1
|
Li Q, Hu R, Jiang M, Zhang W, Gao X, Zhang B, Liu W, Wu Z, Zou H. ZmLSD1 Enhances Salt Tolerance by Regulating the Expression of ZmWRKY29 in Maize. PLANTS (BASEL, SWITZERLAND) 2024; 13:2904. [PMID: 39458850 PMCID: PMC11510971 DOI: 10.3390/plants13202904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Salt stress significantly impairs plant growth, presenting a challenge to agricultural productivity. Exploring the regulatory mechanisms underlying salt stress responses is critically important. Here, we identified a significant role for the maize LESION-SIMULATING DISEASE transcription factor, ZmLSD1, in enhancing salt stress response. Subcellular localization analysis indicated that ZmLSD1-GFP was localized in the nucleus in the maize protoplast. Overexpressing ZmLSD1 in maize obviously enhanced the tolerance of plants to salt stress. Physiological analysis indicated that overexpressed ZmLSD1 in maize could mitigate the accumulation of H2O2 and MDA content exposed to salt stress. RNA-seq and qPCR-PCR analyses showed that ZmLSD1 positively regulated ZmWRKY29 expression. ChIP-qPCR and EMSA experiments demonstrated that ZmLSD1 could directly bind to the promoter of ZmWRKY29 through the GTAC motif both in vitro and in vivo. Overall, our findings suggest that ZmLSD1 plays a positive role in enhancing the tolerance of maize to salt by affecting ZmWRKY29 expression.
Collapse
Affiliation(s)
- Qiaolu Li
- College of Agriculture, Yangtze University, Jingzhou 434025, China; (Q.L.); (R.H.); (W.Z.); (X.G.); (B.Z.)
| | - Rongrong Hu
- College of Agriculture, Yangtze University, Jingzhou 434025, China; (Q.L.); (R.H.); (W.Z.); (X.G.); (B.Z.)
| | - Min Jiang
- Tianmen Academy of Agricultural Sciences, Tianmen 431700, China;
| | - Wei Zhang
- College of Agriculture, Yangtze University, Jingzhou 434025, China; (Q.L.); (R.H.); (W.Z.); (X.G.); (B.Z.)
| | - Xinyi Gao
- College of Agriculture, Yangtze University, Jingzhou 434025, China; (Q.L.); (R.H.); (W.Z.); (X.G.); (B.Z.)
| | - Binglin Zhang
- College of Agriculture, Yangtze University, Jingzhou 434025, China; (Q.L.); (R.H.); (W.Z.); (X.G.); (B.Z.)
| | - Weijuan Liu
- College of Agriculture, Yangtze University, Jingzhou 434025, China; (Q.L.); (R.H.); (W.Z.); (X.G.); (B.Z.)
| | - Zhongyi Wu
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Gene Resources and Biotechnology, Beijing 100097, China
| | - Huawen Zou
- College of Agriculture, Yangtze University, Jingzhou 434025, China; (Q.L.); (R.H.); (W.Z.); (X.G.); (B.Z.)
| |
Collapse
|
2
|
Lu Y, Wang K, Ngea GLN, Godana EA, Ackah M, Dhanasekaran S, Zhang Y, Su Y, Yang Q, Zhang H. Recent advances in the multifaceted functions of Cys2/His2-type zinc finger proteins in plant growth, development, and stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5501-5520. [PMID: 38912636 DOI: 10.1093/jxb/erae278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/21/2024] [Indexed: 06/25/2024]
Abstract
Recent research has highlighted the importance of Cys2/His2-type zinc finger proteins (C2H2-ZFPs) in plant growth and in responses to various stressors, and the complex structures of C2H2-ZFP networks and the molecular mechanisms underlying their responses to stress have received considerable attention. Here, we review the structural characteristics and classification of C2H2-ZFPs, and consider recent research advances in their functions. We systematically introduce the roles of these proteins across diverse aspects of plant biology, encompassing growth and development, and responses to biotic and abiotic stresses, and in doing so hope to lay the foundations for further functional studies of C2H2-ZFPs in the future.
Collapse
Affiliation(s)
- Yuchun Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Kaili Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | | | - Esa Abiso Godana
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Michael Ackah
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Solairaj Dhanasekaran
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Yu Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Yingying Su
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| |
Collapse
|
3
|
Shi L, Li C, Lv G, Li X, Feng W, Bi Y, Wang W, Wang Y, Zhu L, Tang W, Fu Y. The adaptor protein ECAP, the corepressor LEUNIG, and the transcription factor BEH3 interact and regulate microsporocyte generation in Arabidopsis. THE PLANT CELL 2024; 36:2531-2549. [PMID: 38526222 PMCID: PMC11218778 DOI: 10.1093/plcell/koae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/12/2024] [Accepted: 02/29/2024] [Indexed: 03/26/2024]
Abstract
Histospecification and morphogenesis of anthers during development in Arabidopsis (Arabidopsis thaliana) are well understood. However, the regulatory mechanism of microsporocyte generation at the pre-meiotic stage remains unclear, especially how archesporial cells are specified and differentiate into 2 cell lineages with distinct developmental fates. SPOROCYTELESS (SPL) is a key reproductive gene that is activated during early anther development and remains active. In this study, we demonstrated that the EAR motif-containing adaptor protein (ECAP) interacts with the Gro/Tup1 family corepressor LEUNIG (LUG) and the BES1/BZR1 HOMOLOG3 (BEH3) transcription factor to form a transcription activator complex, epigenetically regulating SPL transcription. SPL participates in microsporocyte generation by modulating the specification of archesporial cells and the archesporial cell-derived differentiation of somatic and reproductive cell layers. This study illustrates the regulation of SPL expression by the ECAP-LUG-BEH3 complex, which is essential for the generation of microsporocytes. Moreover, our findings identified ECAP as a key transcription regulator that can combine with different partners to regulate gene expression in distinct ways, thereby facilitating diverse processes in various aspects of plant development.
Collapse
Affiliation(s)
- Lei Shi
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Changjiang Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Gaofeng Lv
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Xing Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Wutao Feng
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Yujing Bi
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Wenhui Wang
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Youqun Wang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Lei Zhu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Wenqiang Tang
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Ying Fu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Xu L, Liu Y, Feng S, Liu C, Zhong X, Ren Y, Liu Y, Huang Y, Yang M. The relationship between atmospheric particulate matter, leaf surface microstructure, and the phyllosphere microbial diversity of Ulmus L. BMC PLANT BIOLOGY 2024; 24:566. [PMID: 38880875 PMCID: PMC11181616 DOI: 10.1186/s12870-024-05232-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/31/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Plants can retain atmospheric particulate matter (PM) through their unique foliar microstructures, which has a profound impact on the phyllosphere microbial communities. Yet, the underlying mechanisms linking atmospheric particulate matter (PM) retention by foliar microstructures to variations in the phyllosphere microbial communities remain a mystery. In this study, we conducted a field experiment with ten Ulmus lines. A series of analytical techniques, including scanning electron microscopy, atomic force microscopy, and high-throughput amplicon sequencing, were applied to examine the relationship between foliar surface microstructures, PM retention, and phyllosphere microbial diversity of Ulmus L. RESULTS We characterized the leaf microstructures across the ten Ulmus lines. Chun exhibited a highly undulated abaxial surface and dense stomatal distribution. Langya and Xingshan possessed dense abaxial trichomes, while Lieye, Zuiweng, and Daguo had sparsely distributed, short abaxial trichomes. Duomai, Qingyun, and Lang were characterized by sparse stomata and flat abaxial surfaces, whereas Jinye had sparsely distributed but extensive stomata. The mean leaf retention values for total suspended particulate (TSP), PM2.5, PM2.5-10, PM10-100, and PM> 100 were 135.76, 6.60, 20.10, 90.98, and 13.08 µg·cm- 2, respectively. Trichomes substantially contributed to PM2.5 retention, while larger undulations enhanced PM2.5-10 retention, as evidenced by positive correlations between PM2.5 and abaxial trichome density and between PM2.5-10 and the adaxial raw microroughness values. Phyllosphere microbial diversity patterns varied among lines, with bacteria dominated by Sediminibacterium and fungi by Mycosphaerella, Alternaria, and Cladosporium. Redundancy analysis confirmed that dense leaf trichomes facilitated the capture of PM2.5-associated fungi, while bacteria were less impacted by PM and struggled to adhere to leaf microstructures. Long and dense trichomes provided ideal microhabitats for retaining PM-borne microbes, as evidenced by positive feedback loops between PM2.5, trichome characteristics, and the relative abundances of microorganisms like Trichoderma and Aspergillus. CONCLUSIONS Based on our findings, a three-factor network profile was constructed, which provides a foundation for further exploration into how different plants retain PM through foliar microstructures, thereby impacting phyllosphere microbial communities.
Collapse
Grants
- 216Z6301G Science and Technology Development Fund of Central Guidance on Local, China
- 216Z6301G Science and Technology Development Fund of Central Guidance on Local, China
- 216Z6301G Science and Technology Development Fund of Central Guidance on Local, China
- 216Z6301G Science and Technology Development Fund of Central Guidance on Local, China
- 216Z6301G Science and Technology Development Fund of Central Guidance on Local, China
- 216Z6301G Science and Technology Development Fund of Central Guidance on Local, China
- 216Z6301G Science and Technology Development Fund of Central Guidance on Local, China
- 216Z6301G Science and Technology Development Fund of Central Guidance on Local, China
- 216Z6301G Science and Technology Development Fund of Central Guidance on Local, China
- 21326301D Key Research and Development Program of Hebei Province, China
- 21326301D Key Research and Development Program of Hebei Province, China
- 21326301D Key Research and Development Program of Hebei Province, China
- 21326301D Key Research and Development Program of Hebei Province, China
- 21326301D Key Research and Development Program of Hebei Province, China
- 21326301D Key Research and Development Program of Hebei Province, China
- 21326301D Key Research and Development Program of Hebei Province, China
- 21326301D Key Research and Development Program of Hebei Province, China
- 21326301D Key Research and Development Program of Hebei Province, China
Collapse
Affiliation(s)
- Liren Xu
- Hebei Agricultural University, Baoding, 071000, Hebei, China
- Hebei Academy of Forestry and Grassland Science, Shijiazhuang, 050061, Hebei, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yichao Liu
- Hebei Academy of Forestry and Grassland Science, Shijiazhuang, 050061, Hebei, China
| | - Shuxiang Feng
- Hebei Academy of Forestry and Grassland Science, Shijiazhuang, 050061, Hebei, China
| | - Chong Liu
- Hebei Agricultural University, Baoding, 071000, Hebei, China
| | - Xinyu Zhong
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yachao Ren
- Hebei Agricultural University, Baoding, 071000, Hebei, China
| | - Yujun Liu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yinran Huang
- Hebei Agricultural University, Baoding, 071000, Hebei, China.
- Hebei Academy of Forestry and Grassland Science, Shijiazhuang, 050061, Hebei, China.
| | - Minsheng Yang
- Hebei Agricultural University, Baoding, 071000, Hebei, China.
| |
Collapse
|
5
|
Duan Q, Lin YR. Focus on vegetable crops. PLANT PHYSIOLOGY 2024; 195:901-905. [PMID: 38688010 PMCID: PMC11142333 DOI: 10.1093/plphys/kiae246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 04/27/2024] [Accepted: 04/27/2024] [Indexed: 05/02/2024]
Affiliation(s)
- Qiaohong Duan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Yann-rong Lin
- Department of Agronomy, National Taiwan University, Taipei 10617, Taiwan
- World Vegetable Center, Headquarters, Shanhua, Tainan 74151, Taiwan
| |
Collapse
|
6
|
Zhao L, Fan P, Wang Y, Xu N, Zhang M, Chen M, Zhang M, Dou J, Liu D, Niu H, Zhu H, Hu J, Sun S, Yang L, Yang S. ELONGATED HYPOTCOTYL5 and SPINE BASE SIZE1 together mediate light-regulated spine expansion in cucumber. PLANT PHYSIOLOGY 2024; 195:552-565. [PMID: 38243383 DOI: 10.1093/plphys/kiae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 10/25/2023] [Accepted: 11/07/2023] [Indexed: 01/21/2024]
Abstract
Plant trichome development is influenced by diverse developmental and environmental signals, but the molecular mechanisms involved are not well understood in most plant species. Fruit spines (trichomes) are an important trait in cucumber (Cucumis sativus L.), as they affect both fruit smoothness and commercial quality. Spine Base Size1 (CsSBS1) has been identified as essential for regulating fruit spine size in cucumber. Here, we discovered that CsSBS1 controls a season-dependent phenotype of spine base size in wild-type plants. Decreased light intensity led to reduced expression of CsSBS1 and smaller spine base size in wild-type plants, but not in the mutants with CsSBS1 deletion. Additionally, knockout of CsSBS1 resulted in smaller fruit spine base size and eliminated the light-induced expansion of spines. Overexpression of CsSBS1 increased spine base size and rescued the decrease in spine base size under low light conditions. Further analysis revealed that ELONGATED HYPOTCOTYL5 (HY5), a major transcription factor involved in light signaling pathways, directly binds to the promoter of CsSBS1 and activates its expression. Knockout of CsHY5 led to smaller fruit spine base size and abolished the light-induced expansion of spines. Taken together, our study findings have clarified a CsHY5-CsSBS1 regulatory module that mediates light-regulated spine expansion in cucumber. This finding offers a strategy for cucumber breeders to develop fruit with stable appearance quality under changing light conditions.
Collapse
Affiliation(s)
- Lijun Zhao
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
- Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, Henan, China
| | - Pengfei Fan
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
- Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, Henan, China
| | - Yueling Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
- Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, Henan, China
| | - Nana Xu
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
- Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, Henan, China
| | - Minjuan Zhang
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
- Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, Henan, China
| | - Mingyue Chen
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
- Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, Henan, China
| | - Mengyao Zhang
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
- Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, Henan, China
| | - Junling Dou
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
- Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, Henan, China
| | - Dongming Liu
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
- Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, Henan, China
| | - Huanhuan Niu
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
- Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, Henan, China
| | - Huayu Zhu
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
- Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, Henan, China
| | - Jianbin Hu
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
- Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, Henan, China
| | - Shouru Sun
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
- Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, Henan, China
| | - Luming Yang
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
- Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, Henan, China
| | - Sen Yang
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
- Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, Henan, China
| |
Collapse
|
7
|
Yang S, Xue S, Shan L, Fan S, Sun L, Dong Y, Li S, Gao Y, Qi Y, Yang L, An M, Wang F, Pang J, Zhang W, Weng Y, Liu X, Ren H. The CsTM alters multicellular trichome morphology and enhances resistance against aphid by interacting with CsTIP1;1 in cucumber. J Adv Res 2024:S2090-1232(24)00151-6. [PMID: 38609051 DOI: 10.1016/j.jare.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024] Open
Abstract
The multicellular trichomes of cucumber (Cucumis sativus L.) serve as the primary defense barrier against external factors, whose impact extends beyond plant growth and development to include commercial characteristics of fruits. The aphid (Aphis gossypii Glover) is one of prominent pests in cucumber cultivation. However, the relationship between physical properties of trichomes and the aphid resistance at molecular level remains largely unexplored. Here, a spontaneous mutant trichome morphology (tm) was characterized by increased susceptibility towards aphid. Further observations showed the tm exhibited a higher and narrower trichome base, which was significantly distinguishable from that in wild-type (WT). We conducted map-based cloning and identified the candidate, CsTM, encoding a C-lectin receptor-like kinase. The knockout mutant demonstrated the role of CsTM in trichome morphogenesis. The presence of SNP does not regulate the relative expression of CsTM, but diminishes the CsTM abundance of membrane proteins in tm. Interestingly, CsTM was found to interact with CsTIP1;1, which encodes an aquaporin with extensive reports in plant resistance and growth development. The subsequent aphid resistance experiments revealed that both CsTM and CsTIP1;1 regulated the development of trichomes and conferred resistance against aphid by affecting cytoplasmic H2O2 contents. Transcriptome analysis revealed a significant enrichment of genes associated with pathogenesis, calcium binding and cellulose synthase. Overall, our study elucidates an unidentified mechanism that CsTM-CsTIP1;1 alters multicellular trichome morphology and enhances resistance against aphid, thus providing a wholly new perspective for trichome morphogenesis in cucumber.
Collapse
Affiliation(s)
- Songlin Yang
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Shudan Xue
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Li Shan
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Shanshan Fan
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Lei Sun
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Yuming Dong
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Sen Li
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Yiming Gao
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Yu Qi
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Lin Yang
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Menghang An
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Fang Wang
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Jin'an Pang
- Tianjin Derit Seeds Co. Ltd, Tianjin 300384, PR China
| | - Wenzhu Zhang
- Tianjin Derit Seeds Co. Ltd, Tianjin 300384, PR China
| | - Yiqun Weng
- USDA‑ARS Vegetable Crops Research Unit, Horticulture Department, University of Wisconsin-Madison, Madison, USA
| | - Xingwang Liu
- College of Horticulture, China Agricultural University, Beijing 100193, PR China.
| | - Huazhong Ren
- College of Horticulture, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
8
|
Wang Y, Dong Z, Ma Y, Zheng Y, Huang S, Yang X. Comprehensive dissection of meiotic DNA double-strand breaks and crossovers in cucumber. PLANT PHYSIOLOGY 2023; 193:1913-1932. [PMID: 37530486 PMCID: PMC10602612 DOI: 10.1093/plphys/kiad432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/21/2023] [Accepted: 07/14/2023] [Indexed: 08/03/2023]
Abstract
Meiotic recombination drives genetic diversity and crop genome optimization. In plant breeding, parents with favorable traits are crossed to create elite varieties. Different hybridizations produce diverse types of segment reshuffling between homologous chromosomes. However, little is known about the factors that cause hybrid-specific changes in crossovers (COs). Here, we constructed 2 F2 populations from crosses between a semiwild and 2 domesticated cucumber (Cucumis sativus) accessions and examined CO events. COs mainly occurred around genes and differed unevenly along chromosomes between the 2 hybrids. Fine-scale CO distributions were suppressed in regions of heterozygous structural variations (SVs) and were accelerated by high sequence polymorphism. C. sativus RADiation sensitive 51A (CsRAD51A) binding, histone H3 lysine 4 trimethylation (H3K4me3) modification, chromatin accessibility, and hypomethylation were positively associated with global CO landscapes and in local DNA double-strand break (DSB) hotspots and genes. The frequency and suppression of COs could be roughly predicted based on multiomic information. Differences in CO events between hybrids could be partially traced to distinct genetic and epigenetic features and were significantly associated with specific DSB hotspots and heterozygous SVs. Our findings identify the genomic and epigenetic features that contribute to CO formation and hybrid-specific divergence in cucumber and provide theoretical support for selecting parental combinations and manipulating recombination events at target genomic regions during plant breeding.
Collapse
Affiliation(s)
- Yanling Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Zhaonian Dong
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yalin Ma
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yi Zheng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Sanwen Huang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory of Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xueyong Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
9
|
Shao L, Li L, Huang X, Fu Y, Yang D, Li C, Yang J. Identification of C2H2 zinc finger genes through genome-wide association study and functional analyses of LkZFPs in response to stresses in Larix kaempferi. BMC PLANT BIOLOGY 2023; 23:298. [PMID: 37268918 DOI: 10.1186/s12870-023-04298-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/19/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND C2H2 zinc finger proteins (C2H2-ZFPs), one of the largest transcription factors, play a variety of roles in plant development and growth as well as stress response. While, the evolutionary history and expression profile of the C2H2-ZFP genes in Larix kaempferi (LkZFPs) have not been reported so far. RESULTS In this study, the whole genome of the LkZFPs was identified and characterized, including physicochemical properties, phylogenetic relationships, conservative motifs, the promoter cis-elements and Gene Ontology (GO) annotation. We identified 47 LkZFPs and divided them into four subfamilies based on phylogenetic analysis and conserved motifs. Subcellular localization prediction showed that most of the LkZFPs were located in the nucleus. Promoter cis-element analysis suggested that the LkZFPs may be involved in the regulation of stress responses. Moreover, Real-time quantitative PCR (RT-qPCR) results showed that Q-type LkZFP genes were involved in the response to abiotic stress, such as salt, drought and hormone stresses. Subcellular localization results showed that LkZFP7 and LkZFP37 were located in the nucleus, LkZFP32 was located in both cytoplasm and nucleus. CONCLUSION The identification and functional analysis of LkZFPs suggested that some LkZFP genes might play important roles in coping with both biological and abiotic stresses. These results could further increase understanding of the function of the LkZFPs, and provide some research direction and theoretical support.
Collapse
Affiliation(s)
- Liying Shao
- State Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Lu Li
- State Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Xun Huang
- State Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Yanrui Fu
- State Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Da Yang
- State Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Chenghao Li
- State Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Jingli Yang
- State Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
| |
Collapse
|
10
|
Li L, Lv B, Zang K, Jiang Y, Wang C, Wang Y, Wang K, Zhao M, Chen P, Lei J, Wang Y, Zhang M. Genome-wide identification and systematic analysis of the HD-Zip gene family and its roles in response to pH in Panax ginseng Meyer. BMC PLANT BIOLOGY 2023; 23:30. [PMID: 36639779 PMCID: PMC9838044 DOI: 10.1186/s12870-023-04038-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Ginseng, Panax ginseng Meyer, is a traditional herb that is immensely valuable both for human health and medicine and for medicinal plant research. The homeodomain leucine zipper (HD-Zip) gene family is a plant-specific transcription factor gene family indispensable in the regulation of plant growth and development and plant response to environmental stresses. RESULTS We identified 117 HD-Zip transcripts from the transcriptome of ginseng cv. Damaya that is widely grown in Jilin, China where approximately 60% of the world's ginseng is produced. These transcripts were positioned to 64 loci in the ginseng genome and the ginseng HD-Zip genes were designated as PgHDZ genes. Identification of 82 and 83 PgHDZ genes from the ginseng acc. IR826 and cv. ChP genomes, respectively, indicated that the PgHDZ gene family consists of approximately 80 PgHDZ genes. Phylogenetic analysis showed that the gene family originated after Angiosperm split from Gymnosperm and before Dicots split from Monocots. The gene family was classified into four subfamilies and has dramatically diverged not only in gene structure and functionality but also in expression characteristics. Nevertheless, co-expression network analysis showed that the activities of the genes in the family remain significantly correlated, suggesting their functional correlation. Five hub PgHDZ genes were identified that might have central functions in ginseng biological processes and four of them were shown to be actively involved in plant response to environmental pH stress in ginseng. CONCLUSIONS The PgHDZ gene family was identified from ginseng and analyzed systematically. Five potential hub genes were identified and four of them were shown to be involved in ginseng response to environmental pH stress. The results provide new insights into the characteristics, diversity, evolution, and functionality of the PgHDZ gene family in ginseng and lay a foundation for comprehensive research of the gene family in plants.
Collapse
Affiliation(s)
- Li Li
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Boxin Lv
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Kaiyou Zang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Yue Jiang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Chaofan Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Yanfang Wang
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, 130118, China
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Mingzhu Zhao
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Ping Chen
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Jun Lei
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China.
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Meiping Zhang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China.
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| |
Collapse
|
11
|
Grumet R, Lin YC, Rett-Cadman S, Malik A. Morphological and Genetic Diversity of Cucumber ( Cucumis sativus L.) Fruit Development. PLANTS (BASEL, SWITZERLAND) 2022; 12:23. [PMID: 36616152 PMCID: PMC9824707 DOI: 10.3390/plants12010023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 06/03/2023]
Abstract
Cucumber (Cucumis sativus L.) fruits, which are eaten at an immature stage of development, can vary extensively in morphological features such as size, shape, waxiness, spines, warts, and flesh thickness. Different types of cucumbers that vary in these morphological traits are preferred throughout the world. Numerous studies in recent years have added greatly to our understanding of cucumber fruit development and have identified a variety of genetic factors leading to extensive diversity. Candidate genes influencing floral organ establishment, cell division and cell cycle regulation, hormone biosynthesis and response, sugar transport, trichome development, and cutin, wax, and pigment biosynthesis have all been identified as factors influencing cucumber fruit morphology. The identified genes demonstrate complex interplay between structural genes, transcription factors, and hormone signaling. Identification of genetic factors controlling these traits will facilitate breeding for desired characteristics to increase productivity, improve shipping, handling, and storage traits, and enhance consumer-desired qualities. The following review examines our current understanding of developmental and genetic factors driving diversity of cucumber fruit morphology.
Collapse
Affiliation(s)
- Rebecca Grumet
- Graduate Program in Plant Breeding, Genetics and Biotechnology, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Ying-Chen Lin
- Graduate Program in Plant Breeding, Genetics and Biotechnology, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Stephanie Rett-Cadman
- Graduate Program in Plant Breeding, Genetics and Biotechnology, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Ajaz Malik
- Department of Horticulture-Vegetable Science, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar 190 025, India
| |
Collapse
|
12
|
Wang D, Gong Y, Li Y, Nie S. Genome-wide analysis of the homeodomain-leucine zipper family in Lotus japonicus and the overexpression of LjHDZ7 in Arabidopsis for salt tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:955199. [PMID: 36186025 PMCID: PMC9515785 DOI: 10.3389/fpls.2022.955199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/12/2022] [Indexed: 06/16/2023]
Abstract
The homeodomain-leucine zipper (HD-Zip) family participates in plant growth, development, and stress responses. Here, 40 HD-Zip transcription factors of Lotus japonicus were identified and gave an overview of the phylogeny and gene structures. The expression pattern of these candidate genes was determined in different organs and their response to abiotic stresses, including cold, heat, polyethylene glycol and salinity. The expression of the LjHDZ7 was strongly induced by abiotic stress, especially salt stress. Subsequently, LjHDZ7 gene was overexpressed in Arabidopsis. The transgenic plants grew obviously better than Col-0 plants under salt stress. Furthermore, LjHDZ7 transgenic lines accumulated higher proline contents and showed lower electrolyte leakage and MDA contents than Col-0 plants under salt stress. Antioxidant activities of the LjHDZ7 overexpression lines leaf were significantly higher than those of the Col-0 plants under salt stress. The concentration of Na+ ion in LjHDZ7 overexpression lines was significantly lower than that of Col-0 in leaf and root parts. The concentration of K+ ion in LjHDZ7 overexpression lines was significantly higher than that of Col-0 in the leaf parts. Therefore, these results showed that overexpression of LjHDZ7 increased resistance to salt stress in transgenic Arabidopsis plants, and certain genes of this family can be used as valuable tools for improving abiotic stresses.
Collapse
|
13
|
Cui H, Chen J, Liu M, Zhang H, Zhang S, Liu D, Chen S. Genome-Wide Analysis of C2H2 Zinc Finger Gene Family and Its Response to Cold and Drought Stress in Sorghum [ Sorghum bicolor (L.) Moench]. Int J Mol Sci 2022; 23:ijms23105571. [PMID: 35628380 PMCID: PMC9146226 DOI: 10.3390/ijms23105571] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/04/2022] [Accepted: 05/11/2022] [Indexed: 02/01/2023] Open
Abstract
C2H2 zinc finger protein (C2H2-ZFP) is one of the most important transcription factor families in higher plants. In this study, a total of 145 C2H2-ZFPs was identified in Sorghum bicolor and randomly distributed on 10 chromosomes. Based on the phylogenetic tree, these zinc finger gene family members were divided into 11 clades, and the gene structure and motif composition of SbC2H2-ZFPs in the same clade were similar. SbC2H2-ZFP members located in the same clade contained similar intron/exon and motif patterns. Thirty-three tandem duplicated SbC2H2-ZFPs and 24 pairs of segmental duplicated genes were identified. Moreover, synteny analysis showed that sorghum had more collinear regions with monocotyledonous plants such as maize and rice than did dicotyledons such as soybean and Arabidopsis. Furthermore, we used quantitative RT-PCR (qRT-PCR) to analyze the expression of C2H2-ZFPs in different organs and demonstrated that the genes responded to cold and drought. For example, Sobic.008G088842 might be activated by cold but is inhibited in drought in the stems and leaves. This work not only revealed an important expanded C2H2-ZFP gene family in Sorghum bicolor but also provides a research basis for determining the role of C2H2-ZFPs in sorghum development and abiotic stress resistance.
Collapse
Affiliation(s)
- Huiying Cui
- College of Life Sciences, Northwest A&F University, Xianyang 712100, China; (J.C.); (M.L.); (H.Z.); (S.Z.); (D.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Xianyang 712100, China
- Correspondence: (H.C.); (S.C.)
| | - Jiaqi Chen
- College of Life Sciences, Northwest A&F University, Xianyang 712100, China; (J.C.); (M.L.); (H.Z.); (S.Z.); (D.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Xianyang 712100, China
| | - Mengjiao Liu
- College of Life Sciences, Northwest A&F University, Xianyang 712100, China; (J.C.); (M.L.); (H.Z.); (S.Z.); (D.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Xianyang 712100, China
| | - Hongzhi Zhang
- College of Life Sciences, Northwest A&F University, Xianyang 712100, China; (J.C.); (M.L.); (H.Z.); (S.Z.); (D.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Xianyang 712100, China
| | - Shuangxi Zhang
- College of Life Sciences, Northwest A&F University, Xianyang 712100, China; (J.C.); (M.L.); (H.Z.); (S.Z.); (D.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Xianyang 712100, China
| | - Dan Liu
- College of Life Sciences, Northwest A&F University, Xianyang 712100, China; (J.C.); (M.L.); (H.Z.); (S.Z.); (D.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Xianyang 712100, China
| | - Shaolin Chen
- College of Life Sciences, Northwest A&F University, Xianyang 712100, China; (J.C.); (M.L.); (H.Z.); (S.Z.); (D.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Xianyang 712100, China
- Correspondence: (H.C.); (S.C.)
| |
Collapse
|
14
|
Liu X, Yang X, Xie Q, Miao H, Bo K, Dong S, Xin T, Gu X, Sun J, Zhang S. NS encodes an auxin transporter that regulates the 'numerous spines' trait in cucumber (Cucumis sativus) fruit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:325-336. [PMID: 35181968 DOI: 10.1111/tpj.15710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Fruit spine is an important agronomic trait in cucumber and the "numerous spines (ns)" cucumber varieties are popular in Europe and West Asia. Although the classical genetic locus of ns was reported more than two decades ago, the NS gene has not been cloned yet. In this study, nine genetic loci for the different densities of fruit spines were identified by a genome-wide association study. Among the nine loci, fsdG2.1 was closely associated with the classical genetic locus ns, which harbors a candidate gene Csa2G264590. Overexpression of Csa2G264590 resulted in lower fruit spine density, and the knockout mutant generated by CRISPR/Cas9 displayed an increased spine density, demonstrating that the Csa2G264590 gene is NS. NS is specifically expressed in the fruit peel and spine. Genetic analysis showed that NS regulates fruit spine development independently of the tuberculate gene, Tu, which regulates spine development on tubercules; the cucumber glabrous mutants csgl1 and csgl3 are epistatic to ns. Furthermore, we found that auxin levels in the fruit peel and spine were significantly lower in the knockout mutant ns-cr. Moreover, RNA-sequencing showed that the plant hormone signal transduction pathway was enriched. Notably, most of the auxin responsive Aux/IAA family genes were downregulated in ns-cr. Haplotype analysis showed that the non-functional haplotype of NS exists exclusively in the Eurasian cucumber backgrounds. Taken together, the cloning of NS gene provides new insights into the regulatory network of fruit spine development.
Collapse
Affiliation(s)
- Xiaoping Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xueyong Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qing Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Han Miao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Kailiang Bo
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shaoyun Dong
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tongxu Xin
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xingfang Gu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiaqiang Sun
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shengping Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|