1
|
Zheng S, Liu Y, Xia X, Xiao J, Ma H, Yuan X, Zhang Y, Chen Z, Peng G, Li W, Fei J, Liu Y. Sequence Context-Agnostic TadA-Derived Cytosine Base Editors for Genome-Wide Editing in Zebrafish. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411478. [PMID: 39960330 PMCID: PMC11984895 DOI: 10.1002/advs.202411478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/07/2025] [Indexed: 04/12/2025]
Abstract
Single-nucleotide variants (SNVs) represent a significant form of genetic variation linked to various diseases. CRISPR-mediated base editing has emerged as a powerful method for modeling diseases caused by SNVs, particularly in zebrafish, which serve as an excellent platform for investigating disease mechanisms and conducting drug screenings. However, existing cytosine base editors (CBEs) for zebrafish often have broad editing windows and strong sequence preferences, limiting their effectiveness. In this study, zebrafish (z) TadA-derived cytosine base editors, termed zTadA-CBEs, are developed by introducing key mutations into the TadA8e enzyme. These novel editors demonstrate improved efficiency and precision in cytosine base editing. Specifically, zTadA-BE4max and zTadA-BEmv offer complementary editing windows, while zTadA-SpRY-BE4max allows for PAM-flexible editing. Using zTadA-CBEs, a precise disease model for Axenfeld-Rieger syndrome is established, and created two new models for Hermansky-Pudlak syndrome. Additionally, a novel albinism model carrying two pathogenic SNVs in the F0 generation is developed. By employing specifically designed sgRNA, the fmsts± missense mutation is corrected back to the wild-type nucleotide (C > T), successfully restoring macrophage levels to normal. These findings underscore the potential of zTadA-CBEs to enhance genome editing techniques and their applications in developing therapies for SNV-related disorders.
Collapse
Affiliation(s)
- Shaohui Zheng
- Key Laboratory of BrainCognition and Education SciencesMinistry of EducationSouth China Normal UniversityGuangzhou510631China
- Institute for Brain Research and Rehabilitationand Guangdong Key Laboratory of Mental Health and Cognitive ScienceSouth China Normal UniversityGuangzhou510631China
| | - Yang Liu
- Key Laboratory of BrainCognition and Education SciencesMinistry of EducationSouth China Normal UniversityGuangzhou510631China
- Institute for Brain Research and Rehabilitationand Guangdong Key Laboratory of Mental Health and Cognitive ScienceSouth China Normal UniversityGuangzhou510631China
| | - Xinxin Xia
- Key Laboratory of BrainCognition and Education SciencesMinistry of EducationSouth China Normal UniversityGuangzhou510631China
- Institute for Brain Research and Rehabilitationand Guangdong Key Laboratory of Mental Health and Cognitive ScienceSouth China Normal UniversityGuangzhou510631China
| | - Jiawang Xiao
- Key Laboratory of BrainCognition and Education SciencesMinistry of EducationSouth China Normal UniversityGuangzhou510631China
- Institute for Brain Research and Rehabilitationand Guangdong Key Laboratory of Mental Health and Cognitive ScienceSouth China Normal UniversityGuangzhou510631China
| | - Hui Ma
- Department of PathologyGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouGuangdong510080China
| | - Xuanyao Yuan
- Key Laboratory of BrainCognition and Education SciencesMinistry of EducationSouth China Normal UniversityGuangzhou510631China
- Institute for Brain Research and Rehabilitationand Guangdong Key Laboratory of Mental Health and Cognitive ScienceSouth China Normal UniversityGuangzhou510631China
| | - Yan Zhang
- Key Laboratory of BrainCognition and Education SciencesMinistry of EducationSouth China Normal UniversityGuangzhou510631China
- Institute for Brain Research and Rehabilitationand Guangdong Key Laboratory of Mental Health and Cognitive ScienceSouth China Normal UniversityGuangzhou510631China
| | - Zixi Chen
- Key Laboratory of BrainCognition and Education SciencesMinistry of EducationSouth China Normal UniversityGuangzhou510631China
- Institute for Brain Research and Rehabilitationand Guangdong Key Laboratory of Mental Health and Cognitive ScienceSouth China Normal UniversityGuangzhou510631China
| | - Guangcong Peng
- Key Laboratory of BrainCognition and Education SciencesMinistry of EducationSouth China Normal UniversityGuangzhou510631China
- Institute for Brain Research and Rehabilitationand Guangdong Key Laboratory of Mental Health and Cognitive ScienceSouth China Normal UniversityGuangzhou510631China
| | - Wenyuan Li
- China Zebrafish Resource Center (CZRC)Institute of HydrobiologyChinese Academy of SciencesWuhan430072China
| | - Ji‐Feng Fei
- Department of PathologyGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouGuangdong510080China
- The Innovation Centre of Ministry of Education for Development and DiseasesSchool of MedicineSouth China University of TechnologyGuangzhou510006China
- School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Yanmei Liu
- Key Laboratory of BrainCognition and Education SciencesMinistry of EducationSouth China Normal UniversityGuangzhou510631China
- Institute for Brain Research and Rehabilitationand Guangdong Key Laboratory of Mental Health and Cognitive ScienceSouth China Normal UniversityGuangzhou510631China
| |
Collapse
|
2
|
Tian Y, Zhou XX, Zhao SZ, Peng M, Jia J. Deletion of exon 4 of the PITX2 in a child with Axenfeld-Rieger syndrome. Ophthalmic Genet 2024; 45:626-632. [PMID: 39587444 DOI: 10.1080/13816810.2024.2414901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 06/28/2024] [Accepted: 10/06/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND Axenfeld-Rieger syndrome (ARS, OMIM:602482) is a genetic disease characterized by ocular and systemic features. Clinical features of ARS are highly variable among patients and associated with mutations of human PITX2 and FOXC1 genes. Herein, we present an ARS in two cases (proband and his mother) with a novel variant in the PITX2. METHODS A 3-month-old boy was admitted with an abnormal eye development at birth. Physical examination and ophthalmologic examination findings revealed an abnormal development of the anterior segments, ectropion of redundant skin in the umbilicus, single-sided deafness, teeth eruption failure, patent foramen ovale, and a mid-facial flattening. The proband's mother has been blind since the age of 12. We conducted genetic tests for the family via whole exome sequencing (WES) and quantitative PCR (qPCR) to identify the genetic etiology in the family. We also conducted a retrospective review of the ARS type I phenotype caused by the PITX2 mutations. RESULTS WES and qPCR results of the proband and his parents suggested that both the child and his mother carry a 1.31kbp deletion (chr4: g.111538559_111539864del [GRCh37]) spanned the exon 4 of PITX2, resulting in the typical and rare phenotype of ARS type I. It can conclude that truncating variants in the exon 3-4 of PITX2 are the more common mechanism to cause the malfunction of the gene with a broader phenotypic spectrum. CONCLUSION The study has filled in a new clinical manifestation of the PITX2 and enriched the phenotype of ARS. The retrospective analysis of phenotype of PITX2 mutations provided a comprehensive understanding of the disease.
Collapse
Affiliation(s)
- Yu Tian
- Department of Ophthalmology, Hunan Children's Hospital, Changsha, Hunan, China
| | - Xiao-Xia Zhou
- Department of Medical, Shanghai Fujungenetics Biotechnology Co., Ltd., Shanghai, China
| | - Su-Zhou Zhao
- Department of Medical, Shanghai Fujungenetics Biotechnology Co., Ltd., Shanghai, China
| | - Mei Peng
- Department of Medical, Shanghai Fujungenetics Biotechnology Co., Ltd., Shanghai, China
| | - Jia Jia
- Department of Medical, Shanghai Fujungenetics Biotechnology Co., Ltd., Shanghai, China
| |
Collapse
|
3
|
Ding T, Liu H, Yu G. Novel MSX1 Gene Variants in Chinese Children with Non-Syndromic Tooth Agenesis: A Clinical and Genetic Analysis. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1418. [PMID: 39767847 PMCID: PMC11674387 DOI: 10.3390/children11121418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/21/2024] [Accepted: 11/23/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Tooth agenesis is the most frequently occurring genetic developmental anomaly in clinical dentistry. The MSX1 gene, essential for tooth development, has been associated with non-syndromic tooth agenesis. This study aims to identify novel MSX1 variants associated with this condition and to understand their impact on tooth development. METHODS This study involved the genetic analysis of two children presenting with non-syndromic tooth agenesis. Conservation analysis and 3D structural modeling were conducted to assess the pathogenicity of these variants. Additionally, a review of 108 patients with known MSX1 variants was performed to identify patterns of tooth agenesis. RESULTS We discovered two novel MSX1 variants, c.823 T>G and c.890 A>G, located in the second exon of the MSX1 gene. The identified MSX1 variants, c.823 T>G and c.890 A>G, were predicted to be pathogenic. Conservation analysis showed that the impacted amino acids are highly conserved across species, and 3D structural analysis indicated potential disruptions to protein function. Among the 108 patients reviewed, a consistent pattern of tooth agenesis was observed, with the most frequently missing teeth being the maxillary second premolars, the mandibular second premolars, and the maxillary first premolars. CONCLUSIONS This research broadens the known range of MSX1 gene variants and deepens our comprehension of the genetic foundations of non-syndromic tooth agenesis. The findings provide valuable insights for genetic counseling and future research into tooth development, emphasizing the importance of MSX1 in dental anomalies.
Collapse
Affiliation(s)
- Tingting Ding
- Department of Stomatology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China;
| | - Haochen Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Central Laboratory, Beijing 100081, China;
| | - Guoxia Yu
- Department of Stomatology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China;
| |
Collapse
|
4
|
Su L, Lin B, Yu M, Liu Y, Sun S, Feng H, Liu H, Han D. EDA Variants Are Responsible for Approximately 90% of Deciduous Tooth Agenesis. Int J Mol Sci 2024; 25:10451. [PMID: 39408781 PMCID: PMC11477375 DOI: 10.3390/ijms251910451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/08/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Deciduous tooth agenesis is a severe craniofacial developmental defect because it affects masticatory function from infancy and may result in delayed growth and development. Here, we aimed to identify the crucial pathogenic genes and clinical features of patients with deciduous tooth agenesis. We recruited 84 patients with severe deciduous tooth agenesis. Whole-exome and Sanger sequencing were used to identify the causative variants. Phenotype-genotype correlation analysis was conducted. We identified 54 different variants in 8 genes in 84 patients, including EDA (73, 86.9%), PAX9 (2, 2.4%), LRP6 (2, 2.4%), MSX1 (2, 2.4%), BMP4 (1, 1.2%), WNT10A (1, 1.2%), PITX2 (1, 1.2%), and EDARADD (1, 1.2%). Variants in ectodysplasin A (EDA) accounted for 86.9% of patients with deciduous tooth agenesis. Patients with the EDA variants had an average of 15.4 missing deciduous teeth. Mandibular deciduous central incisors had the highest missing rate (100%), followed by maxillary deciduous lateral incisors (98.8%) and mandibular deciduous lateral incisors (97.7%). Our results indicated that EDA gene variants are major pathogenic factors for deciduous tooth agenesis, and EDA is specifically required for deciduous tooth development. The results provide guidance for clinical diagnosis and genetic counseling of deciduous tooth agenesis.
Collapse
Affiliation(s)
- Lanxin Su
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Central Laboratory, Beijing 100081, China; (L.S.); (M.Y.); (Y.L.); (S.S.); (H.F.)
| | - Bichen Lin
- First Clinical Division, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Central Laboratory, Beijing 100081, China;
| | - Miao Yu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Central Laboratory, Beijing 100081, China; (L.S.); (M.Y.); (Y.L.); (S.S.); (H.F.)
| | - Yang Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Central Laboratory, Beijing 100081, China; (L.S.); (M.Y.); (Y.L.); (S.S.); (H.F.)
| | - Shichen Sun
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Central Laboratory, Beijing 100081, China; (L.S.); (M.Y.); (Y.L.); (S.S.); (H.F.)
| | - Hailan Feng
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Central Laboratory, Beijing 100081, China; (L.S.); (M.Y.); (Y.L.); (S.S.); (H.F.)
| | - Haochen Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Central Laboratory, Beijing 100081, China; (L.S.); (M.Y.); (Y.L.); (S.S.); (H.F.)
| | - Dong Han
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Central Laboratory, Beijing 100081, China; (L.S.); (M.Y.); (Y.L.); (S.S.); (H.F.)
| |
Collapse
|
5
|
Mitscherling J, Sczakiel HL, Kiskemper-Nestorjuk O, Winterhalter S, Mundlos S, Bartzela T, Mensah MA. Whole genome sequencing in families with oligodontia. Oral Dis 2024; 30:3935-3950. [PMID: 38071191 DOI: 10.1111/odi.14816] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/22/2023] [Accepted: 11/10/2023] [Indexed: 09/03/2024]
Abstract
BACKGROUND/OBJECTIVES Tooth agenesis (TA) is among the most common malformations in humans. Although several causative mutations have been described, the genetic cause often remains elusive. Here, we test whether whole genome sequencing (WGS) could bridge this diagnostic gap. METHODS In four families with TA, we assessed the dental phenotype using the Tooth Agenesis Code after intraoral examination and radiographic and photographic documentation. We performed WGS of index patients and subsequent segregation analysis. RESULTS We identified two variants of uncertain significance (a potential splice variant in PTH1R, and a 2.1 kb deletion abrogating a non-coding element in FGF7) and three pathogenic variants: a novel frameshift in the final exon of PITX2, a novel deletion in PAX9, and a known nonsense variant in WNT10A. Notably, the FGF7 variant was found in the patient, also featuring the WNT10A variant. While mutations in PITX2 are known to cause Axenfeld-Rieger syndrome 1 (ARS1) predominantly featuring ocular findings, accompanied by dental malformations, we found the PITX2 frameshift in a family with predominantly dental and varying ocular findings. CONCLUSION Severe TA predicts a genetic cause identifiable by WGS. Final exon PITX2 frameshifts can cause a predominantly dental form of ARS1.
Collapse
Affiliation(s)
- Janna Mitscherling
- Department of Orthodontics and Dentofacial Orthopedics, Charité - Centrum 03 für Zahn-, Mund- und Kieferheilkunde, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, und Berlin Institute of Health, Berlin, Germany
| | - Henrike L Sczakiel
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- BIH Biomedical Innovation Academy, Junior Clinician Scientist Program, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Olga Kiskemper-Nestorjuk
- Department of Orthodontics and Dentofacial Orthopedics, Charité - Centrum 03 für Zahn-, Mund- und Kieferheilkunde, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, und Berlin Institute of Health, Berlin, Germany
| | - Sibylle Winterhalter
- Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefan Mundlos
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Theodosia Bartzela
- Department of Orthodontics and Dentofacial Orthopedics, Charité - Centrum 03 für Zahn-, Mund- und Kieferheilkunde, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, und Berlin Institute of Health, Berlin, Germany
- Department of Orthodontics, Technische Universität Dresden, Dresden, Germany
| | - Martin A Mensah
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
- BIH Biomedical Innovation Academy, Digital Clinician Scientist Program, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
6
|
Semjid D, Ahn H, Bayarmagnai S, Gantumur M, Kim S, Lee JH. Identification of novel candidate genes associated with non-syndromic tooth agenesis in Mongolian families. Clin Oral Investig 2023; 28:56. [PMID: 38157055 PMCID: PMC10756872 DOI: 10.1007/s00784-023-05415-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVES This study aimed to identify genetic variants associated with non-syndromic tooth agenesis (TA) in nine families from Mongolia using whole-exome sequencing (WES) and bioinformatics analysis. MATERIAL AND METHODS The study enrolled 41 participants, including three inherited and six non-inherited families. WES analysis was performed on 14 saliva samples from individuals with non-syndromic TA. The potential candidate genes were identified through variant filtering and segregation analysis. The filtered variants were then analyzed in silico mutation impact analysis. RESULTS WES analysis identified 21 variants associated with TA, and 5 of these variants met all filtering criteria. These variants were located in the exome region of MAST4, ITGA6, PITX2, CACNA1S, and CDON genes. The variant in PITX2 was found in eight participants from inherited and non-inherited families, while the MAST4 variant was identified in 6 participants from inherited families. CONCLUSIONS The study identified various genetic variant candidates associated with TA in different family groups, with PITX2 being the most commonly identified. Our findings suggest that MAST4 may also be a novel candidate gene for TA due to its association with the Wnt signaling pathway. Additionally, we found that five candidate genes related to focal adhesion and calcium channel complex were significant and essential in tooth development. CLINICAL RELEVANCE Identifying new pathogenic genes associated with TA can improve our understanding of the molecular mechanisms underlying the disease, leading to better diagnosis, prevention, and treatment. Early detection of TA based on biomarkers can improve dental management and facilitate orthodontic and prosthetic treatment.
Collapse
Affiliation(s)
- Dejidnorov Semjid
- Department of Prosthodontics, College of Dentistry at Yonsei University, 50-1 Yonsei-Ro, Seodaemoon-Gu, Seoul, 120-752, Republic of Korea
| | - Hyunsoo Ahn
- Department of Life Sciences, Pohang University of Science and Technology, 80 Jigok-Ro, Nam-Gu, Pohang, 790-784, Republic of Korea
| | - Sapaar Bayarmagnai
- Department of Prosthodontics, School of Dentistry, Mongolian National University of Medical Sciences, Chingeltei District, Nuuriin 2-21, Ulaanbaatar, Mongolia
| | - Munkhjargal Gantumur
- Department of Prosthodontics, School of Dentistry, Mongolian National University of Medical Sciences, Chingeltei District, Nuuriin 2-21, Ulaanbaatar, Mongolia
| | - Sanguk Kim
- Department of Life Sciences, Pohang University of Science and Technology, 80 Jigok-Ro, Nam-Gu, Pohang, 790-784, Republic of Korea.
| | - Jae Hoon Lee
- Department of Prosthodontics, College of Dentistry at Yonsei University, 50-1 Yonsei-Ro, Seodaemoon-Gu, Seoul, 120-752, Republic of Korea.
| |
Collapse
|
7
|
Castilho NL, Resende KKM, dos Santos JA, Machado RA, Coletta RD, Guerra ENS, Acevedo AC, Martelli-Junior H. Oligodontia in the Clinical Spectrum of Syndromes: A Systematic Review. Dent J (Basel) 2023; 11:279. [PMID: 38132417 PMCID: PMC10742796 DOI: 10.3390/dj11120279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/11/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
The aim of this systematic review was to describe the clinical and genetic features of syndromes showing oligodontia as a sign. The review was performed according to the PRISMA 2020 checklist guidelines, and the search was conducted using PubMed, Scopus, Lilacs, Web of science, Livivo, and EMBASE and supplemented by a gray literature search on Google Scholar and ProQuest, applying key terms relevant to the research questions. The systematic review identified 47 types of syndromes in 83 studies, and the most common was hypohidrotic ectodermal dysplasia, which was reported in 24 patients in 22 studies. Other common syndromes that reported oligodontia included Axenfeld-Rieger syndrome, Witkop's syndrome, Ellis-van Creveld syndrome, blepharocheilodontic syndrome, and oculofaciocardiodental syndrome. The X-linked mode of inheritance was the most reported (n = 13 studies), followed by the autosomal dominant (n = 13 studies). The review describes the main syndromes that may have oligodontia as a clinical sign and reinforces the need for orodental-facial examining for adequate diagnosis and treatment of the affected patients. Molecular analysis in order to better understand the occurrence of oligodontia is imperative.
Collapse
Affiliation(s)
- Natália Lopes Castilho
- Health Science Postgraduate Program, State University of Montes Claros, Montes Claros 39400-000, Brazil;
| | - Kêmelly Karolliny Moreira Resende
- Laboratory of Oral Histopathology, Oral Care Center for Inherited Diseases, Health Sciences Faculty, University of Brasilia, Brasilia 70040-010, Brazil; (K.K.M.R.); (E.N.S.G.); (A.C.A.)
| | - Juliana Amorim dos Santos
- Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasilia, Brasilia 70040-010, Brazil;
| | - Renato Assis Machado
- Department of Oral Diagnosis and Graduate Program in Oral Biology, School of Dentistry, University of Campinas, Piracicaba 13414-018, Brazil; (R.A.M.); (R.D.C.)
| | - Ricardo D. Coletta
- Department of Oral Diagnosis and Graduate Program in Oral Biology, School of Dentistry, University of Campinas, Piracicaba 13414-018, Brazil; (R.A.M.); (R.D.C.)
| | - Eliete Neves Silva Guerra
- Laboratory of Oral Histopathology, Oral Care Center for Inherited Diseases, Health Sciences Faculty, University of Brasilia, Brasilia 70040-010, Brazil; (K.K.M.R.); (E.N.S.G.); (A.C.A.)
| | - Ana Carolina Acevedo
- Laboratory of Oral Histopathology, Oral Care Center for Inherited Diseases, Health Sciences Faculty, University of Brasilia, Brasilia 70040-010, Brazil; (K.K.M.R.); (E.N.S.G.); (A.C.A.)
| | - Hercílio Martelli-Junior
- Health Science Postgraduate Program, State University of Montes Claros, Montes Claros 39400-000, Brazil;
- Oral Medicine and Oral Pathology, School of Dentistry, State University of Montes Claros, Unimontes, Montes Claros 39400-000, Brazil
| |
Collapse
|
8
|
Yang Y, Zhu J, Chiba Y, Fukumoto S, Qin M, Wang X. Enamel defects of Axenfeld-Rieger syndrome and the role of PITX2 in its pathogenesis. Oral Dis 2023; 29:3654-3664. [PMID: 35836351 DOI: 10.1111/odi.14315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 06/09/2022] [Accepted: 07/06/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVES To investigate the detailed ultrastructural patterns of dental abnormalities affected by Axenfeld-Rieger syndrome (ARS) with a heterozygous microdeletion involving paired-like homeodomain 2 (PITX2) and explored the underlying molecular mechanisms driving enamel defects. SUBJECTS AND METHODS Sanger sequencing, genomic quantitative PCR analysis, and chromosomal microarray analysis (CMA) were used to screen the disease-causing mutation in one ARS proband. An exfoliated tooth from an ARS patient was analyzed with scanning electron microscopy and micro-computerized tomography. A stable Pitx2 knockdown cell line was generated to simulate PITX2 haploinsufficiency. Cell proliferation and ameloblast differentiation were analyzed, and the role of the Wnt/β-catenin pathway in proliferation of ameloblast precursor cells was investigated. RESULTS An approximately 0.216 Mb novel deletion encompassing PITX2 was identified. The affected tooth displayed a thinner and broken layer of enamel and abnormal enamel biomineralization. PITX2 downregulation inhibited the proliferation and differentiation of inner enamel epithelial cells, and LiCl stifmulation partially reversed the proliferation ability after Pitx2 knockdown. CONCLUSIONS Enamel formation is disturbed in some patients with ARS. Pitx2 knockdown can influence the proliferation and ameloblast differentiation of inner enamel epithelial cells, and PITX2 may regulate cell proliferation via Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yi Yang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Junxia Zhu
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yuta Chiba
- Division of Oral Health, Section of Oral Medicine for Children, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Satoshi Fukumoto
- Division of Oral Health, Section of Oral Medicine for Children, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Man Qin
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xin Wang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
9
|
Lan R, Wu Y, Dai Q, Wang F. Gene mutations and chromosomal abnormalities in syndromes with tooth agenesis. Oral Dis 2023; 29:2401-2408. [PMID: 36219525 DOI: 10.1111/odi.14402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/19/2022] [Accepted: 10/03/2022] [Indexed: 11/28/2022]
Abstract
This study aims to review the pathogenic mechanisms and clinical manifestations in syndromes with tooth agenesis (TA). Online Mendelian Inheritance in Man and PubMed databases were searched for a comprehensive review. Previous publications reported complicated aetiologies of syndromic TA. Gene mutations in conserved signalling pathways (WNT, EDA, SHH, FGF, and TGF-β/BMP) and crucial molecules (PAX9, PIXT2, IRF6, the p53 family, and subunits of RNA polymerase III) are the main causes of syndromic TA. In the process of odontogenesis, antagonistic or synergistic interactions are demonstrated in patients and murine models. Mutations in some genes (WNT10A, WNT10B, AXIN2, ANTXR1, MSX1, EDA, EDAR, and EDARADD) can result in both syndromic and isolated TA. In addition, chromosomal anomalies are also responsible for syndromic TA (Down syndrome, Wolf-Hirschhorn syndrome, Williams syndrome, and Pierre Robin sequence). The causes and manifestations of syndromic TA are highly complex, and this constitutes a clinical challenge. Mutations in signalling pathways and crucial molecules as well as chromosomal anomalies are responsible for syndromic TA. And there are overlaps between the causative genes of syndromic and isolated TA.
Collapse
Affiliation(s)
- Rong Lan
- Department of Oral Implantology, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yiqun Wu
- Department of Second Dental Center, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Qinggang Dai
- Department of Second Dental Center, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Feng Wang
- Department of Oral Implantology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
10
|
Fan L, Ma L, Zhu G, Yao S, Li X, Yu X, Pan Y, Wang L. A Genome-wide association study of premolar agenesis in a chinese population. Oral Dis 2023; 29:1102-1114. [PMID: 34878701 DOI: 10.1111/odi.14095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/14/2021] [Accepted: 11/28/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Premolar agenesis is a common subtype of tooth agenesis. Although a genome-wide study (GWAS) has identified some variants involved in tooth agenesis in Europeans, the genetic mutation related to premolar agenesis in the Chinese population remains unclear. MATERIALS AND METHODS We present a GWAS in 218 premolar agenesis cases and 1,222 controls using the Illumina Infinium® Global Screening Array. 5,585,618 single nucleotide polymorphisms (SNPs) were used for tests of associations with premolar agenesis. RESULTS Four independent SNPs on chromosome 2 were identified as susceptibility loci, including rs147680216, rs79743039, rs60540881, and rs6738629. The genome-wide significant SNP rs147680216 (p = 6.09 × 10-9 ) was predicted to change the structure of the WNT10A protein and interact with hedgehog signaling pathway components. Meta-analysis showed that the rs147680216 A allele significantly increased the risk of tooth agenesis (p = 0.000). The other three SNPs with nominal significance are novel susceptibility loci. Of them, rs6738629 (p = 5.40 × 10-6 ) acts as a potential transcriptional regulator of GCC2, a gene playing a putative role in dental and craniofacial development. CONCLUSION Our GWAS indicates that rs147680216 and additional three novel susceptibility loci on chromosome 2 are associated with the risk of premolar agenesis in the Chinese population.
Collapse
Affiliation(s)
- Liwen Fan
- Department of Orthodontics, The Affiliated Stomatology Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Lan Ma
- Department of Orthodontics, The Affiliated Stomatology Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Guirong Zhu
- Department of Orthodontics, The Affiliated Stomatology Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Siyue Yao
- Department of Orthodontics, The Affiliated Stomatology Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Xiaofeng Li
- Department of Orthodontics, The Affiliated Stomatology Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Xin Yu
- Department of Orthodontics, The Affiliated Stomatology Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Yongchu Pan
- Department of Orthodontics, The Affiliated Stomatology Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Lin Wang
- Department of Orthodontics, The Affiliated Stomatology Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Hii EPW, Ramanathan A, Pandarathodiyil AK, Wong GR, Sekhar EVS, Binti Talib R, Zaini ZM, Zain RB. Homeobox Genes in Odontogenic Lesions: A Scoping Review. Head Neck Pathol 2023; 17:218-232. [PMID: 36344906 PMCID: PMC10063701 DOI: 10.1007/s12105-022-01481-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Homeobox genes play crucial roles in tooth morphogenesis and development and thus mutations in homeobox genes cause developmental disorders such as odontogenic lesions. The aim of this scoping review is to identify and compile available data from the literatures on the topic of homeobox gene expression in odontogenic lesions. METHOD An electronic search to collate all the information on studies on homeobox gene expression in odontogenic lesions was carried out in four databases (PubMed, EBSCO host, Web of Science and Cochrane Library) with selected keywords. All papers which reported expression of homeobox genes in odontogenic lesions were considered. RESULTS A total of eleven (11) papers describing expression of homeobox genes in odontogenic lesions were identified. Methods of studies included next generation sequencing, microarray analysis, RT-PCR, Western blotting, in situ hybridization, and immunohistochemistry. The homeobox reported in odontogenic lesions includes LHX8 and DLX3 in odontoma; PITX2, MSX1, MSX2, DLX, DLX2, DLX3, DLX4, DLX5, DLX6, ISL1, OCT4 and HOX C in ameloblastoma; OCT4 in adenomatoid odontogenic tumour; PITX2 and MSX2 in primordial odontogenic tumour; PAX9 and BARX1 in odontogenic keratocyst; PITX2, ZEB1 and MEIS2 in ameloblastic carcinoma while there is absence of DLX2, DLX3 and MSX2 in clear cell odontogenic carcinoma. CONCLUSIONS This paper summarized and reviews the possible link between homeobox gene expression in odontogenic lesions. Based on the current available data, there are insufficient evidence to support any definite role of homeobox gene in odontogenic lesions.
Collapse
Affiliation(s)
- Erica Pey Wen Hii
- Department of Oral & Maxillofacial Clinical Sciences, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Anand Ramanathan
- Department of Oral & Maxillofacial Clinical Sciences, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Oral Cancer Research & Coordinating Centre, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | | | - Gou Rean Wong
- Faculty of Dentistry, MAHSA University, Jenjarom, Selangor, Malaysia
| | - E V Soma Sekhar
- Faculty of Dentistry, MAHSA University, Jenjarom, Selangor, Malaysia
| | | | - Zuraiza Mohamad Zaini
- Department of Oral & Maxillofacial Clinical Sciences, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Oral Cancer Research & Coordinating Centre, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Rosnah Binti Zain
- Oral Cancer Research & Coordinating Centre, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Faculty of Dentistry, MAHSA University, Jenjarom, Selangor, Malaysia
| |
Collapse
|
12
|
4q25 Microdeletion with Axenfeld-Rieger Syndrome and Developmental Delay. Case Rep Genet 2023; 2023:4592114. [PMID: 36816813 PMCID: PMC9935865 DOI: 10.1155/2023/4592114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
We encountered a case with congenital iris coloboma, omphalocele, and developmental delay with a 2.5 Mb deletion on chromosome 4q25 encompassing PITX2, leading to Axenfeld-Rieger syndrome (ARS), NEUROG2, and ANK2. ARS is characterized by the aplasia of the anterior eye, odontogenesis, and abdominal wall aplasia. In our case, iris coloboma and omphalocele were thought to be caused by PITX2 haploinsufficiency. However, these symptoms are nonspecific, and clinical symptoms alone can make it difficult to make a correct diagnosis. In addition, the genes responsible for developmental delay, among others, are not well understood. Developmental delay, in this case, might be caused due to NEUROG2 haploinsufficiency. In spite of the partial deletion of ANK2, the causative gene of long QT syndrome type 4, the electrocardiogram was normal. Genetic testing can lead to a correct diagnosis, and it may be effective in detecting complications.
Collapse
|
13
|
Arte S, Pöyhönen M, Myllymäki E, Ronkainen E, Rice DP, Nieminen P. Craniofacial and dental features of Axenfeld-Rieger syndrome patients with PITX2 mutations. Orthod Craniofac Res 2023. [PMID: 36620911 DOI: 10.1111/ocr.12631] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/02/2022] [Accepted: 12/20/2022] [Indexed: 01/10/2023]
Abstract
We aimed to characterize the genetic basis and craniofacial and dental features of Finnish patients with Axenfeld-Rieger syndrome (ARS). Mutational analyses of seven patients in five families were performed by sequencing or comparative genomic hybridization. Phenotypic analysis was based on both clinical and radiographic examinations, as well as on medical data. Lateral cephalometric radiographs of five patients were analysed using Viewbox 3.1-Cephalometric Software. The cephalometric values were compared to Finnish population-standard values of the same age and gender. Two frameshift mutations and three whole gene deletions were detected in five families. Class III skeletal relationship with retrognathic maxilla and mildly retrognathic mandible were detected in all five patients studied. Significant differences compared with the control values were in SNA (P = .0014), ANB (P = .0043) and SNB angles (P = .013). Five patients had anterior crossbite. Six patients showed tooth agenesis. The average number of missing teeth (third molars excluded) was 9 (range 0-15). The tooth agenesis rate was 52% in maxilla and 26% in mandible. Maxillary central and lateral permanent incisors were most often missing (rate 71% equally) while no one lacked canines or first molars in mandible. Two patients had a supernumerary mandibular permanent incisor. Six patients had either taurodontic and/or single-rooted molars. Our results suggest that class III skeletal relationship with maxillary and mandibular retrognathism, anterior crossbite, maxillary incisor agenesis and taurodontic, even pyramidal, roots are common determinants of ARS caused by PITX2 mutations.
Collapse
Affiliation(s)
- Sirpa Arte
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Department of Oral and Maxillofacial Diseases, Helsinki University Hospital, Helsinki, Finland
| | - Minna Pöyhönen
- Department of Genetics, HUSLAB, Helsinki University Hospital Diagnostic Center, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Emmi Myllymäki
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Elisa Ronkainen
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Department of Oral and Maxillofacial Diseases, Helsinki University Hospital, Helsinki, Finland
| | - David P Rice
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Department of Oral and Maxillofacial Diseases, Helsinki University Hospital, Helsinki, Finland
| | - Pekka Nieminen
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Genotype-phenotype association of PITX2 and FOXC1 in Axenfeld-Rieger syndrome. Exp Eye Res 2023; 226:109307. [PMID: 36442680 DOI: 10.1016/j.exer.2022.109307] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/18/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022]
Abstract
PITX2 and FOXC1 are the most common pathogenic genes associated with Axenfeld-Rieger syndrome (ARS). In this study, we aimed to explore the variation spectrum of PITX2 and FOXC1 and their associated phenotype based on data from our study and previously reported literatures. Whole exome sequencing was performed on eight probands in our study. Multistep bioinformatic and co-segregation analyses were performed to detect pathogenic variants. Genotype-phenotype correlations of PITX2 and FOXC1 and the differences between them were determined. We detected three variants of FOXC1 and two variants of PITX2 in five unrelated families with ARS. Macular retinoschisis had been observed in AR1 with variant in PITX2 and it is not reported before. Additionally, a review of published literature and our study led to the identification of 593 families with variants of PITX2 or FOXC1, including 316 families with heterozygous variants in FOXC1, 251 families with heterozygous variants in PITX2, 13 families with variants in double genes, seven families with homozygous or compound heterozygous variants in FOXC1, and six families with variants in ADAMTS17, PRDM5, COL4A1 or CYP1B1. Significant differences were observed between the prevalence of missense and in-frame, truncation, and large deletion variants in PITX2 (32.00%, 42.67%, and 25.33%, respectively) and FOXC1 (34.49%, 35.13%, 30.38%, respectively) (p = 1.16E-43). Enrichment and frequency analyses revealed that missense variants were concentrated in the forkhead domain of FOXC1 (76.14%) and homeodomain of PITX2 (87.50%). The percentage of Caucasians with variants in FOXC1 was significantly higher than that of PITX2 (p = 2.00E-2). Significant differences between PITX2 and FOXC1 were observed in glaucoma (p = 3.00E-2), corectopia (p = 3.050E-6), and polycoria (p = 5.21E-08). Additionally, we observed a significant difference in best-corrected visual acuity (BCVA) between FOXC1 and PITX2 (p = 3.80E-2). Among all the family members with PITX2 or FOXC1 variants, the prevalence of systemic abnormalities was significantly higher in PITX2 than in FOXC1 (89.16% vs. 58.77%, p = 5.44E-17). In conclusion, macular retinoschisis as a novel phenotype had been observed in patient with variant in PITX2. Significant differences were detected in phenotypes and genotypes between PITX2 and FOXC1.
Collapse
|
15
|
Cazzolla AP, Testa NF, Spirito F, Di Cosola M, Campobasso A, Crincoli V, Ballini A, Cantore S, Ciavarella D, Lo Muzio L, Dioguardi M. Axenfeld-Rieger syndrome: orthopedic and orthodontic management in a pediatric patient: a case report. Head Face Med 2022; 18:25. [PMID: 35804381 PMCID: PMC9264492 DOI: 10.1186/s13005-022-00329-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/30/2022] [Indexed: 11/30/2022] Open
Abstract
Axenfeld–Rieger Syndrome (ARS) is a rare autosomal dominant genetic disease with considerable expressive variability, characterized by ocular and non-ocular manifestations, cardiovascular, mild craniofacial abnormalities and dental malformations. Current data report an incidence of Xenfeld-Rieger syndrome in the population of 1: 200,000. The case described is that of a 14-year-old female patient whose ARS is suspected and investigated following a dental specialist visit for orthodontic reasons, acquired the patient’s family and clinical data following a medical approach multidisciplinary, we proceed to the orthodontic involved the use of the Rapid Palatal Expander (RPE) and a fixed orthodontic treatment. The aim of this study is to report the case of the orthopaedic and orthodontic treatment in a patient affected by ARS and with facial dysmorphism and teeth anomalies associated to ocular anomalies.
Collapse
Affiliation(s)
- Angela Pia Cazzolla
- Department of Clinical and Experimental Medicine, Università degli Studi di Foggia, Via Luigi Rovelli, 50, 71100, Foggia, Italy
| | - Nunzio Francesco Testa
- Department of Clinical and Experimental Medicine, Università degli Studi di Foggia, Via Luigi Rovelli, 50, 71100, Foggia, Italy
| | - Francesca Spirito
- Department of Clinical and Experimental Medicine, Università degli Studi di Foggia, Via Luigi Rovelli, 50, 71100, Foggia, Italy
| | - Michele Di Cosola
- Department of Clinical and Experimental Medicine, Università degli Studi di Foggia, Via Luigi Rovelli, 50, 71100, Foggia, Italy
| | - Alessandra Campobasso
- Department of Clinical and Experimental Medicine, Università degli Studi di Foggia, Via Luigi Rovelli, 50, 71100, Foggia, Italy
| | - Vito Crincoli
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, "Aldo Moro" University of Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Andrea Ballini
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, "Aldo Moro" University of Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy.,Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Stefania Cantore
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, "Aldo Moro" University of Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy.,Faculty of Dentistry (Fakulteti i Mjekësisë Dentare-FMD), University of Medicine, 1001, Tirana, Albania
| | - Domenico Ciavarella
- Department of Clinical and Experimental Medicine, Università degli Studi di Foggia, Via Luigi Rovelli, 50, 71100, Foggia, Italy
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, Università degli Studi di Foggia, Via Luigi Rovelli, 50, 71100, Foggia, Italy
| | - Mario Dioguardi
- Department of Clinical and Experimental Medicine, Università degli Studi di Foggia, Via Luigi Rovelli, 50, 71100, Foggia, Italy.
| |
Collapse
|
16
|
Organoids from human tooth showing epithelial stemness phenotype and differentiation potential. Cell Mol Life Sci 2022; 79:153. [PMID: 35217915 PMCID: PMC8881251 DOI: 10.1007/s00018-022-04183-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 01/09/2023]
Abstract
Insight into human tooth epithelial stem cells and their biology is sparse. Tissue-derived organoid models typically replicate the tissue’s epithelial stem cell compartment. Here, we developed a first-in-time epithelial organoid model starting from human tooth. Dental follicle (DF) tissue, isolated from unerupted wisdom teeth, efficiently generated epithelial organoids that were long-term expandable. The organoids displayed a tooth epithelial stemness phenotype similar to the DF’s epithelial cell rests of Malassez (ERM), a compartment containing dental epithelial stem cells. Single-cell transcriptomics reinforced this organoid-ERM congruence, and uncovered novel, mouse-mirroring stem cell features. Exposure of the organoids to epidermal growth factor induced transient proliferation and eventual epithelial-mesenchymal transition, highly mimicking events taking place in the ERM in vivo. Moreover, the ERM stemness organoids were able to unfold an ameloblast differentiation process, further enhanced by transforming growth factor-β (TGFβ) and abrogated by TGFβ receptor inhibition, thereby reproducing TGFβ's known key position in amelogenesis. Interestingly, by creating a mesenchymal-epithelial composite organoid (assembloid) model, we demonstrated that the presence of dental mesenchymal cells (i.e. pulp stem cells) triggered ameloblast differentiation in the epithelial stem cells, thus replicating the known importance of mesenchyme-epithelium interaction in tooth development and amelogenesis. Also here, differentiation was abrogated by TGFβ receptor inhibition. Together, we developed novel organoid models empowering the exploration of human tooth epithelial stem cell biology and function as well as their interplay with dental mesenchyme, all at present only poorly defined in humans. Moreover, the new models may pave the way to future tooth-regenerative perspectives.
Collapse
|
17
|
Yoshizaki K, Fukumoto S, Bikle DD, Oda Y. Transcriptional Regulation of Dental Epithelial Cell Fate. Int J Mol Sci 2020; 21:ijms21238952. [PMID: 33255698 PMCID: PMC7728066 DOI: 10.3390/ijms21238952] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/28/2022] Open
Abstract
Dental enamel is hardest tissue in the body and is produced by dental epithelial cells residing in the tooth. Their cell fates are tightly controlled by transcriptional programs that are facilitated by fate determining transcription factors and chromatin regulators. Understanding the transcriptional program controlling dental cell fate is critical for our efforts to build and repair teeth. In this review, we describe the current understanding of these regulators essential for regeneration of dental epithelial stem cells and progeny, which are identified through transgenic mouse models. We first describe the development and morphogenesis of mouse dental epithelium in which different subpopulations of epithelia such as ameloblasts contribute to enamel formation. Then, we describe the function of critical factors in stem cells or progeny to drive enamel lineages. We also show that gene mutations of these factors are associated with dental anomalies in craniofacial diseases in humans. We also describe the function of the master regulators to govern dental lineages, in which the genetic removal of each factor switches dental cell fate to that generating hair. The distinct and related mechanisms responsible for the lineage plasticity are discussed. This knowledge will lead us to develop a potential tool for bioengineering new teeth.
Collapse
Affiliation(s)
- Keigo Yoshizaki
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka 812-8582, Japan;
| | - Satoshi Fukumoto
- Section of Pediatric Dentistry, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka 812-8582, Japan;
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Daniel D. Bikle
- Departments of Medicine and Endocrinology, University of California San Francisco and Veterans Affairs Medical Center, San Francisco, CA 94158, USA;
| | - Yuko Oda
- Departments of Medicine and Endocrinology, University of California San Francisco and Veterans Affairs Medical Center, San Francisco, CA 94158, USA;
- Correspondence:
| |
Collapse
|