1
|
Witkin JM, Radin DP, Rana S, Fuller DD, Fusco AF, Demers JC, Pradeep Thakre P, Smith JL, Lippa A, Cerne R. AMPA receptors play an important role in the biological consequences of spinal cord injury: Implications for AMPA receptor modulators for therapeutic benefit. Biochem Pharmacol 2024; 228:116302. [PMID: 38763261 DOI: 10.1016/j.bcp.2024.116302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Spinal cord injury (SCI) afflicts millions of individuals globally. There are few therapies available to patients. Ascending and descending excitatory glutamatergic neural circuits in the central nervous system are disrupted by SCI, making α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) a potential therapeutic drug target. Emerging research in preclinical models highlights the involvement of AMPARs in vital processes following SCI including breathing, pain, inflammation, bladder control, and motor function. However, there are no clinical trial data reported in this patient population to date. No work on the role of AMPA receptors in sexual dysfunction after SCI has been disclosed. Compounds with selective antagonist and potentiating effects on AMPA receptors have benefit in animal models of SCI, with antagonists generally showing protective effects early after injury and potentiators (ampakines) producing improved breathing and bladder function. The role of AMPARs in pathophysiology and recovery after SCI depends upon the time post injury, and the timing of AMPAR augmentation or antagonism. The roles of inflammation, synaptic plasticity, sensitization, neurotrophic factors, and neuroprotection are considered in this context. The data summarized and discussed in this paper document proof of principle and strongly encourage additional studies on AMPARs as novel gateways to therapeutic benefit for patients suffering from SCI. The availability of both AMPAR antagonists such as perampanel and AMPAR allosteric modulators (i.e., ampakines) such as CX1739, that have been safely administered to humans, provides an expedited means of clinical inquiry for possible therapeutic advances.
Collapse
Affiliation(s)
- Jeffrey M Witkin
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN, USA; Departments of Neuroscience and Trauma Research, Ascension St. Vincent Hospital, Indianapolis, IN, USA; RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA.
| | | | - Sabhya Rana
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
| | - David D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
| | - Anna F Fusco
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
| | - Julie C Demers
- Indiana University/Purdue University, Indianapolis, IN, USA
| | - Prajwal Pradeep Thakre
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
| | - Jodi L Smith
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN, USA
| | - Arnold Lippa
- RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA
| | - Rok Cerne
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN, USA; RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA; Faculty of Medicine, University of Ljubljana, Zaloška Cesta 4, Ljubljana, Slovenia
| |
Collapse
|
2
|
Liang Z, Li L, Bai L, Gao Y, Qiao Y, Wang X, Yv L, Xu JT. Spinal nerve transection-induced upregulation of SAP97 via promoting membrane trafficking of GluA1-containing AMPA receptors in the dorsal horn contributes to the pathogenesis of neuropathic pain. Neurobiol Dis 2024; 194:106471. [PMID: 38461868 DOI: 10.1016/j.nbd.2024.106471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024] Open
Abstract
Emerging evidence has implicated an important role of synapse-associated protein-97 (SAP97)-regulated GluA1-containing AMPARs membrane trafficking in cocaine restate and in contextual episodic memory of schizophrenia. Herein, we investigated the role of SAP97 in neuropathic pain following lumbar 5 spinal nerve transection (SNT) in rats. Our results showed that SNT led to upregulation of SAP97, enhanced the interaction between SAP97 and GluA1, and increased GluA1-containing AMPARs membrane trafficking in the dorsal horn. Microinjection of AAV-EGFP-SAP97 shRNA in lumbar 5 spinal dorsal horn inhibited SAP97 production, decreased SAP97-GluA1 interaction, reduced the membrane trafficking of GluA1-containing AMPARs, and partially attenuated neuropathic pain following SNT. Intrathecal injections of SAP97 siRNA or NASPM, an antagonist of GluA1-containing AMPARs, also partially reversed neuropathic pain on day 7, but not on day 14, after SNT. Spinal overexpression of SAP97 by AAV-EGFP-SAP97 enhanced SAP97-GluA1 interaction, increased the membrane insertion of GluA1-containing AMPARs, and induced abnormal pain in naïve rats. In addition, treatment with SAP97 siRNA or NASPM i.t. injection alleviated SNT-induced allodynia and hyperalgesia and exhibited a longer effect in female rats. Together, our results indicate that the SNT-induced upregulation of SAP97 via promoting GluA1-containing AMPARs membrane trafficking in the dorsal horn contributes to the pathogenesis of neuropathic pain. Targeting spinal SAP97 might be a promising therapeutic strategy to treatment of chronic pain.
Collapse
Affiliation(s)
- Zongyi Liang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Liren Li
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Liying Bai
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China; Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital, Zhengzhou University, 1 Jianshe East Road, Zhengzhou 450052, China
| | - Yan Gao
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Yiming Qiao
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Xueli Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Lili Yv
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Ji-Tian Xu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China; Neuroscience Research Institute, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China.
| |
Collapse
|
3
|
Liu HH, McClatchy DB, Schiapparelli L, Shen W, Yates JR, Cline HT. Role of the visual experience-dependent nascent proteome in neuronal plasticity. eLife 2018; 7:e33420. [PMID: 29412139 PMCID: PMC5815848 DOI: 10.7554/elife.33420] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/05/2018] [Indexed: 01/02/2023] Open
Abstract
Experience-dependent synaptic plasticity refines brain circuits during development. To identify novel protein synthesis-dependent mechanisms contributing to experience-dependent plasticity, we conducted a quantitative proteomic screen of the nascent proteome in response to visual experience in Xenopus optic tectum using bio-orthogonal metabolic labeling (BONCAT). We identified 83 differentially synthesized candidate plasticity proteins (CPPs). The CPPs form strongly interconnected networks and are annotated to a variety of biological functions, including RNA splicing, protein translation, and chromatin remodeling. Functional analysis of select CPPs revealed the requirement for eukaryotic initiation factor three subunit A (eIF3A), fused in sarcoma (FUS), and ribosomal protein s17 (RPS17) in experience-dependent structural plasticity in tectal neurons and behavioral plasticity in tadpoles. These results demonstrate that the nascent proteome is dynamic in response to visual experience and that de novo synthesis of machinery that regulates RNA splicing and protein translation is required for experience-dependent plasticity.
Collapse
Affiliation(s)
- Han-Hsuan Liu
- The Dorris Neuroscience CenterThe Scripps Research InstituteLa JollaUnited States
- Department of NeuroscienceThe Scripps Research InstituteLa JollaUnited States
- Kellogg School of Science and TechnologyThe Scripps Research InstituteLa JollaUnited States
| | - Daniel B McClatchy
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaUnited States
| | - Lucio Schiapparelli
- The Dorris Neuroscience CenterThe Scripps Research InstituteLa JollaUnited States
- Department of NeuroscienceThe Scripps Research InstituteLa JollaUnited States
| | - Wanhua Shen
- The Dorris Neuroscience CenterThe Scripps Research InstituteLa JollaUnited States
- Department of NeuroscienceThe Scripps Research InstituteLa JollaUnited States
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental SciencesHangzhou Normal UniversityHangzhouChina
| | - John R Yates
- Department of NeuroscienceThe Scripps Research InstituteLa JollaUnited States
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaUnited States
| | - Hollis T Cline
- The Dorris Neuroscience CenterThe Scripps Research InstituteLa JollaUnited States
- Department of NeuroscienceThe Scripps Research InstituteLa JollaUnited States
- Kellogg School of Science and TechnologyThe Scripps Research InstituteLa JollaUnited States
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaUnited States
| |
Collapse
|
4
|
SAP97 Binding Partner CRIPT Promotes Dendrite Growth In Vitro and In Vivo. eNeuro 2017; 4:eN-NWR-0175-17. [PMID: 29218323 PMCID: PMC5718245 DOI: 10.1523/eneuro.0175-17.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 10/30/2017] [Accepted: 10/30/2017] [Indexed: 01/15/2023] Open
Abstract
The dendritic tree is a key determinant of neuronal information processing. In the motor system, the dendritic tree of spinal cord neurons undergoes dramatic remodeling in an activity-dependent manner during early postnatal life. This leads to the proper segmental spinal cord connectivity that subserves normal locomotor behavior. One molecular system driving the establishment of dendrite architecture of mammalian motor neurons relies on AMPA receptors (AMPA-Rs) assembled with the GluA1 subunit, and this occurs in an NMDA receptor (NMDA-R)-independent manner. The dendrite growth promoting activity of GluA1-containing AMPA-Rs depends on its intracellular binding partner, SAP97, and SAP97's PDZ3 domain. We show here that cysteine-rich interactor of PDZ3 (CRIPT) is a bona fide SAP97 PDZ3-domain binding partner, localizes to synapses with GluA1 and SAP97 along the dendritic tree, and is a determinant of the dendritic growth of mammalian spinal cord neurons. We further show that CRIPT has a well-conserved ortholog in the nematode, Caenorhabditis elegans, and animals lacking CRIPT display decreased dendrite branching of the well-studied PVD neuron in vivo. The lack of CRIPT leads to a selective defect in touch perception, and this is rescued by expression of wild-type (WT) human CRIPT (hCRIPT) in the nervous system. This work brings new light into the molecular machinery that drives dendritic growth during development and may prove relevant to the promotion of nervous system plasticity following insult.
Collapse
|
5
|
White SL, Ortinski PI, Friedman SH, Zhang L, Neve RL, Kalb RG, Schmidt HD, Pierce RC. A Critical Role for the GluA1 Accessory Protein, SAP97, in Cocaine Seeking. Neuropsychopharmacology 2016; 41:736-50. [PMID: 26149358 PMCID: PMC4707820 DOI: 10.1038/npp.2015.199] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 06/05/2015] [Accepted: 06/06/2015] [Indexed: 01/05/2023]
Abstract
A growing body of evidence indicates that the transport of GluA1 subunit-containing calcium-permeable AMPA receptors (CP-AMPARs) to synapses in subregions of the nucleus accumbens promotes cocaine seeking. Consistent with these findings, the present results show that administration of the CP-AMPAR antagonist, Naspm, into the caudal lateral core or caudal medial shell of the nucleus accumbens attenuated cocaine priming-induced reinstatement of drug seeking. Moreover, viral-mediated overexpression of 'pore dead' GluA1 subunits (via herpes simplex virus (HSV) GluA1-Q582E) in the lateral core or medial shell attenuated the reinstatement of cocaine seeking. The overexpression of wild-type GluA1 subunits (via HSV GluA1-WT) in the medial shell, but not the lateral core, enhanced the reinstatement of cocaine seeking. These results indicate that activation of GluA1-containing AMPARs in subregions of the nucleus accumbens reinstates cocaine seeking. SAP97 and 4.1N are proteins involved in GluA1 trafficking to and stabilization in synapses; SAP97-GluA1 interactions also influence dendritic growth. We next examined potential roles of SAP97 and 4.1N in cocaine seeking. Viral-mediated expression of a microRNA that reduces SAP97 protein expression (HSV miSAP97) in the medial accumbens shell attenuated cocaine seeking. In contrast, a virus that overexpressed a dominant-negative form of a 4.1N C-terminal domain (HSV 4.1N-CTD), which prevents endogenous 4.1N binding to GluA1 subunits, had no effect on cocaine seeking. These results indicate that the GluA1 subunit accessory protein SAP97 may represent a novel target for pharmacotherapeutic intervention in the treatment of cocaine craving.
Collapse
Affiliation(s)
- Samantha L White
- Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Pavel I Ortinski
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Shayna H Friedman
- Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Lei Zhang
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center 814, Philadelphia, PA, USA
| | - Rachael L Neve
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research at the Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert G Kalb
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center 814, Philadelphia, PA, USA
| | - Heath D Schmidt
- Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - R Christopher Pierce
- Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
6
|
Chen P, Song J, Luo L, Cheng Q, Xiao H, Gong S. Gene expression of NMDA and AMPA receptors in different facial motor neurons. Laryngoscope 2015; 126:E6-11. [DOI: 10.1002/lary.25575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 07/21/2015] [Accepted: 07/23/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Pei Chen
- Department of Otolaryngology-Head and Neck Surgery; Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan
| | - Jun Song
- Department of Otolaryngology-Head and Neck Surgery; Wuxi Third Hospital; Wuxi
| | - Linghui Luo
- Department of Otolaryngology-Head and Neck Surgery; Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan
| | - Qing Cheng
- Department of Otolaryngology-Head and Neck Surgery; Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan
| | - Hongjun Xiao
- Department of Otolaryngology-Head and Neck Surgery; Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan
| | - Shusheng Gong
- Department of Otolaryngology-Head and Neck Surgery; Beijing Friendship Hospital, Capital Medical University; Beijing China
| |
Collapse
|
7
|
Abstract
In the developing nervous system, ordered neuronal activity patterns can occur even in the absence of sensory input and to investigate how these arise, we have used the model system of the embryonic chicken spinal motor circuit, focusing on motor neurons of the lateral motor column (LMC). At the earliest stages of their molecular differentiation, we can detect differences between medial and lateral LMC neurons in terms of expression of neurotransmitter receptor subunits, including CHRNA5, CHRNA7, GRIN2A, GRIK1, HTR1A and HTR1B, as well as the KCC2 transporter. Using patch-clamp recordings we also demonstrate that medial and lateral LMC motor neurons have subtly different activity patterns that reflect the differential expression of neurotransmitter receptor subunits. Using a combination of patch-clamp recordings in single neurons and calcium-imaging of motor neuron populations, we demonstrate that inhibition of nicotinic, muscarinic or GABA-ergic activity, has profound effects of motor circuit activity during the initial stages of neuromuscular junction formation. Finally, by analysing the activity of large populations of motor neurons at different developmental stages, we show that the asynchronous, disordered neuronal activity that occurs at early stages of circuit formation develops into organised, synchronous activity evident at the stage of LMC neuron muscle innervation. In light of the considerable diversity of neurotransmitter receptor expression, activity patterns in the LMC are surprisingly similar between neuronal types, however the emergence of patterned activity, in conjunction with the differential expression of transmitter systems likely leads to the development of near-mature patterns of locomotor activity by perinatal ages.
Collapse
Affiliation(s)
- Chris Law
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Canada
| | - Michel Paquet
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Canada
| | - Artur Kania
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Canada
- Departments of Anatomy and Cell Biology, and Biology, Division of Experimental Medicine, McGill University Montréal, Montréal, Canada, and Faculté de Médecine, Université de Montréal, Montréal, Canada
- * E-mail:
| |
Collapse
|
8
|
Stein PSG. Molecular, genetic, cellular, and network functions in the spinal cord and brainstem. Ann N Y Acad Sci 2013; 1279:1-12. [PMID: 23530997 DOI: 10.1111/nyas.12083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Studies of the model systems of spinal cord and brainstem reveal molecular, genetic, and cellular mechanisms that are critical for network and behavioral functions in the nervous system. Recent experiments establish the importance of neurogenetics in revealing cellular and network properties. Breakthroughs that utilize direct visualization of neuronal activity and network structure provide new insights. Major discoveries of plasticity in the spinal cord and brainstem contribute to basic neuroscience and, in addition, have promising therapeutic implications.
Collapse
Affiliation(s)
- Paul S G Stein
- Biology Department, Washington University, St. Louis, MO 63130, USA.
| |
Collapse
|