1
|
Beura SK, Panigrahi AR, Yadav P, Kulkarni PP, Lakhanpal V, Singh B, Singh SK. Role of Thrombosis in Neurodegenerative Diseases: An Intricate Mechanism of Neurovascular Complications. Mol Neurobiol 2024:10.1007/s12035-024-04589-4. [PMID: 39482419 DOI: 10.1007/s12035-024-04589-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024]
Abstract
Thrombosis, the formation of blood clots in arteries or veins, poses a significant health risk by disrupting the blood flow. It can potentially lead to major cardiovascular complications such as acute myocardial infarction or ischemic stroke (arterial thrombosis) and deep vein thrombosis or pulmonary embolism (venous thrombosis). Nevertheless, over the course of several decades, researchers have observed an association between different cardiovascular events and neurodegenerative diseases, which progressively harm and impair parts of the nervous system, particularly the brain. Furthermore, thrombotic complications have been identified in numerous clinical instances of neurodegenerative diseases, particularly Alzheimer's disease, Parkinson's disease, multiple sclerosis, and Huntington's disease. Substantial research indicates that endothelial dysfunction, vascular inflammation, coagulation abnormalities, and platelet hyperactivation are commonly observed in these conditions, collectively contributing to an increased risk of thrombosis. Thrombosis can, in turn, contribute to the onset, pathogenesis, and severity of these neurological disorders. Hence, this concise review comprehensively explores the correlation between cardiovascular diseases and neurodegenerative diseases, elucidating the cellular and molecular mechanisms of thrombosis in these neurodegenerative diseases. Additionally, a detailed discussion is provided on the commonly employed antithrombotic medications in the context of these neuronal diseases.
Collapse
Affiliation(s)
- Samir Kumar Beura
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India, 151401
| | | | - Pooja Yadav
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India, 151401
| | - Paresh P Kulkarni
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Vikas Lakhanpal
- Department of Neurology, All India Institute of Medical Sciences, Bathinda, Punjab, India, 151001
| | - Bhupinder Singh
- Department of Cardiology, All India Institute of Medical Sciences, Bathinda, Punjab, India, 151001
| | - Sunil Kumar Singh
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India, 151401.
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India, 151401.
| |
Collapse
|
2
|
Habibah T, Matonohová J, Kulhánek J, Fitzgerald U, Ingr M, Pravda M, Pandit A, Velebný V. In situ formed aldehyde-modified hyaluronic acid hydrogel with polyelectrolyte complexes of aldehyde-modified chondroitin sulfate and gelatin: An approach for minocycline delivery. Carbohydr Polym 2024; 343:122455. [PMID: 39174092 DOI: 10.1016/j.carbpol.2024.122455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 08/24/2024]
Abstract
Polysaccharides like hyaluronan (HA) and chondroitin sulfate (CS) are native of the brain's extracellular matrix crucial for myelination and brain maturation. Despite extensive research on HA and CS as drug delivery systems (DDS), their high water solubility limits their application as drug carriers. This study introduces an injectable DDS using aldehyde-modified hyaluronic acid (HAOX) hydrogel containing polyelectrolyte complexes (PEC) formed with calcium, gelatin, and either CS or aldehyde-modified CS (CSOX) to deliver minocycline for Multiple Sclerosis therapy. PECs with CSOX enable covalent crosslinking to HAOX, creating immobilized PECs (HAOX_PECOX), while those with CS remain unbound (HAOX_PECS). The in situ forming DDS can be administered via a 20 G needle, with rapid gelation preventing premature leakage. The system integrates into an implanted device for minocycline release through either Fickian or anomalous diffusion, depending on PEC immobilization. HAOX_PECOX reduced burst release by 88 %, with a duration of 127 h for 50 % release. The DDS exhibited an elastic modulus of 3800 Pa and a low swelling ratio (0-1 %), enabling precise control of minocycline release kinetics. Released minocycline reduced IL-6 secretion in the Whole Blood Monocytes Activation Test, suggesting that DDS formation may not alter the biological activity of the loaded drug.
Collapse
Affiliation(s)
- Tutut Habibah
- Contipro a.s. Dolní Dobrouč 401, Dolní Dobrouč, 56102, Czechia; Faculty of Technology, Tomas Bata University in Zlin, Vavrečkova, 5669, Czechia
| | - Jana Matonohová
- Contipro a.s. Dolní Dobrouč 401, Dolní Dobrouč, 56102, Czechia
| | | | - Una Fitzgerald
- CURAM, SFI Centre for Research on Biomedical Devices, Biomedical Engineering, University of Galway, Upper Newcastle, H91 W2TY, Ireland
| | - Marek Ingr
- Faculty of Technology, Tomas Bata University in Zlin, Vavrečkova, 5669, Czechia
| | - Martin Pravda
- Contipro a.s. Dolní Dobrouč 401, Dolní Dobrouč, 56102, Czechia.
| | - Abhay Pandit
- CURAM, SFI Centre for Research on Biomedical Devices, Biomedical Engineering, University of Galway, Upper Newcastle, H91 W2TY, Ireland
| | | |
Collapse
|
3
|
Mado H, Stasiniewicz A, Adamczyk-Sowa M, Sowa P. Selected Interleukins Relevant to Multiple Sclerosis: New Directions, Potential Targets and Therapeutic Perspectives. Int J Mol Sci 2024; 25:10931. [PMID: 39456713 PMCID: PMC11506881 DOI: 10.3390/ijms252010931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) that progresses with demyelination and neurodegeneration. To date, many studies have revealed the key role of interleukins in the pathogenesis of MS, but their impact has not been fully explained. The aim of the present study was to collect and review the results obtained so far regarding the influence of interleukins on the development and course of MS and to assess the potential for their further use. Through the platform "PubMed", terms related to interleukins and MS were searched. The following interval was set as the time criterion: 2014-2024. A total of 12,731 articles were found, and 100 papers were subsequently used. Cells that produce IL-10 have a neuroprotective effect, whereas those that synthesize IL-6 most likely exacerbate neuroinflammation. IL-12, IL-23 and IL-18 represent pro-inflammatory cytokines. It was found that treatment with an anti-IL-12p40 monoclonal antibody in a study group of MS patients showed a beneficial effect. IL-4 is a pleiotropic cytokine that plays a significant role in type 2 immune responses and inhibits MS progression. IL-13 is an anti-inflammatory cytokine through which the processes of oligodendrogenesis and remyelination occur more efficiently. The group of interleukins discussed in our paper may represent a promising starting point for further research aimed at finding new therapies and prognostic markers for MS.
Collapse
Affiliation(s)
- Hubert Mado
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, ul. 3 Maja 13/15, 41-800 Zabrze, Poland
| | - Artur Stasiniewicz
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, ul. 3 Maja 13/15, 41-800 Zabrze, Poland
| | - Monika Adamczyk-Sowa
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, ul. 3 Maja 13/15, 41-800 Zabrze, Poland
| | - Paweł Sowa
- Department of Otorhinolaryngology and Oncological Laryngology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| |
Collapse
|
4
|
Tancreda G, Ravera S, Panfoli I. Exploring the Therapeutic Potential: Bioactive Molecules and Dietary Interventions in Multiple Sclerosis Management. Curr Issues Mol Biol 2024; 46:5595-5613. [PMID: 38921006 PMCID: PMC11202103 DOI: 10.3390/cimb46060335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune demyelinating disease of the central nervous system, the etiology of which is still unclear. Its hallmarks are inflammation and axonal damage. As a disease primarily impacting younger individuals, the social cost of MS is high. It has been proposed that environmental factors, smoking, and dietary habits acting on a genetic susceptibility play a role in MS. Recent studies indicate that diet can significantly influence the onset and progression of MS. This review delves into the impact of natural bioactive molecules on MS development and explores the dietary interventions that hold promise in managing the disease. Dietary patterns, including ketogenic and Mediterranean diets, are discussed. Theories about the potential mechanistic associations beneath the noted effects are also proposed. Several dietary components and patterns demonstrated the potential for a significant impact on MS. However, extensive prospective clinical trials are necessary to fully understand the role of natural bioactive molecules as disease modifiers in MS.
Collapse
Affiliation(s)
- Gabriele Tancreda
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy
| | - Silvia Ravera
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy
| | - Isabella Panfoli
- Department of Pharmacy (DIFAR), University of Genoa, 16132 Genoa, Italy
| |
Collapse
|
5
|
Xu M, Wang H, Ren S, Wang B, Yang W, Lv L, Sha X, Li W, Wang Y. Identification of crucial inflammaging related risk factors in multiple sclerosis. Front Mol Neurosci 2024; 17:1398665. [PMID: 38836117 PMCID: PMC11148336 DOI: 10.3389/fnmol.2024.1398665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/30/2024] [Indexed: 06/06/2024] Open
Abstract
Background Multiple sclerosis (MS) is an immune-mediated disease characterized by inflammatory demyelinating lesions in the central nervous system. Studies have shown that the inflammation is vital to both the onset and progression of MS, where aging plays a key role in it. However, the potential mechanisms on how aging-related inflammation (inflammaging) promotes MS have not been fully understood. Therefore, there is an urgent need to integrate the underlying mechanisms between inflammaging and MS, where meaningful prediction models are needed. Methods First, both aging and disease models were developed using machine learning methods, respectively. Then, an integrated inflammaging model was used to identify relative risk factors, by identifying essential "aging-inflammation-disease" triples. Finally, a series of bioinformatics analyses (including network analysis, enrichment analysis, sensitivity analysis, and pan-cancer analysis) were further used to explore the potential mechanisms between inflammaging and MS. Results A series of risk factors were identified, such as the protein homeostasis, cellular homeostasis, neurodevelopment and energy metabolism. The inflammaging indices were further validated in different cancer types. Therefore, various risk factors were integrated, and even both the theories of inflammaging and immunosenescence were further confirmed. Conclusion In conclusion, our study systematically investigated the potential relationships between inflammaging and MS through a series of computational approaches, and could present a novel thought for other aging-related diseases.
Collapse
Affiliation(s)
- Mengchu Xu
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, Liaoning, China
| | - Huize Wang
- Department of Nursing, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Siwei Ren
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, Liaoning, China
| | - Bing Wang
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, Liaoning, China
| | - Wenyan Yang
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, Liaoning, China
| | - Ling Lv
- Department of Thorax, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xianzheng Sha
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, Liaoning, China
| | - Wenya Li
- Department of Thorax, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yin Wang
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, Liaoning, China
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
6
|
Hong JP, Yoo BG, Song HY, Byun EB, Ryu GH, Byun EH. Immunostimulatory potential of extruded plant-based meat: effect of extrusion moisture level on macrophage activation. Food Sci Biotechnol 2024; 33:1459-1466. [PMID: 38585568 PMCID: PMC10992094 DOI: 10.1007/s10068-023-01432-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/15/2023] [Accepted: 09/06/2023] [Indexed: 04/09/2024] Open
Abstract
In this study, the effect of different moisture levels in extruded plant-based meat on macrophage immunostimulation, and the potential of this meat as a protein source and a solution to environmental and economic challenges associated with conventional meat was investigated. To determine the effects of the extruded plant-based meat, cell viability assay, enzyme-linked immunosorbent assay, flow cytometry, and western blotting were performed. Low-moisture (LMME) and high-moisture meat extracts (HMME) showed higher potential to activate macrophages and regulate cytokine production than raw material extract. Treatment with LMME and HMME resulted in increased expression of CD80, CD86, and MHC class I/II proteins, indicating their potential to activate macrophages. Western blotting suggested that the immune activation observed in a previous study of macrophages was because of the phosphorylation of MAPKs and NF-κB. These findings suggest that extruded plant-based meat can potentially be used as an immunostimulatory food ingredient.
Collapse
Affiliation(s)
- Jun-Pyo Hong
- Department of Food Science and Technology, Kongju National University, Yesan, 32439 Republic of Korea
| | - Bo-Gyeong Yoo
- Department of Food Science and Technology, Kongju National University, Yesan, 32439 Republic of Korea
| | - Ha-Yeon Song
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Eui-Baek Byun
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Gi-Hyung Ryu
- Department of Food Science and Technology, Kongju National University, Yesan, 32439 Republic of Korea
- Food Science Research Institute, Kongju National University, Yesan, 32439 Republic of Korea
| | - Eui-Hong Byun
- Department of Food Science and Technology, Kongju National University, Yesan, 32439 Republic of Korea
- Food Science Research Institute, Kongju National University, Yesan, 32439 Republic of Korea
| |
Collapse
|
7
|
Grunwald C, Krętowska-Grunwald A, Adamska-Patruno E, Kochanowicz J, Kułakowska A, Chorąży M. The Role of Selected Interleukins in the Development and Progression of Multiple Sclerosis-A Systematic Review. Int J Mol Sci 2024; 25:2589. [PMID: 38473835 PMCID: PMC10932438 DOI: 10.3390/ijms25052589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Multiple sclerosis is a disabling inflammatory disorder of the central nervous system characterized by demyelination and neurodegeneration. Given that multiple sclerosis remains an incurable disease, the management of MS predominantly focuses on reducing relapses and decelerating the progression of both physical and cognitive decline. The continuous autoimmune process modulated by cytokines seems to be a vital contributing factor to the development and relapse of multiple sclerosis. This review sought to summarize the role of selected interleukins in the pathogenesis and advancement of MS. Patients with MS in the active disease phase seem to exhibit an increased serum level of IL-2, IL-4, IL-6, IL-13, IL-17, IL-21, IL-22 and IL-33 compared to healthy controls and patients in remission, while IL-10 appears to have a beneficial impact in preventing the progression of the disease. Despite being usually associated with proinflammatory activity, several studies have additionally recognized a neuroprotective role of IL-13, IL-22 and IL-33. Moreover, selected gene polymorphisms of IL-2R, IL-4, IL-6, IL-13 and IL-22 were identified as a possible risk factor related to MS development. Treatment strategies of multiple sclerosis that either target or utilize these cytokines seem rather promising, but more comprehensive research is necessary to gain a clearer understanding of how these cytokines precisely affect MS development and progression.
Collapse
Affiliation(s)
- Cezary Grunwald
- Department of Neurology, Medical University of Bialystok, Marii Skłodowskiej-Curie 24A, 15-276 Białystok, Poland; (J.K.); (A.K.)
| | - Anna Krętowska-Grunwald
- Department of Pediatric Oncology and Hematology, Medical University of Bialystok, Jerzego Waszyngtona 17, 15-274 Białystok, Poland;
| | - Edyta Adamska-Patruno
- Clinical Research Center, Medical University of Bialystok, Marii Skłodowskiej-Curie 24A, 15-276 Białystok, Poland;
| | - Jan Kochanowicz
- Department of Neurology, Medical University of Bialystok, Marii Skłodowskiej-Curie 24A, 15-276 Białystok, Poland; (J.K.); (A.K.)
| | - Alina Kułakowska
- Department of Neurology, Medical University of Bialystok, Marii Skłodowskiej-Curie 24A, 15-276 Białystok, Poland; (J.K.); (A.K.)
| | - Monika Chorąży
- Department of Neurology, Medical University of Bialystok, Marii Skłodowskiej-Curie 24A, 15-276 Białystok, Poland; (J.K.); (A.K.)
| |
Collapse
|
8
|
Abulaban AA, Al-Kuraishy HM, Al-Gareeb AI, Elekhnawy E, Alanazi A, Alexiou A, Papadakis M, Batiha GES. Role of fenofibrate in multiple sclerosis. Eur J Med Res 2024; 29:113. [PMID: 38336772 PMCID: PMC10854163 DOI: 10.1186/s40001-024-01700-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Multiple sclerosis (MS) is the most frequent inflammatory and demyelinating disease of the central nervous system (CNS). The underlying pathophysiology of MS is the destruction of myelin sheath by immune cells. The formation of myelin plaques, inflammation, and injury of neuronal myelin sheath characterizes its neuropathology. MS plaques are multiple focal regions of demyelination disseminated in the brain's white matter, spinal cords, deep grey matter, and cerebral cortex. Fenofibrate is a peroxisome proliferative activated receptor alpha (PPAR-α) that attenuates the inflammatory reactions in MS. Fenofibrate inhibits differentiation of Th17 by inhibiting the expression of pro-inflammatory signaling. According to these findings, this review intended to illuminate the mechanistic immunoinflammatory role of fenofibrate in mitigating MS neuropathology. In conclusion, fenofibrate can attenuate MS neuropathology by modulating different pathways, including oxidative stress, autophagy, mitochondrial dysfunction, inflammatory-signaling pathways, and neuroinflammation.
Collapse
Affiliation(s)
- Ahmad A Abulaban
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Division of Neurology, King Abdulaziz Medical City, Ministry of the National Guard Health Affairs, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, 14132, Iraq
| | - Ali I Al-Gareeb
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, 14132, Iraq
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Departments, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| | - Asma Alanazi
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Kingdom of Saudi Arabia
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Research & Development, Funogen, Athens, Greece
- Department of Research & Development, AFNP Med, 1030, Vienna, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, 42283, Wuppertal, Germany.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| |
Collapse
|
9
|
Rustemoglu H, Arslan E, Atasever S, Cevik B, Taspinar F, Turhan AB, Rustemoglu A. Could NCOA5 a novel candidate gene for multiple sclerosis susceptibility? Mol Biol Rep 2023; 50:9335-9341. [PMID: 37817021 DOI: 10.1007/s11033-023-08830-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 09/14/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND Multiple sclerosis (MS) is an inflammatory immune-mediated demyelinating disease that causes a challenging and disabling condition. Environmental and genetic factors play a role in appearing the state of the disease. Recent studies have shown that nuclear cofactor genes may play a role in the pathogenesis of MS. NCOA5 is a nuclear receptor coactivator independent of AF2 that modulates ERa-mediated transcription. This gene is involved in the pathogenesis of diseases such as psoriasis, Behcet's disease, and cancer. METHODS AND RESULTS We investigated the relationship between the rs2903908 polymorphism of the NCOA5 gene and MS among 157 unrelated MS patients and 160 healthy controls by RT-PCR. The frequencies of the CC, CT, and TT genotypes were 19.87%, 37.82%, and 42.31%, respectively, for the MS group and 5.63%, 43.75%, and 50.62%, respectively, for the control group. The CC genotype and the C allele were found to be significantly higher in the patient group (the p values were 0.0002 and 0.003, respectively). CONCLUSIONS The fact that the CC genotype was found to be significantly higher in the patient group compared to the control group (p = 0.0002) and that it had a statistically significantly higher OR value (OR, 95% CI = 4.16, 1.91-9.05) suggests that the C allele may recessively predispose to MS for this polymorphism. These results suggest for the first time that the NCOA5 gene may have an effect on the occurrence of MS through different molecular pathways, which are discussed in the manuscript.
Collapse
Affiliation(s)
- Husniye Rustemoglu
- Faculty of Medicine, Department of Medical Biology, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Erdem Arslan
- Faculty of Medicine, Department of Medical Pharmacology, Aksaray University, Aksaray, Turkey
| | - Sema Atasever
- Faculty of Medicine, Department of Medical Biology, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Betul Cevik
- Faculty of Medicine, Department of Neurology, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Filiz Taspinar
- Faculty of Medicine, Department of Physiology, Aksaray University, Aksaray, Turkey
| | - Ahmet Bülent Turhan
- Faculty of Medicine, Department of Medical Biology, Aksaray University, Bahcesaray Mah. 170. Cad. No:19, Aksaray, 68100, Turkey
| | - Aydin Rustemoglu
- Faculty of Medicine, Department of Medical Biology, Aksaray University, Bahcesaray Mah. 170. Cad. No:19, Aksaray, 68100, Turkey.
| |
Collapse
|
10
|
Shahsavan M, Amr B, Chiappetta S, Kermansaravi M. Effect of Metabolic and Bariatric Surgery on the Clinical Course of Multiple Sclerosis in Patients with Severe Obesity: a Systematic Review. Obes Surg 2023; 33:2219-2228. [PMID: 37162713 DOI: 10.1007/s11695-023-06633-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/11/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune inflammatory condition affecting the central nervous system (CNS). A systematic review following the PRISMA guidelines was performed to explore the effect of metabolic and bariatric surgery (MBS) on the clinical course and outcomes in patients with multiple sclerosis. Eleven articles examining 394 patients were included in the final analysis. The mean MS duration at the time of surgery was 7.6 ± 4.6 years, and the mean postoperative follow-up was 35.5 ± 5.3 months. MBS leads to the same weight loss with the same complication rate as in patients without MS. Most of patients experienced improvement in clinical course of MS after MBS, compared to non-surgical group. However, there is a risk for MS exacerbation in a number of patients after MBS; they should not be disadvantaged from having MBS, since surgery leads to the same weight loss outcomes with the same complication rate as in patients without MS.
Collapse
Affiliation(s)
- Masoumeh Shahsavan
- Minimally Invasive Surgery Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Bassem Amr
- Taunton and Somerset Foundation Trust, Taunton, UK
| | - Sonja Chiappetta
- Bariatric and Metabolic Surgery Unit, Ospedale Evangelico Betania, Naples, Italy
| | - Mohammad Kermansaravi
- Division of Minimally Invasive and Bariatric Surgery, Department of Surgery, Minimally Invasive Surgery Research Center, Rasool-E Akram Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Center of Excellence of European Branch of International Federation for Surgery of Obesity, Hazrat-e Rasool Hospital, Tehran, Iran.
| |
Collapse
|
11
|
Barabási B, Barna L, Santa-Maria AR, Harazin A, Molnár R, Kincses A, Vigh JP, Dukay B, Sántha M, Tóth ME, Walter FR, Deli MA, Hoyk Z. Role of interleukin-6 and interleukin-10 in morphological and functional changes of the blood-brain barrier in hypertriglyceridemia. Fluids Barriers CNS 2023; 20:15. [PMID: 36882782 PMCID: PMC9990353 DOI: 10.1186/s12987-023-00418-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Hypertriglyceridemia is closely linked to atherosclerosis related inflammatory processes and blood-brain barrier (BBB) dysfunction. Using apolipoprotein B-100 (APOB-100) transgenic mice, an animal model of chronic hypertriglyceridemia, we analyzed BBB function and morphology in vitro and ex vivo. Our objective was to determine which BBB characteristics are produced mainly by interleukin (IL)-6, an atherosclerosis promoting cytokine, and whether these actions can be antagonized by IL-10, an anti-inflammatory cytokine. METHODS Brain endothelial and glial cell cultures and brain microvessels were isolated from wild type (WT) and APOB-100 transgenic mice and were treated with IL-6, IL-10 and their combination. First, IL-6 and IL-10 production was measured in WT and APOB-100 microvessels using qPCR. Then functional parameters of endothelial cell cultures were analyzed and immunocytochemistry for key BBB proteins was performed. RESULTS IL-6 mRNA levels were higher in brain microvessels than in brain parenchyma of APOB-100 transgenic mice. Transendothelial electric resistance and P-glycoprotein activity were lower, and paracellular permeability was higher in cultured APOB-100 brain endothelial cells. These features were sensitive to both IL-6 and IL-10 treatments. A decreased P-glycoprotein immunostaining was measured in transgenic endothelial cells under control conditions and in WT cells after treating them with IL-6. This effect was antagonized by IL-10. Changes in immunostaining for tight junction proteins were observed after IL-6 exposure, which were in part antagonized by IL-10. In glial cell cultures an increase in aquaporin-4 immunolabeling in the transgenic group and an increase in microglia cell density in WT glia cultures was detected after IL-6 treatment, which was antagonized by IL-10. In isolated brain microvessels a decrease in P-glycoprotein immunolabeled area fraction was measured in APOB-100 microvessels under control conditions and in WT microvessels after every cytokine treatment. ZO-1 immunolabeling showed characteristics similar to that of P-glycoprotein. No change was seen in claudin-5 and occludin immunoreactive area fractions in microvessels. A decrease in aquaporin-4 immunoreactivity was measured in WT microvessels treated by IL-6, which was antagonized by IL-10. CONCLUSION IL-6 produced in microvessels contributes to BBB impairment observed in the APOB-100 mice. We showed that IL-10 partly antagonizes the effects of IL-6 at the BBB.
Collapse
Affiliation(s)
- Beáta Barabási
- Institute of Biophysics, Biological Research Centre, Temesvári Krt. 62, Szeged, 6726, Hungary.,Doctoral School of Theoretical Medicine, University of Szeged, Tisza L. Krt. 109, Szeged, 6725, Hungary
| | - Lilla Barna
- Institute of Biophysics, Biological Research Centre, Temesvári Krt. 62, Szeged, 6726, Hungary
| | - Ana Raquel Santa-Maria
- Institute of Biophysics, Biological Research Centre, Temesvári Krt. 62, Szeged, 6726, Hungary.,Wyss Institute for Biologically Inspired Engineering at Harvard University, 3 Blackfan Circle, Boston, MA, 02115, USA
| | - András Harazin
- Institute of Biophysics, Biological Research Centre, Temesvári Krt. 62, Szeged, 6726, Hungary
| | - Réka Molnár
- Institute of Biophysics, Biological Research Centre, Temesvári Krt. 62, Szeged, 6726, Hungary
| | - András Kincses
- Institute of Biophysics, Biological Research Centre, Temesvári Krt. 62, Szeged, 6726, Hungary
| | - Judit P Vigh
- Institute of Biophysics, Biological Research Centre, Temesvári Krt. 62, Szeged, 6726, Hungary
| | - Brigitta Dukay
- Institute of Biochemistry, Biological Research Centre, Temesvári Krt. 62, Szeged, 6726, Hungary
| | - Miklós Sántha
- Institute of Biochemistry, Biological Research Centre, Temesvári Krt. 62, Szeged, 6726, Hungary
| | - Melinda E Tóth
- Institute of Biochemistry, Biological Research Centre, Temesvári Krt. 62, Szeged, 6726, Hungary
| | - Fruzsina R Walter
- Institute of Biophysics, Biological Research Centre, Temesvári Krt. 62, Szeged, 6726, Hungary.
| | - Mária A Deli
- Institute of Biophysics, Biological Research Centre, Temesvári Krt. 62, Szeged, 6726, Hungary.
| | - Zsófia Hoyk
- Institute of Biophysics, Biological Research Centre, Temesvári Krt. 62, Szeged, 6726, Hungary.
| |
Collapse
|
12
|
Barnhoorn MC, van der Meulen-de Jong AE, Schrama ECLM, Plug LG, Verspaget HW, Fibbe WE, van Pel M, Hawinkels LJAC, Schepers K. Cytokine Mixtures Mimicking the Local Milieu in Patients with Inflammatory Bowel Disease Impact Phenotype and Function of Mesenchymal Stromal Cells. Stem Cells Transl Med 2022; 11:932-945. [PMID: 35984079 PMCID: PMC9492159 DOI: 10.1093/stcltm/szac054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 06/23/2022] [Indexed: 02/06/2023] Open
Abstract
Locally applied mesenchymal stromal cells (MSCs) have the capacity to promote the healing of perianal fistulas in Crohn’s disease (CD) and are under clinical development for the treatment of proctitis in ulcerative colitis (UC). Despite these clinical advances, the mechanism of action of local MSC therapy in inflammatory bowel disease (IBD) is largely unknown. We hypothesized that the local cytokine environment in IBD patients affects the immunomodulatory properties of MSCs. To evaluate this, 11 cytokines were analyzed in inflamed tissues obtained from CD and UC patients. Based on the identified cytokine profiles 4 distinct cytokine mixtures that mimic various inflammatory IBD environments were established. Next, MSCs were cultured in the presence of either of these 4 cytokine mixtures after which the expression of immunomodulatory and tissue regenerative molecules and the capacity of MSCs to modulate T-cell proliferation and dendritic cell (DC) differentiation were assessed. Our data show that MSCs respond, in a cytokine-specific manner, by upregulation of immunomodulatory and tissue regenerative molecules, including cyclooxygenase-2, indoleamine 2,3-dioxygenase, and transforming growth factor-β1. Functional studies indicate that MSCs exposed to a cytokine profile mimicking one of the 2 UC cytokine milieus were less effective in inhibition of DC differentiation. In conclusion, our data indicate that cytokine mixes mimicking the local cytokine milieus of inflamed UC colonic or CD fistulas tissues can differentially affect the immunomodulatory and tissue regenerative characteristics of MSCs. These data support the hypothesis that the local intestinal cytokine milieu serves as a critical factor in the efficacy of local MSC treatment.
Collapse
Affiliation(s)
- Marieke C Barnhoorn
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Ellen C L M Schrama
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Leonie G Plug
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hein W Verspaget
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Willem E Fibbe
- Department of Internal Medicine and Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Melissa van Pel
- Department of Internal Medicine and Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Lukas J A C Hawinkels
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Koen Schepers
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
13
|
Zou M, Chen FJ, Deng LR, Han Q, Huang CY, Shen SS, Tomlinson B, Li YH. Anemoside B4 ameliorates experimental autoimmune encephalomyelitis in mice by modulating inflammatory responses and the gut microbiota. Eur J Pharmacol 2022; 931:175185. [PMID: 35987252 DOI: 10.1016/j.ejphar.2022.175185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Anemoside B4 (AB4) is a representative component of Pulsatilla decoction that is used in traditional Chinese medicine for treating inflammatory conditions. It is not known whether AB4 has beneficial effects on multiple sclerosis (MS). METHODS In the present study, we examined the preventative and therapeutic effects of AB4, and the possible mechanism by which it protects female mice against experimental autoimmune encephalomyelitis (EAE). RESULTS Preventative treatment with AB4 (given orally at 100 and 200 mg/kg for 18 days) reduced the clinical severity of EAE significantly (from 3.6 ± 1.3 to 1.8 ± 1.5 and 1.6 ± 0.6, respectively), and inhibited demyelination and inflammatory infiltration of the spinal cord. In the therapeutic protocol, oral administration of 200 mg/kg AB4 for 21 days after initiation of EAE significantly alleviated disease severity (from 2.6 ± 1.3 to 0.9 ± 0.6) and was as effective as the clinically used drug fingolimod (0.3 ± 0.6). Furthermore, both doses of AB4 significantly inhibited mRNA expression of TNF-α, IL-6, and IL-17, and STAT3 activation, in the spinal cord; and the ex vivo and iv vitro AB4 treatment markedly inhibited secretion of the three cytokines from lymphocytes of EAE mice upon in vitro restimulation. In addition, AB4 reversed the changes in the composition of the intestinal microbiome observed in EAE mice. CONCLUSION We reveal for the first time that AB4 protects against EAE by modulating inflammatory responses and the gut microbiota, demonstrating that AB4 may have potential as a therapeutic agent for treating MS in humans.
Collapse
Affiliation(s)
- Min Zou
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Fang-Jun Chen
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Li-Rong Deng
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Qian Han
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Chang-Yin Huang
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Shi-Shi Shen
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Brian Tomlinson
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Yan-Hong Li
- School of Medicine, South China University of Technology, Guangzhou, China.
| |
Collapse
|
14
|
Hesperetin, a Citrus Flavonoid, Ameliorates Inflammatory Cytokine-Mediated Inhibition of Oligodendroglial Cell Morphological Differentiation. Neurol Int 2022; 14:471-487. [PMID: 35736620 PMCID: PMC9230394 DOI: 10.3390/neurolint14020039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 12/04/2022] Open
Abstract
Oligodendrocytes (oligodendroglial cells) are glial cells that wrap neuronal axons with their differentiated plasma membranes called myelin membranes. In the pathogenesis of inflammatory cytokine-related oligodendroglial cell and myelin diseases such as multiple sclerosis (MS), typical inflammatory cytokines tumor necrosis factor α (TNFα) and interleukin-6 (IL-6) are thought to contribute to the degeneration and/or progression of the degeneration of oligodendroglial cells and, in turn, the degeneration of naked neuronal cells in the central nervous system (CNS) tissues. Despite the known involvement of these inflammatory cytokines in disease progression, it has remained unclear whether and how TNFα or IL-6 affects the oligodendroglial cells themselves or indirectly. Here we show that TNFα or IL-6 directly inhibits morphological differentiation in FBD-102b cells, which are differentiation models of oligodendroglial cells. Their phenotype changes were supported by the decreased expression levels of oligodendroglial cell differentiation and myelin marker proteins. In addition, TNFα or IL-6 decreased phosphorylation levels of Akt kinase, whose upregulation has been associated with promoting oligodendroglial cell differentiation. Hesperetin, a flavonoid mainly contained in citrus fruit, is known to have neuroprotective effects. Hesperetin might also be able to resolve pre-illness conditions, including the irregulated secretion of cytokines, through diet. Notably, the addition of hesperetin into cells recovered TNFα- or IL-6-induced inhibition of differentiation, as supported by increased levels of marker protein expression and phosphorylation of Akt kinase. These results suggest that TNFα or IL-6 itself contributes to the inhibitory effects on the morphological differentiation of oligodendroglial cells, possibly providing information not only on their underlying pathological effects but also on flavonoids with potential therapeutic effects at the molecular and cellular levels.
Collapse
|
15
|
Salwierak-Głośna K, Piątek P, Domowicz M, Świderek-Matysiak M. Effect of Multiple Sclerosis Cerebrospinal Fluid and Oligodendroglia Cell Line Environment on Human Wharton's Jelly Mesenchymal Stem Cells Secretome. Int J Mol Sci 2022; 23:ijms23042177. [PMID: 35216294 PMCID: PMC8878514 DOI: 10.3390/ijms23042177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) is a neurological disorder of autoimmune aetiology. Experimental therapies with the use of mesenchymal stem cells (MSCs) have emerged as a response to the unmet need for new treatment options. The unique immunomodulatory features of stem cells obtained from Wharton’s jelly (WJ-MSCs) make them an interesting research and therapeutic model. Most WJ-MSCs transplants for multiple sclerosis use intrathecal administration. We studied the effect of cerebrospinal fluid (CSF) obtained from MS patients on the secretory activity of WJ-MSCs and broaden this observation with WJ-MSCs interactions with human oligodendroglia cell line (OLs). Analysis of the WJ-MSCs secretory activity with use of Bio-Plex Pro™ Human Cytokine confirmed significant and diverse immunomodulatory potential. Our data reveal rich WJ-MSCs secretome with markedly increased levels of IL-6, IL-8, IP-10 and MCP-1 synthesis and a favourable profile of growth factors. The addition of MS CSF to the WJ-MSCs culture caused depletion of most proteins measured, only IL-12, RANTES and GM-CSF levels were increased. Most cytokines and chemokines decreased their concentrations in WJ-MSCs co-cultured with OLs, only eotaxin and RANTES levels were slightly increased. These results emphasize the spectrum of the immunomodulatory properties of WJ-MSCs and show how those effects can be modulated depending on the transplantation milieu.
Collapse
Affiliation(s)
| | - Paweł Piątek
- Department of Neurology, Medical University of Lodz, 90-419 Lodz, Poland; (K.S.-G.); (P.P.); (M.D.)
- Department of Immunogenetics, Medical University of Lodz, 90-419 Lodz, Poland
| | - Małgorzata Domowicz
- Department of Neurology, Medical University of Lodz, 90-419 Lodz, Poland; (K.S.-G.); (P.P.); (M.D.)
| | - Mariola Świderek-Matysiak
- Department of Neurology, Medical University of Lodz, 90-419 Lodz, Poland; (K.S.-G.); (P.P.); (M.D.)
- Correspondence:
| |
Collapse
|
16
|
Role of Inflammatory Cytokines, Growth Factors and Adipokines in Adipogenesis and Insulin Resistance. Inflammation 2021; 45:31-44. [PMID: 34536157 PMCID: PMC8449520 DOI: 10.1007/s10753-021-01559-z] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 01/06/2023]
Abstract
Obesity, manifested by increased adiposity, represents a main cause of morbidity in the developed countries, causing increased risk of insulin resistance and type 2 diabetes mellitus. Recruitment of macrophages and activation of innate immunity represent the initial insult, which can be further exacerbated through secretion of chemokines and adipocytokines from activated macrophages and other cells within the adipose tissue. These events can impact adipogenesis, causing dysfunction of the adipose tissue and increased risk of insulin resistance. Various factors mediate adiposity and related insulin resistance including inflammatory and non-inflammatory factors such as pro and anti-inflammatory cytokines, adipokines and growth factors. In this review we will discuss the role of these factors in adipogenesis and development of insulin resistance and type 2 diabetes mellitus in the context of obesity. Understanding the molecular mechanisms that mediate adipogenesis and insulin resistance could help the development of novel therapeutic strategies for individuals at higher risk of insulin resistance and type 2 diabetes mellitus.
Collapse
|
17
|
Association of CNS demyelination and COVID-19 infection: an updated systematic review. J Neurol 2021; 269:541-576. [PMID: 34386902 PMCID: PMC8359762 DOI: 10.1007/s00415-021-10752-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/05/2021] [Accepted: 08/05/2021] [Indexed: 12/27/2022]
Abstract
Background Since the declaration of COVID-19 pandemic, several case reports of demyelination of both peripheral and central nervous systems have been published. The association between CNS demyelination and viral infection has long been documented, and this link was recently reported following SARS-CoV-2 infection as well. Objectives In this systematic review, we aim to investigate the existing literature on CNS demyelination associated with SARS-CoV-2, and the proposed pathophysiological mechanisms. Methods We conducted a systematic review of articles in PubMed, SCOPUS, EMBASE, Cochrane, Google Scholar and Ovid databases, from 1 January 2020 until June 15, 2021. The following keywords were used: “COVID-19”, “SARS-CoV-2”, “demyelination”, “demyelinating disease”, “multiple sclerosis”, “neuromyelitis optica”, and “transverse myelitis”. Results A total of 60 articles were included in the final analysis of this systematic review and included 102 patients: 52 (51%) men and 50 (49%) women, with a median age of 46.5 years. The demyelination mimicked a variety of conditions with a picture of encephalitis/encephalomyelitis being the most common. At the same time other patterns were less frequently reported such as MS, NMOSD and even MOGAD. Longitudinally extensive transverse myelitis (LETM) was the most frequently reported pattern of spinal cord involvement. Conclusion A growing body of literature has shown an association between SARS‐CoV‐2 infection and the development of different types of CNS demyelination. Although causality cannot readily be inferred, this review may suggest a probable causal relationship, through a para-infectious or post-infectious immune-mediated etiology in COVID-19 patients. This relationship needs to be clarified in future research.
Collapse
|
18
|
Functional and structural analysis of cytokine-selective IL6ST defects that cause recessive hyper-IgE syndrome. J Allergy Clin Immunol 2021; 148:585-598. [PMID: 33771552 DOI: 10.1016/j.jaci.2021.02.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 01/24/2021] [Accepted: 02/12/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Biallelic variants in IL6ST, encoding GP130, cause a recessive form of hyper-IgE syndrome (HIES) characterized by high IgE level, eosinophilia, defective acute phase response, susceptibility to bacterial infections, and skeletal abnormalities due to cytokine-selective loss of function in GP130, with defective IL-6 and IL-11 and variable oncostatin M (OSM) and IL-27 levels but sparing leukemia inhibitory factor (LIF) signaling. OBJECTIVE Our aim was to understand the functional and structural impact of recessive HIES-associated IL6ST variants. METHODS We investigated a patient with HIES by using exome, genome, and RNA sequencing. Functional assays assessed IL-6, IL-11, IL-27, OSM, LIF, CT-1, CLC, and CNTF signaling. Molecular dynamics simulations and structural modeling of GP130 cytokine receptor complexes were performed. RESULTS We identified a patient with compound heterozygous novel missense variants in IL6ST (p.Ala517Pro and the exon-skipping null variant p.Gly484_Pro518delinsArg). The p.Ala517Pro variant resulted in a more profound IL-6- and IL-11-dominated signaling defect than did the previously identified recessive HIES IL6ST variants p.Asn404Tyr and p.Pro498Leu. Molecular dynamics simulations suggested that the p.Ala517Pro and p.Asn404Tyr variants result in increased flexibility of the extracellular membrane-proximal domains of GP130. We propose a structural model that explains the cytokine selectivity of pathogenic IL6ST variants that result in recessive HIES. The variants destabilized the conformation of the hexameric cytokine receptor complexes, whereas the trimeric LIF-GP130-LIFR complex remained stable through an additional membrane-proximal interaction. Deletion of this membrane-proximal interaction site in GP130 consequently caused additional defective LIF signaling and Stüve-Wiedemann syndrome. CONCLUSION Our data provide a structural basis to understand clinical phenotypes in patients with IL6ST variants.
Collapse
|
19
|
Asakly S, Magen-Rimon R, Ighbariya A, Marjih-Shallufi M, Ben-Porat T, Ravid S, Eran A, Gepstein V, Hanna S, Weiss R. Bariatric Surgery-Associated Myelopathy. Obes Facts 2021; 14:431-439. [PMID: 34311464 PMCID: PMC8406245 DOI: 10.1159/000515374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/17/2021] [Indexed: 11/19/2022] Open
Abstract
Bariatric surgery is gaining acceptance as an efficient treatment modality for adults and adolescents with morbid obesity. The early postbariatric period has the potential to induce an immunomodulatory imbalance due to the development or worsening of nutritional deficiencies, changes in hormonal balance (specifically after sleeve gastrectomy), and a shift in the proinflammatory cytokine profile along with a major change in the gut microbiome and permeability. These changes may induce encephalomyelitic T cell activity, change neural barrier permeability, and induce gut dysbioisis, favoring a proinflammatory metabolic profile. Such changes, in genetically prone individuals or those with additional risk factors, may lead to the development of myelopathy, particularly MS. Key Message: Postbariatric myelopathy is rare but should be considered in bariatric patients with relevant complaints in the postoperative period.
Collapse
|
20
|
Jaime-Pérez JC, Turrubiates-Hernández GA, López-Silva LJ, Salazar-Riojas R, Gómez-Almaguer D. Early changes in IL-21, IL-22, CCL2, and CCL4 serum cytokines after outpatient autologous transplantation for multiple sclerosis: A proof of concept study. Clin Transplant 2020; 34:e14114. [PMID: 33048389 DOI: 10.1111/ctr.14114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/18/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022]
Abstract
Changes in serum cytokines after autologous hematopoietic stem cell transplantation (AHSCT) in multiple sclerosis (MS) patients were documented. Thirty-six consecutive MS patients who had their Expanded Disability Status Scale (EDSS) scored before AHSCT were prospectively enrolled. Cyclophosphamide (Cy) was infused at 200 mg/kg in two administrations given 10 days apart: the first dose for mobilization, the second as the conditioning regimen. Patients were mobilized with 10 µg/kg/day subcutaneous G-CSF. Serum was collected 14 days before and 14 after AHSCT. IL-6, IL-9, IL-10, IL 17-A, IL-21, IL-22, IL-23, TNF-A, CCL2, CCL3, and CCL4 were measured by magnetic bead-based immunoassay. t Test and Wilcoxon test were used to compare cytokine levels before and after AHSCT. There were 28 women and 8 men with a median age of 46 (15-62) years, median duration of MS was 9.5 (1-32) years, and EDSS score was 5.7 (1.5-8.0). Patients had a decrement of pro-inflammatory IL-21 and IL-22 (p = .003 and p = .028) and an increment of anti-inflammatory CCL2 and CCL4 (p < .001 and p = .039) after AHSCT. Decrease of IL-21 and IL-22 coupled with an increment of CCL2 and CCL4 could reflect the immunomodulatory effect of auto-HSCT and be an early indicator of its efficacy.
Collapse
Affiliation(s)
- José C Jaime-Pérez
- Department of Hematology, Internal Medicine Division, Dr. José Eleuterio González University Hospital and School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| | - Grecia A Turrubiates-Hernández
- Department of Hematology, Internal Medicine Division, Dr. José Eleuterio González University Hospital and School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| | - Leslie J López-Silva
- Department of Hematology, Internal Medicine Division, Dr. José Eleuterio González University Hospital and School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| | - Rosario Salazar-Riojas
- Department of Hematology, Internal Medicine Division, Dr. José Eleuterio González University Hospital and School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| | - David Gómez-Almaguer
- Department of Hematology, Internal Medicine Division, Dr. José Eleuterio González University Hospital and School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| |
Collapse
|
21
|
Gardin A, Ufer M, Legangneux E, Rossato G, Jin Y, Su Z, Pal P, Li W, Shakeri-Nejad K. Effect of Fluconazole Coadministration and CYP2C9 Genetic Polymorphism on Siponimod Pharmacokinetics in Healthy Subjects. Clin Pharmacokinet 2020; 58:349-361. [PMID: 30088221 PMCID: PMC6373376 DOI: 10.1007/s40262-018-0700-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Objectives The aim of this study was to assess the pharmacokinetics (PK) and safety/tolerability of siponimod in healthy subjects when coadministered with (1) the moderate cytochrome P450 (CYP) 2C9 and CYP3A inhibitor fluconazole (Study A), and (2) with three different CYP2C9 genotype variants (Study B). Methods Study A was an open-label, single-dose study comprising periods 1 (14 days; day 1: siponimod 4 mg) and 2 (20 days; day 1: fluconazole 200 mg twice daily; days 2–19: fluconazole 200 mg once daily; day 3: siponimod 4 mg) in healthy subjects (n = 14) with the wild-type CYP2C9 genotype (CYP2C9*1/*1). Study B was a multicentre, open-label study comprising parts 1 (day 1: siponimod 0.25 mg once daily in the CYP2C9*1/*1, CYP2C9*2/*3 and CYP2C9*3/*3 genotypes) and 2 (days 1–2: 0.25 mg once daily; day 3: 0.5 mg once daily in the CYP2C9*2/*3 and CYP2C9*3/*3 genotypes only) in healthy subjects with polymorphic variants of CYP2C9 (n = 24). Pharmacokinetic parameters were calculated using noncompartmental methods. Results In Study A, coadministration with fluconazole produced an approximately twofold increase in mean area under the curve (AUC) versus siponimod alone (from 1110 to 2160 h*ng/mL), and an increase in maximum plasma concentration (Cmax; from 31.2 to 34.0 ng/mL) and elimination half-life (T½; from 40.6 to 61.6 h). In Study B, the AUCs of siponimod were approximately two to fourfold greater in subjects with the CYP2C9*2/*3 and CYP2C9*3/*3 genotypes, with a minor increase in Cmax versus the CYP2C9*1/*1 genotype. The mean T½ was prolonged in the CYP2C9*2/*3 (51 h) and CYP2C9*3/*3 (126 h) genotypes versus the CYP2C9*1/*1 (28 h) genotype. Siponimod did not result in increased adverse events in healthy subjects in both studies. Conclusions Changes in siponimod PK, when coadministered with fluconazole at steady-state and in subjects with different CYP2C9 genotypes, indicate that the reduced CYP2C9 enzymatic activity does not affect the absorption phase of siponimod but prolongs the elimination phase. These results confirm the relevance of CYP2C9 activity on siponimod metabolism in humans. Electronic supplementary material The online version of this article (10.1007/s40262-018-0700-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anne Gardin
- Novartis Institutes for BioMedical Research (NIBR), 4002, Basel, Switzerland.
| | - Mike Ufer
- Novartis Institutes for BioMedical Research (NIBR), 4002, Basel, Switzerland
| | - Eric Legangneux
- Novartis Institutes for BioMedical Research (NIBR), 4002, Basel, Switzerland
| | - Gianluca Rossato
- Novartis Institutes for BioMedical Research (NIBR), 4002, Basel, Switzerland
| | - Yi Jin
- Novartis Institutes for BioMedical Research (NIBR), 4002, Basel, Switzerland
| | - Zhenzhong Su
- Beijing Novartis Pharmaceuticals Corporation, Shanghai, China
| | - Parasar Pal
- Novartis Healthcare Pvt. Ltd, Hyderabad, India
| | - Wenkui Li
- Novartis Institutes for Biomedical Research, East Hanover, NJ, USA
| | - Kasra Shakeri-Nejad
- Novartis Institutes for BioMedical Research (NIBR), 4002, Basel, Switzerland
| |
Collapse
|
22
|
Garcia-Montojo M, Rodriguez-Martin E, Ramos-Mozo P, Ortega-Madueño I, Dominguez-Mozo MI, Arias-Leal A, García-Martínez MÁ, Casanova I, Galan V, Arroyo R, Álvarez-Lafuente R, Villar LM. Syncytin-1/HERV-W envelope is an early activation marker of leukocytes and is upregulated in multiple sclerosis patients. Eur J Immunol 2020; 50:685-694. [PMID: 32012247 DOI: 10.1002/eji.201948423] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/20/2019] [Accepted: 01/30/2020] [Indexed: 12/22/2022]
Abstract
Syncytin-1 is the envelope protein of the human endogenous retrovirus W (HERV-W). It has been related to multiple sclerosis (MS) but its role in cellular immunity and its pathogenic mechanism in the autoimmune context are not fully understood. We analyzed syncytin-1 levels in peripheral blood mononuclear cells (PBMC) subsets from healthy donors, MS patients in relapse or remission, and patients with acute infections by flow cytometry. PBMC cultures were also prepared to analyze protein expression kinetics. MS patients had higher levels of syncytin-1 levels than controls. We found that syncytin-1 is elevated in monocytes during MS relapses and infections. Cells expressing syncytin-1, including monocytes, T and B lymphocytes, and NKs presented mainly an activated phenotype and, upon stimulation with LPS, its levels increased rapidly on antigen-presenting cells. Syncytin-1 ligation promoted the activation of monocytes, as demonstrated by the upregulation of CD80 and the nonclassical subset CD14low CD16+ . Our results suggest an important role for syncytin-1 in the activation of leukocytes. Given that the expression of syncytin-1 is upregulated in MS patients, this protein might be contributing to the autoimmune cascade in the disease.
Collapse
Affiliation(s)
- Marta Garcia-Montojo
- Department of Immunology, Ramón y Cajal University Hospital, Institute Ramon y Cajal for Biomedical Research, Madrid, Spain.,Multiple Sclerosis Unit, Hospital Clinico San Carlos, Institute Clinico San Carlos for Biomedical Research, Madrid, Spain
| | - Eulalia Rodriguez-Martin
- Department of Immunology, Ramón y Cajal University Hospital, Institute Ramon y Cajal for Biomedical Research, Madrid, Spain
| | - Priscila Ramos-Mozo
- Department of Immunology, Hospital Clinico San Carlos, Institute Clinico San Carlos for Biomedical Research, Madrid, Spain
| | - Isabel Ortega-Madueño
- Multiple Sclerosis Unit, Hospital Clinico San Carlos, Institute Clinico San Carlos for Biomedical Research, Madrid, Spain
| | | | - Ana Arias-Leal
- Multiple Sclerosis Unit, Hospital Clinico San Carlos, Institute Clinico San Carlos for Biomedical Research, Madrid, Spain
| | - Maria Ángel García-Martínez
- Department of Immunology, Hospital Clinico San Carlos, Institute Clinico San Carlos for Biomedical Research, Madrid, Spain
| | - Ignacio Casanova
- Multiple Sclerosis Unit, Hospital Clinico San Carlos, Institute Clinico San Carlos for Biomedical Research, Madrid, Spain
| | - Victoria Galan
- Multiple Sclerosis Unit, Hospital Clinico San Carlos, Institute Clinico San Carlos for Biomedical Research, Madrid, Spain
| | - Rafael Arroyo
- Multiple Sclerosis Unit, Hospital Clinico San Carlos, Institute Clinico San Carlos for Biomedical Research, Madrid, Spain
| | - Roberto Álvarez-Lafuente
- Multiple Sclerosis Unit, Hospital Clinico San Carlos, Institute Clinico San Carlos for Biomedical Research, Madrid, Spain
| | - Luisa María Villar
- Department of Immunology, Ramón y Cajal University Hospital, Institute Ramon y Cajal for Biomedical Research, Madrid, Spain
| |
Collapse
|
23
|
Kamermans A, Verhoeven T, van Het Hof B, Koning JJ, Borghuis L, Witte M, van Horssen J, de Vries HE, Rijnsburger M. Setmelanotide, a Novel, Selective Melanocortin Receptor-4 Agonist Exerts Anti-inflammatory Actions in Astrocytes and Promotes an Anti-inflammatory Macrophage Phenotype. Front Immunol 2019; 10:2312. [PMID: 31636637 PMCID: PMC6788433 DOI: 10.3389/fimmu.2019.02312] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/12/2019] [Indexed: 11/13/2022] Open
Abstract
To date, available treatment strategies for multiple sclerosis (MS) are ineffective in preventing or reversing progressive neurologic deterioration, creating a high, and unmet medical need. One potential way to fight MS may be by limiting the detrimental effects of reactive astrocytes, a key pathological hallmark for disease progression. One class of compounds that may exert beneficial effects via astrocytes are melanocortin receptor (MCR) agonists. Among the MCR, MC4R is most abundantly expressed in the CNS and several rodent studies have described that MC4R is—besides neurons—expressed by astrocytes. Activation of MC4R in astrocytes has shown to have potent anti-inflammatory as well as neuroprotective effects in vitro, suggesting that this could be a potential target to ameliorate ongoing inflammation, and neurodegeneration in MS. In this study, we set out to investigate human MC4R expression and analyze its downstream effects. We identified MC4R mRNA and protein to be expressed on astrocytes and observed increased astrocytic MC4R expression in active MS lesions. Furthermore, we show that the novel, highly selective MC4R agonist setmelanotide ameliorates the reactive phenotype in astrocytes in vitro and markedly induced interleukin−6 and −11 production, possibly through enhanced cAMP response element-binding protein (CREB) phosphorylation. Notably, stimulation of human macrophages with medium from astrocytes that were exposed to setmelanotide, skewed macrophages toward an anti-inflammatory phenotype. Taken together, these findings suggest that targeting MC4R on astrocytes might be a novel therapeutic strategy to halt inflammation-associated neurodegeneration in MS.
Collapse
Affiliation(s)
- Alwin Kamermans
- Department of Molecular Cell Biology and Immunology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Tom Verhoeven
- Department of Molecular Cell Biology and Immunology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Bert van Het Hof
- Department of Molecular Cell Biology and Immunology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jasper J Koning
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Lauri Borghuis
- Department of Molecular Cell Biology and Immunology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Maarten Witte
- Department of Molecular Cell Biology and Immunology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jack van Horssen
- Department of Molecular Cell Biology and Immunology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Merel Rijnsburger
- Department of Molecular Cell Biology and Immunology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
24
|
Acute effects of aerobic intensities on the cytokine response in women with mild multiple sclerosis. Mult Scler Relat Disord 2019; 31:82-86. [DOI: 10.1016/j.msard.2019.03.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/17/2019] [Accepted: 03/31/2019] [Indexed: 12/18/2022]
|
25
|
Houben E, Hellings N, Broux B. Oncostatin M, an Underestimated Player in the Central Nervous System. Front Immunol 2019; 10:1165. [PMID: 31191538 PMCID: PMC6549448 DOI: 10.3389/fimmu.2019.01165] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/08/2019] [Indexed: 12/12/2022] Open
Abstract
For a long time, the central nervous system (CNS) was believed to be an immune privileged organ. In the last decades, it became apparent that the immune system interacts with the CNS not only in pathological, but also in homeostatic situations. It is now clear that immune cells infiltrate the healthy CNS as part of immune surveillance and that immune cells communicate through cytokines with CNS resident cells. In pathological conditions, an enhanced infiltration of immune cells takes place to fight the pathogen. A well-known family of cytokines is the interleukin (IL)-6 cytokine family. All members are important in cell communication and cell signaling in the immune system. One of these members is oncostatin M (OSM), for which the receptor is expressed on several cells of the CNS. However, the biological function of OSM in the CNS is not studied in detail. Here, we briefly describe the general aspects related to OSM biology, including signaling and receptor binding. Thereafter, the current understanding of OSM during CNS homeostasis and pathology is summarized.
Collapse
Affiliation(s)
- Evelien Houben
- Department of Immunology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Niels Hellings
- Department of Immunology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Bieke Broux
- Department of Immunology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
26
|
Zhang XY, Cui ZW, Wu N, Lu XB, Lu LF, Chen DD, Geng H, Zhang YA. Investigating the potential immune role of IL-35 in grass carp (Ctenopharyngodon idella). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 93:78-88. [PMID: 30590066 DOI: 10.1016/j.dci.2018.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/20/2018] [Accepted: 12/20/2018] [Indexed: 06/09/2023]
Abstract
Interleukin-35 (IL-35) is a member of the IL-12 cytokine family and a heterodimeric protein formed by Epstein-Barr virus-induced gene 3 (EBI3) and IL-12p35. Emerging evidence showed that IL-35 is a key player in the regulation of cellular communication, differentiation, and inflammation. To date, no studies on fish IL-35 have been documented. In this work, we first identify two splicing isoforms of EBI3, EBI3a and EBI3b, from grass carp (Ctenopharyngodon idella). EBI3a is composed of 299 amino acid residues and possesses an immunoglobulin-like (Ig-like) domain and a fibronectin type 3 (FN3) domain that is a conservative domain in vertebrate EBI3. However, the EBI3b is composed of 177 amino acid residues and only contains an Ig-like domain. The result of Co-immunoprecipitation suggests that only EBI3a can associate with IL-12p35 to form IL-35 in grass carp. Like the function of IL-35 in human and mouse, recombinant grass carp IL-35 protein could induce the expression of genes EBI3a, IL-12p35, and CD25-like and downregulate the expression of genes CD4-1, CD4-2, IL-17A/F1, and RORγ2. Taken together, these results indicate for the first time that a teleost IL-35 may also have the ability to induce regulatory T (Treg) cells, inhibit effector T (Teff) cell proliferation and restrict the differentiation and function of T helper 17 (Th17) cells in teleost.
Collapse
Affiliation(s)
- Xiang-Yang Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng-Wei Cui
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Wu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiao-Bing Lu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long-Feng Lu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Dan-Dan Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Hui Geng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China.
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
27
|
Davis SM, Collier LA, Winford ED, Leonardo CC, Ajmo CT, Foran EA, Kopper TJ, Gensel JC, Pennypacker KR. Leukemia inhibitory factor modulates the peripheral immune response in a rat model of emergent large vessel occlusion. J Neuroinflammation 2018; 15:288. [PMID: 30322390 PMCID: PMC6190542 DOI: 10.1186/s12974-018-1326-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/05/2018] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The migration of peripheral immune cells and splenocytes to the ischemic brain is one of the major causes of delayed neuroinflammation after permanent large vessel stroke. Other groups have demonstrated that leukemia inhibitory factor (LIF), a cytokine that promotes neural cell survival through upregulation of antioxidant enzymes, promotes an anti-inflammatory phenotype in several types of immune cells. The goal of this study was to determine whether LIF treatment modulates the peripheral immune response after stroke. METHODS Young male (3 month) Sprague-Dawley rats underwent sham surgery or permanent middle cerebral artery occlusion (MCAO). Animals were administered LIF (125 μg/kg) or PBS at 6, 24, and 48 h prior to euthanization at 72 h. Bone marrow-derived macrophages were treated with LIF (20 ng/ml) or PBS after stimulation with interferon gamma + LPS. Western blot was used to measure protein levels of CD11b, IL-12, interferon inducible protein-10, CD3, and the LIF receptor in spleen and brain tissue. ELISA was used to measure IL-10, IL-12, and interferon gamma. Isolectin was used to label activated immune cells in brain tissue sections. Statistical analysis was performed using one-way ANOVA and Student's t test. A Kruskal-Wallis test followed by Bonferroni-corrected Mann-Whitney tests was performed if data did not pass the D'Agostino-Pearson normality test. RESULTS LIF-treated rats showed significantly lower levels of the LIF receptor and interferon gamma in the spleen and CD11b levels in the brain compared to their PBS-treated counterparts. Fluorescence from isolectin-binding immune cells was more prominent in the ipsilateral cortex and striatum after PBS treatment compared to LIF treatment. MCAO + LIF significantly decreased splenic levels of CD11b and CD3 compared to sham surgery. MCAO + PBS treatment significantly elevated splenic levels of interferon inducible protein-10 at 72 h after MCAO, while LIF treatment after MCAO returned interferon inducible protein 10 to sham levels. LIF administration with interferon gamma + LPS significantly reduced the IL-12/IL-10 production ratio compared to macrophages treated with interferon gamma + LPS alone. CONCLUSIONS These data demonstrate that LIF promotes anti-inflammatory signaling through alterations of the IL-12/interferon gamma/interferon inducible protein 10 pathway.
Collapse
Affiliation(s)
- Stephanie M. Davis
- Department of Neurology, University of Kentucky, 741 S. Limestone BBSRB B457, Lexington, KY 40536-0905 USA
| | - Lisa A. Collier
- Department of Neurology, University of Kentucky, 741 S. Limestone BBSRB B457, Lexington, KY 40536-0905 USA
| | - Edric D. Winford
- Department of Neuroscience, University of Kentucky, 800 Rose St. Lexington, Lexington, KY 40536 USA
| | - Christopher C. Leonardo
- Department of Molecular Pharmacology and Physiology, University of South Florida, 12901 Bruce B. Downs Blvd MDC 8, Tampa, FL 33612 USA
| | - Craig T. Ajmo
- Department of Molecular Pharmacology and Physiology, University of South Florida, 12901 Bruce B. Downs Blvd MDC 8, Tampa, FL 33612 USA
| | - Elspeth A. Foran
- Department of Molecular Medicine, University of South Florida, 12901 Bruce B. Downs Blvd MDC 7, Tampa, FL 33612 USA
| | - Timothy J. Kopper
- Department of Physiology, University of Kentucky, 800 Rose St. MS508, Lexington, KY 40536 USA
- Spinal Cord and Brain Injury Repair Center, University of Kentucky, 741 S. Limestone BBSRB B463, Lexington, KY 40536 USA
| | - John C. Gensel
- Department of Physiology, University of Kentucky, 800 Rose St. MS508, Lexington, KY 40536 USA
- Spinal Cord and Brain Injury Repair Center, University of Kentucky, 741 S. Limestone BBSRB B463, Lexington, KY 40536 USA
| | - Keith R. Pennypacker
- Department of Neurology, University of Kentucky, 741 S. Limestone BBSRB B457, Lexington, KY 40536-0905 USA
- Department of Neuroscience, University of Kentucky, 800 Rose St. Lexington, Lexington, KY 40536 USA
| |
Collapse
|
28
|
Tvedt THA, Melve GK, Tsykunova G, Ahmed AB, Brenner AK, Bruserud Ø. Immunological Heterogeneity of Healthy Peripheral Blood Stem Cell Donors-Effects of Granulocyte Colony-Stimulating Factor on Inflammatory Responses. Int J Mol Sci 2018; 19:ijms19102886. [PMID: 30249022 PMCID: PMC6213426 DOI: 10.3390/ijms19102886] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/14/2018] [Accepted: 09/20/2018] [Indexed: 12/20/2022] Open
Abstract
Interleukin-6 (IL-6) contributes to the development of immune-mediated complications after allogeneic stem cell transplantation. However, systemic IL-6 levels also increase during granulocyte colony-stimulating factor (G-CSF) mobilization of hematopoietic stem cells in healthy donors, but it is not known whether this mobilization alters systemic levels of other IL-6 family cytokines/receptors and whether such effects differ between donors. We examined how G-CSF administration influenced C-reactive protein (CRP) levels (85 donors) and serum levels of IL-6 family cytokines/receptors (20 donors). G-CSF increased CRP levels especially in elderly donors with high pretherapy levels, but these preharvesting levels did not influence clinical outcomes (nonrelapse mortality, graft versus host disease). The increased IL-6 levels during G-CSF therapy normalized within 24 h after treatment. G-CSF administration did not alter serum levels of other IL-6-familly mediators. Oncostatin M, but not IL-6, showed a significant correlation with CRP levels during G-CSF therapy. Clustering analysis of mediator levels during G-CSF administration identified two donor subsets mainly characterized by high oncostatin M and IL-6 levels, respectively. Finally, G-CSF could increase IL-6 release by in vitro cultured monocytes, fibroblasts, and mesenchymal stem cells. In summary, G-CSF seems to induce an acute phase reaction with increased systemic IL-6 levels in healthy stem cell donors.
Collapse
Affiliation(s)
- Tor Henrik Anderson Tvedt
- Department of Medicine, Section for Hematology, Haukeland University Hospital, 5021 Bergen, Norway.
- Institute of Clinical Science, Section for Hematology, University of Bergen, 5021 Bergen, Norway.
| | - Guro K Melve
- Institute of Clinical Science, Section for Hematology, University of Bergen, 5021 Bergen, Norway.
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, 5021 Bergen, Norway.
| | - Galina Tsykunova
- Department of Medicine, Section for Hematology, Haukeland University Hospital, 5021 Bergen, Norway.
| | - Aymen Bushra Ahmed
- Department of Medicine, Section for Hematology, Haukeland University Hospital, 5021 Bergen, Norway.
| | - Annette K Brenner
- Department of Medicine, Section for Hematology, Haukeland University Hospital, 5021 Bergen, Norway.
| | - Øystein Bruserud
- Department of Medicine, Section for Hematology, Haukeland University Hospital, 5021 Bergen, Norway.
- Institute of Clinical Science, Section for Hematology, University of Bergen, 5021 Bergen, Norway.
| |
Collapse
|
29
|
Effects of inflammatory cytokines IFN-γ, TNF-α and IL-6 on the viability and functionality of human pluripotent stem cell-derived neural cells. J Neuroimmunol 2018; 331:36-45. [PMID: 30195439 DOI: 10.1016/j.jneuroim.2018.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 07/13/2018] [Accepted: 07/23/2018] [Indexed: 02/07/2023]
Abstract
Multiple Sclerosis (MS) is an inflammatory neurodegenerative disease, where neural progenitor cell (NPC) transplantation has been suggested as a potential neuroprotective therapeutic strategy. Since the effect of inflammation on NPCs is poorly known, their effect on the survival and functionality of human NPCs were studied. Treatment with interleukin (IL)-6, tumor necrosis factor (TNF)-α and interferon (IFN)-γ did not induced cytotoxicity, but IFN-γ treatment showed decreased proliferation and neuronal migration. By contrast, increased proliferation and inhibition of electrical activity were detected after TNF-α treatment. Treatments induced secretion of inflammatory factors. Inflammatory cytokines appear to modulate proliferation as well as the cellular and functional properties of human NPCs.
Collapse
|
30
|
Fominykh V, Vorobyeva A, Onufriev MV, Brylev L, Zakharova MN, Gulyaeva NV. Interleukin-6, S-Nitrosothiols, and Neurodegeneration in Different Central Nervous System Demyelinating Disorders: Is There a Relationship? J Clin Neurol 2018; 14:327-332. [PMID: 29856157 PMCID: PMC6031979 DOI: 10.3988/jcn.2018.14.3.327] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/10/2018] [Accepted: 02/13/2018] [Indexed: 12/22/2022] Open
Abstract
Background and Purpose A few groups have suggested that activated cytokines and nitrosative stress are closely involved in the pathogenesis of different demyelinating disorders induced by the neuroinflammatory destruction of neurons. The purpose of this study was to elucidate the associations of cytokines and S-nitrosothiols (RSNO) with the severity of neurodegeneration during relapse in demyelinating disorders of the central nervous system. Methods We measured levels of interleukin-6 (IL-6), erythropoietin, RSNO, and phosphorylated neurofilament heavy chain (pNfh) in cerebrospinal fluid (CSF) samples obtained from patients with different demyelinating disorders: multiple sclerosis (MS, n=52), acute disseminated encephalomyelitis (ADEM, n=9), and neuromyelitis optica spectrum disorders (NMOSD) with aquaporin-4 immunoglobulin G (AQP4-IgG, n=12). We compared these levels with those measured in a control group (n=24). Results We found that IL-6 in CSF was elevated in NMOSD with AQP4-IgG and ADEM patients as well as in MS patients after the destruction of soluble IL-6. Erythropoietin levels were lower in MS, while RSNO levels were higher in NMOSD with AQP4-IgG and MS patients than in the control group. CSF pNfh levels were elevated in MS and ADEM patients. Conclusions These results confirm that IL-6 is activated in different demyelinating disorders, with this elevation being more prominent in the CSF of NMOSD with AQP4-IgG and ADEM patients. Moreover, S-nitrosylation is activated in demyelinating disorders with spinal-cord injury and neurodegeneration in these patients. However, we found no correlation between these biochemical markers, and so we could not confirm whether IL-6-mediated nitric oxide production is involved in spinal-cord lesions.
Collapse
Affiliation(s)
- Vera Fominykh
- Institute of Higher Nervous Activity and Neurophysiology Russian Academy of Sciences, Department of Functional Biochemistry of the Nervous System, Moscow, Russia.,Bujanov Moscow City Clinical Hospital, Moscow, Russia.
| | - Anna Vorobyeva
- Research Center of Neurology, Volokolamskoe shosse, Moscow, Russia
| | - Mikhail V Onufriev
- Institute of Higher Nervous Activity and Neurophysiology Russian Academy of Sciences, Department of Functional Biochemistry of the Nervous System, Moscow, Russia
| | - Lev Brylev
- Institute of Higher Nervous Activity and Neurophysiology Russian Academy of Sciences, Department of Functional Biochemistry of the Nervous System, Moscow, Russia.,Bujanov Moscow City Clinical Hospital, Moscow, Russia
| | | | - Natalia V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology Russian Academy of Sciences, Department of Functional Biochemistry of the Nervous System, Moscow, Russia
| |
Collapse
|
31
|
Pang HQ, Yue SJ, Tang YP, Chen YY, Tan YJ, Cao YJ, Shi XQ, Zhou GS, Kang A, Huang SL, Shi YJ, Sun J, Tang ZS, Duan JA. Integrated Metabolomics and Network Pharmacology Approach to Explain Possible Action Mechanisms of Xin-Sheng-Hua Granule for Treating Anemia. Front Pharmacol 2018; 9:165. [PMID: 29551975 PMCID: PMC5840524 DOI: 10.3389/fphar.2018.00165] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/14/2018] [Indexed: 11/13/2022] Open
Abstract
As a well-known traditional Chinese medicine (TCM) prescription, Xin-Sheng-Hua Granule (XSHG) has been applied in China for more than 30 years to treat postpartum diseases, especially anemia. However, underlying therapeutic mechanisms of XSHG for anemia were still unclear. In this study, plasma metabolomics profiling with UHPLC-QTOF/MS and multivariate data method was firstly analyzed to discover the potential regulation mechanisms of XSHG on anemia rats induced by bleeding from the orbit. Afterward, the compound-target-pathway network of XSHG was constructed by the use of network pharmacology, thus anemia-relevant signaling pathways were dissected. Finally, the crucial targets in the shared pathways of metabolomics and network pharmacology were experimentally validated by ELISA and Western Blot analysis. The results showed that XSHG could exert excellent effects on anemia probably through regulating coenzyme A biosynthesis, sphingolipids metabolism and HIF-1α pathways, which was reflected by the increased levels of EPOR, F2, COASY, as well as the reduced protein expression of HIF-1α, SPHK1, and S1PR1. Our work successfully explained the polypharmcological mechanisms underlying the efficiency of XSHG on treating anemia, and meanwhile, it probed into the potential treatment strategies for anemia from TCM prescription.
Collapse
Affiliation(s)
- Han-Qing Pang
- College of Pharmacy and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang, China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shi-Jun Yue
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu-Ping Tang
- College of Pharmacy and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang, China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan-Yan Chen
- College of Pharmacy and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Ya-Jie Tan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu-Jie Cao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xu-Qin Shi
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Gui-Sheng Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - An Kang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | | | - Ya-Jun Shi
- College of Pharmacy and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jing Sun
- College of Pharmacy and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zhi-Shu Tang
- College of Pharmacy and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
32
|
González-García C, Torres IM, García-Hernández R, Campos-Ruíz L, Esparragoza LR, Coronado MJ, Grande AG, García-Merino A, Sánchez López AJ. Mechanisms of action of cannabidiol in adoptively transferred experimental autoimmune encephalomyelitis. Exp Neurol 2017; 298:57-67. [DOI: 10.1016/j.expneurol.2017.08.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/02/2017] [Accepted: 08/28/2017] [Indexed: 10/18/2022]
|
33
|
Jakovljevic M, Lavrnja I, Bozic I, Savic D, Bjelobaba I, Pekovic S, Sévigny J, Nedeljkovic N, Laketa D. Down-regulation of NTPDase2 and ADP-sensitive P2 Purinoceptors Correlate with Severity of Symptoms during Experimental Autoimmune Encephalomyelitis. Front Cell Neurosci 2017; 11:333. [PMID: 29163045 PMCID: PMC5670145 DOI: 10.3389/fncel.2017.00333] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 10/10/2017] [Indexed: 12/17/2022] Open
Abstract
The present study explores tissue and cellular distribution of ectonucleoside triphosphate diphosphohydrolase 2 (NTPDase2) and the gene and protein expression in rat spinal cord during the course of experimental autoimmune encephalomyelitis (EAE). Given that NTPDase2 hydrolyzes ATP with a transient accumulation of ADP, the expression of ADP-sensitive P2 purinoceptors was analyzed as well. The autoimmune disease was actively induced in Dark Agouti female rats and the changes were analyzed 10, 15 and 29 days after the induction. These selected time points correspond to the onset ( Eo ), peak ( Ep ) and recovery ( Er ) from EAE. In control animals, NTPDase2 was confined in the white matter, in most of the glial fibrillary acidic protein (GFAP)-immunoreactive (ir) astrocytes and in a considerable number of nestin-ir cells, while the other cell types were immunonegative. Immunoreactivity corresponding to NTPDase2 decreased significantly at Eo and Ep and then returned to the baseline levels at Er . The preservation of the proportion of GFAP single-labeled and GFAP/NTPDase2 double-labeled elements along the course of EAE indicated that changes in NTPDase2-ir occurred at fibrous astrocytes that typically express NTPDase2 in normal conditions. Significant downregulation of P2Y1 and P2Y12 receptor proteins at Eo and several-fold induction of P2Y12 and P2Y13 receptor proteins at Ep and/or Er were observed implying that the pathophysiological process in EAE may be linked to ADP signaling. Cell-surface expression of NTPDase2, NTPDase1/CD39 and ecto-5'-nucleotidase (eN/CD73) was analyzed in CD4+ T cells of a draining lymph node by fluorescence-activated cell sorting. The induction of EAE was associated with a transient decrease in a number of CD4+ NTPDase2+ T cells in a draining lymph node, whereas the recovery was characterized by an increase in NTPDase2+ cells in both CD4+ and CD4- cell populations. The opposite was found for NTPDase1/CD39+ and eN/CD73+ cells, which slightly increased in number with progression of the disease, particularly in CD4- cells, and then decreased in the recovery. Finally, CD4+ NTPDase2+ cells were never observed in the spinal cord parenchyma. Taken together, our results suggest that the process of neuroinflammation in EAE may be associated with altered ADP signaling.
Collapse
Affiliation(s)
- Marija Jakovljevic
- Institute for Biological Research Sinisa Stankovic, University of Belgrade, Belgrade, Serbia
| | - Irena Lavrnja
- Institute for Biological Research Sinisa Stankovic, University of Belgrade, Belgrade, Serbia
| | - Iva Bozic
- Institute for Biological Research Sinisa Stankovic, University of Belgrade, Belgrade, Serbia
| | - Danijela Savic
- Institute for Biological Research Sinisa Stankovic, University of Belgrade, Belgrade, Serbia
| | - Ivana Bjelobaba
- Institute for Biological Research Sinisa Stankovic, University of Belgrade, Belgrade, Serbia
| | - Sanja Pekovic
- Institute for Biological Research Sinisa Stankovic, University of Belgrade, Belgrade, Serbia
| | - Jean Sévigny
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada.,Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, Canada
| | - Nadezda Nedeljkovic
- Institute for Physiology and Biochemistry, Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Danijela Laketa
- Institute for Physiology and Biochemistry, Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
34
|
Tridimensional configurations of human mesenchymal stem/stromal cells to enhance cell paracrine potential towards wound healing processes. J Biotechnol 2017; 262:28-39. [PMID: 28965974 DOI: 10.1016/j.jbiotec.2017.09.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/27/2017] [Accepted: 09/27/2017] [Indexed: 02/06/2023]
Abstract
This study proposes to use alginate encapsulation as a strategy to assess the paracrine activity of 3D- and 2D-cultured human bone marrow mesenchymal stem/stromal cells (BM MSC) in the setting of wound repair and regeneration processes. A side-by-side comparison of MSC culture in three different 3D configurations (spheroids, encapsulated spheroids and encapsulated single cells) versus 2D monolayer cell culture is presented. The results reveal enhanced resistance to oxidative stress and paracrine potential of 3D spheroid-organized BM MSC. MSC spheroids (148±2μm diameter) encapsulated in alginate microbeads evidence increased angiogenic and chemotactic potential relatively to encapsulated single cells, as supported by higher secreted levels of angiogenic factors and by functional assays showing the capability of encapsulated MSC to promote formation of tubelike structures and migration of fibroblasts into a wounded area. In addition, a higher expression of the anti-inflammatory factor tumor necrosis factor alpha-induced protein 6 (TSG-6) was demonstrated by RT-PCR for encapsulated and non-encapsulated spheroids. Culture of spheroids within an alginate matrix maintains low aggregation levels below 5% and favors resistance to oxidative stress. These are important factors towards the establishment of more standardized and controlled systems, crucial to explore the paracrine effects of 3D-cultured MSC in therapeutic settings.
Collapse
|
35
|
Fiedler SE, George JD, Love HN, Kim E, Spain R, Bourdette D, Salinthone S. Analysis of IL-6, IL-1β and TNF-α production in monocytes isolated from multiple sclerosis patients treated with disease modifying drugs. ACTA ACUST UNITED AC 2017; 3. [PMID: 28966794 DOI: 10.15761/jsin.1000166] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE AND DESIGN The etiology of multiple sclerosis (MS) is unknown, but blood derived monocytes/macrophages are believed to be involved in the pathogenesis through phagocytosis of myelin and production of inflammatory mediators. The objective of this study is to examine inflammatory cytokines that are present at elevated levels in active MS lesions to determine whether there are differences between classically stimulated monocytes isolated from healthy control (HC) and relapsing-remitting MS (RRMS) subjects taking disease modifying drugs (DMDs), including dimethyl fumarate (DMF). SUBJECTS Thirty-nine veterans of the US Armed Forces were enrolled, 21 health controls (HC), and 18 with relapsing-remitting MS (RRMS), all taking DMDs. METHODS Use ELISAs to measure production of IL-6, IL-1β and TNF-α by LPS-stimulated peripheral monocytes. RESULTS Activation of monocytes from MS subjects produced significantly more IL-6 than healthy controls (49531 ± 20795 vs 10526 ± 4845), and IL-6 production trended higher in MS subjects taking DMF than those taking other DMDs (72186.9 ± 35156.2 vs 32585.8 ± 17135.4). There were no significant differences in IL-1β or TNF-α secretion. CONCLUSIONS Our data suggest that not all DMDs may provide disease modification by suppressing monocyte/macrophage production of pro-inflammatory mediators.
Collapse
Affiliation(s)
- Sarah E Fiedler
- VA Portland Health Care System, Research and Development Service, 3710 SW US Veterans' Hospital Rd. Portland, OR 97239, USA
| | - Joshua D George
- VA Portland Health Care System, Research and Development Service, 3710 SW US Veterans' Hospital Rd. Portland, OR 97239, USA
| | - Haley N Love
- VA Portland Health Care System, Research and Development Service, 3710 SW US Veterans' Hospital Rd. Portland, OR 97239, USA
| | - Edward Kim
- VA Portland Health Care System, Research and Development Service, 3710 SW US Veterans' Hospital Rd. Portland, OR 97239, USA.,Department of Neurology, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, USA
| | - Rebecca Spain
- VA Portland Health Care System, Research and Development Service, 3710 SW US Veterans' Hospital Rd. Portland, OR 97239, USA.,Department of Neurology, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, USA
| | - Dennis Bourdette
- VA Portland Health Care System, Research and Development Service, 3710 SW US Veterans' Hospital Rd. Portland, OR 97239, USA.,Department of Neurology, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, USA
| | - Sonemany Salinthone
- VA Portland Health Care System, Research and Development Service, 3710 SW US Veterans' Hospital Rd. Portland, OR 97239, USA.,Department of Neurology, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, USA
| |
Collapse
|
36
|
Vela L, Caballero I, Fang L, Liu Q, Ramón F, Díez E, de Los Frailes M. Discovery of Enhancers of the Secretion of Leukemia Inhibitory Factor for the Treatment of Multiple Sclerosis. ACTA ACUST UNITED AC 2016; 21:437-45. [PMID: 26984928 DOI: 10.1177/1087057116638821] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/17/2016] [Indexed: 11/17/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune neurodegenerative disease that involves activation of T cells, microglia, and astrocytes. There is a clear unmet medical need for MS, as current therapies reduce the relapse rate, but are unable to prevent the neurological deterioration. Leukemia inhibitory factor (LIF) is a proinflammatory cytokine that can also positively modulate the immune response, by inducing the inhibition of myelin-reactive TH17 differentiation, and by promoting oligodendrocyte-mediated myelination. The aim of this project was to find central nervous system (CNS)-permeable and orally available small molecules that upregulate production of endogenous LIF. We describe here the development of a phenotypic assay and screening of 1.7 million compounds to identify LIF enhancers using U87 MG cells. Five chemically tractable series of compounds and a few singletons were selected for further progression. Some of them were also active in a different LIF-expressing cell line and in primary rat astrocytes. Although further studies would be required to deconvolute the targets involved in LIF induction and to confirm activity of hits in more disease-relevant assays, our results have demonstrated the potential of the phenotypic approach to identify specific and chemically tractable small molecules that trigger the production of LIF in relevant cell lines.
Collapse
Affiliation(s)
- Laura Vela
- Centro de Investigación Básica, GSK, Tres Cantos, Madrid, Spain
| | - Iván Caballero
- Centro de Investigación Básica, GSK, Tres Cantos, Madrid, Spain
| | - Leiping Fang
- GSK (China) R&D Company Limited, Pudong, Shanghai, China
| | - Qin Liu
- GSK (China) R&D Company Limited, Pudong, Shanghai, China
| | - Fernando Ramón
- Centro de Investigación Básica, GSK, Tres Cantos, Madrid, Spain
| | - Emilio Díez
- Centro de Investigación Básica, GSK, Tres Cantos, Madrid, Spain
| | | |
Collapse
|
37
|
Leukemia Inhibitory Factor Protects Neurons from Ischemic Damage via Upregulation of Superoxide Dismutase 3. Mol Neurobiol 2016; 54:608-622. [PMID: 26746670 PMCID: PMC5026633 DOI: 10.1007/s12035-015-9587-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/29/2015] [Indexed: 12/13/2022]
Abstract
Leukemia inhibitory factor (LIF) has been shown to protect oligodendrocytes from ischemia by upregulating endogenous antioxidants. The goal of this study was to determine whether LIF protects neurons during stroke by upregulating superoxide dismutase 3 (SOD3). Animals were administered phosphate-buffered saline (PBS) or 125 μg/kg LIF at 6, 24, and 48 h after middle cerebral artery occlusion or sham surgery. Neurons were isolated from rat pups on embryonic day 18 and used between 7 and 15 days in culture. Cells were treated with LIF and/or 10 μM Akt inhibitor IV with PBS and 0.1 % DMSO acting as vehicle controls. Neurons transfected with scrambled or SOD3 small interfering RNA (siRNA) were subjected to 24-h ischemia after PBS or LIF treatment. LIF significantly increased superoxide dismutase activity and SOD3 expression in ipsilateral brain tissue compared to PBS. Following 24-h ischemia, LIF reduced cell death and increased SOD3 messenger RNA (mRNA) in vitro compared to PBS. Adding Akt inhibitor IV with LIF counteracted the decrease in cell death. Partially silencing the expression of SOD3 using siRNA prior to LIF treatment counteracted the protective effect of LIF-alone PBS treatment. These results indicate that LIF protects neurons in vivo and in vitro via upregulation of SOD3.
Collapse
|