1
|
Lohani N, Singh MB, Bhalla PL. Deciphering the Vulnerability of Pollen to Heat Stress for Securing Crop Yields in a Warming Climate. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39722468 DOI: 10.1111/pce.15315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024]
Abstract
Climate change is leading to more frequent and severe extreme temperature events, negatively impacting agricultural productivity and threatening global food security. Plant reproduction, the process fundamental to crop yield, is highly susceptible to heatwaves, which disrupt pollen development and ultimately affect seed-set and crop yields. Recent research has increasingly focused on understanding how pollen grains from various crops react to heat stress at the molecular and cellular levels. This surge in interest over the last decade has been driven by advances in genomic technologies, such as single-cell RNA sequencing, which holds significant potential for revealing the underlying regulatory reprogramming triggered by heat stress throughout the various stages of pollen development. This review focuses on how heat stress affects gene regulatory networks, including the heat stress response, the unfolded protein response, and autophagy, and discusses the impact of these changes on various stages of pollen development. It highlights the potential of pollen selection as a key strategy for improving heat tolerance in crops by leveraging the genetic variability among pollen grains. Additionally, genome-wide association studies and population screenings have shed light on the genetic underpinnings of traits in major crops that respond to high temperatures during male reproductive stages. Gene-editing tools like CRISPR/Cas systems could facilitate precise genetic modifications to boost pollen heat resilience. The information covered in this review is valuable for selecting traits and employing molecular genetic approaches to develop heat-tolerant genotypes.
Collapse
Affiliation(s)
- Neeta Lohani
- Plant Molecular Biology and Biotechnology Laboratory, School of Agriculture, Food, and Ecosystem Sciences, The University of Melbourne, Parkville, Australia
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| | - Mohan B Singh
- Plant Molecular Biology and Biotechnology Laboratory, School of Agriculture, Food, and Ecosystem Sciences, The University of Melbourne, Parkville, Australia
| | - Prem L Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, School of Agriculture, Food, and Ecosystem Sciences, The University of Melbourne, Parkville, Australia
| |
Collapse
|
2
|
Wan Q, Lu M, Jiang G, Shao J, Chen T, Yang L, Khan IA, Deng J, Zhong S, Wang Y, Xiao Z, Fang Q, Zhao H. The characterization of OfRGA in regulation of flower size through tuning cell expansion genes. FRONTIERS IN PLANT SCIENCE 2024; 15:1502347. [PMID: 39822961 PMCID: PMC11736142 DOI: 10.3389/fpls.2024.1502347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/09/2024] [Indexed: 01/19/2025]
Abstract
Flower appearance stands as a key characteristic of flowering plants and is closely linked to their ornamental value. Phytohormone Gibberellin (GA), essential for plant growth and development are widely reported for expansion in flower. DELLA proteins are known to negatively regulate GA signaling and influences plant growth and development through the regulation of cell expansion. However, the specific biological function of DELLA proteins in the woody plant Osmanthus fragrans remains unclear. In this study, O. fragrans 'Sijigui' was utilized as the experimental material, and OfRGA was isolated using the PCR method. OfRGA is expressed in various tissues and is localized in the nucleus. A negative association was observed between OfRGA expression and petal size across four different Osmanthus fragrans cultivars. Transformation experiments in tobacco revealed that transgenic plants overexpressing OfRGA exhibited increased plant height, greater node spacing, shorter leaf length, and wider leaves during the vegetative phase. Notably, the flower organs of transgenic tobacco plants displayed noticeable alterations, including reduced petal size, shorter corolla tubes, pedicels, male and female stamens, and lighter petal color. Furthermore, a decrease in the length and area of petal and corolla tube cells was observed as well. DEGs were found in RNA-seq studies of OfRGA transgenic plants. Subsequent investigation revealed a considerable quantity of down-regulated genes were associated with cell wall synthesis genes and expansion genes, such as CesA1, XEH, and EXPB1, as well as genes related to anthocyanin biosynthesis. Overall, our findings suggest that OfRGA undermines tobacco petal size by influencing cell expansion. The present study offers a fundamental comprehension of the role of DELLA protein in the organ development in Osmanthus fragrans.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Qiu Fang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden
Plants, School of Landscape and Architecture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Hongbo Zhao
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden
Plants, School of Landscape and Architecture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Ye Q, Jiang W, Wang X, Hu X, Zhang Z, Wu Z, Wang H, Li S, Guo D, He H, Hu LF. Identification of the new allele ptc1-2 and analysis of the regulatory role of PTC1 gene in rice anther development. BMC PLANT BIOLOGY 2024; 24:1062. [PMID: 39528949 PMCID: PMC11552164 DOI: 10.1186/s12870-024-05720-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Anther development involves a series of important biological events that are precisely regulated by many genes. Although several important genes involved in rice anther development have been identified, the regulatory network involved in tapetal development and pollen wall formation is still largely unclear. PERSISTENT TAPETAL CELL 1 (PTC1) encodes a PHD-Finger protein, which plays a critical role in the regulation of tapetal cell death and pollen development in rice. Here, we report the isolation and characterization of a new allele ptc1-2 with 2-base deletion in the third exon, causing the absent of the PHD domain due to the sequence change. Cytological analysis revealed delayed tapetal PCD, defective pollen exine formation and abnormal ubisch bodies development. Transcriptome analysis revealed that genes related to pollen wall formation (secondary metabolism, phenylalanine synthesis, and cutin and wax biosynthesis pathways), cell death (cysteine and methionine metabolism and DNA repair pathways), and carbohydrate synthesis (starch and sucrose metabolism pathways) were significantly altered in ptc1-2 mutant. A total of 13 reported anther development genes exhibited significant expression changes in the ptc1-2 mutant. Yeast two-hybrid and BiFC analyses showed that PTC1 could interact with API5, an inhibitor of apoptosis, and the citrin-binding enzyme EDT1. This work is helpful in deepening the understanding of the regulatory network of male reproductive development in rice.
Collapse
Affiliation(s)
- Qing Ye
- College of Agriculture, Jiangxi Agricultural University, Nanchang, 330045, China
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - WenXiang Jiang
- College of Agriculture, Jiangxi Agricultural University, Nanchang, 330045, China
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - XiaoQing Wang
- College of Agriculture, Jiangxi Agricultural University, Nanchang, 330045, China
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - XiaFei Hu
- College of Agriculture, Jiangxi Agricultural University, Nanchang, 330045, China
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - ZeLing Zhang
- College of Agriculture, Jiangxi Agricultural University, Nanchang, 330045, China
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhen Wu
- College of Agriculture, Jiangxi Agricultural University, Nanchang, 330045, China
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Huang Wang
- College of Agriculture, Jiangxi Agricultural University, Nanchang, 330045, China
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - SiNing Li
- College of Agriculture, Jiangxi Agricultural University, Nanchang, 330045, China
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Dandan Guo
- College of Agriculture, Jiangxi Agricultural University, Nanchang, 330045, China
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - HaoHua He
- College of Agriculture, Jiangxi Agricultural University, Nanchang, 330045, China.
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Li Fang Hu
- College of Agriculture, Jiangxi Agricultural University, Nanchang, 330045, China.
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
4
|
Mao J, Tang Q, Wu H, Chen Y. Transcriptome Remodeling in Arabidopsis: A Response to Heterologous Poplar MSL-lncRNAs Overexpression. PLANTS (BASEL, SWITZERLAND) 2024; 13:2906. [PMID: 39458852 PMCID: PMC11511487 DOI: 10.3390/plants13202906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
Stamens are vital reproductive organs in angiosperms, essential for plant growth, reproduction, and development. The genetic regulation and molecular mechanisms underlying stamen development are, however, complex and varied among different plant species. MSL-lncRNAs, a gene specific to the Y chromosome of Populus deltoides, is predominantly expressed in male flower buds. Heterologous expression of MSL-lncRNAs in Arabidopsis thaliana resulted in an increase in both stamen and anther count, without affecting pistil development or seed set. To reveal the molecular regulatory network influenced by MSL-lncRNAs on stamen development, we conducted transcriptome sequencing of flowers from both wild-type and MSL-lncRNAs-overexpressing Arabidopsis. A total of 678 differentially expressed genes were identified between wild-type and transgenic Arabidopsis. Among these, 20 were classified as transcription factors, suggesting a role for these regulatory proteins in stamen development. GO enrichment analysis revealed that the differentially expressed genes were significantly associated with processes such as pollen formation, polysaccharide catabolic processes, and secondary metabolism. KEGG pathway analysis indicated that MSL-lncRNAs might promote stamen development by upregulating genes involved in the phenylpropanoid biosynthesis pathway. The top three upregulated genes, all featuring the DUF295 domain, were found to harbor an F-box motif at their N-termini, which is implicated in stamen development. Additionally, in transgenic Arabidopsis flowers, genes implicated in tapetum formation and anther development were also observed to be upregulated, implying a potential role for MSL-lncRNAs in modulating pollen development through the positive regulation of these genes. The findings from this study establish a theoretical framework for elucidating the genetic control exerted by MSL-lncRNAs over stamen and pollen development.
Collapse
Affiliation(s)
| | | | | | - Yingnan Chen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China; (J.M.); (Q.T.); (H.W.)
| |
Collapse
|
5
|
Sun Y, Ang Y, Fu M, Bai Y, Chen J, He Y, Zeng H. Temperature change regulates pollen fertility of a PTGMS rice line PA64S by modulating the ROS homeostasis and PCD within the tapetum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:615-636. [PMID: 39226401 DOI: 10.1111/tpj.17004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/05/2024]
Abstract
Photoperiod and temperature-sensitive male sterility rice is an important line for two-line hybrid rice, and the changes in the cultivation temperature strictly control its pollen fertility. However, the mechanism by which temperature variation regulates pollen fertility is still unclear. This study obtained stable fertile PA64S(F) and sterile PA64S(S) rice from PA64S by controlling temperature changes. PA64S(F) shows a normal anther development and fertile pollen under low temperature (21°C), and PA64S(S) shows delayed degradation of the tapetum cells, leading to abnormal pollen wall formation and ubisch development under normal temperature (28°C). The accumulation of reactive oxygen species (ROS) positively correlates with the programmed cell death (PCD) process of tapetum cells. The delayed accumulation of ROS in the PA64S(S) tapetum at early stages leads to a delayed initiation of the PCD process. Importantly, we localized ascorbic acid (ASA) accumulation in the tapetum cells and determined that ASA is a major antioxidant for ROS homeostasis. ROS-inhibited accumulation plants (PA64S-ASA) demonstrated pollen sterility, higher ASA and lower ROS accumulation in the tapetum, and the absence of PCD processes in the tapetum cell. Abnormal changes in the tapetum of PA64S(S) rice disrupted metabolic pathways such as lipid metabolism, cutin and wax synthesis, sugar accumulation, and phenylpropane, affecting pollen wall formation and substance accumulation, suggesting that the timely accumulation of ROS is critical for male fertility. This study highlights the central role of ROS homeostasis in fertility alteration and also provides an avenue to address the effect of environmental temperature changes on pollen fertility in rice.
Collapse
Affiliation(s)
- Yujun Sun
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yina Ang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ming Fu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yunxiu Bai
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiasheng Chen
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ying He
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hanlai Zeng
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
6
|
Tang J, Lei D, Yang J, Chen S, Wang X, Huang X, Zhang S, Cai Z, Zhu S, Wan J, Jia G. OsALKBH9-mediated m 6A demethylation regulates tapetal PCD and pollen exine accumulation in rice. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2410-2423. [PMID: 38634166 PMCID: PMC11332222 DOI: 10.1111/pbi.14354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/24/2024] [Accepted: 03/30/2024] [Indexed: 04/19/2024]
Abstract
The N6-methyladenosine (m6A) mRNA modification is crucial for plant development and stress responses. In rice, the male sterility resulting from the deficiency of OsFIP37, a core component of m6A methyltransferase complex, emphasizes the significant role of m6A in male fertility. m6A is reversible and can be removed by m6A demethylases. However, whether mRNA m6A demethylase regulates male fertility in rice has remained unknown. Here, we identify the mRNA m6A demethylase OsALKBH9 and demonstrate its involvement in male fertility regulation. Knockout of OsALKBH9 causes male sterility, dependent on its m6A demethylation activity. Cytological analysis reveals defective tapetal programmed cell death (PCD) and excessive accumulation of microspores exine in Osalkbh9-1. Transcriptome analysis of anthers shows up-regulation of genes involved in tapetum development, sporopollenin synthesis, and transport pathways in Osalkbh9-1. Additionally, we demonstrate that OsALKBH9 demethylates the m6A modification in TDR and GAMYB transcripts, which affects the stability of these mRNAs and ultimately leads to excessive accumulation of pollen exine. Our findings highlight the precise control of mRNA m6A modification and reveal the pivotal roles played by OsALKBH9-mediated m6A demethylation in tapetal PCD and pollen exine accumulation in rice.
Collapse
Affiliation(s)
- Jun Tang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
- Institute of Animal SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Dekun Lei
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Junbo Yang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenGuangdongChina
| | - Shuyan Chen
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
| | - Xueping Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
| | - Xiaoxin Huang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
| | - Shasha Zhang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
| | - Zhihe Cai
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
| | - Shanshan Zhu
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Jianmin Wan
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Guifang Jia
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
- Peking‐Tsinghua Center for Life Sciences, Peking UniversityBeijingChina
- Beijing Advanced Center of RNA BiologyPeking UniversityBeijingChina
| |
Collapse
|
7
|
Yin W, Yang H, Feng P, Qi P, Li B, Li Y, Huang Q, Peng Y, Wang N, Hu Y. Rapid function analysis of OsiWAK1 using a Dual-Luciferase assay in rice. Sci Rep 2024; 14:19412. [PMID: 39169077 PMCID: PMC11339413 DOI: 10.1038/s41598-024-69955-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024] Open
Abstract
In the past decade, the exploration of genetic resources in rice has significantly enhanced the efficacy of rice breeding. However, the exploration of genetic resources is hindered by the identification of candidate genes. To expedite the identification of candidate genes, this study examined tapetum programmed cell death-related genes OsiWAK1, OsPDT1, EAT1, TDR, and TIP2 to assess the efficacy of the Dual-Luciferase (Dual-LUC) assay in rapidly determining gene relationships. The study found that, in the Dual-LUC assay, OsiWAK1 and its various recombinant proteins exhibit comparable activation abilities on the EAT1 promoter, potentially indicating a false positive. However, the Dual-LUC assay can reveal that OsiWAK1 impacts both the function of its upstream regulatory factor OsPDT1 and the TDR/TIP2 transcription complex. By rapidly studying the relationship between diverse candidate genes and regulatory genes in a well-known trait via the Dual-LUC assay, this study provides a novel approach to expedite the determination of candidate genes such as genome-wide association study.
Collapse
Affiliation(s)
- Wuzhong Yin
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Hongxia Yang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Ping Feng
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Pan Qi
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Biluo Li
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yuanyuan Li
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Qingxiong Huang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Youlin Peng
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Nan Wang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China.
| | - Yungao Hu
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
8
|
Huang X, Li Y, Chang Z, Yan W, Xu C, Zhang B, He Z, Wang C, Zheng M, Li Z, Xia J, Li G, Tang X, Wu J. Regulation by distinct MYB transcription factors defines the roles of OsCYP86A9 in anther development and root suberin deposition. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1972-1990. [PMID: 38506334 DOI: 10.1111/tpj.16722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/01/2024] [Indexed: 03/21/2024]
Abstract
Cytochrome P450 proteins (CYPs) play critical roles in plant development and adaptation to fluctuating environments. Previous reports have shown that CYP86A proteins are involved in the biosynthesis of suberin and cutin in Arabidopsis. However, the functions of these proteins in rice remain obscure. In this study, a rice mutant with incomplete male sterility was identified. Cytological analyses revealed that this mutant was defective in anther development. Cloning of the mutant gene indicated that the responsible mutation was on OsCYP86A9. OsMYB80 is a core transcription factor in the regulation of rice anther development. The expression of OsCYP86A9 was abolished in the anther of osmyb80 mutant. In vivo and in vitro experiments showed that OsMYB80 binds to the MYB-binding motifs in OsCYP86A9 promoter region and regulates its expression. Furthermore, the oscyp86a9 mutant exhibited an impaired suberin deposition in the root, and was more susceptible to drought stress. Interestingly, genetic and biochemical analyses revealed that OsCYP86A9 expression was regulated in the root by certain MYB transcription factors other than OsMYB80. Moreover, mutations in the MYB genes that regulate OsCYP86A9 expression in the root did not impair the male fertility of the plant. Taken together, these findings revealed the critical roles of OsCYP86A9 in plant development and proposed that OsCYP86A9 functions in anther development and root suberin formation via two distinct tissue-specific regulatory pathways.
Collapse
Affiliation(s)
- Xiaoyan Huang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yiqi Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Zhenyi Chang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Wei Yan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Chunjue Xu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Baolei Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Zhaohuan He
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Changjian Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Minting Zheng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Zhiai Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jixing Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Guoliang Li
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Xiaoyan Tang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Jianxin Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| |
Collapse
|
9
|
Wang JD, Wang J, Huang LC, Kan LJ, Wang CX, Xiong M, Zhou P, Zhou LH, Chen C, Zhao DS, Fan XL, Zhang CQ, Zhou Y, Zhang L, Liu QQ, Li QF. ABA-mediated regulation of rice grain quality and seed dormancy via the NF-YB1-SLRL2-bHLH144 Module. Nat Commun 2024; 15:4493. [PMID: 38802342 PMCID: PMC11130328 DOI: 10.1038/s41467-024-48760-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/12/2024] [Indexed: 05/29/2024] Open
Abstract
Abscisic acid (ABA) plays a crucial role in promoting plant stress resistance and seed dormancy. However, how ABA regulates rice quality remains unclear. This study identifies a key transcription factor SLR1-like2 (SLRL2), which mediates the ABA-regulated amylose content (AC) of rice. Mechanistically, SLRL2 interacts with NF-YB1 to co-regulate Wx, a determinant of AC and rice quality. In contrast to SLR1, SLRL2 is ABA inducible but insensitive to GA. In addition, SLRL2 exhibits DNA-binding activity and directly regulates the expression of Wx, bHLH144 and MFT2. SLRL2 competes with NF-YC12 for interaction with NF-YB1. NF-YB1 also directly represses SLRL2 transcription. Genetic validation supports that SLRL2 functions downstream of NF-YB1 and bHLH144 in regulating rice AC. Thus, an NF-YB1-SLRL2-bHLH144 regulatory module is successfully revealed. Furthermore, SLRL2 regulates rice dormancy by modulating the expression of MFT2. In conclusion, this study revealed an ABA-responsive regulatory cascade that functions in both rice quality and seed dormancy.
Collapse
Affiliation(s)
- Jin-Dong Wang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jing Wang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Li-Chun Huang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Li-Jun Kan
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Chu-Xin Wang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Min Xiong
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Peng Zhou
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Li-Hui Zhou
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Chen Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Dong-Sheng Zhao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xiao-Lei Fan
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Chang-Quan Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yong Zhou
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Lin Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Qiao-Quan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Qian-Feng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
10
|
Zhang Z, Sun M, Xiong T, Ye F, Zhao Z. Development and genetic regulation of pollen intine in Arabidopsis and rice. Gene 2024; 893:147936. [PMID: 38381507 DOI: 10.1016/j.gene.2023.147936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/03/2023] [Accepted: 10/26/2023] [Indexed: 02/22/2024]
Abstract
Pollen intine serves as a protective layer situated between the pollen exine and the plasma membrane. It performs essential functions during pollen development, including maintaining the morphological structure of the pollen, preventing the loss of pollen contents, and facilitating pollen germination. The formation of the intine layer commences at the bicellular pollen stage. Pectin, cellulose, hemicellulose and structural proteins are the key constituents of the pollen intine. In Arabidopsis and rice, numerous regulatory factors associated with polysaccharide metabolism and material transport have been identified, which regulate intine development. In this review, we elucidate the developmental processes of the pollen wall and provide a concise summary of the research advancements in the development and genetic regulation of the pollen intine in Arabidopsis and rice. A comprehensive understanding of intine development and regulation is crucial for unraveling the genetic network underlying intine development in higher plants.
Collapse
Affiliation(s)
- Zaibao Zhang
- School of Life and Health Science, Huzhou College, Huzhou, Zhejiang, China.
| | - Mengke Sun
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Tao Xiong
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Fan Ye
- College of International Education, Xinyang Normal University, Xinyang, Henan, China
| | - Ziwei Zhao
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| |
Collapse
|
11
|
Wang Y, Lv Y, Yu H, Hu P, Wen Y, Wang J, Tan Y, Wu H, Zhu L, Wu K, Chai B, Liu J, Zeng D, Zhang G, Zhu L, Gao Z, Dong G, Ren D, Shen L, Zhang Q, Li Q, Guo L, Xiong G, Qian Q, Hu J. GR5 acts in the G protein pathway to regulate grain size in rice. PLANT COMMUNICATIONS 2024; 5:100673. [PMID: 37596786 PMCID: PMC10811372 DOI: 10.1016/j.xplc.2023.100673] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
Grain size is an important determinant of grain yield in rice. Although dozens of grain size genes have been reported, the molecular mechanisms that control grain size remain to be fully clarified. Here, we report the cloning and characterization of GR5 (GRAIN ROUND 5), which is allelic to SMOS1/SHB/RLA1/NGR5 and encodes an AP2 transcription factor. GR5 acts as a transcriptional activator and determines grain size by influencing cell proliferation and expansion. We demonstrated that GR5 physically interacts with five Gγ subunit proteins (RGG1, RGG2, DEP1, GS3, and GGC2) and acts downstream of the G protein complex. Four downstream target genes of GR5 in grain development (DEP2, DEP3, DRW1, and CyCD5;2) were revealed and their core T/CGCAC motif identified by yeast one-hybrid, EMSA, and ChIP-PCR experiments. Our results revealed that GR5 interacts with Gγ subunits and cooperatively determines grain size by regulating the expression of downstream target genes. These findings provide new insight into the genetic regulatory network of the G protein signaling pathway in the control of grain size and provide a potential target for high-yield rice breeding.
Collapse
Affiliation(s)
- Yueying Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Yang Lv
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Haiping Yu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Peng Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Yi Wen
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Junge Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Yiqing Tan
- Nanjing Agricultural University, Nan Jing 210000, Jiangsu, China
| | - Hao Wu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Lixin Zhu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Kaixiong Wu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Bingze Chai
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Jialong Liu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Dali Zeng
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Guangheng Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Li Zhu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Guojun Dong
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Deyong Ren
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Lan Shen
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Qiang Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Qing Li
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Longbiao Guo
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Guosheng Xiong
- Nanjing Agricultural University, Nan Jing 210000, Jiangsu, China.
| | - Qian Qian
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572024, Hainan, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China.
| | - Jiang Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572024, Hainan, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China.
| |
Collapse
|
12
|
Cseh A, Lenykó-Thegze A, Makai D, Szabados F, Hamow KÁ, Gulyás Z, Kiss T, Karsai I, Moncsek B, Mihók E, Sepsi A. Meiotic instability and irregular chromosome pairing underpin heat-induced infertility in bread wheat carrying the Rht-B1b or Rht-D1b Green Revolution genes. THE NEW PHYTOLOGIST 2024; 241:180-196. [PMID: 37691304 DOI: 10.1111/nph.19256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/12/2023] [Indexed: 09/12/2023]
Abstract
Mutations in the Rht-B1a and Rht-D1a genes of wheat (Triticum aestivum; resulting in Rht-B1b and Rht-D1b alleles) cause gibberellin-insensitive dwarfism and are one of the most important elements of increased yield introduced during the 'Green Revolution'. We measured the effects of a short period of heat imposed during the early reproductive stage on near-isogenic lines carrying Rht-B1b or Rht-D1b alleles, with respect to the wild-type (WT). The temperature shift caused a significant fertility loss within the ears of Rht-B1b and Rht-D1b wheats, greater than that observed for the WT. Defects in chromosome synapsis, reduced homologous recombination and a high frequency of chromosome mis-segregation were associated with reduced fertility. The transcription of TaGA3ox gene involved in the final stage of gibberellic acid (GA) biosynthesis was activated and ultra-performance liquid chromatography-tandem mass spectrometry identified GA1 as the dominant bioactive GA in developing ears, but levels were unaffected by the elevated temperature. Rht-B1b and Rht-D1b mutants were inclined to meiotic errors under optimal temperatures and showed a higher susceptibility to heat than their tall counterparts. Identification and introduction of new dwarfing alleles into modern breeding programmes is invaluable in the development of climate-resilient wheat varieties.
Collapse
Affiliation(s)
- András Cseh
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Andrea Lenykó-Thegze
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Egyetem tér 1-3, Budapest, 1053, Hungary
| | - Diána Makai
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Fanni Szabados
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Kamirán Áron Hamow
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Zsolt Gulyás
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Tibor Kiss
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eszterházy tér 1, Eger, 3300, Hungary
| | - Ildikó Karsai
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Blanka Moncsek
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Edit Mihók
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Adél Sepsi
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| |
Collapse
|
13
|
Liu Y, Peng X, Ma A, Liu W, Liu B, Yun DJ, Xu ZY. Type-B response regulator OsRR22 forms a transcriptional activation complex with OsSLR1 to modulate OsHKT2;1 expression in rice. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2922-2934. [PMID: 37924467 DOI: 10.1007/s11427-023-2464-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/10/2023] [Indexed: 11/06/2023]
Abstract
Soil salinity severely limits crop yields and quality. Plants have evolved several strategies to mitigate the adverse effects of salinity, including redistribution and compartmentalization of toxic ions using ion-specific transporters. However, the mechanisms underlying the regulation of these ion transporters have not been fully elucidated. Loss-of-function mutants of OsHKT2;1, which is involved in sodium uptake, exhibit strong salt stress-resistant phenotypes. In this study, OsHKT2;1 was identified as a transcriptional target of the type-B response regulator OsRR22. Loss-of-function osrr22 mutants showed resilience to salt stress, and OsRR22-overexpression plants were sensitive to salt stress. OsRR22 was found to activate the expression of OsHKT2;1 by directly binding to the promoter region of OsHKT2;1 via a consensus cis-element of type-B response regulators. Moreover, rice DELLA protein OsSLR1 directly interacted with OsRR22 and functioned as a transcriptional co-activator. This study has uncovered a novel transcriptional regulatory mechanism by which a type-B response regulator controls sodium transport under salinity stress.
Collapse
Affiliation(s)
- Yutong Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Xiaoyuan Peng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ao Ma
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Wenxin Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Dae-Jin Yun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
14
|
Phokas A, Meyberg R, Briones‐Moreno A, Hernandez‐Garcia J, Wadsworth PT, Vesty EF, Blazquez MA, Rensing SA, Coates JC. DELLA proteins regulate spore germination and reproductive development in Physcomitrium patens. THE NEW PHYTOLOGIST 2023; 238:654-672. [PMID: 36683399 PMCID: PMC10952515 DOI: 10.1111/nph.18756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Proteins of the DELLA family integrate environmental signals to regulate growth and development throughout the plant kingdom. Plants expressing non-degradable DELLA proteins underpinned the development of high-yielding 'Green Revolution' dwarf crop varieties in the 1960s. In vascular plants, DELLAs are regulated by gibberellins, diterpenoid plant hormones. How DELLA protein function has changed during land plant evolution is not fully understood. We have examined the function and interactions of DELLA proteins in the moss Physcomitrium (Physcomitrella) patens, in the sister group of vascular plants (Bryophytes). PpDELLAs do not undergo the same regulation as flowering plant DELLAs. PpDELLAs are not degraded by diterpenes, do not interact with GID1 gibberellin receptor proteins and do not participate in responses to abiotic stress. PpDELLAs do share a function with vascular plant DELLAs during reproductive development. PpDELLAs also regulate spore germination. PpDELLAs interact with moss-specific photoreceptors although a function for PpDELLAs in light responses was not detected. PpDELLAs likely act as 'hubs' for transcriptional regulation similarly to their homologues across the plant kingdom. Taken together, these data demonstrate that PpDELLA proteins share some biological functions with DELLAs in flowering plants, but other DELLA functions and regulation evolved independently in both plant lineages.
Collapse
Affiliation(s)
- Alexandros Phokas
- School of BiosciencesUniversity of BirminghamEdgbastinBirminghamB15 2TTUK
| | - Rabea Meyberg
- Plant Cell Biology, Faculty of BiologyUniversity of MarburgKarl‐von‐Frisch‐Straße 8Marburg35043Germany
| | - Asier Briones‐Moreno
- Instituto de Biología Molecular y Celular de Plantas (CSIC‐Universitat Politècnica de València)C/Ingeniero Fausto Elio s/nValencia46022Spain
| | - Jorge Hernandez‐Garcia
- Instituto de Biología Molecular y Celular de Plantas (CSIC‐Universitat Politècnica de València)C/Ingeniero Fausto Elio s/nValencia46022Spain
| | | | - Eleanor F. Vesty
- School of BiosciencesUniversity of BirminghamEdgbastinBirminghamB15 2TTUK
| | - Miguel A. Blazquez
- Instituto de Biología Molecular y Celular de Plantas (CSIC‐Universitat Politècnica de València)C/Ingeniero Fausto Elio s/nValencia46022Spain
| | - Stefan A. Rensing
- Faculty of Chemistry and PharmacyUniversity of FreiburgStefan‐Meier‐Straße 19Freiburg79104Germany
| | - Juliet C. Coates
- School of BiosciencesUniversity of BirminghamEdgbastinBirminghamB15 2TTUK
| |
Collapse
|
15
|
Yang X, Wang K, Bu Y, Niu F, Ge L, Zhang L, Song X. The transcription factor TaGAMYB modulates tapetum and pollen development of TGMS wheat YanZhan 4110S via the gibberellin signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111447. [PMID: 36041563 DOI: 10.1016/j.plantsci.2022.111447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Male reproductive development in higher plants experienced a series of complex biological processes, which can be regulated by Gibberellins (GA). The transcriptional factor GAMYB is a crucial component of GA signaling in anther development. However, the mechanism of GAMYB in wheat male reproduction is less understood. Here, we found that the thermo-sensitive genic male sterilitywheat line YanZhan 4110S displayed delayed tapetum programmed cell death and pollen abortive under the hot temperature stress. Combined with RNA-Sequencing data analysis, TaGAMYB associated with fertility conversion was isolated, which was located in the nucleus and highly expressed in fertility anthers. The silencing of TaGAMYB in wheat displayed fertility decline, defects in tapetum, pollen and exine formation, where the abortion characteristics were the same as YanZhan 4110S. In addition, either hot temperature or GA3 treatment in YanZhan 4110S caused the downregulation of TaGAMYB at binucleate stage and trinucleate stage, as well as fertility decrease. Further, the transcription factor TaWRKY2 significantly changed under GA3-treatment and directly interacted with the TaGAMYB promoter by W-box cis-element. Therefore, we suggested that TaGAMYB may be essential for anther development and male fertility, and GA3 activates TaGAMYB by TaWRKY2 to regulate fertility in wheat.
Collapse
Affiliation(s)
- Xuetong Yang
- College of Agronomy, Northwest A&F University, Yangling 712100 Shaanxi, China.
| | - Kai Wang
- College of Agronomy, Northwest A&F University, Yangling 712100 Shaanxi, China.
| | - Yaning Bu
- College of Agronomy, Northwest A&F University, Yangling 712100 Shaanxi, China.
| | - Fuqiang Niu
- College of Agronomy, Northwest A&F University, Yangling 712100 Shaanxi, China.
| | - Limeng Ge
- College of Agronomy, Northwest A&F University, Yangling 712100 Shaanxi, China.
| | - Lingli Zhang
- College of Agronomy, Northwest A&F University, Yangling 712100 Shaanxi, China.
| | - Xiyue Song
- College of Agronomy, Northwest A&F University, Yangling 712100 Shaanxi, China.
| |
Collapse
|
16
|
Zhang X, Zhao B, Sun Y, Feng Y. Effects of gibberellins on important agronomic traits of horticultural plants. FRONTIERS IN PLANT SCIENCE 2022; 13:978223. [PMID: 36267949 PMCID: PMC9578688 DOI: 10.3389/fpls.2022.978223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Horticultural plants such as vegetables, fruits, and ornamental plants are crucial to human life and socioeconomic development. Gibberellins (GAs), a class of diterpenoid compounds, control numerous developmental processes of plants. The roles of GAs in regulating growth and development of horticultural plants, and in regulating significant progress have been clarified. These findings have significant implications for promoting the quality and quantity of the products of horticultural plants. Here we review recent progress in determining the roles of GAs (including biosynthesis and signaling) in regulating plant stature, axillary meristem outgrowth, compound leaf development, flowering time, and parthenocarpy. These findings will provide a solid foundation for further improving the quality and quantity of horticultural plants products.
Collapse
Affiliation(s)
- Xiaojia Zhang
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Baolin Zhao
- Chinese Academy of Science (CAS) Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Science, Kunming, China
| | - Yibo Sun
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yulong Feng
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
17
|
Liu X, Jiang H, Yang J, Han J, Jin M, Zhang H, Chen L, Chen S, Teng S. Comprehensive QTL analyses of nitrogen use efficiency in indica rice. FRONTIERS IN PLANT SCIENCE 2022; 13:992225. [PMID: 36212385 PMCID: PMC9539535 DOI: 10.3389/fpls.2022.992225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen-use efficiency (NUE) in rice is a complex quantitative trait involved in multiple biological processes and agronomic traits; however, the genetic basis and regulatory network of NUE remain largely unknown. We constructed a high-resolution microarray-based genetic map for 261 recombinant inbred lines derived from two indica parents. Using 2,345 bin markers, comprehensive analyses of quantitative trait loci (QTLs) of seven key agronomic traits under two different N levels were performed. A total of 11 non-redundant QTLs for effective panicle number (EPN), 7 for grain number per panicle, 13 for thousand-grain weight, 2 for seed-setting percentage, 15 for plant height, 12 for panicle length, and 6 for grain yield per plant were identified. The QTL regions were as small as 512 kb on average, and more than half spanned an interval smaller than 100 kb. Using this advantage, we identified possible candidate genes of two major EPN-related QTLs. One QTL detected under both N levels possibly encodes a DELLA protein SLR1, which is known to regulate NUE, although the natural variations of this protein have not been reported. The other QTL detected only under a high N level could encode the transcription factor OsbZIP59. We also predicted the possible candidate genes for another three of the NUE-related QTLs. Our results provide a reference for improving NUE-related QTL cloning and promote our understanding of NUE regulation in indica rice.
Collapse
Affiliation(s)
- Xiuyan Liu
- College of Material and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
- Laboratory of Photosynthesis and Environmental Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Hong Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jing Yang
- Laboratory of Photosynthesis and Environmental Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jiajia Han
- Laboratory of Photosynthesis and Environmental Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Mengxian Jin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hongsheng Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Liang Chen
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Sunlu Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Sheng Teng
- Laboratory of Photosynthesis and Environmental Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
18
|
Xiang J, Zhang C, Wang N, Liang Z, Zhenzhen Z, Liang L, Yuan H, Shi Y. Genome-Wide Association Study Reveals Candidate Genes for Root-Related Traits in Rice. Curr Issues Mol Biol 2022; 44:4386-4405. [PMID: 36286016 PMCID: PMC9601093 DOI: 10.3390/cimb44100301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 12/04/2022] Open
Abstract
Root architecture is a determinant factor of drought resistance in rice and plays essential roles in the absorption of water and nutrients for the survival of rice plants. Dissection of the genetic basis for root structure can help to improve stress-resistance and grain yield in rice breeding. In this study, a total of 391 rice (Oryz asativa L.) accessions were used to perform a genome-wide association study (GWAS) on three root-related traits in rice, including main root length (MRL), average root length (ARL), and total root number (TRN). As a result, 13 quantitative trait loci (QTLs) (qMRL1.1, qMRL1.2, qMRL3.1, qMRL3.2, qMRL3.3, qMRL4.1, qMRL7.1, qMRL8.1, qARL1.1, qARL9.1, qTRN9.1, qTRN9.2, and qTRN11.1) significantly associated with the three traits were identified, among which three (qMRL3.2, qMRL4.1 and qMRL8.1) were overlapped with OsGNOM1, OsARF12 and qRL8.1, respectively, and ten were novel QTLs. Moreover, we also detected epistatic interactions affecting root-related traits and identified 19 related genetic interactions. These results lay a foundation for cloning the corresponding genes for rice root structure, as well as provide important genomic resources for breeding high yield rice varieties.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yingyao Shi
- College of Agronomy, Anhui Agricultural University, Hefei 230000, China
| |
Collapse
|
19
|
Sun Y, Fu M, Ang Y, Zhu L, Wei L, He Y, Zeng H. Combined analysis of transcriptome and metabolome reveals that sugar, lipid, and phenylpropane metabolism are essential for male fertility in temperature-induced male sterile rice. FRONTIERS IN PLANT SCIENCE 2022; 13:945105. [PMID: 35968120 PMCID: PMC9370067 DOI: 10.3389/fpls.2022.945105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/28/2022] [Indexed: 05/16/2023]
Abstract
Photoperiod- and thermosensitive genic male sterility (PTGMS) rice is a vital germplasm resource consisting of two-line hybrid rice in which light and temperature strictly control their fertility changes. Variable environmental conditions present huge risks to the two-lines hybrid seed production. Explaining the regulatory mechanism of male fertility in rice PTGMS lines is an essential prerequisite to ensuring food security production. A group of near-isogenic lines (NILs) of a rice PTGMS line unique to this research group was used for this study. These lines have the same genetic background and regulate male fertility by responding to different temperature changes. Transcriptomic analysis revealed that 315 upregulated genes and 391 regulated genes regulated male fertility in response to temperature changes, and differentially expressed genes (DEGs) were mainly characterized in enrichment analysis as having roles in the metabolic pathways of sugar, lipid and phenylpropanoid. Electron microscopy analysis revealed that a lack of starch accumulation in sterile pollen grains induced by high temperature, with an abnormal exine development and a lack of inner pollen grains. Defective processes for sporopollenin synthesis, sporopollenin transport and pollen wall formation in sterile anthers were verified using qPCR. Targeted metabolomics analysis revealed that most lipids (phospholipids, sphingolipids and fatty acids) and flavonoids (flavones and flavanones) were upregulated in fertile anthers and involved in pollen wall development and male fertility formation, while lignin G units and C-type lignin were the major contributors to pollen wall development. The coding genes for trehalose 6-phosphate phosphatase, beta-1,3-glucanase, phospholipase D and 4-coumarate-CoA ligase are considered essential regulators in the process of male fertility formation. In conclusion, our results indicated that the expression of critical genes and accumulation of metabolites in the metabolism of sugar, lipid, and phenylpropanoid are essential for male fertility formation. The results provide new insights for addressing the negative effects of environmental variation on two-line hybrid rice production.
Collapse
Affiliation(s)
- Yujun Sun
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ming Fu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yina Ang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lan Zhu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
| | - Linan Wei
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ying He
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Ying He,
| | - Hanlai Zeng
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hanlai Zeng,
| |
Collapse
|