1
|
Liu X, Heinzle J, Tian Y, Salas E, Kwatcho Kengdo S, Borken W, Schindlbacher A, Wanek W. Long-term soil warming changes the profile of primary metabolites in fine roots of Norway spruce in a temperate montane forest. PLANT, CELL & ENVIRONMENT 2024; 47:4212-4226. [PMID: 38935880 DOI: 10.1111/pce.15019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024]
Abstract
Climate warming poses major threats to temperate forests, but the response of tree root metabolism has largely remained unclear. We examined the impact of long-term soil warming (>14 years, +4°C) on the fine root metabolome across three seasons for 2 years in an old spruce forest, using a liquid chromatography-mass spectrometry platform for primary metabolite analysis. A total of 44 primary metabolites were identified in roots (19 amino acids, 12 organic acids and 13 sugars). Warming increased the concentration of total amino acids and of total sugars by 15% and 21%, respectively, but not organic acids. We found that soil warming and sampling date, along with their interaction, directly influenced the primary metabolite profiles. Specifically, in warming plots, concentrations of arginine, glycine, lysine, threonine, tryptophan, mannose, ribose, fructose, glucose and oxaloacetic acid increased by 51.4%, 19.9%, 21.5%, 19.3%, 22.1%, 23.0%, 38.0%, 40.7%, 19.8% and 16.7%, respectively. Rather than being driven by single compounds, changes in metabolite profiles reflected a general up- or downregulation of most metabolic pathway network. This emphasises the importance of metabolomics approaches in investigating root metabolic pathways and understanding the effects of climate change on tree root metabolism.
Collapse
Affiliation(s)
- Xiaofei Liu
- Department of Microbiology and Ecosystem Science, Center of Microbiology and Environmental Systems Science, Division of Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna, Austria
- Key Laboratory of Humid Subtropical Eco-Geographical Process of Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Jakob Heinzle
- Department of Forest Ecology and Soils, Federal Research and Training Centre for Forests, Natural Hazards and Landscape-BFW, Vienna, Austria
| | - Ye Tian
- Department of Microbiology and Ecosystem Science, Center of Microbiology and Environmental Systems Science, Division of Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria
| | - Erika Salas
- Department of Microbiology and Ecosystem Science, Center of Microbiology and Environmental Systems Science, Division of Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria
| | - Steve Kwatcho Kengdo
- Department of Soil Ecology, Bayreuth Center of Ecology and Environmental Research (Bayceer), University of Bayreuth, Bayreuth, Germany
| | - Werner Borken
- Department of Soil Ecology, Bayreuth Center of Ecology and Environmental Research (Bayceer), University of Bayreuth, Bayreuth, Germany
| | - Andreas Schindlbacher
- Department of Forest Ecology and Soils, Federal Research and Training Centre for Forests, Natural Hazards and Landscape-BFW, Vienna, Austria
| | - Wolfgang Wanek
- Department of Microbiology and Ecosystem Science, Center of Microbiology and Environmental Systems Science, Division of Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Laoué J, Havaux M, Ksas B, Orts JP, Reiter IM, Fernandez C, Ormeno E. A decade of rain exclusion in a Mediterranean forest reveals trade-offs of leaf chemical defenses and drought legacy effects. Sci Rep 2024; 14:24119. [PMID: 39406765 PMCID: PMC11480208 DOI: 10.1038/s41598-024-71417-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/27/2024] [Indexed: 10/19/2024] Open
Abstract
Increasing aridity in the Mediterranean region will result in longer and recurrent drought. These changes could strongly modify plant defenses, endangering tree survival. We investigate the response of chemical defenses from central and specialized metabolism in Quercus pubescens Willd. to future Mediterranean drought using a long-term drought experiment in natura where trees have been submitted to amplified drought (~ -30% annual precipitation) since April 2012. We focused on leaf metabolites including chlorophylls and carotenoids (central metabolism) and flavonols (specialized metabolism). Measurements were performed in summer from 2016 to 2022. Amplified drought led to higher concentrations of total photosynthetic pigments over the 2016-2022 period. However, it also led to lower AZ/VAZ and flavonol concentrations. Additionally, chemical defenses of Q. pubescens responded to previous precipitation where low precipitation 1 year and/or 2 years preceding sampling was associated to low concentrations of VAZ, flavonol and high neoxanthin concentrations. Our study indicates that the decline of flavonol concentration under long-term drought is counterbalanced by a higher production of several central metabolites. Such results are potentially due to an adjustment in tree metabolism, highlighting the importance of performing long-term experimental studies in natura for assessing drought legacy effects and thus forest adaptation to climate change.
Collapse
Affiliation(s)
- Justine Laoué
- CNRS UMR 7263, Aix-Marseille University, Avignon University, IRD, IMBE, Marseille, France.
| | - Michel Havaux
- Aix-Marseille Université, CEA, CNRS UMR7265, Institut de Bioscience et de Biotechnologie d'Aix-Marseille, CEA/Cadarache, Saint-Paul-lès-Durance, France
| | - Brigitte Ksas
- Aix-Marseille Université, CEA, CNRS UMR7265, Institut de Bioscience et de Biotechnologie d'Aix-Marseille, CEA/Cadarache, Saint-Paul-lès-Durance, France
| | - Jean-Philippe Orts
- CNRS UMR 7263, Aix-Marseille University, Avignon University, IRD, IMBE, Marseille, France
| | | | - Catherine Fernandez
- CNRS UMR 7263, Aix-Marseille University, Avignon University, IRD, IMBE, Marseille, France
| | - Elena Ormeno
- CNRS UMR 7263, Aix-Marseille University, Avignon University, IRD, IMBE, Marseille, France.
| |
Collapse
|
3
|
Chen YD, Liu C, Moles A, Jassey VEJ, Bu ZJ. A hidden herbivory effect on Sphagnum reproduction. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:214-222. [PMID: 38192088 DOI: 10.1111/plb.13610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 11/24/2023] [Indexed: 01/10/2024]
Abstract
Defence theories provide predictions about trade-offs in the allocation of resources to defence and growth. However, very little is known about how pressure from herbivores influences the allocation of resources during reproduction. Two common peatland bryophyte species, Sphagnum angustifolium and S. capillifolium, were chosen as study species. Vegetative and reproductive shoots of both Sphagnum species were subjected to treatments with and without herbivores in a lab experiment. After 4 weeks of exposure to herbivores in a growth chamber, we measured biomass production, net photosynthesis rate, defence traits (phenolics in leachate and phenolics in extract), nonstructural carbohydrates (soluble sugar and starch), and reproductive traits (capsule number, weight and diameter, and spore germination) of both Sphagnum species. Reproductive shoots had higher constitutive defence than vegetative shoots in S. angustifolium, and a similar pattern was observed in S. capillifolium. With herbivory, reproductive shoots showed stronger induced defence (released more phenolics) than vegetative shoots in S. capillifolium, but not in S. angustifolium. Herbivory had no effect on capsule number, weight, or diameter, but reduced spore germination percentage by more than half in both species. Our study highlights the hidden effects of herbivory on reproduction of Sphagnum and indicates the presence of maternal effects in bryophytes. Ecologists will benefit from examining both quality- and quantity-based traits when attempting to estimate the herbivory effect on plant fitness.
Collapse
Affiliation(s)
- Y-D Chen
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Institute for Peat and Mire Research, Northeast Normal University, Changchun, China
- Jilin Provincial Key Laboratory for Wetland Ecological Processes and Environmental Change in the Changbai Mountains, Changchun, China
| | - C Liu
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
- Peatland Ecology Research Group and Centre for Northern Studies, Université Laval, Québec, QC, Canada
| | - A Moles
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Kensington, NSW, Australia
| | - V E J Jassey
- Laboratoire Ecologie Fonctionnelle et Environnement (LEFE), Université Paul Sabatier, CNRS, Toulouse, France
| | - Z-J Bu
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Institute for Peat and Mire Research, Northeast Normal University, Changchun, China
- Jilin Provincial Key Laboratory for Wetland Ecological Processes and Environmental Change in the Changbai Mountains, Changchun, China
| |
Collapse
|
4
|
Laoué J, Havaux M, Ksas B, Tuccio B, Lecareux C, Fernandez C, Ormeño E. Long-term rain exclusion in a Mediterranean forest: response of physiological and physico-chemical traits of Quercus pubescens across seasons. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1293-1308. [PMID: 37596909 DOI: 10.1111/tpj.16424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/21/2023] [Accepted: 08/04/2023] [Indexed: 08/21/2023]
Abstract
With climate change, an aggravation in summer drought is expected in the Mediterranean region. To assess the impact of such a future scenario, we compared the response of Quercus pubescens, a drought-resistant deciduous oak species, to long-term amplified drought (AD) (partial rain exclusion in natura for 10 years) and natural drought (ND). We studied leaf physiological and physico-chemical trait responses to ND and AD over the seasonal cycle, with a focus on chemical traits including major groups of central (photosynthetic pigments and plastoquinones) and specialized (tocochromanols, phenolic compounds, and cuticular waxes) metabolites. Seasonality was the main driver of all leaf traits, including cuticular triterpenoids, which were highly concentrated in summer, suggesting their importance to cope with drought and thermal stress periods. Under AD, trees not only reduced CO2 assimilation (-42%) in summer and leaf concentrations of some phenolic compounds and photosynthetic pigments (carotenoids from the xanthophyll cycle) but also enhanced the levels of other photosynthetic pigments (chlorophylls, lutein, and neoxanthin) and plastochromanol-8, an antioxidant located in chloroplasts. Overall, the metabolomic adjustments across seasons and drought conditions reinforce the idea that Q. pubescens is highly resistant to drought although significant losses of antioxidant defenses and photoprotection were identified under AD.
Collapse
Affiliation(s)
- Justine Laoué
- Aix Marseille Univ., Univ Avignon, CNRS, IRD, IMBE, Marseille, France
| | - Michel Havaux
- Aix Marseille Univ., CEA, CNRS UMR 7265 BIAM, CEA/Cadarache, Saint-Paul-lès-Durance, France
| | - Brigitte Ksas
- Aix Marseille Univ., CEA, CNRS UMR 7265 BIAM, CEA/Cadarache, Saint-Paul-lès-Durance, France
| | | | - Caroline Lecareux
- Aix Marseille Univ., Univ Avignon, CNRS, IRD, IMBE, Marseille, France
| | | | - Elena Ormeño
- Aix Marseille Univ., Univ Avignon, CNRS, IRD, IMBE, Marseille, France
| |
Collapse
|
5
|
Buttler A, Bragazza L, Laggoun-Défarge F, Gogo S, Toussaint ML, Lamentowicz M, Chojnicki BH, Słowiński M, Słowińska S, Zielińska M, Reczuga M, Barabach J, Marcisz K, Lamentowicz Ł, Harenda K, Lapshina E, Gilbert D, Schlaepfer R, Jassey VEJ. Ericoid shrub encroachment shifts aboveground-belowground linkages in three peatlands across Europe and Western Siberia. GLOBAL CHANGE BIOLOGY 2023; 29:6772-6793. [PMID: 37578632 DOI: 10.1111/gcb.16904] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 08/15/2023]
Abstract
In northern peatlands, reduction of Sphagnum dominance in favour of vascular vegetation is likely to influence biogeochemical processes. Such vegetation changes occur as the water table lowers and temperatures rise. To test which of these factors has a significant influence on peatland vegetation, we conducted a 3-year manipulative field experiment in Linje mire (northern Poland). We manipulated the peatland water table level (wet, intermediate and dry; on average the depth of the water table was 17.4, 21.2 and 25.3 cm respectively), and we used open-top chambers (OTCs) to create warmer conditions (on average increase of 1.2°C in OTC plots compared to control plots). Peat drying through water table lowering at this local scale had a larger effect than OTC warming treatment per see on Sphagnum mosses and vascular plants. In particular, ericoid shrubs increased with a lower water table level, while Sphagnum decreased. Microclimatic measurements at the plot scale indicated that both water-level and temperature, represented by heating degree days (HDDs), can have significant effects on the vegetation. In a large-scale complementary vegetation gradient survey replicated in three peatlands positioned along a transitional oceanic-continental and temperate-boreal (subarctic) gradient (France-Poland-Western Siberia), an increase in ericoid shrubs was marked by an increase in phenols in peat pore water, resulting from higher phenol concentrations in vascular plant biomass. Our results suggest a shift in functioning from a mineral-N-driven to a fungi-mediated organic-N nutrient acquisition with shrub encroachment. Both ericoid shrub encroachment and higher mean annual temperature in the three sites triggered greater vascular plant biomass and consequently the dominance of decomposers (especially fungi), which led to a feeding community dominated by nematodes. This contributed to lower enzymatic multifunctionality. Our findings illustrate mechanisms by which plants influence ecosystem responses to climate change, through their effect on microbial trophic interactions.
Collapse
Affiliation(s)
- Alexandre Buttler
- School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Lausanne, Switzerland
| | - Luca Bragazza
- Agroscope, Field-Crop Systems and Plant Nutrition, Nyon, Switzerland
| | | | - Sebastien Gogo
- UMR-CNRS 6553 ECOBIO, Université de Rennes, Rennes, France
| | - Marie-Laure Toussaint
- Laboratoire de Chrono-Environnement, UMR, CNRS 6249, UFR des Sciences et Techniques, Université de Franche-Comté, Besançon, France
| | - Mariusz Lamentowicz
- Climate Change Ecology Research Unit, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Poznań, Poland
| | - Bogdan H Chojnicki
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Faculty of Environmental and Mechanical Engineering, Poznan University of Life Sciences, Poznań, Poland
| | - Michał Słowiński
- Past Landscape Dynamic Laboratory, Institute of Geography and Spatial Organization, Polish Academy of Sciences, Warsaw, Poland
| | - Sandra Słowińska
- Climate Research Department, Institute of Geography and Spatial Organization, Polish Academy of Sciences, Warsaw, Poland
| | - Małgorzata Zielińska
- Climate Change Ecology Research Unit, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Poznań, Poland
| | - Monika Reczuga
- Climate Change Ecology Research Unit, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Poznań, Poland
| | - Jan Barabach
- Department of Land Improvement, Environmental Development and Spatial Management, Poznan University of Life Sciences, Poznań, Poland
| | - Katarzyna Marcisz
- Climate Change Ecology Research Unit, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Poznań, Poland
| | - Łukasz Lamentowicz
- Climate Change Ecology Research Unit, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Poznań, Poland
| | - Kamila Harenda
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Faculty of Environmental and Mechanical Engineering, Poznan University of Life Sciences, Poznań, Poland
| | | | - Daniel Gilbert
- Laboratoire de Chrono-Environnement, UMR, CNRS 6249, UFR des Sciences et Techniques, Université de Franche-Comté, Besançon, France
| | - Rodolphe Schlaepfer
- School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Vincent E J Jassey
- School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Lausanne, Switzerland
- Laboratoire d'Ecologie Fonctionnelle et Environnement, CNRS, Université de Toulouse, Toulouse, France
| |
Collapse
|