1
|
François M, Pascovici D, Wang Y, Vu T, Liu JW, Beale D, Hor M, Hecker J, Faunt J, Maddison J, Johns S, Leifert W. Saliva Proteome, Metabolome and Microbiome Signatures for Detection of Alzheimer's Disease. Metabolites 2024; 14:714. [PMID: 39728495 DOI: 10.3390/metabo14120714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/12/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024] Open
Abstract
Background: As the burden of Alzheimer's disease (AD) escalates with an ageing population, the demand for early and accessible diagnostic methods becomes increasingly urgent. Saliva, with its non-invasive and cost-effective nature, presents a promising alternative to cerebrospinal fluid and plasma for biomarker discovery. Methods: In this study, we conducted a comprehensive multi-omics analysis of saliva samples (n = 20 mild cognitive impairment (MCI), n = 20 Alzheimer's disease and age- and n = 40 gender-matched cognitively normal individuals), from the South Australian Neurodegenerative Disease (SAND) cohort, integrating proteomics, metabolomics, and microbiome data with plasma measurements, including pTau181. Results: Among the most promising findings, the protein Stratifin emerged as a top candidate, showing a strong negative correlation with plasma pTau181 (r = -0.49, p < 0.001) and achieving an AUC of 0.95 in distinguishing AD and MCI combined from controls. In the metabolomics analysis, 3-chlorotyrosine and L-tyrosine exhibited high correlations with disease severity progression, with AUCs of 0.93 and 0.96, respectively. Pathway analysis revealed significant alterations in vitamin B12 metabolism, with Transcobalamin-1 levels decreasing in saliva as AD progressed despite an increase in serum vitamin B12 levels (p = 0.008). Microbiome analysis identified shifts in bacterial composition, with a microbiome cluster containing species such as Lautropia mirabilis showing a significant decrease in abundance in MCI and AD samples. The overall findings were reinforced by weighted correlation network analysis, which identified key hubs and enriched pathways associated with AD. Conclusions: Collectively, these data highlight the potential of saliva as a powerful medium for early AD diagnosis, offering a practical solution for large-scale screening and monitoring.
Collapse
Affiliation(s)
- Maxime François
- Nutrition and Health Program, Molecular Diagnostic Solutions Group, CSIRO Health & Biosecurity, Adelaide, SA 5000, Australia
| | - Dana Pascovici
- CSIRO Health & Biosecurity, Westmead, NSW 2145, Australia
| | - Yanan Wang
- CSIRO Health & Biosecurity, Microbiomes for One Systems Health-Future Science Platform, Adelaide, SA 5000, Australia
| | - Toan Vu
- Nutrition and Health Program, Molecular Diagnostic Solutions Group, CSIRO Health & Biosecurity, Adelaide, SA 5000, Australia
| | - Jian-Wei Liu
- CSIRO Environment, Agricultural and Environmental Sciences Precinct, Acton, Canberra, ACT 2601, Australia
| | - David Beale
- Metabolomics Unit, CSIRO Environment, Ecosciences Precinct, Dutton Park, QLD 4001, Australia
| | - Maryam Hor
- Nutrition and Health Program, Molecular Diagnostic Solutions Group, CSIRO Health & Biosecurity, Adelaide, SA 5000, Australia
| | - Jane Hecker
- Department of Internal Medicine, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Jeff Faunt
- Department of General Medicine, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - John Maddison
- Aged Care Rehabilitation & Palliative Care, SA Health, Modbury Hospital, Modbury, SA 5092, Australia
| | - Sally Johns
- Aged Care Rehabilitation & Palliative Care, SA Health, Modbury Hospital, Modbury, SA 5092, Australia
| | - Wayne Leifert
- Nutrition and Health Program, Molecular Diagnostic Solutions Group, CSIRO Health & Biosecurity, Adelaide, SA 5000, Australia
| |
Collapse
|
2
|
Liao Y, Chen HW, Qiu C, Shen H, He ZY, Song ZC, Zhou W. Detection of Amyloid-β Peptides in Gingival Crevicular Fluid and Its Effect on Oral Pathogens. Mol Oral Microbiol 2024. [PMID: 39668581 DOI: 10.1111/omi.12488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/04/2024] [Accepted: 07/14/2024] [Indexed: 12/14/2024]
Abstract
Periodontitis is the most common oral inflammatory disease, contributing to the onset and progression of Alzheimer's disease. However, a full investigation has not been performed on the expression level of amyloid-β (Aβ) peptides in gingival crevicular fluid (GCF) and its effects on oral pathogens. This study aimed to analyze the expression level of Aβ peptides in GCF of patients with periodontitis and the effects of Aβ peptides against common oral pathogens. GCF samples were collected from patients with periodontitis (n = 15) and periodontally healthy people (n = 10). The antimicrobial effects of Aβ peptides were evaluated on four common oral pathogenic strains using an MTT assay, crystal violet staining, fluorescence microscope, and transmission electron microscope. The protein levels of Aβ40 and Aβ42 were upregulated in the GCF of periodontitis group compared with the healthy group. Both Aβ40 and Aβ42 exhibited antimicrobial effects on Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, and Lactobacillus acidophilus in both planktonic and biofilm conditions. Further, only Aβ40 showed an antimicrobial effect on the Fusobacterium nucleatum. The results of this study demonstrate that Aβ peptides in GCF may be a relevant indicator of periodontitis status. Besides, the antimicrobial peptides derived from Aβ peptides have great potential in periodontal therapy.
Collapse
Affiliation(s)
- Yue Liao
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Hui-Wen Chen
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Che Qiu
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Hui Shen
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhi-Yan He
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhong-Chen Song
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Wei Zhou
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Kerstens R, Ng YZ, Pettersson S, Jayaraman A. Balancing the Oral-Gut-Brain Axis with Diet. Nutrients 2024; 16:3206. [PMID: 39339804 PMCID: PMC11435118 DOI: 10.3390/nu16183206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Background: The oral microbiota is the second largest microbial community in humans. It contributes considerably to microbial diversity and health effects, much like the gut microbiota. Despite physical and chemical barriers separating the oral cavity from the gastrointestinal tract, bidirectional microbial transmission occurs between the two regions, influencing overall host health. Method: This review explores the intricate interplay of the oral-gut-brain axis, highlighting the pivotal role of the oral microbiota in systemic health and ageing, and how it can be influenced by diet. Results: Recent research suggests a relationship between oral diseases, such as periodontitis, and gastrointestinal problems, highlighting the broader significance of the oral-gut axis in systemic diseases, as well as the oral-gut-brain axis in neurological disorders and mental health. Diet influences microbial diversity in the oral cavity and the gut. While certain diets/dietary components improve both gut and oral health, others, such as fermentable carbohydrates, can promote oral pathogens while boosting gut health. Conclusions: Understanding these dynamics is key for promoting a healthy oral-gut-brain axis through dietary interventions that support microbial diversity and mitigate age-related health risks.
Collapse
Affiliation(s)
- Rebecca Kerstens
- ASEAN Microbiome Nutrition Centre, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
| | - Yong Zhi Ng
- ASEAN Microbiome Nutrition Centre, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
- Duke-NUS Medical School, 8 College Rd., Singapore 169857, Singapore
| | - Sven Pettersson
- ASEAN Microbiome Nutrition Centre, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
- Faculty of Medical Sciences, Sunway University, Subang Jaya 47500, Selangor, Malaysia
- Department of Microbiology and Immunology, National University Singapore, Singapore 117545, Singapore
| | - Anusha Jayaraman
- ASEAN Microbiome Nutrition Centre, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
| |
Collapse
|
4
|
Guo H, Wang Z, Chu CH, Chan AKY, Lo ECM, Jiang CM. Effects of oral health interventions on cognition of people with dementia: a systematic review with meta-analysis. BMC Oral Health 2024; 24:1030. [PMID: 39227865 PMCID: PMC11370033 DOI: 10.1186/s12903-024-04750-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/14/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Increasing studies have shown that poor oral health contributes to the progression of dementia. It is meaningful to find out the role of oral health interventions in maintaining people's cognition levels and delaying the progression of dementia. Thus, we conducted this review to summarize the present evidence on the effect of oral health interventions on the cognition change of people with dementia. METHODS Literature search was conducted in the databases of PubMed, Embase, Web of Science, Cochrane library, and Dentistry and Oral Sciences by two independent reviewers from inception to 6 March 2024. Clinical studies such as randomized controlled trials reporting on the effect of oral health interventions on the cognition of people with dementia were included in this review. Mini-Mental State Examination (MMSE) scores were used to measure cognition level. The mean deviation (MD), generated by subtracting the baseline MMSE score from the MMSE score at follow-up was used to assess the change in cognition. Studies with oral hygiene practice as an oral health intervention were further conducted with a meta-analysis. RESULTS A total of 6646 references were identified by the literature search, and 5 studies were eligible to be included in this review. Among the included studies, 4 studies reported the cognition change after having various oral hygiene practice as oral health intervention, while the other study adopted oral exercises as the intervention. Two studies presented positive MD values after intervention provided, indicating improved cognition level at follow-up (MD = 0.6, MD = 0.9, respectively). Another two studies reported less cognition deterioration with smaller absolute MD values in the intervention group, (intervention vs. control, -0.18 vs. -0.75, p < 0.05 and - 1.50 vs. -3.00, p < 0.05, respectively). The random-effect model was selected in the meta-analysis, and the weighted mean difference (WMD) was 1.08 (95% confidence interval, 0.44 to 1.71), favoring the intervention group. CONCLUSION With limited evidence, oral hygiene care may play a positive role in maintaining the cognition level of people with dementia. However, further studies are needed to provide direct evidence on the effectiveness of oral health interventions on oral health conditions as well as cognition status and to disclose the rationale behind it.
Collapse
Affiliation(s)
- Haiying Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | | | - Chun Hung Chu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | | | | | - Chloe Meng Jiang
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
5
|
Beydoun MA, Beydoun HA, Hedges DW, Erickson LD, Gale SD, Weiss J, El‐Hajj ZW, Evans MK, Zonderman AB. Infection burden, periodontal pathogens, and their interactive association with incident all-cause and Alzheimer's disease dementia in a large national survey. Alzheimers Dement 2024; 20:6468-6485. [PMID: 39115027 PMCID: PMC11497652 DOI: 10.1002/alz.14141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION Relationships and interplay of an infection burden (IB) and periodontal pathogens or periodontal disease (Pd) markers with Alzheimer's disease (AD) and all-cause dementia among US adults were examined. METHODS Less than or equal to 2997 participants from the National Health and Nutrition Survey III were linked to CMS-Medicare [≥45 years (1988-1994); ≤30 years follow-up]. RESULTS Hepatitis C (hazard ratio = 3.33, p = 0.004) and herpes simplex virus 2 were strongly associated with greater all-cause dementia risk. Porphyromonas gingivalis and Streptococcus oralis were associated with greater AD risk at higher IB. The red-green periodontal pathogen cluster coupled with higher IB count increased the risk of all-cause dementia among minority racial groups. Pocket probing depth associated with dementia risk at lower IB in the overall sample. DISCUSSION Select viruses and bacteria were associated with all-cause and AD dementia, while the IB interacted with Pd markers in relation to these outcomes. HIGHLIGHTS Interplay of infection burden (IB) and periodontal disease with dementia was tested. ≤2997 participants from NHANES III were linked to Medicare. Hepatitis C and herpes simplex virus 2 strongly associated with dementia risk. Tetanus sero-positivity increased Alzheimer's disease (AD) risk. Porphyromonas gingivalis and Streptococcus oralis associated with AD at higher IB. Red-green periodontal cluster at high IB, increased dementia in racial minorities. Pocket probing depth associated with dementia risk at lower IB.
Collapse
Affiliation(s)
- May A. Beydoun
- Laboratory of Epidemiology and Population SciencesNational Institute on Aging, NIA/NIH/IRP, NIA/NIH/IRPBaltimoreMarylandUSA
| | - Hind A. Beydoun
- U.S. Department of Veterans AffairsVA National Center on Homelessness Among VeteransWashingtonDistrict of ColumbiaUSA
- Department of Management, Policy, and Community Health, School of Public HealthUniversity of Texas Health Science Center at HoustonHoustonTexasUSA
| | | | | | - Shawn D. Gale
- Department of PsychologyBrigham Young UniversityProvoUtahUSA
| | - Jordan Weiss
- Stanford Center on LongevityStanford UniversityPalo AltoCaliforniaUSA
| | | | - Michele K. Evans
- Laboratory of Epidemiology and Population SciencesNational Institute on Aging, NIA/NIH/IRP, NIA/NIH/IRPBaltimoreMarylandUSA
| | - Alan B. Zonderman
- Laboratory of Epidemiology and Population SciencesNational Institute on Aging, NIA/NIH/IRP, NIA/NIH/IRPBaltimoreMarylandUSA
| |
Collapse
|
6
|
Zhu J, Li M, Li J, Wu J. Sialic acid metabolism of oral bacteria and its potential role in colorectal cancer and Alzheimer's disease. Carbohydr Res 2024; 541:109172. [PMID: 38823062 DOI: 10.1016/j.carres.2024.109172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/10/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Sialic acid metabolism in oral bacteria is a complex process involving nutrient acquisition, immune evasion, cell surface modification, and the production of metabolites that contribute to bacterial persistence and virulence in the oral cavity. In addition to causing various periodontal diseases, certain oral pathogenic bacteria, such as Porphyromonas gingivalis, Tannerella forsythia, and Fusobacterium nucleatum, can induce inflammatory reactions and influence the immunity of host cells. These associations with host cells are linked to various diseases, particularly colorectal cancer and Alzheimer's disease. Sialic acid can be found in the host oral mucosa, saliva, or food residues in the oral cavity, and it may promote the colonization of oral bacteria and contribute to disease development. This review aims to summarize the role of sialic acid metabolism in oral bacteria and discuss its effect on the pathogenesis of colorectal cancer and Alzheimer's disease.
Collapse
Affiliation(s)
- Jiao Zhu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Mengyang Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jinfang Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jianrong Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
7
|
Zhuang J, Zhang S, Chen H, Qiu C, Feng T, Zhou W, Han X, Song Z. Evidence of microbiota-host dysbiosis between periodontitis and cerebral small vessel disease. Oral Dis 2024. [PMID: 38923260 DOI: 10.1111/odi.15041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVES To investigate the correlation between periodontitis and cerebral small vessel disease (CSVD) from the clinical and microbiological aspects. SUBJECTS AND METHODS Periodontitis patients (CP group, n = 31) and CSVD patients (CSVD group, n = 30) were examined for neurological and periodontal condition. Subgingival plaque was collected and performed using 16S rRNA sequencing. Logistic regression and LASSO regression were used to analyze the periodontal parameters and subgingival microbiota related to CSVD, respectively. Inflammatory factors in gingival crevicular fluid (GCF) were also detected and compared between the two groups. RESULTS Clinical attachment level (CAL), teeth number and plaque index demonstrated a significant difference between CP and CSVD group, meanwhile, CAL was independently associated with CSVD. Besides, the microbial richness and composition were distinct between two groups. Five genera related to periodontal pathogens (Treponema, Prevotella, Streptococcus, Fusobacterium, Porphyromonas) were screened out by LASSO regression, suggesting a potential association with CSVD. Finally, the levels of inflammatory factors in GCF were statistically higher in CSVD group than those in CP group. CONCLUSIONS Cerebral small vessel disease patients demonstrated worse periodontal condition, meanwhile the interaction between microbiota dysbiosis and host factors (inflammation) leading to a better understanding of the association between periodontitis and CSVD.
Collapse
Affiliation(s)
- Jiabao Zhuang
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Shufan Zhang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Huiwen Chen
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Che Qiu
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Tienan Feng
- Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Zhou
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xiang Han
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhongchen Song
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
8
|
Kandaswamy K, Subramanian R, Giri J, Guru A, Arockiaraj J. A Robust Strategy Against Multi-Resistant Pathogens in Oral Health: Harnessing the Potency of Antimicrobial Peptides in Nanofiber-Mediated Therapies. Int J Pept Res Ther 2024; 30:35. [DOI: 10.1007/s10989-024-10613-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2024] [Indexed: 01/12/2025]
|
9
|
Sakowski SA, Koubek EJ, Chen KS, Goutman SA, Feldman EL. Role of the Exposome in Neurodegenerative Disease: Recent Insights and Future Directions. Ann Neurol 2024; 95:635-652. [PMID: 38411261 PMCID: PMC11023772 DOI: 10.1002/ana.26897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/28/2024]
Abstract
Neurodegenerative diseases are increasing in prevalence and place a significant burden on society. The causes are multifactorial and complex, and increasing evidence suggests a dynamic interplay between genes and the environment, emphasizing the importance of identifying and understanding the role of lifelong exposures, known as the exposome, on the nervous system. This review provides an overview of recent advances toward defining neurodegenerative disease exposomes, focusing on Parkinson's disease, amyotrophic lateral sclerosis, and Alzheimer's disease. We present the current state of the field based on emerging data, elaborate on key themes and potential mechanisms, and conclude with limitations and future directions. ANN NEUROL 2024;95:635-652.
Collapse
Affiliation(s)
- Stacey A. Sakowski
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emily J. Koubek
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kevin S. Chen
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stephen A. Goutman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
10
|
Qiu C, Zhou W, Shen H, Wang J, Tang R, Wang T, Xie X, Hong B, Ren R, Wang G, Song Z. Profiles of subgingival microbiomes and gingival crevicular metabolic signatures in patients with amnestic mild cognitive impairment and Alzheimer's disease. Alzheimers Res Ther 2024; 16:41. [PMID: 38373985 PMCID: PMC10875772 DOI: 10.1186/s13195-024-01402-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/26/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND The relationship between periodontitis and Alzheimer's disease (AD) has attracted more attention recently, whereas profiles of subgingival microbiomes and gingival crevicular fluid (GCF) metabolic signatures in AD patients have rarely been characterized; thus, little evidence exists to support the oral-brain axis hypothesis. Therefore, our study aimed to characterize both the microbial community of subgingival plaque and the metabolomic profiles of GCF in patients with AD and amnestic mild cognitive impairment (aMCI) for the first time. METHODS This was a cross-sectional study. Clinical examinations were performed on all participants. The microbial community of subgingival plaque and the metabolomic profiles of GCF were characterized using the 16S ribosomal RNA (rRNA) gene high-throughput sequencing and liquid chromatography linked to tandem mass spectrometry (LC-MS/MS) analysis, respectively. RESULTS Thirty-two patients with AD, 32 patients with aMCI, and 32 cognitively normal people were enrolled. The severity of periodontitis was significantly increased in AD patients compared with aMCI patients and cognitively normal people. The 16S rRNA gene sequencing results showed that the relative abundances of 16 species in subgingival plaque were significantly correlated with cognitive function, and LC-MS/MS analysis identified a total of 165 differentially abundant metabolites in GCF. Moreover, multiomics Data Integration Analysis for Biomarker discovery using Latent cOmponents (DIABLO) analysis revealed that 19 differentially abundant metabolites were significantly correlated with Veillonella parvula, Dialister pneumosintes, Leptotrichia buccalis, Pseudoleptotrichia goodfellowii, and Actinomyces massiliensis, in which galactinol, sn-glycerol 3-phosphoethanolamine, D-mannitol, 1 h-indole-1-pentanoic acid, 3-(1-naphthalenylcarbonyl)- and L-iditol yielded satisfactory accuracy for the predictive diagnosis of AD progression. CONCLUSIONS This is the first combined subgingival microbiome and GCF metabolome study in patients with AD and aMCI, which revealed that periodontal microbial dysbiosis and metabolic disorders may be involved in the etiology and progression of AD, and the differential abundance of the microbiota and metabolites may be useful as potential markers for AD in the future.
Collapse
Affiliation(s)
- Che Qiu
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University, Zhizaoju Road No.639, Huangpu District, Shanghai, 200011, People's Republic of China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Zhizaoju Road No.639, Huangpu District, Shanghai, 200011, People's Republic of China
| | - Wei Zhou
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Zhizaoju Road No.639, Huangpu District, Shanghai, 200011, People's Republic of China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University, Jinzun Road No.115, Pudong District, Shanghai, 200125, People's Republic of China
| | - Hui Shen
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University, Zhizaoju Road No.639, Huangpu District, Shanghai, 200011, People's Republic of China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Zhizaoju Road No.639, Huangpu District, Shanghai, 200011, People's Republic of China
| | - Jintao Wang
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Ruijin 2nd Road No.197, Huangpu District, Shanghai, 200025, People's Republic of China
| | - Ran Tang
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Ruijin 2nd Road No.197, Huangpu District, Shanghai, 200025, People's Republic of China
| | - Tao Wang
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine and Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, South Wanping Road No.600, Xuhui District, Shanghai, 200030, People's Republic of China
| | - Xinyi Xie
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University, Zhizaoju Road No.639, Huangpu District, Shanghai, 200011, People's Republic of China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Zhizaoju Road No.639, Huangpu District, Shanghai, 200011, People's Republic of China
| | - Bo Hong
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine and Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, South Wanping Road No.600, Xuhui District, Shanghai, 200030, People's Republic of China
| | - Rujing Ren
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Ruijin 2nd Road No.197, Huangpu District, Shanghai, 200025, People's Republic of China
| | - Gang Wang
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Ruijin 2nd Road No.197, Huangpu District, Shanghai, 200025, People's Republic of China.
| | - Zhongchen Song
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University, Zhizaoju Road No.639, Huangpu District, Shanghai, 200011, People's Republic of China.
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Zhizaoju Road No.639, Huangpu District, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
11
|
Li R, Wang J, Xiong W, Luo Y, Feng H, Zhou H, Peng Y, He Y, Ye Q. The oral-brain axis: can periodontal pathogens trigger the onset and progression of Alzheimer's disease? Front Microbiol 2024; 15:1358179. [PMID: 38362505 PMCID: PMC10868393 DOI: 10.3389/fmicb.2024.1358179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia, characterized by a progressive cognitive decline. Sporadic AD, accounting for more than 95% of cases, may arise due to the influence of environmental factors. It was reported that periodontitis, a common oral ailment, shares several risk factors with AD, including advanced age, smoking, diabetes, and hypertension, among others. Periodontitis is an inflammatory disease triggered by dysbiosis of oral microorganisms, whereas Alzheimer's disease is characterized by neuroinflammation. Many studies have indicated that chronic inflammation can instigate brain AD-related pathologies, including amyloid-β plaques, Tau protein hyperphosphorylation, neuroinflammation, and neurodegeneration. The potential involvement of periodontal pathogens and/or their virulence factors in the onset and progression of AD by the oral-brain axis has garnered significant attention among researchers with ongoing investigations. This review has updated the periodontal pathogens potentially associated with AD, elucidating their impact on the central nervous system, immune response, and related pathological processes in the brain to provide valuable insights for future research on the oral-brain axis.
Collapse
Affiliation(s)
- Ruohan Li
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Junnan Wang
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Wei Xiong
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yu Luo
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Huixian Feng
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Heng Zhou
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Youjian Peng
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Qingsong Ye
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
12
|
Zhang M, Mi N, Ying Z, Lin X, Jin Y. Advances in the prevention and treatment of Alzheimer's disease based on oral bacteria. Front Psychiatry 2023; 14:1291455. [PMID: 38156323 PMCID: PMC10754487 DOI: 10.3389/fpsyt.2023.1291455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/22/2023] [Indexed: 12/30/2023] Open
Abstract
With the global population undergoing demographic shift towards aging, the prevalence of Alzheimer's disease (AD), a prominent neurodegenerative disorder that primarily afflicts individuals aged 65 and above, has increased across various geographical regions. This phenomenon is accompanied by a concomitant decline in immune functionality and oral hygiene capacity among the elderly, precipitating compromised oral functionality and an augmented burden of dental plaque. Accordingly, oral afflictions, including dental caries and periodontal disease, manifest with frequency among the geriatric population worldwide. Recent scientific investigations have unveiled the potential role of oral bacteria in instigating both local and systemic chronic inflammation, thereby delineating a putative nexus between oral health and the genesis and progression of AD. They further proposed the oral microbiome as a potentially modifiable risk factor in AD development, although the precise pathological mechanisms and degree of association have yet to be fully elucidated. This review summarizes current research on the relationship between oral bacteria and AD, describing the epidemiological and pathological mechanisms that may potentially link them. The purpose is to enrich early diagnostic approaches by incorporating emerging biomarkers, offering novel insights for clinicians in the early detection of AD. Additionally, it explores the potential of vaccination strategies and guidance for clinical pharmacotherapy. It proposes the development of maintenance measures specifically targeting oral health in older adults and advocates for guiding elderly patients in adopting healthy lifestyle habits, ultimately aiming to indirectly mitigate the progression of AD while promoting oral health in the elderly.
Collapse
Affiliation(s)
| | | | | | | | - Ying Jin
- Department of Stomatology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
13
|
Kulkarni MS, Miller BC, Mahani M, Mhaskar R, Tsalatsanis A, Jain S, Yadav H. Poor Oral Health Linked with Higher Risk of Alzheimer's Disease. Brain Sci 2023; 13:1555. [PMID: 38002515 PMCID: PMC10669972 DOI: 10.3390/brainsci13111555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 10/26/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disease characterized by cognitive and behavioral changes in older adults. Emerging evidence suggests poor oral health is associated with AD, but there is a lack of large-scale clinical studies demonstrating this link. Herein, we used the TriNetX database to generate clinical cohorts and assess the risk of AD and survival among >30 million de-identified subjects with normal oral health (n = 31,418,814) and poor oral health (n = 1,232,751). There was a greater than two-fold increase in AD risk in the poor oral health cohort compared to the normal oral health group (risk ratio (RR): 2.363, (95% confidence interval: 2.326, 2.401)). To reduce potential bias, we performed retrospective propensity score matching for age, gender, and multiple laboratory measures. After matching, the cohorts had no significant differences in survival probability. Furthermore, when comparing multiple oral conditions, diseases related to tooth loss were the most significant risk factor for AD (RR: 3.186, (95% CI: 3.007, 3.376)). Our results suggest that oral health may be important in AD risk, regardless of age, gender, or laboratory measures. However, more large-scale cohort studies are necessary to validate these findings and further evaluate links between oral health and AD.
Collapse
Affiliation(s)
- Mihir S. Kulkarni
- USF Center for Microbiome Research, Microbiomes Institute, Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33612, USA
| | - Brandi C. Miller
- USF Center for Microbiome Research, Microbiomes Institute, Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33612, USA
- USF Center for Microbiome Research, Microbiomes Institute, Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Manan Mahani
- USF Center for Microbiome Research, Microbiomes Institute, Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33612, USA
| | - Rahul Mhaskar
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Athanasios Tsalatsanis
- Research Methodology and Biostatistics Core, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Shalini Jain
- USF Center for Microbiome Research, Microbiomes Institute, Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33612, USA
| | - Hariom Yadav
- USF Center for Microbiome Research, Microbiomes Institute, Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
14
|
Zhou X, Kumar P, Bhuyan DJ, Jensen SO, Roberts TL, Münch GW. Neuroinflammation in Alzheimer's Disease: A Potential Role of Nose-Picking in Pathogen Entry via the Olfactory System? Biomolecules 2023; 13:1568. [PMID: 38002250 PMCID: PMC10669446 DOI: 10.3390/biom13111568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by progressive cognitive decline and memory impairment. Many possible factors might contribute to the development of AD, including amyloid peptide and tau deposition, but more recent evidence suggests that neuroinflammation may also play an-at least partial-role in its pathogenesis. In recent years, emerging research has explored the possible involvement of external, invading pathogens in starting or accelerating the neuroinflammatory processes in AD. In this narrative review, we advance the hypothesis that neuroinflammation in AD might be partially caused by viral, bacterial, and fungal pathogens entering the brain through the nose and the olfactory system. The olfactory system represents a plausible route for pathogen entry, given its direct anatomical connection to the brain and its involvement in the early stages of AD. We discuss the potential mechanisms through which pathogens may exploit the olfactory pathway to initiate neuroinflammation, one of them being accidental exposure of the olfactory mucosa to hands contaminated with soil and feces when picking one's nose.
Collapse
Affiliation(s)
- Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (D.J.B.)
| | - Paayal Kumar
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia;
| | - Deep J. Bhuyan
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (D.J.B.)
| | - Slade O. Jensen
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.O.J.); (T.L.R.)
- Microbiology and Infectious Diseases Unit, School of Medicine, Western Sydney University, Liverpool, NSW 2170, Australia
| | - Tara L. Roberts
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.O.J.); (T.L.R.)
- Oncology Unit, School of Medicine, Western Sydney University, Liverpool, NSW 2170, Australia
| | - Gerald W. Münch
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (D.J.B.)
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia;
| |
Collapse
|
15
|
Shi T, Wang J, Dong J, Hu P, Guo Q. Periodontopathogens Porphyromonas gingivalis and Fusobacterium nucleatum and Their Roles in the Progression of Respiratory Diseases. Pathogens 2023; 12:1110. [PMID: 37764918 PMCID: PMC10535846 DOI: 10.3390/pathogens12091110] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
The intricate interplay between oral microbiota and the human host extends beyond the confines of the oral cavity, profoundly impacting the general health status. Both periodontal diseases and respiratory diseases show high prevalence worldwide and have a marked influence on the quality of life for the patients. Accumulating studies are establishing a compelling association between periodontal diseases and respiratory diseases. Here, in this review, we specifically focus on the key periodontal pathogenic bacteria Porphyromonas gingivalis and Fusobacterium nucleatum and dissect their roles in the onset and course of respiratory diseases, mainly pneumonia, chronic obstructive pulmonary disease, lung cancer, and asthma. The mechanistic underpinnings and molecular processes on how P. gingivalis and F. nucleatum contribute to the progression of related respiratory diseases are further summarized and analyzed, including: induction of mucus hypersecretion and chronic airway inflammation; cytotoxic effects to disrupt the morphology and function of respiratory epithelial cells; synergistic pathogenic effects with respiratory pathogens like Streptococcus pneumoniae and Pseudomonas aeruginosa. By delving into the complex relationship to periodontal diseases and periodontopathogens, this review helps unearth novel insights into the etiopathogenesis of respiratory diseases and inspires the development of potential therapeutic avenues and preventive strategies.
Collapse
Affiliation(s)
- Tao Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiale Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiajia Dong
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Pingyue Hu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qiang Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
16
|
Cammann D, Lu Y, Cummings MJ, Zhang ML, Cue JM, Do J, Ebersole J, Chen X, Oh EC, Cummings JL, Chen J. Genetic correlations between Alzheimer's disease and gut microbiome genera. Sci Rep 2023; 13:5258. [PMID: 37002253 PMCID: PMC10066300 DOI: 10.1038/s41598-023-31730-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/16/2023] [Indexed: 04/03/2023] Open
Abstract
A growing body of evidence suggests that dysbiosis of the human gut microbiota is associated with neurodegenerative diseases like Alzheimer's disease (AD) via neuroinflammatory processes across the microbiota-gut-brain axis. The gut microbiota affects brain health through the secretion of toxins and short-chain fatty acids, which modulates gut permeability and numerous immune functions. Observational studies indicate that AD patients have reduced microbiome diversity, which could contribute to the pathogenesis of the disease. Uncovering the genetic basis of microbial abundance and its effect on AD could suggest lifestyle changes that may reduce an individual's risk for the disease. Using the largest genome-wide association study of gut microbiota genera from the MiBioGen consortium, we used polygenic risk score (PRS) analyses with the "best-fit" model implemented in PRSice-2 and determined the genetic correlation between 119 genera and AD in a discovery sample (ADc12 case/control: 1278/1293). To confirm the results from the discovery sample, we next repeated the PRS analysis in a replication sample (GenADA case/control: 799/778) and then performed a meta-analysis with the PRS results from both samples. Finally, we conducted a linear regression analysis to assess the correlation between the PRSs for the significant genera and the APOE genotypes. In the discovery sample, 20 gut microbiota genera were initially identified as genetically associated with AD case/control status. Of these 20, three genera (Eubacterium fissicatena as a protective factor, Collinsella, and Veillonella as a risk factor) were independently significant in the replication sample. Meta-analysis with discovery and replication samples confirmed that ten genera had a significant correlation with AD, four of which were significantly associated with the APOE rs429358 risk allele in a direction consistent with their protective/risk designation in AD association. Notably, the proinflammatory genus Collinsella, identified as a risk factor for AD, was positively correlated with the APOE rs429358 risk allele in both samples. Overall, the host genetic factors influencing the abundance of ten genera are significantly associated with AD, suggesting that these genera may serve as biomarkers and targets for AD treatment and intervention. Our results highlight that proinflammatory gut microbiota might promote AD development through interaction with APOE. Larger datasets and functional studies are required to understand their causal relationships.
Collapse
Affiliation(s)
- Davis Cammann
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas 4505 S. Maryland Parkway, Las Vegas, NV, 89154, USA
| | - Yimei Lu
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas 4505 S. Maryland Parkway, Las Vegas, NV, 89154, USA
| | - Melika J Cummings
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas 4505 S. Maryland Parkway, Las Vegas, NV, 89154, USA
| | - Mark L Zhang
- Columbia University, West 116 St and Broadway, New York, NY, 10027, USA
| | - Joan Manuel Cue
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas 4505 S. Maryland Parkway, Las Vegas, NV, 89154, USA
| | - Jenifer Do
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas 4505 S. Maryland Parkway, Las Vegas, NV, 89154, USA
| | - Jeffrey Ebersole
- Department of Biomedical Sciences, University of Nevada, Las Vegas, NV, 89154, USA
| | - Xiangning Chen
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Edwin C Oh
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas 4505 S. Maryland Parkway, Las Vegas, NV, 89154, USA
- Laboratory of Neurogenetics and Precision Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Department of Internal Medicine, UNLV School of Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Jeffrey L Cummings
- Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Jingchun Chen
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas 4505 S. Maryland Parkway, Las Vegas, NV, 89154, USA.
| |
Collapse
|
17
|
Huang Z, Yang X, Huang Y, Tang Z, Chen Y, Liu H, Huang M, Qing L, Li L, Wang Q, Jie Z, Jin X, Jia B. Saliva - a new opportunity for fluid biopsy. Clin Chem Lab Med 2023; 61:4-32. [PMID: 36285724 DOI: 10.1515/cclm-2022-0793] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/29/2022] [Indexed: 12/15/2022]
Abstract
Saliva is a complex biological fluid with a variety of biomolecules, such as DNA, RNA, proteins, metabolites and microbiota, which can be used for the screening and diagnosis of many diseases. In addition, saliva has the characteristics of simple collection, non-invasive and convenient storage, which gives it the potential to replace blood as a new main body of fluid biopsy, and it is an excellent biological diagnostic fluid. This review integrates recent studies and summarizes the research contents of salivaomics and the research progress of saliva in early diagnosis of oral and systemic diseases. This review aims to explore the value and prospect of saliva diagnosis in clinical application.
Collapse
Affiliation(s)
- Zhijie Huang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Xiaoxia Yang
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Yisheng Huang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Zhengming Tang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Yuanxin Chen
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Hongyu Liu
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Mingshu Huang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Ling Qing
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Li Li
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Qin Wang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Zhuye Jie
- BGI Genomics, BGI-Shenzhen, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI-Shenzhen, Shenzhen, P.R. China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xin Jin
- BGI Genomics, BGI-Shenzhen, Shenzhen, P.R. China
- School of Medicine, South China University of Technology, Guangzhou, P.R. China
| | - Bo Jia
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| |
Collapse
|
18
|
Liu S, Dashper SG, Zhao R. Association Between Oral Bacteria and Alzheimer's Disease: A Systematic Review and Meta-Analysis. J Alzheimers Dis 2023; 91:129-150. [PMID: 36404545 DOI: 10.3233/jad-220627] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Pre-clinical evidence implicates oral bacteria in the pathogenesis of Alzheimer's disease (AD), while clinical studies show diverse results. OBJECTIVE To comprehensively assess the association between oral bacteria and AD with clinical evidence. METHODS Studies investigating the association between oral bacteria and AD were identified through a systematic search of six databases PubMed, Embase, Cochrane Central Library, Scopus, ScienceDirect, and Web of Science. Methodological quality ratings of the included studies were performed. A best evidence synthesis was employed to integrate the results. When applicable, a meta-analysis was conducted using a random-effect model. RESULTS Of the 16 studies included, ten investigated periodontal pathobionts and six were microbiome-wide association studies. Samples from the brain, serum, and oral cavity were tested. We found over a ten-fold and six-fold increased risk of AD when there were oral bacteria (OR = 10.68 95% CI: 4.48-25.43; p < 0.00001, I2 = 0%) and Porphyromonas gingivalis (OR = 6.84 95% CI: 2.70-17.31; p < 0.0001, I2 = 0%) respectively in the brain. While AD patients exhibited lower alpha diversity of oral microbiota than healthy controls, the findings of bacterial communities were inconsistent among studies. The best evidence synthesis suggested a moderate level of evidence for an overall association between oral bacteria and AD and for oral bacteria being a risk factor for AD. CONCLUSION Current evidence moderately supports the association between oral bacteria and AD, while the association was strong when oral bacteria were detectable in the brain. Further evidence is needed to clarify the interrelationship between both individual species and bacterial communities and the development of AD.
Collapse
Affiliation(s)
- Sixin Liu
- School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Stuart G Dashper
- Centre for Oral Health Research, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, Australia
| | - Rui Zhao
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
19
|
Guo H, Li J, Yao H, Liu Y, Ji Y, Zhang J, Zhao Y, Du M. The dynamic communities of oral microbiome in neonates. Front Microbiol 2022; 13:1052525. [PMID: 36560953 PMCID: PMC9764626 DOI: 10.3389/fmicb.2022.1052525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/03/2022] [Indexed: 12/12/2022] Open
Abstract
The oral microbiome, associated with both oral disease and systemic disease, is in dynamic status along the whole life, and many factors including maternal microbiomes could impact the oral microbiome. While fewer studies have been conducted to study the characteristics of the oral microbiome in neonates and the associated maternal factors. Hence, we collected the microbiome of 15 mother-infant pairs across multiple body sites from birth up to 4 days postpartum and used high-throughput sequencing to characterize the microbiomes in mothers and their neonates. The oral microbiome in the neonates changed obviously during the 4 days after birth. Many bacteria originating from the vagina, skin, and environment disappeared in oral cavity over time, such as Prevotella bivia and Prevotella jejuni. Meanwhile, Staphylococcus epidermidis RP62A phage SP-beta, predominate bacterium in maternal skin microbiome and Streptococcus unclassified, main bacterium in vaginal microbiome, obviously increased in neonatal oral microbiome as time went on. Interestingly, as time progressed, the composition of the oral microbiome in the neonates was more similar to that of the milk microbiome in their mothers. Moreover, we found that the changes in the predominant bacteria in the neonates were in line with those in the neonates exposed to the environment. Together, these data described the sharp dynamics of the oral microbiome in neonates and the importance of maternal efforts in the development of the neonatal microbiome.
Collapse
Affiliation(s)
- Haiying Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Jin Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hantao Yao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Yina Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Yaoting Ji
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Jing Zhang
- Department of Oral Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yun Zhao
- Maternal and Child Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Minquan Du
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China,*Correspondence: Minquan Du,
| |
Collapse
|