1
|
Xie C, Sun Q, Chen J, Yang B, Lu H, Liu Z, Li Y, Li K, Tang B, Lin L. Cu-Tremella fuciformis polysaccharide-based tumor microenvironment-responsive injectable gels for cuproptosis-based synergistic osteosarcoma therapy. Int J Biol Macromol 2024; 270:132029. [PMID: 38704064 DOI: 10.1016/j.ijbiomac.2024.132029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Cuproptosis affects osteosarcoma locally, and the exploitation of cuproptosis-related biomaterials for osteosarcoma treatment is still in its infancy. We designed and synthesized a novel injectable gel of Cu ion-coordinated Tremella fuciformis polysaccharide (TFP-Cu) for antiosteosarcoma therapy. This material has antitumor effects, the ability to stimulate immunity and promote bone formation, and a controlled Cu2+ release profile in smart response to tumor microenvironment stimulation. TFP-Cu can selectively inhibit the proliferation of K7M2 tumor cells by arresting the cell cycle and promoting cell apoptosis and cuproptosis. TFP-Cu also promoted the M1 polarization of RAW264.7 cells and regulated the immune microenvironment. These effects increased osteogenic gene and protein expression in MC3T3-E1 cells. TFP-Cu could significantly limit tumor growth in tumor-bearing mice by inducing tumor cell apoptosis and improving the activation of anti-CD8 T cell-mediated immune responses. Therefore, TFP-Cu could be a potential candidate for treating osteosarcoma and bioactive drug carrier for further cancer-related applications.
Collapse
Affiliation(s)
- Chao Xie
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China; Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Qili Sun
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Jingle Chen
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Bingsheng Yang
- Department of Orthopaedics, Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Huiwen Lu
- Department of Traditional Chinese Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, PR China
| | - Zhanpeng Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Yucong Li
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Kai Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Bin Tang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China; Guangdong Provincial Key Laboratory of Advanced Biomaterials, PR China.
| | - Lijun Lin
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
2
|
Springer C, Humayun D, Skouta R. Cuproptosis: Unraveling the Mechanisms of Copper-Induced Cell Death and Its Implication in Cancer Therapy. Cancers (Basel) 2024; 16:647. [PMID: 38339398 PMCID: PMC10854864 DOI: 10.3390/cancers16030647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Copper, an essential element for various biological processes, demands precise regulation to avert detrimental health effects and potential cell toxicity. This paper explores the mechanisms of copper-induced cell death, known as cuproptosis, and its potential health and disease implications, including cancer therapy. Copper ionophores, such as elesclomol and disulfiram, increase intracellular copper levels. This elevation triggers oxidative stress and subsequent cell death, offering potential implications in cancer therapy. Additionally, copper ionophores disrupt mitochondrial respiration and protein lipoylation, further contributing to copper toxicity and cell death. Potential targets and biomarkers are identified, as copper can be targeted to those proteins to trigger cuproptosis. The role of copper in different cancers is discussed to understand targeted cancer therapies using copper nanomaterials, copper ionophores, and copper chelators. Furthermore, the role of copper is explored through diseases such as Wilson and Menkes disease to understand the physiological mechanisms of copper. Exploring cuproptosis presents an opportunity to improve treatments for copper-related disorders and various cancers, with the potential to bring significant advancements to modern medicine.
Collapse
Affiliation(s)
- Chloe Springer
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA;
| | - Danish Humayun
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA;
| | - Rachid Skouta
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA;
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA;
| |
Collapse
|
3
|
Guan L, Wang Y, Lin L, Zou Y, Qiu L. Variations in Blood Copper and Possible Mechanisms During Pregnancy. Biol Trace Elem Res 2024; 202:429-441. [PMID: 37777692 DOI: 10.1007/s12011-023-03716-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/24/2023] [Indexed: 10/02/2023]
Abstract
Copper (Cu), an essential trace element, is crucial for both the mother and fetus. Currently, an increasing number of studies have focused on blood copper levels during pregnancy. Studies have found that blood copper levels in pregnant women are higher than those in reproductive-age women, but the trend, mainly in the 2nd and 3rd trimester, is still controversial. Most studies showed that blood copper levels gradually increased during pregnancy, while some studies found that blood copper levels remained stable or even decreased in the 3rd trimester. The possible mechanisms of variations in blood copper during pregnancy include the influence of estrogen (hepatic uptake and excretion, ceruloplasmin synthesis, maternal-fetal transport, etc.), the interaction of other trace elements (Fe, Zn, etc.) and other factors. Among them, maternal-fetal copper transport caused by elevated estrogen may be the main reason for the inconsistencies observed in the 2nd and 3rd trimester during pregnancy. However, there are some mechanisms require further investigation. In the future, the trend and mechanisms of blood copper during pregnancy should be explored more deeply to help doctors better monitor copper status and detect copper abnormalities in time.
Collapse
Affiliation(s)
- Lihua Guan
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, 100730, People's Republic of China
| | - Yifei Wang
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, 100730, People's Republic of China
| | - Liling Lin
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, 100730, People's Republic of China
| | - Yutong Zou
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, 100730, People's Republic of China
| | - Ling Qiu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, 100730, People's Republic of China.
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, 100730, People's Republic of China.
| |
Collapse
|
4
|
Puig-Pijuan T, Souza LRQ, Pedrosa CDSG, Higa LM, Monteiro FL, Tanuri A, Valverde RHF, Einicker-Lamas M, Rehen SK. Copper regulation disturbance linked to oxidative stress and cell death during Zika virus infection in human astrocytes. J Cell Biochem 2022; 123:1997-2008. [PMID: 36063501 DOI: 10.1002/jcb.30323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 12/24/2022]
Abstract
The Zika virus (ZIKV) caused neurological abnormalities in more than 3500 Brazilian newborns between 2015 and 2020. Data have pointed to oxidative stress in astrocytes as well as to dysregulations in neural cell proliferation and cell cycle as important events accounting for the cell death and neurological complications observed in Congenital Zika Syndrome. Copper imbalance has been shown to induce similar alterations in other pathologies, and disturbances in copper homeostasis have already been described in viral infections. Here, we investigated copper homeostasis imbalance as a factor that could contribute to the cytotoxic effects of ZIKV infection in astrocytes. Human induced pluripotent stem cell-derived astrocytes were infected with ZIKV; changes in the gene expression of copper homeostasis proteins were analyzed. The effect of the administration of CuCl2 or a copper chelator on oxidative stress, cell viability and percentage of infection were also studied. ZIKV infection leads to a downregulation of one of the transporters mediating copper release, ATP7B protein. We also observed the activation of mechanisms that counteract high copper levels, including the synthesis of copper chaperones and the reduction of the copper importer protein CTR1. Finally, we show that chelator-mediated copper sequestration in ZIKV-infected astrocytes reduces the levels of reactive oxygen species and improves cell viability, but does not change the overall percentage of infected cells. In summary, our results show that copper homeostasis imbalance plays a role in the pathology of ZIKV in astrocytes, indicating that it may also be a factor accounting for the developmental abnormalities in the central nervous system following viral infection. Evaluating micronutrient levels and the use of copper chelators in pregnant women susceptible to ZIKV infection may be promising strategies to manage novel cases of congenital ZIKV syndrome.
Collapse
Affiliation(s)
- Teresa Puig-Pijuan
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil.,Laboratory of Biomembranes, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leticia R Q Souza
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | | | - Luiza M Higa
- Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio Luis Monteiro
- Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Amilcar Tanuri
- Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael H F Valverde
- Laboratory of Biomembranes, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo Einicker-Lamas
- Laboratory of Biomembranes, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Stevens Kastrup Rehen
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil.,Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Ullal TV, Lakin S, Gallagher B, Sbardellati N, Abdo Z, Twedt DC. Demographic and histopathologic features of dogs with abnormally high concentrations of hepatic copper. J Vet Intern Med 2022; 36:2016-2027. [DOI: 10.1111/jvim.16580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
| | - Steven Lakin
- Colorado State University Fort Collins Colorado USA
| | | | | | - Zaid Abdo
- Colorado State University Fort Collins Colorado USA
| | | |
Collapse
|
6
|
Weiskirchen R, Penning LC. COMMD1, a multi-potent intracellular protein involved in copper homeostasis, protein trafficking, inflammation, and cancer. J Trace Elem Med Biol 2021; 65:126712. [PMID: 33482423 DOI: 10.1016/j.jtemb.2021.126712] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/10/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022]
Abstract
Copper is a trace element indispensable for life, but at the same time it is implicated in reactive oxygen species formation. Several inherited copper storage diseases are described of which Wilson disease (copper overload, mutations in ATP7B gene) and Menkes disease (copper deficiency, mutations in ATP7A gene) are the most prominent ones. After the discovery in 2002 of a novel gene product (i.e. COMMD1) involved in hepatic copper handling in Bedlington terriers, studies on the mechanism of action of COMMD1 revealed numerous non-copper related functions. Effects on hepatic copper handling are likely mediated via interactions with ATP7B. In addition, COMMD1 has many more interacting partners which guide their routing to either the plasma membrane or, often in an ubiquitination-dependent fashion, trigger their proteolysis via the S26 proteasome. By stimulating NF-κB ubiquitination, COMMD1 dampens an inflammatory reaction. Finally, targeting COMMD1 function can be a novel approach in the treatment of tumors.
Collapse
Affiliation(s)
- Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital Aachen, Aachen, Germany
| | - Louis C Penning
- Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Department of Clinical Sciences of Companion Animals, 3584 CM, Utrecht, the Netherlands.
| |
Collapse
|
7
|
Li C, Wang T, Xiao Y, Li K, Meng X, James Kang Y. COMMD1 upregulation is involved in copper efflux from ischemic hearts. Exp Biol Med (Maywood) 2021; 246:607-616. [PMID: 33653183 PMCID: PMC7934151 DOI: 10.1177/1535370220969844] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/09/2020] [Indexed: 02/05/2023] Open
Abstract
Copper depletion is associated with myocardial ischemic infarction, in which copper metabolism MURR domain 1 (COMMD1) is increased. The present study was undertaken to test the hypothesis that the elevated COMMD1 is responsible for copper loss from the ischemic myocardium, thus worsening myocardial ischemic injury. Mice (C57BL/6J) were subjected to left anterior descending coronary artery permanent ligation to induce myocardial ischemic infarction. In the ischemic myocardium, copper reduction was associated with a significant increase in the protein level of COMMD1. A tamoxifen-inducible, cardiomyocyte -specific Commd1 knockout mouse (C57BL/6J) model (COMMD1CMC▲/▲) was generated using the Cre-LoxP recombination system. COMMD1CMC▲/▲ and wild-type littermates were subjected to the same permanent ligation of left anterior descending coronary artery. At the 7th day after ischemic insult, COMMD1 deficiency suppressed copper loss in the heart, along with preservation of vascular endothelial growth factor and vascular endothelial growth factor receptor 1 expression and the integrity of the vascular system in the ischemic myocardium. Corresponding to this change, infarct size of ischemic heart was reduced and myocardial contractile function was well preserved in COMMD1CMC▲/▲ mice. These results thus demonstrate that upregulation of COMMD1 is at least partially responsible for copper efflux from the ischemic heart. Cardiomyocyte-specific deletion of COMMD1 helps preserve the availability of copper for angiogenesis, thus suppressing myocardial ischemic dysfunction.
Collapse
Affiliation(s)
- Chen Li
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Wang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ying Xiao
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kui Li
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xia Meng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Y James Kang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Memphis Institute of Regenerative Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
8
|
Corbee RJ, Penning LC. COMMD1 Exemplifies the Power of Inbred Dogs to Dissect Genetic Causes of Rare Copper-Related Disorders. Animals (Basel) 2021; 11:ani11030601. [PMID: 33668783 PMCID: PMC7996361 DOI: 10.3390/ani11030601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Wilson's Disease is a rare autosomal recessive disorder in humans, often presenting with hepatic copper overload. Finding the genetic cause of a rare disease, especially if it is related to food constituents like the trace element copper, is a Herculean task. This review describes examples of how the unique population structure of in-bred dog strains led to the discovery of a novel gene and two modifier genes involved in inherited copper toxicosis. COMMD1, after the discovery in 2002, was shown to be a highly promiscuous protein involved in copper transport, protein trafficking/degradation, regulation of virus replication, and inflammation. Mutations in the ATP7A and ATP7B proteins in Labrador retrievers and Dobermann dogs resulted in a wide variation in hepatic copper levels in these breeds. To our knowledge, numerous dog breeds with inherited copper toxicosis of unknown genetic origin exist. Therefore, the possibility that men's best friend will provide new leads in rare copper storage diseases seems realistic.
Collapse
|
9
|
Gou Z, Fan Q, Li L, Wang Y, Lin X, Cui X, Ye J, Ding F, Cheng Z, Abouelezz K, Jiang S. High dietary copper induces oxidative stress and leads to decreased egg quality and reproductive performance of Chinese Yellow broiler breeder hens. Poult Sci 2020; 100:100779. [PMID: 33518335 PMCID: PMC7936131 DOI: 10.1016/j.psj.2020.10.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 09/05/2020] [Accepted: 10/19/2020] [Indexed: 01/07/2023] Open
Abstract
The objective of this study was to investigate the effects of dietary copper (Cu) on production, egg quality, and hatchability of Chinese Yellow broiler breeder hens and growth performance of their offspring. A total of 576 30-week-old hens were randomly allotted into 6 groups, each with 6 replicates (8 cages for each replicate with 2 birds per cage). The basal diet contained 3.50 mg/kg Cu, and the other 5 treatment diets contained 8.5, 13.5, 23.5 43.5, and 83.5 mg/kg Cu, respectively, additionally supplemented with Cu on the basal diet. The trial lasted for 15 wk. Qualified egg rate of birds fed 23.5 or 83.5 mg/kg Cu was significantly decreased (P < 0.05) compared with those given 3.5, 8.5, or 13.5 mg/kg Cu. Plasma malondialdehyde concentration showed quadratic effect (P = 0.002) which that decreased first then increased with dietary Cu increased. Highest values of Cu content and hepatic activity of Cu-ATPase occurred in hens fed 83.5 mg/kg dietary Cu with linear (P = 0.001) and quadratic (P = 0.001) effects. Shell strength and proportion on 18th day of live embryos of hens fed 13.5 mg/kg Cu were the greatest compared with other groups respectively (P < 0.05); rate of qualified eggs for hatch and hatchability of fertilized eggs of hens fed 83.5 mg/kg Cu were the least (P < 0.05). In conclusion, both inadequate (3.5 mg/kg diet) and excess (83.5 mg/kg) of dietary Cu can induce oxidative stress in hens and lead to decreased egg quality. Hatchability and growth performance of offspring were decreased when breeder hens were fed excess Cu in spite of greater hatching weight. The appropriate dietary Cu level for Chinese Yellow broiler breeder hens during the egg-laying period is 15.7 to 21.2 mg/kg (1.81-2.44 mg Cu fed per day) when based on Cu level and Cu-ATPase activity in the liver. This dietary Cu requirement is approximately doubled (∼40 mg/kg, ∼4.60 mg Cu per bird per day) for maximal response of eggshell thickness.
Collapse
|
10
|
Copper Homeostasis in Mammals, with Emphasis on Secretion and Excretion. A Review. Int J Mol Sci 2020; 21:ijms21144932. [PMID: 32668621 PMCID: PMC7403968 DOI: 10.3390/ijms21144932] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 01/17/2023] Open
Abstract
One of the hallmarks of Cu metabolism in mammals is that tissue and fluid levels are normally maintained within a very narrow range of concentrations. This results from the ability of the organism to respond to variations in intake from food and drink by balancing excretion, which occurs mainly via the bile and feces. Although this sounds straightforward and we have already learned a great deal about aspects of this process, the balance between overall intake and excretion occurs over a high background of Cu recycling, which has generally been ignored. In fact, most of the Cu absorbed from the GI tract actually comes from digestive fluids and is constantly “re-used”. A great deal more recycling of Cu probably occurs in the interior, between cells of individual tissues and the fluid of the blood and interstitium. This review presents what is known that is pertinent to understanding these complexities of mammalian Cu homeostasis and indicates where further studies are needed.
Collapse
|
11
|
Lin W, Han W, Wen K, Huang S, Tang Y, Lin Z, Han M. The Alterations of Copper and Zinc Homeostasis in Acute Appendicitis and the Clinical Significance. Biol Trace Elem Res 2019; 192:116-122. [PMID: 30771140 DOI: 10.1007/s12011-019-01661-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/04/2019] [Indexed: 02/05/2023]
Abstract
Copper (Cu) and zinc (Zn) are involved in inflammatory process. This study was to investigate the clinical significance of Cu and Zn homeostasis alterations in acute appendicitis (AA). One hundred twenty-two AA patients and 102 healthy controls were enrolled in this study. Of which, 85 patients' appendixes were collected after appendectomy. Another six appendixes from colon cancer patients were collected as tissue controls. The contents of Cu and Zn in serum or appendix were detected, and the Cu to Zn ratio (CZr) was calculated. The concentrations of serum ceruloplasmin (CP), Cu/Zn superoxide dismutase (SOD1), interleukin-6 (IL-6), and interleukin-22 in serum were measured, as well as the activity of CP and SOD1. The serum Zn concentration and SOD1 activity, appendix contents of Cu and Zn significantly decreased in AA patients, compared with those of controls, while serum CZr, concentrations of CP, SOD1, and IL-6, as well as CP activity increased significantly in AA patients. Additionally, serum concentrations of Zn, CP, CZr, or SOD1 activity varied in different pathological types of AA. Indicators such as serum SOD1 activity might serve as predictors for pathological classification before surgery. The serum Zn and CZr may be helpful for diagnosis of pure AA. The Cu and Zn homeostasis was altered in AA patients, which might contribute to inflammatory process of AA.
Collapse
Affiliation(s)
- Wenhao Lin
- Emergency Department of Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Wei Han
- Emergency Department of Shenzhen University General Hospital, Shenzhen, China
| | - Ke Wen
- Department of Microsurgery, Taihe Hospital, Shiyan, China
| | - Sunhua Huang
- Emergency Department of Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Yao Tang
- Emergency Department of Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Zhexuan Lin
- Bio-analytical Laboratory, Shantou University Medical College, Shantou, China.
| | - Ming Han
- Emergency Department of Shenzhen University General Hospital, Shenzhen, China.
| |
Collapse
|
12
|
Kruitwagen HS, Fieten H, Penning LC. Towards Bioengineered Liver Stem Cell Transplantation Studies in a Preclinical Dog Model for Inherited Copper Toxicosis. Bioengineering (Basel) 2019; 6:E88. [PMID: 31557851 PMCID: PMC6955979 DOI: 10.3390/bioengineering6040088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 01/20/2023] Open
Abstract
Wilson Disease is a rare autosomal recessive liver disorder in humans. Although its clinical presentation and age of onset are highly variable, hallmarks include signs of liver disease, neurological features and so-called Kayser-Fleischer rings in the eyes of the patient. Hepatic copper accumulation leads to liver disease and eventually to liver cirrhosis. Treatment options include life-long copper chelation therapy and/or decrease in copper intake. Eventually liver transplantations are indicated. Although clinical outcome of liver transplantations is favorable, the lack of suitable donor livers hampers large numbers of transplantations. As an alternative, cell therapies with hepatocytes or liver stem cells are currently under investigation. Stem cell biology in relation to pets is in its infancy. Due to the specific population structure of dogs, canine copper toxicosis is frequently encountered in various dog breeds. Since the histology and clinical presentation resemble Wilson Disease, we combined genetics, gene-editing, and matrices-based stem cell cultures to develop a translational preclinical transplantation model for inherited copper toxicosis in dogs. Here we describe the roadmap followed, starting from the discovery of a causative copper toxicosis mutation in a specific dog breed and culminating in transplantation of genetically-engineered autologous liver stem cells.
Collapse
Affiliation(s)
- Hedwig S Kruitwagen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584CM Utrecht, The Netherlands.
| | - Hille Fieten
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584CM Utrecht, The Netherlands.
| | - Louis C Penning
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584CM Utrecht, The Netherlands.
| |
Collapse
|
13
|
Webster CRL, Center SA, Cullen JM, Penninck DG, Richter KP, Twedt DC, Watson PJ. ACVIM consensus statement on the diagnosis and treatment of chronic hepatitis in dogs. J Vet Intern Med 2019; 33:1173-1200. [PMID: 30844094 PMCID: PMC6524396 DOI: 10.1111/jvim.15467] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 02/14/2019] [Indexed: 12/13/2022] Open
Abstract
This consensus statement on chronic hepatitis (CH) in dogs is based on the expert opinion of 7 specialists with extensive experience in diagnosing, treating, and conducting clinical research in hepatology in dogs. It was generated from expert opinion and information gathered from searching of PubMed for manuscripts on CH, the Veterinary Information Network for abstracts and conference proceeding from annual meetings of the American College of Veterinary Medicine and the European College of Veterinary Medicine, and selected manuscripts from the human literature on CH. The panel recognizes that the diagnosis and treatment of CH in the dog is a complex process that requires integration of clinical presentation with clinical pathology, diagnostic imaging, and hepatic biopsy. Essential to this process is an index of suspicion for CH, knowledge of how to best collect tissue samples, access to a pathologist with experience in assessing hepatic histopathology, knowledge of reasonable medical interventions, and a strategy for monitoring treatment response and complications.
Collapse
Affiliation(s)
- Cynthia R. L. Webster
- Department of Clinical SciencesCummings School of Veterinary Medicine at Tufts UniversityGraftonMassachusetts
| | - Sharon A. Center
- Department of Clinical SciencesNew York State College of Veterinary Medicine at Cornell UniversityIthacaNew York
| | - John M. Cullen
- Population Health and PathobiologyNorth Carolina State Veterinary MedicineRaleighNorth Carolina
| | - Dominique G. Penninck
- Department of Clinical SciencesCummings School of Veterinary Medicine at Tufts UniversityGraftonMassachusetts
| | - Keith P. Richter
- Ethos Veterinary Health and Veterinary Specialty Hospital of San DiegoSan DiegoCalifornia
| | - David C. Twedt
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical SciencesColorado State UniversityFort CollinsColorado
| | - Penny J. Watson
- Department of Veterinary MedicineUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
14
|
Kruitwagen HS, Penning LC. Preclinical models of Wilson's disease, why dogs are catchy alternatives. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:S71. [PMID: 31179308 DOI: 10.21037/atm.2019.02.06] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Copper toxicosis is frequently encountered in various dog breeds. A number of differences and similarities occur between Wilson disease and copper toxicosis in Bedlington terriers, caused by a mutation in the COMMD1 gene, and copper toxicosis in Labrador retrievers, caused by mutations in both ATP7A and ATP7B gene. First the specific population structure of dog breeds is explained with reference to its applicability for genetic investigations. The relatively large body size (variable from less than 1 kg to over 50 kg) and life-span (over 10 years) of dogs facilitates preclinical studies on safety on long-term effects of novel procedures. Then copper toxicosis in the two dog breeds is described in detail with an emphasis on the functions of the causative proteins. Some of the advantages of this species for preclinical studies are described with an example of liver stem cell transplantations in COMMD1 deficient dogs. Since the genetic background of copper toxicosis in other dogs' breeds has not yet been elucidated, it is conceivable that novel copper-related gene products or modifier genes will be discovered. About a century after the Novel prize was awarded to the research on dogs (Pavlov), dogs are in spotlight again as important preclinical model animals.
Collapse
Affiliation(s)
- Hedwig S Kruitwagen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Louis C Penning
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
15
|
Dirksen K, Spee B, Penning LC, van den Ingh TSGAM, Burgener IA, Watson AL, Groot Koerkamp M, Rothuizen J, van Steenbeek FG, Fieten H. Gene expression patterns in the progression of canine copper-associated chronic hepatitis. PLoS One 2017; 12:e0176826. [PMID: 28459846 PMCID: PMC5411060 DOI: 10.1371/journal.pone.0176826] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 04/18/2017] [Indexed: 12/26/2022] Open
Abstract
Copper is an essential trace element, but can become toxic when present in abundance. The severe effects of copper-metabolism imbalance are illustrated by the inherited disorders Wilson disease and Menkes disease. The Labrador retriever dog breed is a novel non-rodent model for copper-storage disorders carrying mutations in genes known to be involved in copper transport. Besides disease initiation and progression of copper accumulation, the molecular mechanisms and pathways involved in progression towards copper-associated chronic hepatitis still remain unclear. Using expression levels of targeted candidate genes as well as transcriptome micro-arrays in liver tissue of Labrador retrievers in different stages of copper-associated hepatitis, pathways involved in progression of the disease were studied. At the initial phase of increased hepatic copper levels, transcriptomic alterations in livers mainly revealed enrichment for cell adhesion, developmental, inflammatory, and cytoskeleton pathways. Upregulation of targeted MT1A and COMMD1 mRNA shows the liver's first response to rising intrahepatic copper concentrations. In livers with copper-associated hepatitis mainly an activation of inflammatory pathways is detected. Once the hepatitis is in the chronic stage, transcriptional differences are found in cell adhesion adaptations and cytoskeleton remodelling. In view of the high similarities in copper-associated hepatopathies between men and dog extrapolation of these dog data into human biomedicine seems feasible.
Collapse
Affiliation(s)
- Karen Dirksen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Bart Spee
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Louis C. Penning
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | - Iwan A. Burgener
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department für Kleintiere und Pferde, Veterinärmedizinische Universität Wien, Vienna, Austria
| | | | | | - Jan Rothuizen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Frank G. van Steenbeek
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Hille Fieten
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
16
|
Abstract
Copper is an essential trace metal that is required for several important biological processes, however, an excess of copper can be toxic to cells. Therefore, systemic and cellular copper homeostasis is tightly regulated, but dysregulation of copper homeostasis may occur in disease states, resulting either in copper deficiency or copper overload and toxicity. This chapter will give an overview on the biological roles of copper and of the mechanisms involved in copper uptake, storage, and distribution. In addition, we will describe potential mechanisms of the cellular toxicity of copper and copper oxide nanoparticles. Finally, we will summarize the current knowledge on the connection of copper toxicity with neurodegenerative diseases.
Collapse
Affiliation(s)
- Felix Bulcke
- Center for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, Bremen, Germany
- Center for Environmental Research and Sustainable Technology, Bremen, Germany
| | - Ralf Dringen
- Center for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, Bremen, Germany
- Center for Environmental Research and Sustainable Technology, Bremen, Germany
| | - Ivo Florin Scheiber
- Center for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, Bremen, Germany.
- Center for Environmental Research and Sustainable Technology, Bremen, Germany.
| |
Collapse
|
17
|
Öhrvik H, Aaseth J, Horn N. Orchestration of dynamic copper navigation – new and missing pieces. Metallomics 2017; 9:1204-1229. [DOI: 10.1039/c7mt00010c] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A general principle in all cells in the body is that an essential metal – here copper – is taken up at the plasma membrane, directed through cellular compartments for use in specific enzymes and pathways, stored in specific scavenging molecules if in surplus, and finally expelled from the cells.
Collapse
Affiliation(s)
- Helena Öhrvik
- Medical Biochemistry and Microbiology
- Uppsala University
- Sweden
| | - Jan Aaseth
- Innlandet Hospital Trust and Inland Norway University of Applied Sciences
- Norway
| | | |
Collapse
|
18
|
Fedoseienko A, Wieringa HW, Wisman GBA, Duiker E, Reyners AKL, Hofker MH, van der Zee AGJ, van de Sluis B, van Vugt MATM. Nuclear COMMD1 Is Associated with Cisplatin Sensitivity in Ovarian Cancer. PLoS One 2016; 11:e0165385. [PMID: 27788210 PMCID: PMC5082896 DOI: 10.1371/journal.pone.0165385] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 10/11/2016] [Indexed: 01/18/2023] Open
Abstract
Copper metabolism MURR1 domain 1 (COMMD1) protein is a multifunctional protein, and its expression has been correlated with patients’ survival in different types of cancer. In vitro studies revealed that COMMD1 plays a role in sensitizing cancer cell lines to cisplatin, however, the mechanism and its role in platinum sensitivity in cancer has yet to be established. We evaluated the role of COMMD1 in cisplatin sensitivity in A2780 ovarian cancer cells and the relation between COMMD1 expression and response to platinum-based therapy in advanced stage high-grade serous ovarian cancer (HGSOC) patients. We found that elevation of nuclear COMMD1 expression sensitized A2780 ovarian cancer cells to cisplatin-mediated cytotoxicity. This was accompanied by a more effective G2/M checkpoint, and decreased protein expression of the DNA repair gene BRCA1, and the apoptosis inhibitor BCL2. Furthermore, COMMD1 expression was immunohistochemically analyzed in two tissue micro-arrays (TMAs), representing a historical cohort and a randomized clinical trial-based cohort of advanced stage HGSOC tumor specimens. Expression of COMMD1 was observed in all ovarian cancer samples, however, specifically nuclear expression of COMMD1 was only observed in a subset of ovarian cancers. In our historical cohort, nuclear COMMD1 expression was associated with an improved response to chemotherapy (OR = 0.167; P = 0.038), although this association could not be confirmed in the second cohort, likely due to sample size. Taken together, these results suggest that nuclear expression of COMMD1 sensitize ovarian cancer to cisplatin, possibly by modulating the G2/M checkpoint and through controlling expression of genes involved in DNA repair and apoptosis.
Collapse
Affiliation(s)
- Alina Fedoseienko
- Department of Pediatrics, Molecular Genetics Section, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hylke W. Wieringa
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Gynecological Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - G. Bea A. Wisman
- Department of Gynecological Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Evelien Duiker
- Department of Pathology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anna K. L. Reyners
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marten H. Hofker
- Department of Pediatrics, Molecular Genetics Section, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ate G. J. van der Zee
- Department of Gynecological Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bart van de Sluis
- Department of Pediatrics, Molecular Genetics Section, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- * E-mail: (BvdS); (MATMvV)
| | - Marcel A. T. M. van Vugt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- * E-mail: (BvdS); (MATMvV)
| |
Collapse
|
19
|
Kim YG, Kim SY, Kim JH, Lee KK, Yun YM. Prevalence and Clinical Relevance of Exon 2 Deletion of COMMD1 in Bedlington Terriers in Korea. J Vet Intern Med 2016; 30:1846-1850. [PMID: 27727471 PMCID: PMC5115198 DOI: 10.1111/jvim.14590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 07/28/2016] [Accepted: 08/31/2016] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Deletion of exon 2 of copper metabolism domain containing 1 (COMMD1) results in copper toxicosis in Bedlington terriers (CT-BT). OBJECTIVES This study was conducted to identify the prevalence and clinical relevance of the COMMD1 mutation in Bedlington terriers in Korea. ANIMALS A total of 105 purebred Bedlington terriers (50 males, 55 females) from the kennels and pet dog clubs in Korea were examined during the period 2008-2013. METHODS A multiplex PCR was carried out to detect exon 2 deletion of COMMD1. Clinical analysis was performed on each genetic group, and clinical status of the dogs was followed up to estimate survival probability. RESULTS Of the 105 samples, 52 (49%) were wild-type homozygote, 47 (45%) were heterozygote, and 6 (6%) were mutant-type homozygote. Plasma alanine aminotransferase (ALT) activity was increased in the mutant-type homozygous group >2 years of age (P < .0001). The survival probability of 6 mutant-type homozygotes surviving 2.5 years was 0.67, and 4 years was 0.5. CONCLUSIONS AND CLINICAL IMPORTANCE Results show the prevalence and clinical relevance of exon 2 deletion of COMMD1 and could help establish a structured selective breeding program to prevent CT-BT in Korea.
Collapse
Affiliation(s)
- Y G Kim
- Department of Internal Medicine, College of Veterinary Medicine, Jeju National University, Jeju, Korea
| | - S Y Kim
- Department of Internal Medicine, College of Veterinary Medicine, Jeju National University, Jeju, Korea
| | - J H Kim
- Department of Internal Medicine, College of Veterinary Medicine, Jeju National University, Jeju, Korea.,Veterinary Medical Research Institute, Jeju National University, Jeju, Korea
| | - K K Lee
- Department of Internal Medicine, College of Veterinary Medicine, Jeju National University, Jeju, Korea.,Veterinary Medical Research Institute, Jeju National University, Jeju, Korea
| | - Y M Yun
- Department of Internal Medicine, College of Veterinary Medicine, Jeju National University, Jeju, Korea.,Veterinary Medical Research Institute, Jeju National University, Jeju, Korea
| |
Collapse
|
20
|
Humann-Ziehank E. Selenium, copper and iron in veterinary medicine-From clinical implications to scientific models. J Trace Elem Med Biol 2016; 37:96-103. [PMID: 27316591 DOI: 10.1016/j.jtemb.2016.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/24/2016] [Accepted: 05/26/2016] [Indexed: 12/27/2022]
Abstract
Diseases related to copper, selenium or iron overload or deficiency are common and well-described in large animal veterinary medicine. Some of them certainly have the potential to serve as useful animal models for ongoing research in the field of trace elements. Obvious advantages of large animal models compared to laboratory animal models like rats and mice are the option of long-term, consecutive examinations of progressive deficient or toxic stages and the opportunity to collect various, high volume samples for repeated measurements. Nevertheless, close cooperation between scientific disciplines is necessary as scientists using high sophisticated analytical methods and equipment are not regularly in touch with scientists working with large animal diseases. This review will give an introduction into some typical animal diseases related to trace elements and will present approaches where the animal diseases were used already as a model for interdisciplinary research.
Collapse
Affiliation(s)
- Esther Humann-Ziehank
- Klinik für kleine Klauentiere und forensische Medizin und Ambulatorische Klinik, Stiftung Tierärztliche Hochschule Hannover, Bischofsholer Damm 15, D-30173 Hannover, Germany, Germany.
| |
Collapse
|
21
|
CCC- and WASH-mediated endosomal sorting of LDLR is required for normal clearance of circulating LDL. Nat Commun 2016; 7:10961. [PMID: 26965651 PMCID: PMC4792963 DOI: 10.1038/ncomms10961] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/04/2016] [Indexed: 12/21/2022] Open
Abstract
The low-density lipoprotein receptor (LDLR) plays a pivotal role in clearing atherogenic circulating low-density lipoprotein (LDL) cholesterol. Here we show that the COMMD/CCDC22/CCDC93 (CCC) and the Wiskott–Aldrich syndrome protein and SCAR homologue (WASH) complexes are both crucial for endosomal sorting of LDLR and for its function. We find that patients with X-linked intellectual disability caused by mutations in CCDC22 are hypercholesterolaemic, and that COMMD1-deficient dogs and liver-specific Commd1 knockout mice have elevated plasma LDL cholesterol levels. Furthermore, Commd1 depletion results in mislocalization of LDLR, accompanied by decreased LDL uptake. Increased total plasma cholesterol levels are also seen in hepatic COMMD9-deficient mice. Inactivation of the CCC-associated WASH complex causes LDLR mislocalization, increased lysosomal degradation of LDLR and impaired LDL uptake. Furthermore, a mutation in the WASH component KIAA0196 (strumpellin) is associated with hypercholesterolaemia in humans. Altogether, this study provides valuable insights into the mechanisms regulating cholesterol homeostasis and LDLR trafficking. Low density lipoprotein receptor (LDLR) is crucial for cholesterol homeostasis. Here, the authors show that components of the CCC-protein complex, CCDC22 and COMMD1, facilitate the endosomal sorting of LDLR and that mutations in these genes cause hypercholesterolemia in dogs and mice, providing new insights into regulation of cholesterol homeostasis.
Collapse
|
22
|
Ramos D, Mar D, Ishida M, Vargas R, Gaite M, Montgomery A, Linder MC. Mechanism of Copper Uptake from Blood Plasma Ceruloplasmin by Mammalian Cells. PLoS One 2016; 11:e0149516. [PMID: 26934375 PMCID: PMC4774968 DOI: 10.1371/journal.pone.0149516] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 02/01/2016] [Indexed: 12/24/2022] Open
Abstract
Ceruloplasmin, the main copper binding protein in blood plasma, has been of particular interest for its role in efflux of iron from cells, but has additional functions. Here we tested the hypothesis that it releases its copper for cell uptake by interacting with a cell surface reductase and transporters, producing apoceruloplasmin. Uptake and transepithelial transport of copper from ceruloplasmin was demonstrated with mammary epithelial cell monolayers (PMC42) with tight junctions grown in bicameral chambers, and purified human (64)Cu-labeled ceruloplasmin secreted by HepG2 cells. Monolayers took up virtually all the (64)Cu over 16h and secreted half into the apical (milk) fluid. This was partly inhibited by Ag(I). The (64)Cu in ceruloplasmin purified from plasma of (64)Cu-injected mice accumulated linearly in mouse embryonic fibroblasts (MEFs) over 3-6h. Rates were somewhat higher in Ctr1+/+ versus Ctr1-/- cells, and 3-fold lower at 2 °C. The ceruloplasmin-derived (64)Cu could not be removed by extensive washing or trypsin treatment, and most was recovered in the cytosol. Actual cell copper (determined by furnace atomic absorption) increased markedly upon 24h exposure to holoceruloplasmin. This was accompanied by a conversion of holo to apoceruloplasmin in the culture medium and did not occur during incubation in the absence of cells. Four different endocytosis inhibitors failed to prevent 64Cu uptake from ceruloplasmin. High concentrations of non-radioactive Cu(II)- or Fe(III)-NTA (substrates for cell surface reductases), or Cu(I)-NTA (to compete for transporter uptake) almost eliminated uptake of (64)Cu from ceruloplasmin. MEFs had cell surface reductase activity and expressed Steap 2 (but not Steaps 3 and 4 or dCytB). However, six-day siRNA treatment was insufficient to reduce activity or uptake. We conclude that ceruloplasmin is a circulating copper transport protein that may interact with Steap2 on the cell surface, forming apoceruloplasmin, and Cu(I) that enters cells through CTR1 and an unknown copper uptake transporter.
Collapse
Affiliation(s)
- Danny Ramos
- Department of Chemistry and Biochemistry, California State University, Fullerton, California, United States of America
| | - David Mar
- Department of Chemistry and Biochemistry, California State University, Fullerton, California, United States of America
| | - Michael Ishida
- Department of Chemistry and Biochemistry, California State University, Fullerton, California, United States of America
| | - Rebecca Vargas
- Department of Chemistry and Biochemistry, California State University, Fullerton, California, United States of America
| | - Michaella Gaite
- Department of Chemistry and Biochemistry, California State University, Fullerton, California, United States of America
| | - Aaron Montgomery
- Department of Chemistry and Biochemistry, California State University, Fullerton, California, United States of America
| | - Maria C. Linder
- Department of Chemistry and Biochemistry, California State University, Fullerton, California, United States of America
- * E-mail:
| |
Collapse
|
23
|
Cellular sensing and transport of metal ions: implications in micronutrient homeostasis. J Nutr Biochem 2015; 26:1103-15. [PMID: 26342943 DOI: 10.1016/j.jnutbio.2015.08.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/23/2015] [Accepted: 08/04/2015] [Indexed: 12/15/2022]
Abstract
Micronutrients include the transition metal ions zinc, copper and iron. These metals are essential for life as they serve as cofactors for many different proteins. On the other hand, they can also be toxic to cell growth when in excess. As a consequence, all organisms require mechanisms to tightly regulate the levels of these metal ions. In eukaryotes, one of the primary ways in which metal levels are regulated is through changes in expression of genes required for metal uptake, compartmentalization, storage and export. By tightly regulating the expression of these genes, each organism is able to balance metal levels despite fluctuations in the diet or extracellular environment. The goal of this review is to provide an overview of how gene expression can be controlled at a transcriptional, posttranscriptional and posttranslational level in response to metal ions in lower and higher eukaryotes. Specifically, I review what is known about how these metalloregulatory factors sense fluctuations in metal ion levels and how changes in gene expression maintain nutrient homeostasis.
Collapse
|
24
|
Bartuzi P, Wijshake T, Dekker DC, Fedoseienko A, Kloosterhuis NJ, Youssef SA, Li H, Shiri-Sverdlov R, Kuivenhoven JA, de Bruin A, Burstein E, Hofker MH, van de Sluis B. A cell-type-specific role for murine Commd1 in liver inflammation. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2257-65. [PMID: 25072958 DOI: 10.1016/j.bbadis.2014.06.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/29/2014] [Accepted: 06/02/2014] [Indexed: 12/18/2022]
Abstract
The transcription factor NF-κB plays a critical role in the inflammatory response and it has been implicated in various diseases, including non-alcoholic fatty liver disease (NAFLD). Although transient NF-κB activation may protect tissues from stress, a prolonged NF-κB activation can have a detrimental effect on tissue homeostasis and therefore accurate termination is crucial. Copper Metabolism MURR1 Domain-containing 1 (COMMD1), a protein with functions in multiple pathways, has been shown to suppress NF-κB activity. However, its action in controlling liver inflammation has not yet been investigated. To determine the cell-type-specific contribution of Commd1 to liver inflammation, we used hepatocyte and myeloid-specific Commd1-deficient mice. We also used a mouse model of NAFLD to study low-grade chronic liver inflammation: we fed the mice a high fat, high cholesterol (HFC) diet, which results in hepatic lipid accumulation accompanied by liver inflammation. Depletion of hepatocyte Commd1 resulted in elevated levels of the NF-κB transactivation subunit p65 (RelA) but, surprisingly, the level of liver inflammation was not aggravated. In contrast, deficiency of myeloid Commd1 exacerbated diet-induced liver inflammation. Unexpectedly we observed that hepatic and myeloid Commd1 deficiency in the mice both augmented hepatic lipid accumulation. The elevated levels of proinflammatory cytokines in myeloid Commd1-deficient mice might be responsible for the increased level of steatosis. This increase was not seen in hepatocyte Commd1-deficient mice, in which increased lipid accumulation appeared to be independent of inflammation. Our mouse models demonstrate a cell-type-specific role for Commd1 in suppressing liver inflammation and in the progression of NAFLD.
Collapse
Affiliation(s)
- Paulina Bartuzi
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Molecular Genetics Section, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Tobias Wijshake
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Molecular Genetics Section, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Daphne C Dekker
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Molecular Genetics Section, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Alina Fedoseienko
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Molecular Genetics Section, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Niels J Kloosterhuis
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Molecular Genetics Section, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Sameh A Youssef
- Dutch Molecular Pathology Center, Department of Pathology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, De Uithof, 3584 CL Utrecht, The Netherlands
| | - Haiying Li
- University of Texas Southwestern Medical Center, Departments of Internal Medicine and Molecular Biology, Dallas, TX 75390-9151, USA
| | - Ronit Shiri-Sverdlov
- Department of Molecular Genetics, Maastricht University, 6202 AZ Maastricht, The Netherlands
| | - Jan-Albert Kuivenhoven
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Molecular Genetics Section, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Alain de Bruin
- Dutch Molecular Pathology Center, Department of Pathology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, De Uithof, 3584 CL Utrecht, The Netherlands
| | - Ezra Burstein
- University of Texas Southwestern Medical Center, Departments of Internal Medicine and Molecular Biology, Dallas, TX 75390-9151, USA
| | - Marten H Hofker
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Molecular Genetics Section, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Bart van de Sluis
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Molecular Genetics Section, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| |
Collapse
|