1
|
Taha A, Zoubi A, Ettaqy A, El-Mderssa M, Belaqziz M, Fokar M, Hamdali H, Zine-El-Abidine A, Boukcim H, Abbas Y. Environmental drivers of Euphorbia resinifera seed germination and seedling establishment for conservation purpose. BRAZ J BIOL 2024; 84:e281196. [PMID: 39319978 DOI: 10.1590/1519-6984.281196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/25/2024] [Indexed: 09/26/2024] Open
Abstract
Euphorbia resinifera O. Berg is a prickly, leafless and succulent, Moroccan endemic shrub. Field data indicate that the plant faces many challenges related to its natural regeneration and its gradual decline that can lead to a probability of extinction, at least in some areas. Successful seed germination and survival of E. resinifera seedlings during the dry period is one of the main obstacles encountered in establishing natural seedlings. With this in mind, 3080 seeds of two morphotypes of E. resinifera (M1 and M2) were harvested in the Atlas of Beni Mellal to study their germinative potential and determine suitable conditions for growth and development of the seedlings. In the laboratory, five temperatures (10 °, 15 °C, 18 °C, 25 °C, and 35 °C) and two photoperiods (12 h light/12 h dark and 24 h dark) were tested. Whereas in field research, two factors were considered: the availability of water and the type of substrate (clay, peat, and limestone). Results show a maximum germination rate of around 52% for M2 at 15 °C and 48% for M1 at 18 °C. The Monitoring of plant seedling establishment and growth revealed a high vulnerability to prolonged periods of drought. However, consolidated soil is more conducive to seedling establishment. For this species, it is therefore essential to conserve the habitat within the karst geosystem. Furthermore, the variability of this species' morphotypes and their growth form architecture shows a tendency to favor the dwarf, cushion-shaped morphotype, which is the most widespread in the study area.
Collapse
Affiliation(s)
- A Taha
- Sultan Moulay Slimane University, Polydisciplinary Faculty, Polyvalent Team in Research and Development, Beni Mellal, Morocco
- Sultan Moulay Slimane University, Faculty of Sciences and Technologies, Ecology and Sustainable Development Team, Mghila campus, Beni Mellal, Morocco
| | - A Zoubi
- Sultan Moulay Slimane University, Faculty of Sciences and Technologies, Ecology and Sustainable Development Team, Mghila campus, Beni Mellal, Morocco
| | - A Ettaqy
- Sultan Moulay Slimane University, Faculty of Sciences and Technologies, Ecology and Sustainable Development Team, Mghila campus, Beni Mellal, Morocco
| | - M El-Mderssa
- Sultan Moulay Slimane University, Polydisciplinary Faculty, Polyvalent Team in Research and Development, Beni Mellal, Morocco
| | - M Belaqziz
- Cadi Ayyad University, Water, Biodiversity and Climate Change Lab, Marrakech, Morocco
| | - M Fokar
- Texas Tech University, Center for Biotechnology and Genomics, Lubbock, Texas, USA
| | - H Hamdali
- University of Sultan Moulay Slimane, Faculty of Sciences and Technology, Laboratory of Agro-Industrial and Medical Biotechnologies, Beni, Mellal, Morocco
| | | | - H Boukcim
- Valorhiz, Montferrier sur Lez, Montpellier, France
| | - Y Abbas
- Sultan Moulay Slimane University, Polydisciplinary Faculty, Polyvalent Team in Research and Development, Beni Mellal, Morocco
| |
Collapse
|
2
|
Laurans M, Munoz F, Charles-Dominique T, Heuret P, Fortunel C, Isnard S, Sabatier SA, Caraglio Y, Violle C. Why incorporate plant architecture into trait-based ecology? Trends Ecol Evol 2024; 39:524-536. [PMID: 38212187 DOI: 10.1016/j.tree.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 01/13/2024]
Abstract
Trait-based ecology has improved our understanding of the functioning of organisms, communities, ecosystems, and beyond. However, its predictive ability remains limited as long as phenotypic integration and temporal dynamics are not considered. We highlight how the morphogenetic processes that shape the 3D development of a plant during its lifetime affect its performance. We show that the diversity of architectural traits allows us to go beyond organ-level traits in capturing the temporal and spatial dimensions of ecological niches and informing community assembly processes. Overall, we argue that consideration of multilevel topological, geometrical, and ontogenetic features provides a dynamic view of the whole-plant phenotype and a relevant framework for investigating phenotypic integration, plant adaptation and performance, and community structure and dynamics.
Collapse
Affiliation(s)
- Marilyne Laurans
- CIRAD, UMR AMAP, F-34398 Montpellier, France; AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France.
| | - François Munoz
- LiPhy, Université Grenoble-Alpes, CNRS, Grenoble, France
| | - Tristan Charles-Dominique
- AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France; CNRS UMR7618, Institute of Ecology and Environmental Sciences, Paris, Sorbonne University, Paris, France
| | - Patrick Heuret
- AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Claire Fortunel
- AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Sandrine Isnard
- AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Sylvie-Annabel Sabatier
- CIRAD, UMR AMAP, F-34398 Montpellier, France; AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Yves Caraglio
- CIRAD, UMR AMAP, F-34398 Montpellier, France; AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Cyrille Violle
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
3
|
Anest A, Bouchenak-Khelladi Y, Charles-Dominique T, Forest F, Caraglio Y, Hempson GP, Maurin O, Tomlinson KW. Blocking then stinging as a case of two-step evolution of defensive cage architectures in herbivore-driven ecosystems. NATURE PLANTS 2024; 10:587-597. [PMID: 38438539 DOI: 10.1038/s41477-024-01649-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/23/2024] [Indexed: 03/06/2024]
Abstract
Dense branching and spines are common features of plant species in ecosystems with high mammalian herbivory pressure. While dense branching and spines can inhibit herbivory independently, when combined, they form a powerful defensive cage architecture. However, how cage architecture evolved under mammalian pressure has remained unexplored. Here we show how dense branching and spines emerged during the age of mammalian radiation in the Combretaceae family and diversified in herbivore-driven ecosystems in the tropics. Phylogenetic comparative methods revealed that modern plant architectural strategies defending against large mammals evolved via a stepwise process. First, dense branching emerged under intermediate herbivory pressure, followed by the acquisition of spines that supported higher speciation rates under high herbivory pressure. Our study highlights the adaptive value of dense branching as part of a herbivore defence strategy and identifies large mammal herbivory as a major selective force shaping the whole plant architecture of woody plants.
Collapse
Affiliation(s)
- Artémis Anest
- Center for Integrative Conservation and Yunnan Key Laboratory for Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, China.
- University of Chinese Academy of Sciences, Beijing, China.
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France.
| | - Yanis Bouchenak-Khelladi
- Agroécologie, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, INRAE, Institut Agro, Dijon, France
| | - Tristan Charles-Dominique
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
- Centre National de la Recherche Scientifique (CNRS), Sorbonne University, Paris, France
| | | | - Yves Caraglio
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Gareth P Hempson
- Ecology and Environmental Change, School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | | | - Kyle W Tomlinson
- Center for Integrative Conservation and Yunnan Key Laboratory for Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, China.
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, China.
| |
Collapse
|
4
|
Klimešová J, Herben T. Belowground morphology as a clue for plant response to disturbance and productivity in a temperate flora. THE NEW PHYTOLOGIST 2024; 242:61-76. [PMID: 38358032 DOI: 10.1111/nph.19584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/23/2024] [Indexed: 02/16/2024]
Abstract
Plants possess a large variety of nonacquisitive belowground organs, such as rhizomes, tubers, bulbs, and coarse roots. These organs determine a whole set of functions that are decisive in coping with climate, productivity, disturbance, and biotic interactions, and have been hypothesized to affect plant distribution along environmental gradients. We assembled data on belowground organ morphology for 1712 species from Central Europe and tested these hypotheses by quantifying relationships between belowground morphologies and species optima along ecological gradients related to productivity and disturbance. Furthermore, we linked these data with species co-occurrence in 30 115 vegetation plots from the Czech Republic to determine relationships between belowground organ diversity and these gradients. The strongest gradients determining belowground organ distribution were disturbance severity and frequency, light, and moisture. Nonclonal perennials and annuals occupy much smaller parts of the total environmental space than major types of clonal plants. Forest habitats had the highest diversity of co-occurring belowground morphologies; in other habitats, the diversity of belowground morphologies was generally lower than the random expectation. Our work shows that nonacquisitive belowground organs may be partly responsible for plant environmental niches. This adds a new dimension to the plant trait spectrum, currently based on acquisitive traits (leaves and fine roots) only.
Collapse
Affiliation(s)
- Jitka Klimešová
- Institute of Botany, Czech Academy of Sciences, Třeboň, CZ-379 82, Czech Republic
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, Praha 2, CZ-128 01, Czech Republic
| | - Tomáš Herben
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, Praha 2, CZ-128 01, Czech Republic
- Institute of Botany, Czech Academy of Sciences, Průhonice, CZ-252 43, Czech Republic
| |
Collapse
|
5
|
Collobert G, Perez-Lamarque B, Dubuisson JY, Martos F. Gains and losses of the epiphytic lifestyle in epidendroid orchids: review and new analyses of succulence traits. ANNALS OF BOTANY 2023; 132:787-800. [PMID: 37777476 PMCID: PMC10799982 DOI: 10.1093/aob/mcad145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/13/2023] [Accepted: 09/29/2023] [Indexed: 10/02/2023]
Abstract
BACKGROUND AND AIMS Epiphytism has evolved repeatedly in plants and has resulted in a considerable number of species with original characteristics. Because water supply is generally erratic compared to that in soils, succulent forms in particular are widespread in epiphytic species. However, succulent organs also exist in terrestrial plants, and the question of the concomitant evolution of epiphytism and succulence has received little attention, not even in the epidendroid orchids, which account for 67.6 % of vascular epiphytes. METHODS We built a new time-calibrated phylogenetic tree of Epidendroideae with 203 genera treated in genus Orchidacearum, from which we reconstructed the evolution of epiphytism as well as traits related to water scarcity (stem and leaf succulence and the number of velamen layers), while testing for the correlated evolution between the two. Furthermore, we estimated the ancestral geographical ranges to evaluate the palaeoclimatic context in which epiphytism evolved. KEY RESULTS Epiphytism evolved at least three times: 39.0 million years ago (Mya) in the common ancestor of the Malaxideae and Cymbidieae that probably ranged from the Neotropics to Southeast Asia and Australia, 11.5 Mya in the Arethuseae in Southeast Asia and Australia, and 7.1 Mya in the neotropical Sobralieae, and it was notably lost in the Malaxidiinae, Collabieae, Calypsoeae, Bletiinae and Eulophiinae. Stem succulence is inferred to have evolved once, in a terrestrial ancestor at least 4.1 Mya before the emergence of epiphytic lineages. If lost, stem succulence was almost systematically replaced by leaf succulence in epiphytic lineages. CONCLUSIONS Epiphytism may have evolved in seasonally dry forests during the Eocene climatic cooling, among stem-succulent terrestrial orchids. Our results suggest that the emergence of stem succulence in early epidendroids was a key innovation in the evolution of epiphytism, facilitating the colonization of epiphytic environments that later led to the greatest diversification of epiphytic orchids.
Collapse
Affiliation(s)
- Géromine Collobert
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP 39, 57 rue Cuvier, 75005 Paris, France
| | - Benoît Perez-Lamarque
- Institut de Biologie de l’ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 46 rue d’Ulm, 75005 Paris, France
| | - Jean-Yves Dubuisson
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP 39, 57 rue Cuvier, 75005 Paris, France
| | - Florent Martos
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP 39, 57 rue Cuvier, 75005 Paris, France
| |
Collapse
|
6
|
Beierkuhnlein C, Nogales M, Field R, Vetaas OR, Walentowitz A, Weiser F, Stahlmann R, Guerrero-Campos M, Jentsch A, Medina FM, Chiarucci A. Volcanic ash deposition as a selection mechanism towards woodiness. NPJ BIODIVERSITY 2023; 2:14. [PMID: 39242830 PMCID: PMC11332210 DOI: 10.1038/s44185-023-00018-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/18/2023] [Indexed: 09/09/2024]
Abstract
The high proportion of woody plant species on oceanic islands has hitherto been explained mainly by gradual adaptation to climatic conditions. Here, we present a novel hypothesis that such woodiness is adaptative to volcanic ash (tephra) deposition. Oceanic islands are subject to frequent eruptions with substantial and widespread ash deposition on evolutionary time scales. We postulate that this selects for woodiness through an increased ability to avoid burial of plant organs by ash, and to re-emerge above the new land surface. We sense-checked using observations of plant occurrences and distributions on La Palma (Canary Islands) in April 2022, 4 months after the end of the eruptions of the Tajogaite volcano (Cumbre Vieja ridge). In contrast to herbs and grasses, most woody plants persisted and were already in full flower in areas with 10+ cm ash deposition. Remarkably, these persisting woody plants were almost exclusively endemics.
Collapse
Affiliation(s)
- Carl Beierkuhnlein
- Biogeography, University of Bayreuth, Universitätsstr. 30, 95440, Bayreuth, Germany.
| | - Manuel Nogales
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), La Laguna, Tenerife, Canary Islands, Spain
| | - Richard Field
- School of Geography, University of Nottingham, NG7 2RD, Nottingham, UK
| | - Ole R Vetaas
- Department of Geography, University of Bergen, Bergen, Norway
| | - Anna Walentowitz
- Biogeography, University of Bayreuth, Universitätsstr. 30, 95440, Bayreuth, Germany
| | - Frank Weiser
- Biogeography, University of Bayreuth, Universitätsstr. 30, 95440, Bayreuth, Germany
| | - Reinhold Stahlmann
- Biogeography, University of Bayreuth, Universitätsstr. 30, 95440, Bayreuth, Germany
| | - María Guerrero-Campos
- Área de Medio Ambiente, Gestión y Planeamiento Territorial y Ambiental (GesPlan S. A.), Tenerife, Canary Islands, Spain
| | - Anke Jentsch
- Disturbance Ecology, University of Bayreuth, Universitätsstr. 30, 95440, Bayreuth, Germany
| | - Félix M Medina
- Consejería de Medio Ambiente, Cabildo Insular de La Palma, Santa Cruz de La Palma, Canary Islands, Spain
| | - Alessandro Chiarucci
- BIOME Lab, Department of Biological, Geological & Environmental Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| |
Collapse
|
7
|
Yang D, Wang YSD, Wang Q, Ke Y, Zhang YB, Zhang SB, Zhang YJ, McDowell NG, Zhang JL. Physiological response and photosynthetic recovery to an extreme drought: Evidence from plants in a dry-hot valley savanna of Southwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161711. [PMID: 36682563 DOI: 10.1016/j.scitotenv.2023.161711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/15/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
The frequency of extreme drought events has been rising worldwide, but due to its unpredictability, how plants will respond remains poorly understood. Here, we aimed to characterize how the hydraulics and photosynthesis of savanna plants respond to extreme drought, and tested whether they can subsequently recover photosynthesis after drought. There was an extreme drought in 2019 in Southwest (SW) China. We investigated photosynthetic gas exchange, leaf-, stem-, and whole-shoot hydraulic conductance of 18 plant species with diverse leaf habits (deciduous, semi-deciduous and evergreen) and growth forms (tree and shrub) from a dry-hot valley savanna in SW China for three rainy seasons from 2019 to 2021. We also compared photosynthetic gas exchange to those of a regular year (2014). We found that leaf stomatal and hydraulic conductance and maximum photosynthetic rate were significantly lower during the drought in 2019 than in the wetter years. In 2019, all studied plants maintained stomatal conductance at their minimum level observed, which could be related to high vapor pressure deficits (VPD, >2 kPa). However, no significant difference in stem and shoot hydraulic conductance was detected across years. The reductions in leaf hydraulic conductance and stomatal regulation under extreme drought might help keep the stem hydraulic function. Stomatal conductance and photosynthesis after drought (2020 and 2021) showed comparable or even higher values compared to that of 2014, suggesting high recovery of photosynthetic gas exchange. In addition, the response of hydraulic and photosynthetic traits to extreme drought was convergent across leaf habits and growth forms. Our results will help better understand the physiological mechanism underlying the response of savanna ecosystems to climate change.
Collapse
Affiliation(s)
- Da Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Yang-Si-Ding Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qin Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Ke
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun-Bing Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shi-Bao Zhang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yong-Jiang Zhang
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA.
| | - Nate G McDowell
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, USA; School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA 99164-4236, USA
| | - Jiao-Lin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China.
| |
Collapse
|
8
|
dos Santos P, Brilhante MÂ, Messerschmid TFE, Serrano HC, Kadereit G, Branquinho C, de Vos JM. Plant growth forms dictate adaptations to the local climate. FRONTIERS IN PLANT SCIENCE 2022; 13:1023595. [PMID: 36479511 PMCID: PMC9720395 DOI: 10.3389/fpls.2022.1023595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Abstract
Adaptive radiation is a significant driver of biodiversity. Primarily studied in animal systems, mechanisms that trigger adaptive radiations remain poorly understood in plants. A frequently claimed indicator of adaptive radiation in plants is growth form diversity when tied to the occupation of different habitats. However, it remains obscure whether morphological adaptations manifest as growth form diversity per se or as its constituent traits. We use the classic Aeonium radiation from the Canary Islands to ask whether adaptation across climatic space is structured by growth form evolution. Using morphological sampling with site-associated climate in a phylogenetic context, we find that growth forms dictate adaptations to the local environment. Furthermore, we demonstrate that the response of specific traits to analogous environments is antagonistic when growth forms are different. This finding suggests for the first time that growth forms represent particular ecological functions, allowing the co-occurrence of closely related species, being a product of divergent selection during evolution in sympatry.
Collapse
Affiliation(s)
- Patrícia dos Santos
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & Global Change and Sustainability Institute (CHANGE), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Department of Environmental Sciences – Botany, University of Basel, Basel, Switzerland
| | - Miguel Ângelo Brilhante
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Lisbon, Portugal
| | - Thibaud F. E. Messerschmid
- Botanischer Garten München-Nymphenburg und Botanischen Staatssammlung, Staatliche Naturwissenschaftliche Sammlungen Bayerns, Munich, Germany
- Prinzessin Therese von Bayern Lehrstuhl für Systematik, Biodiversität & Evolution der Pflanzen, Ludwig-Maximilans-Universität München, Munich, Germany
| | - Helena Cristina Serrano
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & Global Change and Sustainability Institute (CHANGE), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Gudrun Kadereit
- Botanischer Garten München-Nymphenburg und Botanischen Staatssammlung, Staatliche Naturwissenschaftliche Sammlungen Bayerns, Munich, Germany
- Prinzessin Therese von Bayern Lehrstuhl für Systematik, Biodiversität & Evolution der Pflanzen, Ludwig-Maximilans-Universität München, Munich, Germany
| | - Cristina Branquinho
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & Global Change and Sustainability Institute (CHANGE), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Jurriaan M. de Vos
- Department of Environmental Sciences – Botany, University of Basel, Basel, Switzerland
| |
Collapse
|
9
|
Niklas KJ, Telewski FW. Environmental-biomechanical reciprocity and the evolution of plant material properties. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1067-1079. [PMID: 34487177 DOI: 10.1093/jxb/erab411] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Abiotic-biotic interactions have shaped organic evolution since life first began. Abiotic factors influence growth, survival, and reproductive success, whereas biotic responses to abiotic factors have changed the physical environment (and indeed created new environments). This reciprocity is well illustrated by land plants who begin and end their existence in the same location while growing in size over the course of years or even millennia, during which environment factors change over many orders of magnitude. A biomechanical, ecological, and evolutionary perspective reveals that plants are (i) composed of materials (cells and tissues) that function as cellular solids (i.e. materials composed of one or more solid and fluid phases); (ii) that have evolved greater rigidity (as a consequence of chemical and structural changes in their solid phases); (iii) allowing for increases in body size and (iv) permitting acclimation to more physiologically and ecologically diverse and challenging habitats; which (v) have profoundly altered biotic as well as abiotic environmental factors (e.g. the creation of soils, carbon sequestration, and water cycles). A critical component of this evolutionary innovation is the extent to which mechanical perturbations have shaped plant form and function and how form and function have shaped ecological dynamics over the course of evolution.
Collapse
Affiliation(s)
- Karl J Niklas
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Frank W Telewski
- Department of Plant Biology, W.J. Beal Botanical Garden, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
10
|
Chen YJ, Choat B, Sterck F, Maenpuen P, Katabuchi M, Zhang SB, Tomlinson KW, Oliveira RS, Zhang YJ, Shen JX, Cao KF, Jansen S. Hydraulic prediction of drought-induced plant dieback and top-kill depends on leaf habit and growth form. Ecol Lett 2021; 24:2350-2363. [PMID: 34409716 DOI: 10.1111/ele.13856] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 04/19/2021] [Accepted: 07/11/2021] [Indexed: 01/05/2023]
Abstract
Hydraulic failure caused by severe drought contributes to aboveground dieback and whole-plant death. The extent to which dieback or whole-plant death can be predicted by plant hydraulic traits has rarely been tested among species with different leaf habits and/or growth forms. We investigated 19 hydraulic traits in 40 woody species in a tropical savanna and their potential correlations with drought response during an extreme drought event during the El Niño-Southern Oscillation in 2015. Plant hydraulic trait variation was partitioned substantially by leaf habit but not growth form along a trade-off axis between traits that support drought tolerance versus avoidance. Semi-deciduous species and shrubs had the highest branch dieback and top-kill (complete aboveground death) among the leaf habits or growth forms. Dieback and top-kill were well explained by combining hydraulic traits with leaf habit and growth form, suggesting integrating life history traits with hydraulic traits will yield better predictions.
Collapse
Affiliation(s)
- Ya-Jun Chen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China.,Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Yunnan, China.,Yuanjiang Savanna Ecosystem Research Station, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yuanjiang, Yunnan, China.,Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Frank Sterck
- Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Phisamai Maenpuen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Masatoshi Katabuchi
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| | - Shu-Bin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China.,Yuanjiang Savanna Ecosystem Research Station, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yuanjiang, Yunnan, China
| | - Kyle W Tomlinson
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| | - Rafael S Oliveira
- Department of Plant Biology, Institute of Biology, CP6109, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Yong-Jiang Zhang
- School of Biology and Ecology, University of Maine, Orono, Maine, USA
| | - Jing-Xian Shen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China.,Institute of Ecology and Geobotany, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, China
| | - Kun-Fang Cao
- State Key Laboratory for Conservation and Utilization of Agro-bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, China
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
| |
Collapse
|
11
|
Chomicki G. Bringing Raunkiaer with plant architecture: unveiling the climatic drivers of architectural evolution in Euphorbia. THE NEW PHYTOLOGIST 2021; 231:910-912. [PMID: 34101184 DOI: 10.1111/nph.17446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Guillaume Chomicki
- Department of Animal and Plant Sciences, Alfred Denny Building, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| |
Collapse
|