1
|
Hellinger J, Ralph J, Karlen SD. p-Coumaroylated Lignins Are Natively Produced in Three Rosales Families. ACS OMEGA 2025; 10:6220-6227. [PMID: 39989774 PMCID: PMC11840785 DOI: 10.1021/acsomega.4c11429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/16/2025] [Accepted: 01/27/2025] [Indexed: 02/25/2025]
Abstract
Carbon-rich plant cell walls contain biopolymers that, with some processing, could replace fossil fuels as a major component of the current petrochemical production. To realize this, biorefineries need to be paired with biomass that during the deconstruction and fractionation processes transforms into the desired products. One component of interest is p-coumarate that, in some species, can account for up to 1% of the biomass' dry weight. When p-coumarate is present in eudicot cell walls, it is mostly part of the suberin (bark and root), acylates the γ-hydroxy group of the lignin, in part of the tannins, or is a metabolite. The current understanding of eudicot plant cell wall composition is that the lignin is sometimes acylated with acetate and rarely with hydroxycinnamates (p-coumarate or ferulate). This study identified a clear division in the Rosales in which three families produce p-coumaroylated lignins whereas the other six families showed no evidence of the trait.
Collapse
Affiliation(s)
- Jan Hellinger
- Department
of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy
Institute, University of Wisconsin-Madison, Madison, Wisconsin 53726, United States
| | - John Ralph
- Department
of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy
Institute, University of Wisconsin-Madison, Madison, Wisconsin 53726, United States
- Department
of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Steven D. Karlen
- Department
of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy
Institute, University of Wisconsin-Madison, Madison, Wisconsin 53726, United States
| |
Collapse
|
2
|
Oliveira DM, Saleme MDLS, Smith RA, Vangeel T, Lima MDF, Chanoca AA, Mota TR, Vanhevel Y, Coussens G, Van Aelst K, Geerts J, Cornet I, Vaneechoutte D, Vandepoele K, Pauwels L, Goeminne G, Morreel K, Sels BF, Ralph J, Vanholme R, Boerjan W. CRISPR/Cas9 editing of p-COUMAROYL-CoA:MONOLIGNOL TRANSFERASE 1 in maize alters phenolic metabolism, lignin structure, and lignin-first biomass processing. Trends Biotechnol 2025:S0167-7799(25)00006-X. [PMID: 39955231 DOI: 10.1016/j.tibtech.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 02/17/2025]
Abstract
Valorization of lignocellulosic biomass for sustainable production of high-value chemicals is challenged by the complexity of lignin, a phenolic biopolymer. Beyond the classical lignin monomers derived from p-coumaryl, coniferyl, and sinapyl alcohol, grass lignins incorporate substantial amounts of monolignol p-coumarates that are produced by p-COUMAROYL-CoA:MONOLIGNOL TRANSFERASE (PMT). Here, the CRISPR/Cas9-mediated mutation of ZmPMT1 in maize enabled the design of biomass depleted in p-coumaroylated lignin and enriched in guaiacyl lignin. Lignin-first biorefining of stem biomass from zmpmt1 mutants by reductive catalytic fractionation (RCF) generated a lignin oil depleted in carboxylates and enriched in guaiacyl-derived alcohols, which are desirable substrates for bio-based polyurethane synthesis. The reported lignin engineering in maize is a promising strategy for designing a dual-purpose crop, providing both food and feed, along with a renewable feedstock for the production of plant-based chemicals.
Collapse
Affiliation(s)
- Dyoni M Oliveira
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Marina de L S Saleme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Rebecca A Smith
- Great Lakes Bioenergy Research Center and the Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Thijs Vangeel
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven-University of Leuven, Leuven, Belgium
| | - Marcelo de F Lima
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Alexandra A Chanoca
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Thatiane R Mota
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Yasmine Vanhevel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Griet Coussens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Korneel Van Aelst
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven-University of Leuven, Leuven, Belgium
| | - Jordi Geerts
- Biochemical Wastewater Valorization and Engineering Group, University of Antwerp, Antwerp, Belgium
| | - Iris Cornet
- Biochemical Wastewater Valorization and Engineering Group, University of Antwerp, Antwerp, Belgium
| | - Dries Vaneechoutte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Laurens Pauwels
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Geert Goeminne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium; VIB Metabolomics Core, Ghent, Belgium
| | - Kris Morreel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Bert F Sels
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven-University of Leuven, Leuven, Belgium
| | - John Ralph
- Great Lakes Bioenergy Research Center and the Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, USA; Department of Biochemistry, University of Wisconsin, Madison, WI, USA
| | - Ruben Vanholme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium.
| |
Collapse
|
3
|
Chen M, Li Y, Liu H, Zhang D, Guo Y, Shi QS, Xie X. Lignin hydrogenolysis: Tuning the reaction by lignin chemistry. Int J Biol Macromol 2024; 279:135169. [PMID: 39218172 DOI: 10.1016/j.ijbiomac.2024.135169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Replacing fossil resource with biomass is one of the promising approaches to reduce our carbon footprint. Lignin is one of the three major components of lignocellulosic biomass, accounting for 10-35 wt% of dried weight of the biomass. Hydrogenolytic depolymerization of lignin is attracting increasing attention because of its capacity of utilizing lignin in its uncondensed form and compatibility with the biomass fractionation processes. Lignin is a natural aromatic polymer composed of a variety of monolignols associated with a series of lignin linkage motifs. Hydrogenolysis cleaves various ether bonds in lignin and releases phenolic monomers which can be further upgraded into valuable products, i.e., drugs, terephthalic acid, phenol. This review provides an overview of the state-of-the-art advances of the reagent (lignin), products (hydrol lignin), mass balance, and mechanism of the lignin hydrogenolysis reaction. The chemical structure of lignin is reviewed associated with the free radical coupling of monolignols and the chemical reactions of lignin upon isolation processes. The reactions of lignin linkages upon hydrogenolysis are discussed. The components of hydrol lignin and the selectivity production of phenolic monomers are reviewed. Future challenges on hydrogenolysis of lignin are proposed. This article provides an overview of lignin hydrogenolysis reaction which shows light on the generation of optimized lignin ready for hydrogenolytic depolymerization.
Collapse
Affiliation(s)
- Mingjie Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, 100 Central Xianlie Road, Guangzhou, 510070, China; Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; Guangdong Dimei New Materials Technology Co. Ltd., 100 Central Xianlie Road, Guangzhou, 510070, China
| | - Yan Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, 100 Central Xianlie Road, Guangzhou, 510070, China; Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Huiming Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, 100 Central Xianlie Road, Guangzhou, 510070, China
| | - Dandan Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, 100 Central Xianlie Road, Guangzhou, 510070, China
| | - Yanzhu Guo
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Qing-Shan Shi
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, 100 Central Xianlie Road, Guangzhou, 510070, China.
| | - Xiaobao Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, 100 Central Xianlie Road, Guangzhou, 510070, China.
| |
Collapse
|
4
|
Unda F, de Vries L, Karlen SD, Rainbow J, Zhang C, Bartley LE, Kim H, Ralph J, Mansfield SD. Enhancing monolignol ferulate conjugate levels in poplar lignin via OsFMT1. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:97. [PMID: 39003470 PMCID: PMC11246582 DOI: 10.1186/s13068-024-02544-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/25/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND The phenolic polymer lignin is one of the primary chemical constituents of the plant secondary cell wall. Due to the inherent plasticity of lignin biosynthesis, several phenolic monomers have been shown to be incorporated into the polymer, as long as the monomer can undergo radicalization so it can participate in coupling reactions. In this study, we significantly enhance the level of incorporation of monolignol ferulate conjugates into the lignin polymer to improve the digestibility of lignocellulosic biomass. RESULTS Overexpression of a rice Feruloyl-CoA Monolignol Transferase (FMT), OsFMT1, in hybrid poplar (Populus alba x grandidentata) produced transgenic trees clearly displaying increased cell wall-bound ester-linked ferulate, p-hydroxybenzoate, and p-coumarate, all of which are in the lignin cell wall fraction, as shown by NMR and DFRC. We also demonstrate the use of a novel UV-Vis spectroscopic technique to rapidly screen plants for the presence of both ferulate and p-hydroxybenzoate esters. Lastly we show, via saccharification assays, that the OsFMT1 transgenic p oplars have significantly improved processing efficiency compared to wild-type and Angelica sinensis-FMT-expressing poplars. CONCLUSIONS The findings demonstrate that OsFMT1 has a broad substrate specificity and a higher catalytic efficiency compared to the previously published FMT from Angelica sinensis (AsFMT). Importantly, enhanced wood processability makes OsFMT1 a promising gene to optimize the composition of lignocellulosic biomass.
Collapse
Affiliation(s)
- Faride Unda
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- US Department of Energy (DOE) Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, 53726, USA
| | - Lisanne de Vries
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- US Department of Energy (DOE) Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, 53726, USA
| | - Steven D Karlen
- US Department of Energy (DOE) Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, 53726, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jordan Rainbow
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Chengcheng Zhang
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Laura E Bartley
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Hoon Kim
- US Department of Energy (DOE) Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, 53726, USA
- US Department of Agriculture (USDA), Forest Service, Forest Products Laboratory (FPL), Madison, WI, 53726, USA
| | - John Ralph
- US Department of Energy (DOE) Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, 53726, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Shawn D Mansfield
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
- US Department of Energy (DOE) Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, 53726, USA.
- Botany Department, Faculty of Science, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
5
|
Lam LPY, Tobimatsu Y, Suzuki S, Tanaka T, Yamamoto S, Takeda-Kimura Y, Osakabe Y, Osakabe K, Ralph J, Bartley LE, Umezawa T. Disruption of p-coumaroyl-CoA:monolignol transferases in rice drastically alters lignin composition. PLANT PHYSIOLOGY 2024; 194:832-848. [PMID: 37831082 DOI: 10.1093/plphys/kiad549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023]
Abstract
Grasses are abundant feedstocks that can supply lignocellulosic biomass for production of cell-wall-derived chemicals. In grass cell walls, lignin is acylated with p-coumarate. These p-coumarate decorations arise from the incorporation of monolignol p-coumarate conjugates during lignification. A previous biochemical study identified a rice (Oryza sativa) BAHD acyltransferase (AT) with p-coumaroyl-CoA:monolignol transferase (PMT) activity in vitro. In this study, we determined that that enzyme, which we name OsPMT1 (also known as OsAT4), and the closely related OsPMT2 (OsAT3) harbor similar catalytic activity toward monolignols. We generated rice mutants deficient in either or both OsPMT1 and OsPMT2 by CRISPR/Cas9-mediated mutagenesis and subjected the mutants' cell walls to analysis using chemical and nuclear magnetic resonance methods. Our results demonstrated that OsPMT1 and OsPMT2 both function in lignin p-coumaroylation in the major vegetative tissues of rice. Notably, lignin-bound p-coumarate units were undetectable in the ospmt1 ospmt2-2 double-knockout mutant. Further, in-depth structural analysis of purified lignins from the ospmt1 ospmt2-2 mutant compared with control lignins from wild-type rice revealed stark changes in polymer structures, including alterations in syringyl/guaiacyl aromatic unit ratios and inter-monomeric linkage patterns, and increased molecular weights. Our results provide insights into lignin polymerization in grasses that will be useful for the optimization of bioengineering approaches for the effective use of biomass in biorefineries.
Collapse
Affiliation(s)
- Lydia Pui Ying Lam
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
- Center for Crossover Education, Graduate School of Engineering Science, Akita University, Akita, Akita 010-0852, Japan
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Shiro Suzuki
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
- Faculty of Applied Biological Sciences, Graduate School of Natural Science and Technology, and The United Graduate School of Agricultural Science, Gifu University, Gifu, Gifu 501-1193Japan
| | - Takuto Tanaka
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Senri Yamamoto
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yuri Takeda-Kimura
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yuriko Osakabe
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8502Japan
| | - Keishi Osakabe
- Faculty of Bioscience and Bioindustry, Tokushima University,Tokushima, Tokushima 770-8503Japan
| | - John Ralph
- Department of Biochemistry, and the U.S. Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI 53726, USA
| | - Laura E Bartley
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
6
|
Li W, Lin YCJ, Chen YL, Zhou C, Li S, De Ridder N, Oliveira DM, Zhang L, Zhang B, Wang JP, Xu C, Fu X, Luo K, Wu AM, Demura T, Lu MZ, Zhou Y, Li L, Umezawa T, Boerjan W, Chiang VL. Woody plant cell walls: Fundamentals and utilization. MOLECULAR PLANT 2024; 17:112-140. [PMID: 38102833 DOI: 10.1016/j.molp.2023.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
Cell walls in plants, particularly forest trees, are the major carbon sink of the terrestrial ecosystem. Chemical and biosynthetic features of plant cell walls were revealed early on, focusing mostly on herbaceous model species. Recent developments in genomics, transcriptomics, epigenomics, transgenesis, and associated analytical techniques are enabling novel insights into formation of woody cell walls. Here, we review multilevel regulation of cell wall biosynthesis in forest tree species. We highlight current approaches to engineering cell walls as potential feedstock for materials and energy and survey reported field tests of such engineered transgenic trees. We outline opportunities and challenges in future research to better understand cell type biogenesis for more efficient wood cell wall modification and utilization for biomaterials or for enhanced carbon capture and storage.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | | | - Ying-Lan Chen
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan, China
| | - Chenguang Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Shuang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Nette De Ridder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Dyoni M Oliveira
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Lanjun Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jack P Wang
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Changzheng Xu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xiaokang Fu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Ai-Min Wu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Taku Demura
- Center for Digital Green-innovation, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Meng-Zhu Lu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Laigeng Li
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Toshiaki Umezawa
- Laboratory of Metabolic Science of Forest Plants and Microorganisms, Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Vincent L Chiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
7
|
Eng T, Banerjee D, Menasalvas J, Chen Y, Gin J, Choudhary H, Baidoo E, Chen JH, Ekman A, Kakumanu R, Diercks YL, Codik A, Larabell C, Gladden J, Simmons BA, Keasling JD, Petzold CJ, Mukhopadhyay A. Maximizing microbial bioproduction from sustainable carbon sources using iterative systems engineering. Cell Rep 2023; 42:113087. [PMID: 37665664 DOI: 10.1016/j.celrep.2023.113087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/10/2023] [Accepted: 08/18/2023] [Indexed: 09/06/2023] Open
Abstract
Maximizing the production of heterologous biomolecules is a complex problem that can be addressed with a systems-level understanding of cellular metabolism and regulation. Specifically, growth-coupling approaches can increase product titers and yields and also enhance production rates. However, implementing these methods for non-canonical carbon streams is challenging due to gaps in metabolic models. Over four design-build-test-learn cycles, we rewire Pseudomonas putida KT2440 for growth-coupled production of indigoidine from para-coumarate. We explore 4,114 potential growth-coupling solutions and refine one design through laboratory evolution and ensemble data-driven methods. The final growth-coupled strain produces 7.3 g/L indigoidine at 77% maximum theoretical yield in para-coumarate minimal medium. The iterative use of growth-coupling designs and functional genomics with experimental validation was highly effective and agnostic to specific hosts, carbon streams, and final products and thus generalizable across many systems.
Collapse
Affiliation(s)
- Thomas Eng
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Deepanwita Banerjee
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Javier Menasalvas
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yan Chen
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jennifer Gin
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Hemant Choudhary
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA; Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA, USA
| | - Edward Baidoo
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jian Hua Chen
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA; National Center for X-ray Tomography, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Axel Ekman
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA; National Center for X-ray Tomography, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ramu Kakumanu
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yuzhong Liu Diercks
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Alex Codik
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Carolyn Larabell
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA; National Center for X-ray Tomography, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - John Gladden
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA; Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA, USA
| | - Blake A Simmons
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jay D Keasling
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; QB3 Institute, University of California, Berkeley, 5885 Hollis Street, 4th Floor, Emeryville, CA 94608, USA; Department of Chemical & Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University Denmark, 2970 Horsholm, Denmark; Synthetic Biochemistry Center, Institute for Synthetic Biology, Shenzhen Institutes for Advanced Technologies, Shenzhen, China
| | - Christopher J Petzold
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Aindrila Mukhopadhyay
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
8
|
Chen M, Li Y, Lu F, Luterbacher JS, Ralph J. Lignin Hydrogenolysis: Phenolic Monomers from Lignin and Associated Phenolates across Plant Clades. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:10001-10017. [PMID: 37448721 PMCID: PMC10337261 DOI: 10.1021/acssuschemeng.3c01320] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/13/2023] [Indexed: 07/15/2023]
Abstract
The chemical complexity of lignin remains a major challenge for lignin valorization into commodity and fine chemicals. A knowledge of the lignin features that favor its valorization and which plants produce such lignins can be used in plant selection or to engineer them to produce lignins that are more ideally suited for conversion. Sixteen biomass samples were compositionally surveyed by NMR and analytical degradative methods, and the yields of phenolic monomers following hydrogenolytic depolymerization were assessed to elucidate the key determinants controlling the depolymerization. Hardwoods, including those incorporating monolignol p-hydroxybenzoates into their syringyl/guaiacyl copolymeric lignins, produced high monomer yields by hydrogenolysis, whereas grasses incorporating monolignol p-coumarates and ferulates gave lower yields, on a lignin basis. Softwoods, with their more condensed guaiacyl lignins, gave the lowest yields. Lignins with a high syringyl unit content released elevated monomer levels, with a high-syringyl polar transgenic being particularly striking. Herein, we distinguish phenolic monomers resulting from the core lignin vs those from pendent phenolate esters associated with the biomass cell wall, acylating either polysaccharides or lignins. The basis for these observations is rationalized as a means to select or engineer biomass for optimal conversion to worthy phenolic monomers.
Collapse
Affiliation(s)
- Mingjie Chen
- Department
of Energy, Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, Wisconsin 53726, United States
| | - Yanding Li
- Department
of Energy, Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, Wisconsin 53726, United States
| | - Fachuang Lu
- Department
of Energy, Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, Wisconsin 53726, United States
| | - Jeremy S. Luterbacher
- Institute
of Chemical Sciences and Engineering, École
Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - John Ralph
- Department
of Energy, Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, Wisconsin 53726, United States
- Department
of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
9
|
Liu Y, Liu Q, Li X, Zhang Z, Ai S, Liu C, Ma F, Li C. MdERF114 enhances the resistance of apple roots to Fusarium solani by regulating the transcription of MdPRX63. PLANT PHYSIOLOGY 2023; 192:2015-2029. [PMID: 36721923 PMCID: PMC10315273 DOI: 10.1093/plphys/kiad057] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
As the main fungal etiologic agent of apple (Malus domestica) replant disease (ARD), Fusarium solani seriously damages apple roots. Ethylene response factors (ERFs) play an important role in plant resistance to biotic stress. Here, we show that MdERF114 is expressed during F. solani infections and positively regulates the resistance of apple roots to F. solani. Yeast one-hybrid, dual-luciferase, electrophoretic mobility shift assays and determinations of lignin content indicated that MdERF114 directly binds the GCC-box of the MdPEROXIDASE63 (MdPRX63) promoter and activates its expression, resulting in lignin deposition in apple roots and increased resistance to F. solani. We identified a WRKY family transcription factor, MdWRKY75, that binds to the W-box of the MdERF114 promoter. Overexpression of MdWRKY75 enhanced resistance of apple roots to F. solani. MdMYB8 interacted with MdERF114 to enhance resistance to F. solani by promoting the binding of MdERF114 to the MdPRX63 promoter. In summary, our findings reveal that the MdWRKY75-MdERF114-MdMYB8-MdPRX63 module is required for apple resistance to F. solani and the application of this mechanism by Agrobacterium rhizogenes-mediated root transformation provides a promising strategy to prevent ARD.
Collapse
Affiliation(s)
- Yusong Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Qianwei Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Xuewen Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Zhijun Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Shukang Ai
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Cheng Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, China
| | | | - Chao Li
- Author for correspondence: ; (F.M.); (C.L.)
| |
Collapse
|
10
|
Ramakrishna P, Cesarino I. "Exclusive" update: p-coumaroylation of lignin not restricted to commelinid monocots. PLANT PHYSIOLOGY 2023; 191:811-813. [PMID: 36423227 PMCID: PMC9922419 DOI: 10.1093/plphys/kiac536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/23/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Priya Ramakrishna
- Laboratory for Biological Geochemistry, École Polytechnique Fédérale de Lausanne, UNIL – Geopolis, 1015 Lausanne, Switzerland
| | - Igor Cesarino
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, 05508-090, São Paulo, Brazil
- Synthetic and Systems Biology Center, InovaUSP, Avenida Professor Lucio Martins Rodrigues, 370, 05508-020, São Paulo, Brazil
| |
Collapse
|
11
|
Hellinger J, Kim H, Ralph J, Karlen SD. p-Coumaroylation of lignin occurs outside of commelinid monocots in the eudicot genus Morus (mulberry). PLANT PHYSIOLOGY 2023; 191:854-861. [PMID: 36269202 PMCID: PMC9922387 DOI: 10.1093/plphys/kiac485] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The presence of p-coumarate (pCA) in plant cell walls is generally considered to be a trait present only in commelinid monocots. Here, we show that this long-held overgeneralizing assumption is incorrect and that mulberry trees (Morus) are eudicot plants that have lignins derived in part from monolignol pCA esters. As in commelinid monocots, the lignin-bound pCA acylates the sidechain γ-hydroxyl of both coniferyl and syringyl units. This discovery expands mulberry's potential applications to include being a source of p-coumaric acid, a supplier of nutritious berries, a forage crop, a decorative plant, and the main food source for silkworms.
Collapse
Affiliation(s)
- Jan Hellinger
- Department of Energy, Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin–Madison, Madison, Wisconsin 53726, USA
| | - Hoon Kim
- Department of Energy, Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin–Madison, Madison, Wisconsin 53726, USA
| | - John Ralph
- Department of Energy, Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin–Madison, Madison, Wisconsin 53726, USA
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | | |
Collapse
|