
- National Field Science Observation and Research Station of Yulong Mountain Cryosphere and Sustainable Development, State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Valerie Trouet
- Laboratory of Tree-Ring Research, University of Arizona, Tucson 85721, USA
- School of Natural Resources and the Environment, University of Arizona, Tucson 85721, USA
| |
Collapse
|
6
|
Lin W, Barbour MM, Song X. Do changes in tree-ring δ 18 O indicate changes in stomatal conductance? THE NEW PHYTOLOGIST 2022; 236:803-808. [PMID: 36200332 DOI: 10.1111/nph.18431] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/31/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Wen Lin
- School of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518000, China
- Shenzhen Key Laboratory of Marine Bio-resource and Eco-environmental Sciences, Shenzhen University, Shenzhen, 518000, China
| | - Margaret M Barbour
- Te Aka Mātuatua - School of Science, University of Waikato, Hamilton, 3240, New Zealand
| | - Xin Song
- School of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518000, China
- Shenzhen Key Laboratory of Marine Bio-resource and Eco-environmental Sciences, Shenzhen University, Shenzhen, 518000, China
| |
Collapse
|
7
|
Holloway-Phillips M, Baan J, Nelson DB, Lehmann MM, Tcherkez G, Kahmen A. Species variation in the hydrogen isotope composition of leaf cellulose is mostly driven by isotopic variation in leaf sucrose. PLANT, CELL & ENVIRONMENT 2022; 45:2636-2651. [PMID: 35609972 DOI: 10.1111/pce.14362] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Experimental approaches to isolate drivers of variation in the carbon-bound hydrogen isotope composition (δ2 H) of plant cellulose are rare and current models are limited in their application. This is in part due to a lack in understanding of how 2 H-fractionations in carbohydrates differ between species. We analysed, for the first time, the δ2 H of leaf sucrose along with the δ2 H and δ18 O of leaf cellulose and leaf and xylem water across seven herbaceous species and a starchless mutant of tobacco. The δ2 H of sucrose explained 66% of the δ2 H variation in cellulose (R2 = 0.66), which was associated with species differences in the 2 H enrichment of sucrose above leaf water ( ε sucrose <math altimg="urn:x-wiley:01407791:media:pce14362:pce14362-math-0001" wiley:location="equation/pce14362-math-0001.png" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mtext>\unicode{x003B5}</mtext><mtext>sucrose</mtext></msub></mrow></math> : -126% to -192‰) rather than by variation in leaf water δ2 H itself. ε sucrose <math altimg="urn:x-wiley:01407791:media:pce14362:pce14362-math-0002" wiley:location="equation/pce14362-math-0002.png" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mtext>\unicode{x003B5}</mtext><mtext>sucrose</mtext></msub></mrow></math> was positively related to dark respiration (R2 = 0.27), and isotopic exchange of hydrogen in sugars was positively related to the turnover time of carbohydrates (R2 = 0.38), but only when ε sucrose <math altimg="urn:x-wiley:01407791:media:pce14362:pce14362-math-0003" wiley:location="equation/pce14362-math-0003.png" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi mathvariant="normal">\unicode{x003B5}</mi><mtext>sucrose</mtext></msub></mrow></mrow></math> was fixed to the literature accepted value of - 171 <math altimg="urn:x-wiley:01407791:media:pce14362:pce14362-math-0004" wiley:location="equation/pce14362-math-0004.png" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mo>\unicode{x02212}</mo><mn>171</mn></mrow></mrow></math> ‰. No relation was found between isotopic exchange of hydrogen and oxygen, suggesting large differences in the processes shaping post-photosynthetic fractionation between elements. Our results strongly advocate that for robust applications of the leaf cellulose hydrogen isotope model, parameterization utilizing δ2 H of sugars is needed.
Collapse
Affiliation(s)
| | - Jochem Baan
- Department of Environmental Science-Botany, University of Basel, Basel, Switzerland
| | - Daniel B Nelson
- Department of Environmental Science-Botany, University of Basel, Basel, Switzerland
| | - Marco M Lehmann
- Research Unit of Forest Dynamics, Research Group of Ecosystem Ecology, Stable Isotope Research Centre, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmendsorf, Switzerland
| | - Guillaume Tcherkez
- Research School of Biology, College of Science, Australian National University, Canberra, Australian Capital Territory, Australia
- Institut de Recherche en Horticulture et Semences, Université d'Angers, INRAe, Beaucouzé, France
| | - Ansgar Kahmen
- Department of Environmental Science-Botany, University of Basel, Basel, Switzerland
| |
Collapse
|
8
|
Rapid increases in shrubland and forest intrinsic water-use efficiency during an ongoing megadrought. Proc Natl Acad Sci U S A 2021; 118:2118052118. [PMID: 34930849 DOI: 10.1073/pnas.2118052118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2021] [Indexed: 11/18/2022] Open
Abstract
Globally, intrinsic water-use efficiency (iWUE) has risen dramatically over the past century in concert with increases in atmospheric CO2 concentration. This increase could be further accelerated by long-term drought events, such as the ongoing multidecadal "megadrought" in the American Southwest. However, direct measurements of iWUE in this region are rare and largely constrained to trees, which may bias estimates of iWUE trends toward more mesic, high elevation areas and neglect the responses of other key plant functional types such as shrubs that are dominant across much of the region. Here, we found evidence that iWUE is increasing in the Southwest at one of the fastest rates documented due to the recent drying trend. These increases were particularly large across three common shrub species, which had a greater iWUE sensitivity to aridity than Pinus ponderosa, a common tree species in the western United States. The sensitivity of both shrub and tree iWUE to variability in atmospheric aridity exceeded their sensitivity to increasing atmospheric [CO2]. The shift to more water-efficient vegetation would be, all else being equal, a net positive for plant health. However, ongoing trends toward lower plant density, diminished growth, and increasing vegetation mortality across the Southwest indicate that this increase in iWUE is unlikely to offset the negative impacts of aridification.
Collapse
|
9
|
Investigating Masking Effects of Age Trends on the Correlations among Tree Ring Proxies. FORESTS 2021. [DOI: 10.3390/f12111523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Age-related trends are present in tree-ring widths (TRW), but their presence in tree rings isotope is debated. It is unclear how cambial age influences the relationships between TRW and isotopes. Tree-ring isotopes of alpine larch and cembran-pine trees showed only trends in the juvenile period (>100 years), which might mask the inter-relations between tree-ring proxies during cambial age. This work tries to unmask the age-trend influences by examining the correlations in TRW—stable isotopes with and without age-trend correction. The non-detrended and linear-detrended values of TRW, of δD and δ18O showed significant correlations for ages up to 100 years, but not afterward. However, the correlation values, after spline or first-difference time-series detrending, were not age-related. Thus, detrending methods affect the correlations in the juvenile phase and may affect climate-related interpretations. The correlations between TRW and δ13C were not age-related, while those among the isotopes were significant throughout the ages. The correlation between δ13C and δD was the exception, as it became significant only after age > 100 years, suggesting a different use of reserves in the juvenile phase. In conclusion, the relationships among the tree-ring parameters are stable in all the different detrend scenarios after the juvenile phase, and they can be used together in multi-proxy paleoclimatic studies. The data of the juvenile phase can be used after spline-detrending or first-difference time-series calculation, depending on the purpose of the analysis to remove age-related trends. The work also provides clues on the possible causes of juvenile age trends.
Collapse
|
10
|
Morino K, Minor RL, Barron-Gafford GA, Brown PM, Hughes MK. Bimodal cambial activity and false-ring formation in conifers under a monsoon climate. TREE PHYSIOLOGY 2021; 41:1893-1905. [PMID: 33823053 DOI: 10.1093/treephys/tpab045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Tracking wood formation in semiarid regions during the seasonal march of precipitation extremes has two important applications. It can provide (i) insight into the adaptive capacities of trees to drought and (ii) a basis for a richer interpretation of tree-ring data, assisting in a deeper understanding of past and current climate. In the southwestern USA, the anatomical signature of seasonally bimodal precipitation is the 'false ring'-a band of latewood-like cells in the earlywood. These occur when a particularly deep drought during the early growing season ends abruptly with timely, mid-growing season monsoonal rains. Such conditions presented in southern Arizona in 2014, enabling us to explore false-ring formation in ponderosa pine (Pinus ponderosa Lawson and C. Lawson) and Douglas-fir (Pseudotsuga menziesii Mirb. Franco) in mixed-conifer forest at 2573 m above sea level. We ask: what were the cell-by-cell timings and durations in the phases of wood cell development in 2014? How do these seasonal patterns relate to strongly fluctuating environmental conditions during the growing season? We took weekly microcores from March through November from six ponderosa pine and seven Douglas-fir trees at a well-instrumented flux tower site. Thin sections were prepared, and we counted cells in cambial, expansion, cell wall thickening and mature phases. For ponderosa pine trees forming a false ring, the first impact of intensifying seasonal drought was seen in the enlarging phase and then, almost a month later, in cambial activity. In this species, recovery from drought was associated with recovery first in cambial activity, followed by cell enlargement. This timing raised the possibility that cell division may be affected by atmospheric moisture increases before soil recharge. In both species, the last false-ring cells matured during the summer rainy season. Bimodal cambial activity coincident with moisture availability was observed in both species, whether or not they formed a false ring. This deeper knowledge of the precise timing of both developmental and environmental events should help define mechanistic connections among these factors in creating bimodal growth patterns.
Collapse
Affiliation(s)
- Kiyomi Morino
- Laboratory of Tree-Ring Research, University of Arizona, Tucson, AZ 85721, USA
| | - Rebecca L Minor
- Department of Earth and Climate Sciences, Bates College, Lewiston, ME 04240, USA
| | - Greg A Barron-Gafford
- School of Geography, Development and Environment, University of Arizona, Tucson, AZ 85721, USA
- B2 Earthscience, Biosphere 2, Office of Research Development and Innovation, University of Arizona, Tucson, AZ 85721, USA
| | - Peter M Brown
- Rocky Mountain Tree-Ring Research, Ft. Collins, CO 80526, USA
| | - Malcolm K Hughes
- Laboratory of Tree-Ring Research, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
11
|
Szejner P, Belmecheri S, Babst F, Wright WE, Frank DC, Hu J, Monson RK. Stable isotopes of tree rings reveal seasonal-to-decadal patterns during the emergence of a megadrought in the Southwestern US. Oecologia 2021; 197:1079-1094. [PMID: 33870457 DOI: 10.1007/s00442-021-04916-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 04/08/2021] [Indexed: 11/24/2022]
Abstract
Recent evidence has revealed the emergence of a megadrought in southwestern North America since 2000. Megadroughts extend for at least 2 decades, making it challenging to identify such events until they are well established. Here, we examined tree-ring growth and stable isotope ratios in Pinus ponderosa at its driest niche edge to investigate whether trees growing near their aridity limit were sensitive to the megadrought climatic pre-conditions, and were capable of informing predictive efforts. During the decade before the megadrought, trees in four populations revealed increases in the cellulose δ13C content of earlywood, latewood, and false latewood, which, based on past studies are correlated with increased intrinsic water-use efficiency. However, radial growth and cellulose δ18O were not sensitive to pre-megadrought conditions. During the 2 decades preceding the megadrought, at all four sites, the changes in δ13C were caused by the high sensitivity of needle carbon and water exchange to drought trends in key winter months, and for three of the four sites during crucial summer months. Such pre-megadrought physiological sensitivity appears to be unique for trees near their arid range limit, as similar patterns were not observed in trees in ten reference sites located along a latitudinal gradient in the same megadrought domain, despite similar drying trends. Our results reveal the utility of tree-ring δ13C to reconstruct spatiotemporal patterns during the organizational phase of a megadrought, demonstrating that trees near the arid boundaries of a species' distribution might be useful in the early detection of long-lasting droughts.
Collapse
Affiliation(s)
- Paul Szejner
- Instituto de Geología, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico. .,Laboratory of Tree‑Ring Research, University of Arizona, 1215 E Lowell St, Tucson, AZ, 85721, USA.
| | - Soumaya Belmecheri
- Laboratory of Tree‑Ring Research, University of Arizona, 1215 E Lowell St, Tucson, AZ, 85721, USA
| | - Flurin Babst
- Laboratory of Tree‑Ring Research, University of Arizona, 1215 E Lowell St, Tucson, AZ, 85721, USA.,W. Szafer Institute of Botany, Polish Academy of Science, ul. Lubicz 46, 31-512, Krakow, Poland.,School of Natural Resources and the Environment, University of Arizona, 1064 E. Lowell St., Tucson, AZ, 85721, USA
| | - William E Wright
- Laboratory of Tree‑Ring Research, University of Arizona, 1215 E Lowell St, Tucson, AZ, 85721, USA
| | - David C Frank
- Laboratory of Tree‑Ring Research, University of Arizona, 1215 E Lowell St, Tucson, AZ, 85721, USA
| | - Jia Hu
- Laboratory of Tree‑Ring Research, University of Arizona, 1215 E Lowell St, Tucson, AZ, 85721, USA.,School of Natural Resources and the Environment, University of Arizona, 1064 E. Lowell St., Tucson, AZ, 85721, USA
| | - Russell K Monson
- Laboratory of Tree‑Ring Research, University of Arizona, 1215 E Lowell St, Tucson, AZ, 85721, USA.,Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
12
|
Hirl RT, Ogée J, Ostler U, Schäufele R, Baca Cabrera JC, Zhu J, Schleip I, Wingate L, Schnyder H. Temperature-sensitive biochemical 18 O-fractionation and humidity-dependent attenuation factor are needed to predict δ 18 O of cellulose from leaf water in a grassland ecosystem. THE NEW PHYTOLOGIST 2021; 229:3156-3171. [PMID: 33251585 DOI: 10.1111/nph.17111] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
We explore here our mechanistic understanding of the environmental and physiological processes that determine the oxygen isotope composition of leaf cellulose (δ18 Ocellulose ) in a drought-prone, temperate grassland ecosystem. A new allocation-and-growth model was designed and added to an 18 O-enabled soil-vegetation-atmosphere transfer model (MuSICA) to predict seasonal (April-October) and multi-annual (2007-2012) variation of δ18 Ocellulose and 18 O-enrichment of leaf cellulose (Δ18 Ocellulose ) based on the Barbour-Farquhar model. Modelled δ18 Ocellulose agreed best with observations when integrated over c. 400 growing-degree-days, similar to the average leaf lifespan observed at the site. Over the integration time, air temperature ranged from 7 to 22°C and midday relative humidity from 47 to 73%. Model agreement with observations of δ18 Ocellulose (R2 = 0.57) and Δ18 Ocellulose (R2 = 0.74), and their negative relationship with canopy conductance, was improved significantly when both the biochemical 18 O-fractionation between water and substrate for cellulose synthesis (εbio , range 26-30‰) was temperature-sensitive, as previously reported for aquatic plants and heterotrophically grown wheat seedlings, and the proportion of oxygen in cellulose reflecting leaf water 18 O-enrichment (1 - pex px , range 0.23-0.63) was dependent on air relative humidity, as observed in independent controlled experiments with grasses. Understanding physiological information in δ18 Ocellulose requires quantitative knowledge of climatic effects on pex px and εbio .
Collapse
Affiliation(s)
- Regina T Hirl
- Lehrstuhl für Grünlandlehre, Technische Universität München, Alte Akademie 12, Freising-Weihenstephan, 85354, Germany
- UMR ISPA, INRAE, Villenave d'Ornon, 33140, France
| | - Jérôme Ogée
- UMR ISPA, INRAE, Villenave d'Ornon, 33140, France
| | - Ulrike Ostler
- Lehrstuhl für Grünlandlehre, Technische Universität München, Alte Akademie 12, Freising-Weihenstephan, 85354, Germany
- Institut für Meteorologie und Klimaforschung, Atmosphärische Umweltforschung (IMK-IFU), Karlsruher Institut für Technologie (KIT), Kreuzeckbahnstraße 19, Garmisch-Partenkirchen, 82467, Germany
| | - Rudi Schäufele
- Lehrstuhl für Grünlandlehre, Technische Universität München, Alte Akademie 12, Freising-Weihenstephan, 85354, Germany
| | - Juan C Baca Cabrera
- Lehrstuhl für Grünlandlehre, Technische Universität München, Alte Akademie 12, Freising-Weihenstephan, 85354, Germany
| | - Jianjun Zhu
- Lehrstuhl für Grünlandlehre, Technische Universität München, Alte Akademie 12, Freising-Weihenstephan, 85354, Germany
| | - Inga Schleip
- Nachhaltige Grünlandnutzungssysteme und Grünlandökologie, Hochschule für nachhaltige Entwicklung Eberswalde, Schicklerstraße 5, Eberswalde, 16225, Germany
| | - Lisa Wingate
- UMR ISPA, INRAE, Villenave d'Ornon, 33140, France
| | - Hans Schnyder
- Lehrstuhl für Grünlandlehre, Technische Universität München, Alte Akademie 12, Freising-Weihenstephan, 85354, Germany
| |
Collapse
|