1
|
Zamora AN, Jansen EC, Goodrich JM, Téllez-Rojo MM, Song PXK, Meeker JD, Dolinoy DC, A Torres-Olascoaga L, Cantoral A, Peterson KE. Cross-sectional associations between phthalates, phenols, and parabens with metabolic syndrome risk during early-to-mid adolescence among a cohort of Mexican youth. ENVIRONMENTAL RESEARCH 2023; 236:116706. [PMID: 37474091 PMCID: PMC10592077 DOI: 10.1016/j.envres.2023.116706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/27/2023] [Accepted: 07/18/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Epidemiological studies on children and adults have linked toxicants from plastics and personal care products to metabolic disruption. Yet, the impact of endocrine-disrupting chemicals (EDCs) on adolescent metabolic syndrome (MetS) risk during early and mid-adolescence is unclear. METHODS To examine the links between exposure to EDCs and MetS risk and its components, cross-sectional data from 344 Mexican youth in early-to-mid adolescence (10-17 years) were analyzed. Urinary biomarker concentrations of phthalates, phenol, and paraben analytes were measured from a single spot urine sample collected in 2015; study personnel obtained anthropometric and metabolic measures. We examined associations between summary phthalates and metabolites, phenol, and paraben analytes with MetS risk z-scores using linear regression, adjusted for specific gravity, sex, age, pubertal status, smoking, alcohol intake, physical activity level, and screen time. As a secondary aim, mediation analysis was conducted to evaluate the role of hormones in the association between summary phthalates with lipids and MetS risk z-scores. RESULTS The mean (SD) age was 13.2 (1.9) years, and 50.9% were female. Sex-stratified analyses revealed associations between summary phthalates and lipids ratio z-scores, including Σ DEHP [β = 0.21 (95% CI: 0.04, 0.37; p < 0.01)], phthalates from plastic sources (Σ Plastic) [β = 0.22 (95% CI: 0.05, 0.39; p < 0.01)], anti-androgenic phthalates (Σ AA) [β = 0.22 (95% CI: 0.05, 0.39; p < 0.01)], and individual phthalate metabolites (MEHHP, MEOHP, and MECPP) among males. Among females, BPA [β = 0.24 (95% CI: 0.03, 0.44; p < 0.05)] was positively associated with lipids ratio z-score and one phenol (2,5 DCP) [β = 0.09 (95% CI: 0.01, 0.18); p < 0.05)] was associated with increased waist circumference z-score. Results showed no evidence of mediation by hormone concentrations in the association between summary phthalates with lipids ratio or MetS risk z-scores. CONCLUSION Higher EDC exposure was positively associated with serum lipids during adolescence, particularly among males.
Collapse
Affiliation(s)
- Astrid N Zamora
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA; Stanford Prevention Research Center, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Erica C Jansen
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Jaclyn M Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Martha M Téllez-Rojo
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Mexico
| | - Peter X K Song
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Dana C Dolinoy
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA; Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Libni A Torres-Olascoaga
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Mexico
| | | | - Karen E Peterson
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA; Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Perng W, Nakiwala D, Goodrich JM. What Happens In Utero Does Not Stay In Utero: a Review of Evidence for Prenatal Epigenetic Programming by Per- and Polyfluoroalkyl Substances (PFAS) in Infants, Children, and Adolescents. Curr Environ Health Rep 2023; 10:35-44. [PMID: 36414885 DOI: 10.1007/s40572-022-00387-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE OF REVIEW Review human literature on the relationship between prenatal exposure to per- and polyfluoroalkyl substances (PFAS) and epigenetic modifications in infants, children, and adolescents < 18 years of age. RECENT FINDINGS Eleven studies were identified, with study populations located in the U.S., Taiwan, Japan, and the Kingdom of Denmark. Many studies (n = 5) were cross-sectional, with PFAS exposure and epigenetic outcomes measured in the same tissue collected at delivery via cord blood or dried newborn blood spots. The other six studies were prospective, with prenatal PFAS measured on maternal blood during pregnancy and DNA methylation (DNAm) assessed in cord blood and childhood peripheral leukocytes (n = 1 study). Epigenetic marks of interest included global DNAm measures (LINE-1, Alu, and an ELISA-based method), candidate genes (IFG2, H19, and MEST), and epigenome-wide DNA methylation via array-based methods (Infinium 450 K and EPIC). Two studies using array-based methods employed discovery and validation paradigms, in which a small subset of loci (n = 6 and n = 4) were replicated in the discovery population. One site (TNXB) was a hit in two independent studies. Collectively, loci associated with PFAS were in regions involved in growth and development, lipid metabolism, and nutrient metabolism. There is moderate human evidence supporting associations of prenatal PFAS exposure on DNAm at birth, with one study suggesting sustained effects into childhood. Future studies are warranted to link PFAS-associated DNAm to health outcomes, as well as to investigate the role of other epigenetic marks such as hydroxymethylation, miRNA expression, and histone modifications.
Collapse
Affiliation(s)
- Wei Perng
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| | - Dorothy Nakiwala
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jaclyn M Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Perng W, Conway R, Mayer-Davis E, Dabelea D. Youth-Onset Type 2 Diabetes: The Epidemiology of an Awakening Epidemic. Diabetes Care 2023; 46:490-499. [PMID: 36812420 PMCID: PMC10090267 DOI: 10.2337/dci22-0046] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/26/2022] [Indexed: 02/24/2023]
Abstract
In this narrative review, we describe the epidemiology (prevalence, incidence, temporal trends, and projections) of type 2 diabetes among children and adolescents (<20 years), focusing on data from the U.S. and reporting global estimates where available. Secondarily, we discuss the clinical course of youth-onset type 2 diabetes, from prediabetes to complications and comorbidities, drawing comparisons with youth type 1 diabetes to highlight the aggressive course of this condition, which, only recently, has become recognized as a pediatric disease by health care providers. Finally, we end with an overview of emerging topics in type 2 diabetes research that have potential to inform strategies for effective preventive action at the community and individual levels.
Collapse
Affiliation(s)
- Wei Perng
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Rebecca Conway
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO
| | | | - Dana Dabelea
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
4
|
Medellín-Garibay SE, Alcántara-Quintana LE, Rodríguez-Báez AS, Sagahón-Azúa J, Rodríguez-Aguilar M, Hernández Cueto MDLA, Muñoz Medina JE, Milán-Segovia RDC, Flores-Ramírez R. Urinary phthalate metabolite and BPA concentrations in women with cervical cancer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:21033-21042. [PMID: 36264455 DOI: 10.1007/s11356-022-23654-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Environmental pollutants are involved in the development and progression of numerous cancers, including cervical cancer (CC). One possible explanation for this is the ability of several pollutants to mimic natural hormones. This study aimed to evaluate the urinary concentrations of monoesters of phthalates and bisphenol A (BPA) in women with CC. A total of 45 women were included: 15 in the control group, 12 with CC diagnosis classified in early stages IA-IIB, and 18 in late stages III-IV. Urine samples were analyzed for BPA, mono-isobutyl phthalate (MiBP), mono-n-butyl phthalate (MBP), monobenzyl phthalate (MBzP), and mono 2-ethylhexyl phthalate (MEHP) using high-performance liquid chromatography coupled to a tandem mass detector. The detection rate of environmental pollutants was 100%, with a median concentration in the control group and early-, and late-stage groups of 10.4, 9.2, 4.3, 38.4, and 12.9 µg L-1; 3.1, 3.1, 151.1, 54.5, and 30.4 µg L-1 and 1.9, 92.8, 3.6, 31.0, and 9.3 µg L-1 for BPA, MEHP, MBzP, MBP, and MiBP, respectively This study reveals high levels of phthalates, particularly MEHP, in urine samples of women with CC associated with human papillomavirus (HPV) infection. Further studies are needed to evaluate the possible role of phthalates in synergy with HPV in progression to CC.
Collapse
Affiliation(s)
| | - Luz Eugenia Alcántara-Quintana
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Universidad Autónoma de San Luis Potosí, San Luis Potosi, Mexico
| | | | - Julia Sagahón-Azúa
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosi, Mexico
| | - Maribel Rodríguez-Aguilar
- Departamento de Ciencias Básicas, Universidad Autónoma de Quintana Roo, Chetumal, Quintana Roo, México
| | | | - José Esteban Muñoz Medina
- Laboratorio Central de Epidemiología, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | | | - Rogelio Flores-Ramírez
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Universidad Autónoma de San Luis Potosí, San Luis Potosi, Mexico.
| |
Collapse
|
5
|
Güil-Oumrait N, Cano-Sancho G, Montazeri P, Stratakis N, Warembourg C, Lopez-Espinosa MJ, Vioque J, Santa-Marina L, Jimeno-Romero A, Ventura R, Monfort N, Vrijheid M, Casas M. Prenatal exposure to mixtures of phthalates and phenols and body mass index and blood pressure in Spanish preadolescents. ENVIRONMENT INTERNATIONAL 2022; 169:107527. [PMID: 36126421 DOI: 10.1016/j.envint.2022.107527] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/29/2022] [Accepted: 09/14/2022] [Indexed: 05/22/2023]
Abstract
BACKGROUND Pregnant women are simultaneously exposed to several non-persistent endocrine-disrupting chemicals, which may influence the risk of childhood obesity and cardiovascular diseases later in life. Previous prospective studies have mostly examined single-chemical effects, with inconsistent findings. We assessed the association between prenatal exposure to phthalates and phenols, individually and as a mixture, and body mass index (BMI) and blood pressure (BP) in preadolescents. METHODS We used data from the Spanish INMA birth cohort study (n = 1,015), where the 1st and 3rd- trimester maternal urinary concentrations of eight phthalate metabolites and six phenols were quantified. At 11 years of age, we calculated BMI z-scores and measured systolic and diastolic BP. We estimated individual chemical effects with linear mixed models and joint effects of the chemical mixture with hierarchical Bayesian kernel machine regression (BKMR). Analyses were stratified by sex and by puberty status. RESULTS In single-exposure models, benzophenone-3 (BP3) was nonmonotonically associated with higher BMI z-score (e.g. Quartile (Q) 3: β = 0.23 [95% CI = 0.03, 0.44] vs Q1) and higher diastolic BP (Q2: β = 1.27 [0.00, 2.53] mmHg vs Q1). Methyl paraben (MEPA) was associated with lower systolic BP (Q4: β = -1.67 [-3.31, -0.04] mmHg vs Q1). No consistent associations were observed for the other compounds. Results from the BKMR confirmed the single-exposure results and showed similar patterns of associations, with BP3 having the highest importance in the mixture models, especially among preadolescents who reached puberty status. No overall mixture effect was found, except for a tendency of higher BMI z-score and lower systolic BP in girls. CONCLUSIONS Prenatal exposure to UV-filter BP3 may be associated with higher BMI and diastolic BP during preadolescence, but there is little evidence for an overall phthalate and phenol mixture effect.
Collapse
Affiliation(s)
- Nuria Güil-Oumrait
- ISGlobal, Barcelona, Spain; Pompeu Fabra University (UPF), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Parisa Montazeri
- ISGlobal, Barcelona, Spain; Pompeu Fabra University (UPF), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Nikos Stratakis
- ISGlobal, Barcelona, Spain; Pompeu Fabra University (UPF), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Charline Warembourg
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Maria-Jose Lopez-Espinosa
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; FISABIO-Universitat Jaume I-Universitat de Valencia, Valencia, Spain; Faculty of Nursing and Chiropody, University of Valencia, Valencia, Spain
| | - Jesús Vioque
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Universidad Miguel Hernández, Alicante, Spain
| | - Loreto Santa-Marina
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Biodonostia, Health Research Institute, Donostia, Gipuzkoa, Spain; Department of Health of the Basque Government, Subdirectorate of Public Health of Gipuzkoa, Spain
| | - Alba Jimeno-Romero
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Biodonostia, Health Research Institute, Donostia, Gipuzkoa, Spain; Preventive Medicine and Public Health Department, University of the Basque Country, Leioa, Bizkaia, Spain
| | - Rosa Ventura
- Catalonian Antidoping Laboratory, Doping Control Research Group, IMIM, Barcelona, Spain
| | - Nuria Monfort
- Catalonian Antidoping Laboratory, Doping Control Research Group, IMIM, Barcelona, Spain
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Pompeu Fabra University (UPF), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Maribel Casas
- ISGlobal, Barcelona, Spain; Pompeu Fabra University (UPF), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|
6
|
Seabuckthorn Reverses High-Fat-Diet-Induced Obesity and Enhances Fat Browning via Activation of AMPK/SIRT1 Pathway. Nutrients 2022; 14:nu14142903. [PMID: 35889860 PMCID: PMC9325301 DOI: 10.3390/nu14142903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022] Open
Abstract
Seabuckthorn possesses various bioactive compounds and exhibits several positive pharmacological activities. The present trial aims to determine the effect of seabuckthorn powder intake on high-fat diet (HFD)-induced obesity prevention in mice. The results suggest that seabuckthorn powder intake decreased body weight, fat mass, and circulating lipid levels, and improved insulin sensitivity in HFD-fed mice. Moreover, dietary seabuckthorn powder alleviated hepatic steatosis and hepatic lipid accumulation induced by the HFD. Furthermore, seabuckthorn exhibited obvious anti-inflammatory capacity in white adipose tissue (WAT) by regulating the abundance of inflammation-related cytokines, such as interleukins 4, 6, and 10; tumor necrosis factor α; and interferon-γ. More importantly, dietary seabuckthorn powder promoted a thermogenic program in BAT and induced beige adipocyte formation in iWAT in HFD-fed mice. Interestingly, we found that seabuckthorn powder effectively restored AMPK and SIRT1 activities in both BAT and iWAT in HFD-fed mice. Collectively, these results potentiate the application of seabuckthorn powder as a nutritional intervention strategy to prevent obesity and related metabolic diseases by promoting thermogenesis in BAT and improving beige adipocyte formation in WAT.
Collapse
|
7
|
Heindel JJ, Howard S, Agay-Shay K, Arrebola JP, Audouze K, Babin PJ, Barouki R, Bansal A, Blanc E, Cave MC, Chatterjee S, Chevalier N, Choudhury M, Collier D, Connolly L, Coumoul X, Garruti G, Gilbertson M, Hoepner LA, Holloway AC, Howell G, Kassotis CD, Kay MK, Kim MJ, Lagadic-Gossmann D, Langouet S, Legrand A, Li Z, Le Mentec H, Lind L, Monica Lind P, Lustig RH, Martin-Chouly C, Munic Kos V, Podechard N, Roepke TA, Sargis RM, Starling A, Tomlinson CR, Touma C, Vondracek J, Vom Saal F, Blumberg B. Obesity II: Establishing causal links between chemical exposures and obesity. Biochem Pharmacol 2022; 199:115015. [PMID: 35395240 PMCID: PMC9124454 DOI: 10.1016/j.bcp.2022.115015] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023]
Abstract
Obesity is a multifactorial disease with both genetic and environmental components. The prevailing view is that obesity results from an imbalance between energy intake and expenditure caused by overeating and insufficient exercise. We describe another environmental element that can alter the balance between energy intake and energy expenditure: obesogens. Obesogens are a subset of environmental chemicals that act as endocrine disruptors affecting metabolic endpoints. The obesogen hypothesis posits that exposure to endocrine disruptors and other chemicals can alter the development and function of the adipose tissue, liver, pancreas, gastrointestinal tract, and brain, thus changing the set point for control of metabolism. Obesogens can determine how much food is needed to maintain homeostasis and thereby increase the susceptibility to obesity. The most sensitive time for obesogen action is in utero and early childhood, in part via epigenetic programming that can be transmitted to future generations. This review explores the evidence supporting the obesogen hypothesis and highlights knowledge gaps that have prevented widespread acceptance as a contributor to the obesity pandemic. Critically, the obesogen hypothesis changes the narrative from curing obesity to preventing obesity.
Collapse
Affiliation(s)
- Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, USA.
| | - Sarah Howard
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, USA
| | - Keren Agay-Shay
- Health and Environment Research (HER) Lab, The Azrieli Faculty of Medicine, Bar Ilan University, Israel
| | - Juan P Arrebola
- Department of Preventive Medicine and Public Health University of Granada, Granada, Spain
| | - Karine Audouze
- Department of Systems Biology and Bioinformatics, University of Paris, INSERM, T3S, Paris France
| | - Patrick J Babin
- Department of Life and Health Sciences, University of Bordeaux, INSERM, Pessac France
| | - Robert Barouki
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Amita Bansal
- College of Health & Medicine, Australian National University, Canberra, Australia
| | - Etienne Blanc
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Matthew C Cave
- Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY 40402, USA
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, University of South Carolina, Columbia, SC 29208, USA
| | - Nicolas Chevalier
- Obstetrics and Gynecology, University of Cote d'Azur, Cote d'Azur, France
| | - Mahua Choudhury
- College of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - David Collier
- Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Lisa Connolly
- The Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast, Northern Ireland, UK
| | - Xavier Coumoul
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Gabriella Garruti
- Department of Endocrinology, University of Bari "Aldo Moro," Bari, Italy
| | - Michael Gilbertson
- Occupational and Environmental Health Research Group, University of Stirling, Stirling, Scotland
| | - Lori A Hoepner
- Department of Environmental and Occupational Health Sciences, School of Public Health, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Alison C Holloway
- McMaster University, Department of Obstetrics and Gynecology, Hamilton, Ontario, CA, USA
| | - George Howell
- Center for Environmental Health Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Christopher D Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA
| | - Mathew K Kay
- College of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - Min Ji Kim
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | | | - Sophie Langouet
- Univ Rennes, INSERM EHESP, IRSET UMR_5S 1085, 35000 Rennes, France
| | - Antoine Legrand
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Zhuorui Li
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Helene Le Mentec
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Lars Lind
- Clinical Epidemiology, Department of Medical Sciences, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - P Monica Lind
- Occupational and Environmental Medicine, Department of Medical Sciences, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Robert H Lustig
- Division of Endocrinology, Department of Pediatrics, University of California San Francisco, CA 94143, USA
| | | | - Vesna Munic Kos
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Normand Podechard
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Troy A Roepke
- Department of Animal Science, School of Environmental and Biological Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Robert M Sargis
- Division of Endocrinology, Diabetes and Metabolism, The University of Illinois at Chicago, Chicago, Il 60612, USA
| | - Anne Starling
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Craig R Tomlinson
- Norris Cotton Cancer Center, Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Charbel Touma
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Jan Vondracek
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Frederick Vom Saal
- Division of Biological Sciences, The University of Missouri, Columbia, MO 65211, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
8
|
Betanzos‐Robledo L, Téllez‐Rojo MM, Lamadrid‐Figueroa H, Roldan‐Valadez E, Peterson KE, Jansen EC, Basu N, Cantoral A. Differential fat accumulation in early adulthood according to adolescent-BMI and heavy metal exposure. New Dir Child Adolesc Dev 2022; 2022:37-51. [PMID: 35583253 PMCID: PMC9790480 DOI: 10.1002/cad.20463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Heavy metals such as Lead (Pb) and Mercury (Hg) can affect adipose tissue mass and function. Considering the high prevalence of exposure to heavy metals and obesity in Mexico, we aim to examine if exposure to Pb and Hg in adolescence can modify how fat is accumulated in early adulthood. METHODS This study included 100 participants from the ELEMENT cohort in Mexico. Adolescent Pb and Hg blood levels were determined at 14-16 years. Age- and sex-specific adolescent BMI Z-scores were calculated. At early adulthood (21-22 years), fat accumulation measurements were performed (abdominal, subcutaneous, visceral, hepatic, and pancreatic fat). Linear regression models with an interaction between adolescent BMI Z-score and Pb or Hg levels were run for each adulthood fat accumulation outcome with normal BMI as reference. RESULTS In adolescents with obesity compared to normal BMI, as Pb exposure increased, subcutaneous (p-interaction = 0.088) and visceral (p-interaction < 0.0001) fat accumulation increases. Meanwhile, Hg was associated with subcutaneous (p-interaction = 0.027) and abdominal (p-interaction = 0.022) fat deposition among adolescents with obesity. CONCLUSIONS Heavy metal exposure in adolescence may alter how fat is accumulated in later periods of life.
Collapse
Affiliation(s)
- Larissa Betanzos‐Robledo
- CONACYTNational Institute of Public HealthCenter for Nutrition and Health ResearchCuernavacaMexico
| | - Martha M. Téllez‐Rojo
- CONACYTNational Institute of Public HealthCenter for Nutrition and Health ResearchCuernavacaMexico
| | - Hector Lamadrid‐Figueroa
- Department of Perinatal HealthReproductive Health DirectorateNational Institute of Public HealthCenter for Population Health ResearchCuernavacaMéxico
| | - Ernesto Roldan‐Valadez
- Directorate of Clinical ResearchHospital General de Mexico “Dr. Eduardo Liceaga”Mexico CityMexico
- Department of RadiologyI.M. Sechenov First Moscow State Medical University (Sechenov University)MoscowRussia
| | - Karen E. Peterson
- Department of Nutritional SciencesUniversity of MichiganAnn ArborMichiganUSA
| | - Erica C. Jansen
- Department of Nutritional SciencesUniversity of MichiganAnn ArborMichiganUSA
| | - Nil Basu
- Department of Natural Resource SciencesMcGill UniversityMontrealQuebecCanada
| | | |
Collapse
|
9
|
Perng W, Cantoral A, Soria-Contreras DC, Betanzos-Robledo L, Kordas K, Liu Y, Mora AM, Corvalan C, Pereira A, Cardoso MA, Chavarro JE, Breton CV, Meeker JD, Harley KG, Eskenazi B, Peterson KE, Tellez-Rojo MM. Exposure to obesogenic endocrine disrupting chemicals and obesity among youth of Latino or Hispanic origin in the United States and Latin America: A lifecourse perspective. Obes Rev 2021; 22 Suppl 3:e13245. [PMID: 33951277 PMCID: PMC8217151 DOI: 10.1111/obr.13245] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 01/18/2023]
Abstract
Following a 2019 workshop led by the Center for Global Health Studies at the Fogarty International Center on the topic of childhood obesity prevention and research synergies transpiring from cross-border collaborations, we convened a group of experts in the United States and Latin America to conduct a narrative review of the epidemiological literature on the role of obesogenic endocrine disrupting chemicals (EDCs) in the etiology of childhood obesity among Latino youth in the United States and Latin America. In addition to summarizing and synthesizing results from research on this topic published within the last decade, we place the findings within a lifecourse biobehavioral framework to aid in identification of unique exposure-outcome relationships driven by both biological and behavioral research, identify inconsistencies and deficiencies in current literature, and discuss the role of policy regulations, all with the goal of identifying viable avenues for prevention of early life obesity in Latino/Hispanic populations.
Collapse
Affiliation(s)
- Wei Perng
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, USA.,Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, USA
| | - Alejandra Cantoral
- National Council of Science and Technology, National Institute of Public Health, Mexico City, Mexico
| | - Diana C Soria-Contreras
- Center for Nutrition and Health Research, National Institute of Public Health, Mexico City, Mexico
| | - Larissa Betanzos-Robledo
- National Council of Science and Technology, National Institute of Public Health, Mexico City, Mexico
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, Buffalo, New York, USA
| | - Yun Liu
- Department of Epidemiology, Brown University, Providence, Rhode Island, USA
| | - Ana M Mora
- Center for Environmental Research and Children's Health, School of Public Health, University of California Berkeley, Berkeley, California, USA.,Central American Institute for Studies on Toxic Substances (IRET), Universidad Nacional de Costa Rica, Heredia, Costa Rica
| | - Camila Corvalan
- Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| | - Anita Pereira
- Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| | - Marly Augusto Cardoso
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Jorge E Chavarro
- Department of Nutrition and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Carrie V Breton
- Division of Environmental Health, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Kim G Harley
- Center for Environmental Research and Children's Health, School of Public Health, University of California Berkeley, Berkeley, California, USA
| | - Brenda Eskenazi
- Center for Environmental Research and Children's Health, School of Public Health, University of California Berkeley, Berkeley, California, USA
| | - Karen E Peterson
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Martha Maria Tellez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Mexico City, Mexico
| |
Collapse
|
10
|
King AC, Perez‐Escamilla R, Vorkoper S, Anand N, Rivera J. Childhood obesity prevention across borders: The promise of U.S.-Latin American research collaboration. Obes Rev 2021; 22 Suppl 3:e13238. [PMID: 33949095 PMCID: PMC8365639 DOI: 10.1111/obr.13238] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/19/2022]
Affiliation(s)
- Abby C. King
- Departments of Epidemiology and Population Health and Medicine (Stanford Prevention Research Center)Stanford University School of MedicineStanfordCAUSA
| | | | - Susan Vorkoper
- Fogarty International CenterNational Institutes of HealthBethesdaMDUSA
| | - Nalini Anand
- Fogarty International CenterNational Institutes of HealthBethesdaMDUSA
| | - Juan Rivera
- Centro de Investigación en Nutrición y SaludInstituto Nacional de Salud PúblicaCuernavacaMexico
| |
Collapse
|