1
|
Buchanan CE, Galla SJ, Muscarella ME, Forbey JS, Reinking AK, Beck JL. Relating gut microbiome composition and life history metrics for pronghorn (Antilocapra americana) in the Red Desert, Wyoming. PLoS One 2024; 19:e0306722. [PMID: 38985706 PMCID: PMC11236126 DOI: 10.1371/journal.pone.0306722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 06/21/2024] [Indexed: 07/12/2024] Open
Abstract
Host microbial communities (hereafter, the 'microbiome') are recognized as an important aspect of host health and are gaining attention as a useful biomarker to understand the ecology and demographics of wildlife populations. Several studies indicate that the microbiome may contribute to the adaptive capacity of animals to changing environments associated with increasing habitat fragmentation and rapid climate change. To this end, we investigated the gut microbiome of pronghorn (Antilocapra americana), an iconic species in an environment that is undergoing both climatic and anthropogenic change. The bacterial composition of the pronghorn gut microbiome has yet to be described in the literature, and thus our study provides important baseline information about this species. We used 16S rRNA amplicon sequencing of fecal samples to characterize the gut microbiome of pronghorn-a facultative sagebrush (Artemisia spp.) specialist in many regions where they occur in western North America. We collected fecal pellets from 159 captured female pronghorn from four herds in the Red Desert of Wyoming during winters of 2013 and 2014. We found small, but significant differences in diversity of the gut microbiome relative to study area, capture period, and body fat measurements. In addition, we found a difference in gut microbiome composition in pronghorn across two regions separated by Interstate 80. Results indicated that the fecal microbiome may be a potential biomarker for the spatial ecology of free-ranging ungulates. The core gut microbiome of these animals-including bacteria in the phyla Firmicutes (now Bacillota) and Bacteroidota-remained relatively stable across populations and biological metrics. These findings provide a baseline for the gut microbiome of pronghorn that could potentially be used as a target in monitoring health and population structure of pronghorn relative to habitat fragmentation, climate change, and management practices.
Collapse
Affiliation(s)
- Courtney E Buchanan
- Department of Ecosystem Science and Management, University of Wyoming, Laramie, Wyoming, United States of America
| | - Stephanie J Galla
- Department of Biological Sciences, Boise State University, Boise, Idaho, United States of America
| | - Mario E Muscarella
- Institute of Arctic Biology and Department of Biology & Wildlife, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America
| | - Jennifer S Forbey
- Department of Biological Sciences, Boise State University, Boise, Idaho, United States of America
| | - Adele K Reinking
- Department of Ecosystem Science and Management, University of Wyoming, Laramie, Wyoming, United States of America
- Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado, United States of America
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, United States of America
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jeffrey L Beck
- Department of Ecosystem Science and Management, University of Wyoming, Laramie, Wyoming, United States of America
| |
Collapse
|
2
|
Chavez M, Viscardi S, Ruiz MJ, Sans-Serramitjana E, Durán P. CLI: A new protocol for the isolation of Lactic Acid Bacteria from complex plant samples. J Microbiol Methods 2024; 221:106937. [PMID: 38648958 DOI: 10.1016/j.mimet.2024.106937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Lactic Acid Bacteria (LAB) are predominantly probiotic microorganisms and the most are Generally Recognized As Safe (GRAS). LAB inhabit in the human gut ecosystem and are largely found in fermented foods and silage. In the last decades, LAB have also has been found in plant microbiota as a new class of microbes with probiotic activity to plants. For this reason, today the scientific interest in the study and isolation of LAB for agronomic application has increased. However, isolation protocols from complex samples such as plant tissues are scarce and inefficient. In this study, we developed a new protocol (CLI, Complex samples LAB Isolation) which yields purified LAB from plants. The sensitivity of CLI protocol was sufficient to isolate representative microorganisms of LAB genera (i.e. Leuconostoc, Lactococcus and Enterococcus). CLI protocol consists on five steps: i) sample preparation and pre-incubation in 1% sterile peptone at 30 °C for 24-48 h; ii) Sample homogenization in vortex by 10 min; iii) sample serial dilution in quarter-strength Ringer solution, iv) incubation in MRS agar plates with 0.2% of sorbic acid, with 1% of CaCO3, O2 < 15%, at pH 5.8 and 37 °C for 48 h.; v) Selection of single colonies with LAB morphology and CaCO3-solubilization halo. Our scientific contribution is that CLI protocol could be used for several complex samples and represents a useful method for further studies involving native LAB.
Collapse
Affiliation(s)
- Mariannys Chavez
- Doctoral Program in Natural Bioresource Sciences, Universidad de La Frontera, Temuco 4811230, Chile; Biocontrol Research Laboratory, Universidad de La Frontera, Temuco 4811230, Chile
| | - Sharon Viscardi
- Núcleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 15-D, Temuco 4813302, Chile; Laboratorio de Investigación Interdisciplinaria en Microbiología Aplicada, Departamento de Procesos Diagnóstico y Evaluación, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Manuel Montt 56, Temuco, La Araucanía, Chile
| | - María José Ruiz
- Biocontrol Research Laboratory, Universidad de La Frontera, Temuco 4811230, Chile
| | - Eulàlia Sans-Serramitjana
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile; Biocontrol Research Laboratory, Universidad de La Frontera, Temuco 4811230, Chile
| | - Paola Durán
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile; Biocontrol Research Laboratory, Universidad de La Frontera, Temuco 4811230, Chile; Facultad de Ciencias Agropecuarias y Medioambiente, Departamento de Producción Agropecuaria, Universidad de La Frontera, Temuco 4811230, Chile.
| |
Collapse
|
3
|
Radisic V, Grevskott DH, Junghardt N, Øvreås L, Marathe NP. Multidrug-resistant Enterococcus faecium strains enter the Norwegian marine environment through treated sewage. Microbiologyopen 2024; 13:e1397. [PMID: 38441345 PMCID: PMC10913173 DOI: 10.1002/mbo3.1397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 03/07/2024] Open
Abstract
This study aimed to understand the antibiotic resistance prevalence among Enterococcus spp. from raw and treated sewage in Bergen city, Norway. In total, 517 Enterococcus spp. isolates were obtained from raw and treated sewage from five sewage treatment plants (STPs) over three sampling occasions, with Enterococcus faecium as the most prevalent (n = 492) species. E. faecium strains (n = 307) obtained from the influent samples, showed the highest resistance against quinupristin/dalfopristin (67.8%). We observed reduced susceptibility to erythromycin (30.6%) and tetracycline (6.2%) in these strains. E. faecium strains (n = 185) obtained from the effluent samples showed highest resistance against quinupristin/dalfopristin (68.1%) and reduced susceptibility to erythromycin (24.9%) and tetracycline (8.6%). We did not detect resistance against last-resort antibiotics, such as linezolid, vancomycin, and tigecycline in any of the strains. Multidrug-resistant (MDR) E. faecium strains were detected in both influent (2.3%) and effluent (2.2%) samples. Whole genome sequencing of the Enterococcus spp. strains (n = 25) showed the presence of several antibiotic resistance genes, conferring resistance against aminoglycosides, tetracyclines, and macrolides, as well as several virulence genes and plasmid replicons. Two sequenced MDR strains from the effluents belonged to the hospital-associated clonal complex 17 and carried multiple virulence genes. Our study demonstrates that clinically relevant MDR Enterococcus spp. strains are entering the marine environment through treated sewage.
Collapse
Affiliation(s)
- Vera Radisic
- Department of Contaminants and BiohazardsInstitute of Marine Research (IMR)BergenNorway
- Department of Biological SciencesUniversity of Bergen (UiB)BergenNorway
| | - Didrik H. Grevskott
- Department of Contaminants and BiohazardsInstitute of Marine Research (IMR)BergenNorway
| | - Nadja Junghardt
- Department of Contaminants and BiohazardsInstitute of Marine Research (IMR)BergenNorway
| | - Lise Øvreås
- Department of Biological SciencesUniversity of Bergen (UiB)BergenNorway
| | - Nachiket P. Marathe
- Department of Contaminants and BiohazardsInstitute of Marine Research (IMR)BergenNorway
| |
Collapse
|
4
|
Garcias-Bonet N, Roik A, Tierney B, García FC, Villela HDM, Dungan AM, Quigley KM, Sweet M, Berg G, Gram L, Bourne DG, Ushijima B, Sogin M, Hoj L, Duarte G, Hirt H, Smalla K, Rosado AS, Carvalho S, Thurber RV, Ziegler M, Mason CE, van Oppen MJH, Voolstra CR, Peixoto RS. Horizon scanning the application of probiotics for wildlife. Trends Microbiol 2024; 32:252-269. [PMID: 37758552 DOI: 10.1016/j.tim.2023.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023]
Abstract
The provision of probiotics benefits the health of a wide range of organisms, from humans to animals and plants. Probiotics can enhance stress resilience of endangered organisms, many of which are critically threatened by anthropogenic impacts. The use of so-called 'probiotics for wildlife' is a nascent application, and the field needs to reflect on standards for its development, testing, validation, risk assessment, and deployment. Here, we identify the main challenges of this emerging intervention and provide a roadmap to validate the effectiveness of wildlife probiotics. We cover the essential use of inert negative controls in trials and the investigation of the probiotic mechanisms of action. We also suggest alternative microbial therapies that could be tested in parallel with the probiotic application. Our recommendations align approaches used for humans, aquaculture, and plants to the emerging concept and use of probiotics for wildlife.
Collapse
Affiliation(s)
- Neus Garcias-Bonet
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Anna Roik
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB), Oldenburg, Germany; Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), Bremerhaven, Germany
| | - Braden Tierney
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Francisca C García
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Helena D M Villela
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Ashley M Dungan
- School of Biosciences, The University of Melbourne, Parkville, VIC, Australia
| | - Kate M Quigley
- Minderoo Foundation, Perth, WA, Australia; James Cook University, Townsville, Australia
| | - Michael Sweet
- Aquatic Research Facility, Nature-based Solutions Research Centre, University of Derby, Derby, UK
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria; University of Potsdam and Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs., Lyngby, Denmark
| | - David G Bourne
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia; Australian Institute of Marine Science, PMB 3, Townsville MC, Townsville, QLD 4810, Australia
| | - Blake Ushijima
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA
| | - Maggie Sogin
- Molecular Cell Biology, University of California, Merced, CA, USA
| | - Lone Hoj
- Australian Institute of Marine Science, PMB 3, Townsville MC, Townsville, QLD 4810, Australia
| | - Gustavo Duarte
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; IMPG, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Heribert Hirt
- Center for Desert Agriculture (CDA), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | - Alexandre S Rosado
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Susana Carvalho
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | - Maren Ziegler
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Giessen, Germany
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; WorldQuant Initiative on Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
| | - Madeleine J H van Oppen
- School of Biosciences, The University of Melbourne, Parkville, VIC, Australia; Australian Institute of Marine Science, PMB 3, Townsville MC, Townsville, QLD 4810, Australia
| | | | - Raquel S Peixoto
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
5
|
Wang Y, Xu X, Chen H, Yang F, Xu B, Wang K, Liu Q, Liang G, Zhang R, Jiao X, Zhang Y. Assessment of beneficial effects and identification of host adaptation-associated genes of Ligilactobacillus salivarius isolated from badgers. BMC Genomics 2023; 24:530. [PMID: 37679681 PMCID: PMC10483869 DOI: 10.1186/s12864-023-09623-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Ligilactobacillus salivarius has been frequently isolated from the gut microbiota of humans and domesticated animals and has been studied as a candidate probiotic. Badger (Meles meles) is known as a "generalist" species that consumes complex foods and exhibits tolerance and resistance to certain pathogens, which can be partly attributed to the beneficial microbes such as L. salivarius in the gut microbiota. However, our understanding of the beneficial traits and genomic features of badger-originated L. salivarius remains elusive. RESULTS In this study, nine L. salivarius strains were isolated from wild badgers' feces, one of which exhibited good probiotic properties. Complete genomes of the nine L. salivarius strains were generated, and comparative genomic analysis was performed with the publicly available complete genomes of L. salivarius obtained from humans and domesticated animals. The strains originating from badgers harbored a larger genome, a higher number of protein-coding sequences, and functionally annotated genes than those originating from humans and chickens. The pan-genome phylogenetic tree demonstrated that the strains originating from badgers formed a separate clade, and totally 412 gene families (12.6% of the total gene families in the pan-genome) were identified as genes gained by the last common ancestor of the badger group. The badger group harbored significantly more gene families responsible for the degradation of complex carbohydrate substrates and production of polysaccharides than strains from other hosts; many of these were acquired by gene gain events. CONCLUSIONS A candidate probiotic and nine L. salivarius complete genomes were obtained from the badgers' gut microbiome, and several beneficial genes were identified to be specifically present in the badger-originated strains that were gained in the evolution. Our study provides novel insights into the adaptation of L. salivarius to the intestinal habitat of wild badgers and provides valuable strain and genome resources for the development of L. salivarius as a probiotic.
Collapse
Affiliation(s)
- Yu Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, China
| | - Xiaomeng Xu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, China
| | - Huan Chen
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, China
| | - Fang Yang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, China
| | - Bo Xu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, China
| | - Kun Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, China
| | - Qianwen Liu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, China
| | - Guixin Liang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, China
| | - Ruiqi Zhang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, China
| | - Xin'an Jiao
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, China.
| | - Yunzeng Zhang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
6
|
Shu Q, Guo X, Tian C, Wang Y, Zhang X, Cheng J, Li F, Li B. Homeostatic Regulation of the Duox-ROS Defense System: Revelations Based on the Diversity of Gut Bacteria in Silkworms ( Bombyx mori). Int J Mol Sci 2023; 24:12731. [PMID: 37628915 PMCID: PMC10454487 DOI: 10.3390/ijms241612731] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
The Duox-ROS defense system plays an important role in insect intestinal immunity. To investigate the role of intestinal microbiota in Duox-ROS regulation herein, 16S rRNA sequencing technology was utilized to compare the characteristics of bacterial populations in the midgut of silkworm after different time-periods of treatment with three feeding methods: 1-4 instars artificial diet (AD), 1-4 instars mulberry leaf (ML) and 1-3 instars artificial diet + 4 instar mulberry leaf (TM). The results revealed simple intestinal microbiota in the AD group whilst microbiota were abundant and variable in the ML and TM silkworms. By analyzing the relationship among intestinal pH, reactive oxygen species (ROS) content and microorganism composition, it was identified that an acidic intestinal environment inhibited the growth of intestinal microbiota of silkworms, observed concurrently with low ROS content and a high activity of antioxidant enzymes (SOD, TPX, CAT). Gene expression associated with the Duox-ROS defense system was detected using RT-qPCR and identified to be low in the AD group and significantly higher in the TM group of silkworms. This study provides a new reference for the future improvement of the artificial diet feeding of silkworm and a systematic indicator for the further study of the relationship between changes in the intestinal environment and intestinal microbiota balance caused by dietary alterations.
Collapse
Affiliation(s)
- Qilong Shu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China; (Q.S.); (X.G.); (C.T.); (Y.W.); (X.Z.); (J.C.); (F.L.)
| | - Xiqian Guo
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China; (Q.S.); (X.G.); (C.T.); (Y.W.); (X.Z.); (J.C.); (F.L.)
| | - Chao Tian
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China; (Q.S.); (X.G.); (C.T.); (Y.W.); (X.Z.); (J.C.); (F.L.)
| | - Yuanfei Wang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China; (Q.S.); (X.G.); (C.T.); (Y.W.); (X.Z.); (J.C.); (F.L.)
| | - Xiaoxia Zhang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China; (Q.S.); (X.G.); (C.T.); (Y.W.); (X.Z.); (J.C.); (F.L.)
| | - Jialu Cheng
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China; (Q.S.); (X.G.); (C.T.); (Y.W.); (X.Z.); (J.C.); (F.L.)
| | - Fanchi Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China; (Q.S.); (X.G.); (C.T.); (Y.W.); (X.Z.); (J.C.); (F.L.)
- Sericulture Institute, Soochow University, Suzhou 215123, China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China; (Q.S.); (X.G.); (C.T.); (Y.W.); (X.Z.); (J.C.); (F.L.)
- Sericulture Institute, Soochow University, Suzhou 215123, China
| |
Collapse
|
7
|
In Vitro Evaluation of Postbiotics Produced from Bacterial Isolates Obtained from Rainbow Trout and Nile Tilapia against the Pathogens Yersinia ruckeri and Aeromonas salmonicida subsp. salmonicida. Foods 2023; 12:foods12040861. [PMID: 36832935 PMCID: PMC9957526 DOI: 10.3390/foods12040861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
The use of antibiotics in aquaculture leads to the proliferation of multidrug-resistant bacteria, and an urgent need for developing new alternatives to prevent and control disease has, thus, arisen. In this scenario, postbiotics represent a promising tool to achieve this purpose; thus, in this study, isolation and selection of bacteria to further produce and evaluate their postbiotics antibacterial activity against fish pathogens was executed. In this respect, bacterial isolates from rainbow trout and Nile tilapia were obtained and tested in vitro against Yersinia ruckeri and Aeromonas salmonicida subsp. salmonicida. From 369 obtained isolates, 69 were selected after initial evaluation. Afterwards, additional screening was carried out by spot-on-lawn assay to finally select twelve isolates; four were identified as Pediococcus acidilactici, seven as Weissella cibaria, and one as Weissella paramesenteroides by matrix assisted laser desorption/ionization, time-of-flight mass spectrometry (MALDI-TOF MS). Selected bacteria were used to obtain postbiotic products to test their antagonistic activity through coculture challenge and broth microdilution assays. The influence of incubation time prior to postbiotic production on antagonistic behavior was also recorded. Two isolates identified as W. cibaria were able to significantly reduce (p < 0.05) A. salmonicida subsp. salmonicida's growth in the coculture challenge up to 4.49 ± 0.05 Log CFU/mL, and even though the reduction in Y. ruckeri was not as effective, some inhibition on the pathogen's growth was reported; at the same time, most of the postbiotic products obtained showed more antibacterial activity when obtained from broth cultures incubated for 72 h. Based on the results obtained, the preliminary identification of the isolates that expressed the highest inhibitory activity was confirmed by partial sequencing as W. cibaria. Through our study, it can be concluded that postbiotics produced by these strains are useful to inhibit the growth of the pathogens and could, thereby, be applicable in further research to develop suitable tools as feed additives for disease control and prevention in aquaculture.
Collapse
|
8
|
Martín-González D, Bordel S, Solis S, Gutierrez-Merino J, Santos-Beneit F. Characterization of Bacillus Strains from Natural Honeybee Products with High Keratinolytic Activity and Antimicrobial Potential. Microorganisms 2023; 11:microorganisms11020456. [PMID: 36838421 PMCID: PMC9959047 DOI: 10.3390/microorganisms11020456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Two efficient feather-degrading bacteria were isolated from honeybee samples and identified as Bacillus sonorensis and Bacillus licheniformis based on 16S rRNA and genome sequencing. The strains were able to grow on chicken feathers as the sole carbon and nitrogen sources and degraded the feathers in a few days. The highest keratinase activity was detected by the B. licheniformis CG1 strain (3800 U × mL-1), followed by B. sonorensis AB7 (1450 U × mL-1). Keratinase from B. licheniformis CG1 was shown to be active across a wide range of pH, potentially making this strain advantageous for further industrial applications. All isolates displayed antimicrobial activity against Micrococcus luteus; however, only B. licheniformis CG1 was able to inhibit the growth of Mycobacterium smegmatis. In silico analysis using BAGEL and antiSMASH identified gene clusters associated with the synthesis of non-ribosomal peptide synthetases (NRPS), polyketide synthases (PKSs) and/or ribosomally synthesized and post-translationally modified peptides (RiPPs) in most of the Bacillus isolates. B. licheniformis CG1, the only strain that inhibited the growth of the mycobacterial strain, contained sequences with 100% similarity to lichenysin (also present in the other isolates) and lichenicidin (only present in the CG1 strain). Both compounds have been described to display antimicrobial activity against distinct bacteria. In summary, in this work, we have isolated a strain (B. licheniformis CG1) with promising potential for use in different industrial applications, including animal nutrition, leather processing, detergent formulation and feather degradation.
Collapse
Affiliation(s)
- Diego Martín-González
- Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Sergio Bordel
- Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Selvin Solis
- School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK
| | | | - Fernando Santos-Beneit
- Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
- Correspondence:
| |
Collapse
|
9
|
Qin L, Qi J, Shen G, Qin D, Wu J, Song Y, Cao Y, Zhao P, Xia Q. Effects of Microbial Transfer during Food-Gut-Feces Circulation on the Health of Bombyx mori. Microbiol Spectr 2022; 10:e0235722. [PMID: 36318051 PMCID: PMC9769633 DOI: 10.1128/spectrum.02357-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/07/2022] [Indexed: 11/07/2022] Open
Abstract
Change in habitual diet may negatively affect health. The domestic silkworm (Bombyx mori) is an economically important oligophagous insect that feeds on mulberry leaves. The growth, development, and immune-disease resistance of silkworms have declined under artificial dietary conditions. In this study, we used B. mori as a model insect to explore the relationship between changes in diet and balance of intestinal microbes due to its simpler guts compared with those of mammals. We found that artificial diets reduced the intestinal bacterial diversity in silkworms and resulted in a simple intestinal microbial structure. By analyzing the correlations among food, gut, and fecal microbial diversity, we found that an artificial diet was more easily fermented and enriched the lactic acid bacteria in the gut of the silkworms. This diet caused intestinal acidification and microbial imbalance (dysbiosis). When combined with the artificial diet, Enterococcus mundtii, a colonizing opportunistic pathogen, caused dysbiosis and allowed the frequent outbreak of bacterial diseases in the silkworms. This study provides further systematic indicators and technical references for future investigations of the relationship between diet-based environmental changes and intestinal microbial balance. IMPORTANCE The body often appears unwell after habitual dietary changes. The domestic silkworm (Bombyx mori) raised on artificial diets is a good model to explore the relationship between dietary changes and the balance of intestinal microbes. In this study, the food-gut-feces microbial model was established, and some potential key genera that could regulate the balance of intestinal microbiota were screened out. Our findings will provide a reference for future research to further our understanding of healthy silkworm development and may even be useful for similar research on other animals.
Collapse
Affiliation(s)
- Lijun Qin
- Biological Science Research Center, Southwest University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Junpeng Qi
- Biological Science Research Center, Southwest University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Guanwang Shen
- Biological Science Research Center, Southwest University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Daoyuan Qin
- Biological Science Research Center, Southwest University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Jinxin Wu
- Biological Science Research Center, Southwest University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Yuwei Song
- Biological Science Research Center, Southwest University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Yang Cao
- Biological Science Research Center, Southwest University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Ping Zhao
- Biological Science Research Center, Southwest University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Qingyou Xia
- Biological Science Research Center, Southwest University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| |
Collapse
|
10
|
The Weissella Genus: Clinically Treatable Bacteria with Antimicrobial/Probiotic Effects on Inflammation and Cancer. Microorganisms 2022; 10:microorganisms10122427. [PMID: 36557680 PMCID: PMC9788376 DOI: 10.3390/microorganisms10122427] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Weissella is a genus earlier considered a member of the family Leuconostocaceae, which was reclassified into the family Lactobacillaceae in 1993. Recently, there have been studies emphasizing the probiotic and anti-inflammatory potential of various species of Weissella, of which W. confusa and W. cibaria are the most representative. Other species within this genus include: W. paramesenteroides, W. viridescens, W. halotolerans, W. minor, W. kandleri, W. soli, W. ghanensis, W. hellenica, W. thailandensis, W. fabalis, W. cryptocerci, W. koreensis, W. beninensis, W. fabaria, W. oryzae, W. ceti, W. uvarum, W. bombi, W. sagaensis, W. kimchi, W. muntiaci, W. jogaejeotgali, W. coleopterorum, W. hanii, W. salipiscis, and W. diestrammenae. Weissella confusa, W. paramesenteroides, W. koreensis, and W. cibaria are among the few species that have been isolated from human samples, although the identification of these and other species is possible using metagenomics, as we have shown for inflammatory bowel disease (IBD) and healthy controls. We were able to isolate Weissella in gut-associated bacteria (post 24 h food deprivation and laxatives). Other sources of isolation include fermented food, soil, and skin/gut/saliva of insects/animals. With the potential for hospital and industrial applications, there is a concern about possible infections. Herein, we present the current applications of Weissella on its antimicrobial and anti-inflammatory mechanistic effects, the predisposing factors (e.g., vancomycin) for pathogenicity in humans, and the antimicrobials used in patients. To address the medical concerns, we examined 28 case reports focused on W. confusa and found that 78.5% of infections were bacteremia (of which 7 were fatal; 1 for lack of treatment), 8 were associated with underlying malignancies, and 8 with gastrointestinal procedures/diseases of which 2 were Crohn’s disease patients. In cases of a successful resolution, commonly administered antibiotics included: cephalosporin, ampicillin, piperacillin-tazobactam, and daptomycin. Despite reports of Weissella-related infections, the evolving mechanistic findings suggest that Weissella are clinically treatable bacteria with emerging antimicrobial and probiotic benefits ranging from oral health, skin care, obesity, and inflammatory diseases to cancer.
Collapse
|
11
|
Intestinal Ecology Changes in Diarrheic Père David's Deer Revealed by Gut Microbiota and Fecal Metabolites Analysis. Animals (Basel) 2022; 12:ani12233366. [PMID: 36496887 PMCID: PMC9737761 DOI: 10.3390/ani12233366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Diarrhea is one of the most common diseases affecting the health of Père David's deer (Elaphurus davidianus). It is believed that an imbalanced intestinal ecology contributes to the etiology of the condition. However, little is known about how the intestinal ecology changes in these diarrheic animals. In this study, 16S rRNA gene sequencing and ultra-high performance liquid chromatography combined with tandem mass spectrometry (UPLC-MS/MS) were used to investigate the gut microbiota and fecal metabolites in five Père David's deer with diarrhea. The results showed that when compared with healthy individuals, considerable changes in the gut microbiome were observed in diarrheic animals, including a significant reduction in microbial diversity and gut microbiota composition alterations. Furthermore, the profiles of numerous fecal metabolites were altered in diarrheic individuals, showing large-scale metabolite dysregulation. Among metabolites, acylcarnitines, lysophosphatidylcholine, bile acids, and oxidized lipids were elevated significantly. Constantly, several metabolic pathways were significantly altered. Interestingly, predicted metabolic pathways based on 16S rRNA gene sequence and differential metabolite analysis showed that lipid metabolism, cofactor, and vitamin metabolism were altered in sick animals, indicating microbiota-host crosstalk in these deer. When combined, the results provide the first comprehensive description of an intestinal microbiome and metabolic imbalance in diarrheic Père David's deer, which advances our understanding and potential future treatment of diarrheic animals.
Collapse
|
12
|
Effect of Different Dietary Regimes on the Gut Microbiota and Fecal Metabolites of Père David’s Deer. Animals (Basel) 2022; 12:ani12050584. [PMID: 35268151 PMCID: PMC8909101 DOI: 10.3390/ani12050584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/15/2022] [Accepted: 02/23/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Père David’s deer is native to the middle and lower reaches of the Yangtze River and the Yellow River in China. However, the wild population became extinct in China around 1900. In 1986, 39 Père David’s deer were reintroduced into Dafeng. Up until now, its wild population has reached 2658, with a total of 6119 in 2021. At present, due to the continuous increase in the population, the repeated grazing on the same plants by the Père David’s deer has affected the re-growth of plants, which has led to insufficient natural food. Therefore, feeding supplement with silage is necessary. As a key nutritional factor, diet is the most important for the gut microbiota and metabolites of wild animals. In order to determine the effect of different dietary patterns on the nutrition and health of Père David’s deer in Dafeng Reserve in spring, we conducted a comprehensive analysis of Père David’s deer feces by UPLC-MS/MS and 16S rRNA gene sequencing to reveal its intestinal chemical environment and the differences in the fecal microbiome. Altogether, our data explored the significant changes in the gut microbiota and metabolic pathways during the transition from full silage to a combination diet with silage and plant in spring. These data provided important information to make more reasonable measures for Père David’s deer’s protection. Abstract A deep understanding of the effect of seasonal dietary changes on the nutrition and health of Père David’s deer in Dafeng Reserve will contribute greatly to Père David’s deer’s protection. In this reserve, there were three seasonal dietary regimes: feeding on naturally occurring plants (PLANT diet), silage (SILAGE diet), and a combination of natural plants and silage (COMB diet). To some extent, the COMB diet reflects the seasonal transition from silage to the all-natural plant diet, especially in early spring. However, little is known regarding the gut microbiota changes and metabolic consequences under the COMB diet. Based on 16S rRNA sequencing and ultra-high performance liquid chromatography combined with tandem mass spectrometry, the gut microbiota and fecal metabolites of Père David’s deer under these three diets were compared. Results showed the alpha diversity of the gut microbiota was significantly lower under the COMB diet compared to either the SILAGE or PLANT diets. Although no significant changes were observed in the core phyla, Firmicutes and Bacteroidetes, among the three dietary regimes, a significant lower abundance of several other phyla (Spirochaetes, Melainabacteria, Proteobacteria, and Verrucobacteria) was observed in the COMB diet compared to the SILAGE diet. A greater number of fecal metabolite differences was identified between the COMB and SILAGE or COMB and PLANT diets than between the SILAGE and PLANT diets, suggesting that the COMB diet had more of an effect on the metabolism of Père David’s deer. The integrated pathway analysis showed that several metabolic pathways were significantly affected by the different dietary regimes, such as tryptophan metabolism, vitamin metabolism, and the platelet activation pathways. These metabolic changes reflect the responses and adaptations of Père David’s deer to different diets. Taken overall, our data reveal the difference in the gut microbiota and metabolic pathways of Père David’s deer under three dietary regimes in Dafeng Reserve, which provides important information for Père David’s deer conservation.
Collapse
|
13
|
Santos-Beneit F, Ceniceros A, Nikolaou A, Salas JA, Gutierrez-Merino J. Identification of Antimicrobial Compounds in Two Streptomyces sp. Strains Isolated From Beehives. Front Microbiol 2022; 13:742168. [PMID: 35185841 PMCID: PMC8851239 DOI: 10.3389/fmicb.2022.742168] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 01/12/2022] [Indexed: 01/22/2023] Open
Abstract
The World Health Organization warns that the alarming increase in antibiotic resistant bacteria will lead to 2.7 million deaths annually due to the lack of effective antibiotic therapies. Clearly, there is an urgent need for short-term alternatives that help to alleviate these alarming figures. In this respect, the scientific community is exploring neglected ecological niches from which the prototypical antibiotic-producing bacteria Streptomycetes are expected to be present. Recent studies have reported that honeybees and their products carry Streptomyces species that possess strong antibacterial activity. In this study, we have investigated the antibiotic profile of two Streptomycetes strains that were isolated from beehives. One of the isolates is the strain Streptomyces albus AN1, which derives from pollen, and shows potent antimicrobial activity against Candida albicans. The other isolate is the strain Streptomyces griseoaurantiacus AD2, which was isolated from honey, and displays a broad range of antimicrobial activity against different Gram-positive bacteria, including pathogens such as Staphylococcus aureus and Enterococus faecalis. Cultures of S. griseoaurantiacus AD2 have the capacity to produce the antibacterial compounds undecylprodigiosin and manumycin, while those of S. albus AN1 accumulate antifungal compounds such as candicidins and antimycins. Furthermore, genome and dereplication analyses suggest that the number of putative bioactive metabolites produced by AD2 and AN1 is considerably high, including compounds with anti-microbial and anti-cancer properties. Our results postulate that beehives are a promising source for the discovery of novel bioactive compounds that might be of interest to the agri-food sector and healthcare pharmaceuticals.
Collapse
Affiliation(s)
- Fernando Santos-Beneit
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Valladolid, Spain
- Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Ana Ceniceros
- Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Athanasios Nikolaou
- School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - José A. Salas
- Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | | |
Collapse
|
14
|
Trivedi S, Husain I, Sharma A. Purification and characterization of phytase from
Bacillus subtilis
P6: Evaluation for probiotic potential for possible application in animal feed. FOOD FRONTIERS 2021. [DOI: 10.1002/fft2.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Shraddha Trivedi
- Department of P. G. Studies and Research in Biological Science Rani Durgavati University Jabalpur Madhya Pradesh India
| | - Islam Husain
- Department of P. G. Studies and Research in Biological Science Rani Durgavati University Jabalpur Madhya Pradesh India
- National Center for Natural Products Research School of Pharmacy The University of Mississippi University Oxford Mississippi USA
| | - Anjana Sharma
- Department of P. G. Studies and Research in Biological Science Rani Durgavati University Jabalpur Madhya Pradesh India
| |
Collapse
|
15
|
Wildlife symbiotic bacteria are indicators of the health status of the host and its ecosystem. Appl Environ Microbiol 2021; 88:e0138521. [PMID: 34669453 PMCID: PMC8752132 DOI: 10.1128/aem.01385-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactic acid bacteria (LAB) are gut symbionts that can be used as a model to understand the host-microbiota crosstalk under unpredictable environmental conditions such as wildlife ecosystems. The aim of this study was to determine whether viable LAB can be informative of the health status of wild boar populations. We monitored the genotype and phenotype of LAB based on markers that included safety and phylogenetic origin, antibacterial activity and immunomodulatory properties. A LAB profile dominated by lactobacilli appears to stimulate protective immune responses and relates to strains widely used as probiotics, resulting in a potentially healthy wildlife population whereas microbiota overpopulated by enterococci was observed in a hostile environment. These enterococci were closely related to pathogenic strains that have developed mechanisms to evade innate immune system, posing a potential risk for the host health. Furthermore, our LAB isolates displayed antibacterial properties in a species-dependent manner. Nearly all of them were able to inhibit bacterial pathogens, raising the possibility of using them as a la carte antibiotic alternative in the unexplored field of wildlife disease mitigation. Our study highlights that microbiological characterization of LAB is a useful indicator of wildlife health status and the ecological origin from which they derive. Significance Statement The wildlife symbiotic microbiota is an important component to the greater for greater diversity and functionality of their bacterial populations, influencing the host health and adaptability to its ecosystem. Although many microbes are partly responsible for the development of multiple physiological processes, only certain bacterial groups such as lactic acid bacteria (LAB) have the capacity to overpopulate the gut, promoting health (or disease) when specific genetic and environmental conditions are present. LAB have been exploited in many ways due to their probiotic properties, in particular lactobacilli, however their relationship with wildlife gut-associated microbiota hosts remains to be elucidated. On the other hand, it is unclear whether LAB such as enterococci, which have been associated with detrimental health effects, could lead to disease. These important questions have not been properly addressed in the field of wildlife, and therefore, should be clearly attained.
Collapse
|
16
|
Genomics-based approaches to identify and predict the health-promoting and safety activities of promising probiotic strains – A probiogenomics review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.12.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|