1
|
Ojeda-Prieto L, Medina-van Berkum P, Unsicker SB, Heinen R, Weisser WW. Intraspecific chemical variation of Tanacetum vulgare affects plant growth and reproductive traits in field plant communities. PLANT BIOLOGY (STUTTGART, GERMANY) 2024. [PMID: 38593287 DOI: 10.1111/plb.13646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/31/2024] [Indexed: 04/11/2024]
Abstract
The study investigated the impact of intraspecific plant chemodiversity on plant growth and reproductive traits at both the plant and plot levels. It also aimed to understand how chemodiversity at stand level affects ecosystem functioning and plant-plant interactions. We describe a biodiversity experiment in which we manipulated intraspecific plant chemodiversity at the plot level using six different chemotypes of common tansy (Tanacetum vulgare L., Asteraceae). We tested the effects of chemotype identity and plot-level chemotype richness on plant growth and reproductive traits and plot-level headspace emissions. The study found that plant chemotypes differed in growth and reproductive traits and that traits were affected by the chemotype richness of the plots. Although morphological differences among chemotypes became less pronounced over time, reproductive phenology patterns persisted. Plot-level trait means were also affected by the presence or absence of certain chemotypes in a plot, and the direction of the effect depended on the specific chemotype. However, chemotype richness did not lead to overyielding effects. Lastly, chemotype blends released from plant communities were neither richer nor more diverse with increasing plot-level chemotype richness, but became more dissimilar as they became more dissimilar in their leaf terpenoid profiles. We found that intraspecific plant chemodiversity is crucial in plant-plant interactions. We also found that the effects of chemodiversity on plant growth and reproductive traits were complex and varied depending on the chemotype richness of the plots. This long-term field experiment will allow further investigation into plant-insect interactions and insect community assembly in response to intraspecific chemodiversity.
Collapse
Affiliation(s)
- L Ojeda-Prieto
- Terrestrial Ecology Research Group, Department for Life Science Systems, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - P Medina-van Berkum
- Department for Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - S B Unsicker
- Department for Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
- Plant-Environment-Interactions Group, Botanical Institute, University of Kiel, Kiel, Germany
| | - R Heinen
- Terrestrial Ecology Research Group, Department for Life Science Systems, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - W W Weisser
- Terrestrial Ecology Research Group, Department for Life Science Systems, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
2
|
Bellec L, Cortesero AM, Marnet N, Faure S, Hervé MR. Age-specific allocation of glucosinolates within plant reproductive tissues. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 331:111690. [PMID: 36965631 DOI: 10.1016/j.plantsci.2023.111690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 06/18/2023]
Abstract
The Optimal Defense Theory (ODT) predicts that the distribution of defenses within a plant should mirror the value and vulnerability of each tissue. Although the ODT has received much experimental support, very few studies have examined defense allocation among reproductive tissues and none assessed simultaneously how these defenses evolve with age. We quantified glucosinolates in perianths, anthers and pistils at different bud maturity stages (i.e., intermediate flower buds, old flower buds and flowers) of undamaged and mechanically damaged plants of an annual brassicaceous species. The youngest leaf was used as a reference for vegetative organs, since it is predicted to be one of the most defended. In line with ODT predictions, reproductive tissues were more defended than vegetative tissues constitutively, and within the former, pistils and anthers more defended than perianths. No change in the overall defense level was found between bud maturity stages, but a significant temporal shift was observed between pistils and anthers. Contrary to ODT predictions, mechanical damage did not induce systemic defenses in leaves but only in pistils. Our results show that defense allocation in plant reproductive tissues occurs at fine spatial and temporal scales, extending the application framework of the ODT. They also demonstrate interactions between space and time in fine-scale defense allocation.
Collapse
Affiliation(s)
- Laura Bellec
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35000 Rennes, France; Innolea, 6 Chemin de Panedautes, 31700 Mondonville, France.
| | | | | | | | - Maxime R Hervé
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35000 Rennes, France
| |
Collapse
|
3
|
Eisenring M, Lindroth RL, Flansburg A, Giezendanner N, Mock KE, Kruger EL. Genotypic variation rather than ploidy level determines functional trait expression in a foundation tree species in the presence and absence of environmental stress. ANNALS OF BOTANY 2023; 131:229-242. [PMID: 35641114 PMCID: PMC9904343 DOI: 10.1093/aob/mcac071] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/28/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS At the population level, genetic diversity is a key determinant of a tree species' capacity to cope with stress. However, little is known about the relative importance of the different components of genetic diversity for tree stress responses. We compared how two sources of genetic diversity, genotype and cytotype (i.e. differences in ploidy levels), influence growth, phytochemical and physiological traits of Populus tremuloides in the presence and absence of environmental stress. METHODS In a series of field studies, we first assessed variation in traits across diploid and triploid aspen genotypes from Utah and Wisconsin under non-stressed conditions. In two follow-up experiments, we exposed diploid and triploid aspen genotypes from Wisconsin to individual and interactive drought stress and defoliation treatments and quantified trait variations under stress. KEY RESULTS We found that (1) tree growth and associated traits did not differ significantly between ploidy levels under non-stressed conditions. Instead, variation in tree growth and most other traits was driven by genotypic and population differences. (2) Genotypic differences were critical for explaining variation of most functional traits and their responses to stress. (3) Ploidy level played a subtle role in shaping traits and trait stress responses, as its influence was typically obscured by genotypic differences. (4) As an exception to the third conclusion, we showed that triploid trees expressed 17 % higher foliar defence (tremulacin) levels, 11 % higher photosynthesis levels and 23 % higher rubisco activity under well-watered conditions. Moreover, triploid trees displayed greater drought resilience than diploids as they produced 35 % more new tissue than diploids when recovering from drought stress. CONCLUSION Although ploidy level can strongly influence the ecology of tree species, those effects may be relatively small in contrast to the effects of genotypic variation in highly diverse species.
Collapse
Affiliation(s)
| | - Richard L Lindroth
- Department of Entomology, University of Wisconsin-Madison, 1630 Linden Dr., Madison, WI, USA
| | - Amy Flansburg
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Dr., Madison, WIUSA
| | - Noreen Giezendanner
- Department of Entomology, University of Wisconsin-Madison, 1630 Linden Dr., Madison, WI, USA
| | - Karen E Mock
- Department of Wildland Resources and Ecology Center, 5230 Old Main Hill, Utah State University, Logan, UT, USA
| | - Eric L Kruger
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Dr., Madison, WIUSA
| |
Collapse
|
4
|
Wan NF, Fu L, Dainese M, Hu YQ, Pødenphant Kiær L, Isbell F, Scherber C. Plant genetic diversity affects multiple trophic levels and trophic interactions. Nat Commun 2022; 13:7312. [PMID: 36437257 PMCID: PMC9701765 DOI: 10.1038/s41467-022-35087-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/17/2022] [Indexed: 11/28/2022] Open
Abstract
Intraspecific genetic diversity is an important component of biodiversity. A substantial body of evidence has demonstrated positive effects of plant genetic diversity on plant performance. However, it has remained unclear whether plant genetic diversity generally increases plant performance by reducing the pressure of plant antagonists across trophic levels for different plant life forms, ecosystems and climatic zones. Here, we analyse 4702 effect sizes reported in 413 studies that consider effects of plant genetic diversity on trophic groups and their interactions. We found that that increasing plant genetic diversity decreased the performance of plant antagonists including invertebrate herbivores, weeds, plant-feeding nematodes and plant diseases, while increasing the performance of plants and natural enemies of herbivores. Structural equation modelling indicated that plant genetic diversity increased plant performance partly by reducing plant antagonist pressure. These results reveal that plant genetic diversity often influences multiple trophic levels in ways that enhance natural pest control in managed ecosystems and consumer control of plants in natural ecosystems for sustainable plant production.
Collapse
Affiliation(s)
- Nian-Feng Wan
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Liwan Fu
- Center for Non-communicable Disease Management, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
- State Key Laboratory of Genetic Engineering, Institute of Biostatistics, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Matteo Dainese
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Yue-Qing Hu
- State Key Laboratory of Genetic Engineering, Institute of Biostatistics, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Lars Pødenphant Kiær
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871, Frederiksberg C, Denmark
| | - Forest Isbell
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Christoph Scherber
- Centre for Biodiversity Monitoring and Conservation Science, Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig, Adenauerallee 127, 53113, Bonn, Germany
| |
Collapse
|
5
|
Cole CT, Morrow CJ, Barker HL, Rubert-Nason KF, Riehl JFL, Köllner TG, Lackus ND, Lindroth RL. Growing up aspen: ontogeny and trade-offs shape growth, defence and reproduction in a foundation species. ANNALS OF BOTANY 2021; 127:505-517. [PMID: 32296821 PMCID: PMC7988516 DOI: 10.1093/aob/mcaa070] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/13/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND AND AIMS Intraspecific variation in foundation species of forest ecosystems can shape community and ecosystem properties, particularly when that variation has a genetic basis. Traits mediating interactions with other species are predicted by simple allocation models to follow ontogenetic patterns that are rarely studied in trees. The aim of this research was to identify the roles of genotype, ontogeny and genotypic trade-offs shaping growth, defence and reproduction in aspen. METHODS We established a common garden replicating >500 aspen genets in Wisconsin, USA. Trees were measured through the juvenile period into the onset of reproduction, for growth, defence chemistry (phenolic glycosides and condensed tannins), nitrogen, extrafloral nectaries, leaf morphology (specific leaf area), flower production and foliar herbivory and disease. We also assayed the TOZ19 sex marker and heterozygosity at ten microsatellite loci. KEY RESULTS We found high levels of genotypic variation for all traits, and high heritabilities for both the traits and their ontogenetic trajectories. Ontogeny strongly shaped intraspecific variation, and trade-offs among growth, defence and reproduction supported some predictions while contradicting others. Both direct resistance (chemical defence) and indirect defence (extrafloral nectaries) declined during the juvenile stage, prior to the onset of reproduction. Reproduction was higher in trees that were larger, male and had higher individual heterozygosity. Growth was diminished by genotypic allocation to both direct and indirect defence as well as to reproduction, but we found no evidence of trade-offs between defence and reproduction. CONCLUSIONS Key traits affecting the ecological communities of aspen have high levels of genotypic variation and heritability, strong patterns of ontogeny and clear trade-offs among growth, defence and reproduction. The architecture of aspen's community genetics - its ontogeny, trade-offs and especially its great variability - is shaped by both its broad range and the diverse community of associates, and in turn further fosters that diversity.
Collapse
Affiliation(s)
- Christopher T Cole
- Department of Entomology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI, USA
| | - Clay J Morrow
- Department of Entomology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI, USA
| | - Hilary L Barker
- Department of Entomology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI, USA
| | - Kennedy F Rubert-Nason
- Department of Entomology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI, USA
- Department of Natural and Behavioral Sciences, University of Maine at Ft. Kent, 23 University Drive, Fort Kent, ME, USA
| | - Jennifer F L Riehl
- Department of Entomology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI, USA
| | - Tobias G Köllner
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Hans-Knöll-Strasse 8, Jena, Germany
| | - Nathalie D Lackus
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Hans-Knöll-Strasse 8, Jena, Germany
| | - Richard L Lindroth
- Department of Entomology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI, USA
| |
Collapse
|
6
|
Effects of Large-Scale Nitrogen Fertilization on Insect–Plant Interactions in the Canopy of Tall Alder Trees with N2-Fixing Traits in a Cool Temperate Forest. FORESTS 2021. [DOI: 10.3390/f12020210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Nitrogen (N) deposition is expected to influence forests. The effects of large-scale N fertilization on canopy layer insect–plant interactions in stands of tall, atmospheric nitrogen (N2)-fixing tree species have never been assessed. We conducted a large-scale fertilization experiment (100 kg N ha−1 year−1 applied to approximately 9 ha) over three years (2012–2014) in a cool temperate forest in northern Japan. Our goal was to evaluate relational responses between alder (Alnus hirsuta [Turcz.]) and their insect herbivores to N deposition. Specifically, we assessed leaf traits (N concentration, C:N ratio, condensed tannin concentration, and leaf mass per unit area (LMA)) and herbivory by three feeding guilds (leaf damage by chewers and the densities of gallers and miners) between the fertilized site and an unfertilized control. Fertilization led to increased galler density in spring 2013 and increased leaf damage by chewers in late summer 2014. For leaf traits, the LMA decreased in spring 2013 and late summer 2014, and the C:N ratio decreased in late summer 2013. The N and condensed tannin concentrations remained unchanged throughout the study period. There was a negative correlation between LMA and leaf damage by chewers, but LMA was not correlated with galler density. These results show that large-scale N fertilization had a positive plant-mediated (i.e., indirect) effect on leaf damage by chewers via a decrease in LMA in the canopy layer. Changes in physical defenses in canopy leaves may be a mechanism by which N fertilization affects the herbivory in tall N2-fixing trees.
Collapse
|
7
|
Koski TM, de Jong S, Muola A, Amby DB, Andreasson E, Stenberg JA. 'Resistance Mixtures' Reduce Insect Herbivory in Strawberry ( Fragaria vesca) Plantations. FRONTIERS IN PLANT SCIENCE 2021; 12:722795. [PMID: 34630469 PMCID: PMC8494967 DOI: 10.3389/fpls.2021.722795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/23/2021] [Indexed: 05/21/2023]
Abstract
The transition toward more sustainable plant protection with reduced pesticide use is difficult, because there is no "silver bullet" available among nonchemical tools. Integrating several plant protection approaches may thus be needed for efficient pest management. Recently, increasing the genetic diversity of plantations via cultivar mixing has been proposed as a possible method to reduce pest damage. However, previous studies have not addressed either the relative efficiency of exploiting cultivar mixing and intrinsic plant herbivore resistance or the potential utility of combining these approaches to increase cropping security. Here, using a full factorial experiment with 60 woodland strawberry plots, we tested for the relative and combined effect of cultivar mixing and intrinsic plant resistance on herbivore damage and yield. The experiment comprised two levels of diversity ("high" with 10 varieties and "low" with two varieties) and three levels of resistance ("resistant" comprising only varieties intrinsically resistant against strawberry leaf beetle Galerucella tenella; "susceptible" with susceptible varieties only; and "resistance mixtures" with 50:50 mixtures of resistant and susceptible varieties). The experiment was carried out over two growing seasons. Use of resistant varieties either alone or intermixed with susceptible varieties in "resistance mixtures" reduced insect herbivory. Interestingly, resistant varieties not only reduced the mean damage in "resistance mixtures" by themselves being less damaged, but also protected intermixed susceptible varieties via associational resistance. The effect of higher genetic diversity was less evident, reducing herbivory only at the highest level of herbivore damage. In general, herbivory was lowest in plots with high diversity that included at least some resistant varieties and highest in low diversity plots consisting only of susceptible varieties. Despite this, no significant difference in yield (fruit biomass) was found, indicating that strawberry may be relatively tolerant. Our results demonstrate that combined use of high genetic diversity and resistant varieties can help reduce pest damage and provide a useful tool for sustainable food production. "Resistance mixtures" may be particularly useful for sensitive food crops where susceptible varieties are high yielding that could not be completely replaced by resistant ones.
Collapse
Affiliation(s)
- Tuuli-Marjaana Koski
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
- Section of Ecology, Department of Biology, University of Turku, Turku, Finland
- *Correspondence: Tuuli-Marjaana Koski,
| | - Sanne de Jong
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Anne Muola
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
- Section of Ecology, Department of Biology, University of Turku, Turku, Finland
| | - Daniel B. Amby
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Erik Andreasson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Johan A. Stenberg
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
8
|
Yan J, Zhang Y, Crawford KM, Chen X, Yu S, Wu J. Plant genotypic diversity effects on soil nematodes vary with trophic level. THE NEW PHYTOLOGIST 2021; 229:575-584. [PMID: 32813893 DOI: 10.1111/nph.16829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
At local spatial scales, loss of genetic diversity within species can lead to species loss. Few studies, however, have examined plant genotypic diversity effects across trophic levels. We investigated genotypic diversity effects of Phragmites australis on belowground biomass and soil nematode communities. Our results revealed that belowground plant biomass and nematode abundance responses to plant genotypic diversity were uncoupled. Decreasing plant genotypic diversity decreased the abundance of lower, but not higher trophic level nematodes. Low plant genotypic diversity also decreased the structural footprint and functional indices of nematodes, indicating lowered metabolic functioning of higher trophic level nematodes and decreased soil food web stability. Our study suggests that plant genotypic diversity effects differ across trophic levels, taxonomic groups and ecosystem functions and that decreasing plant genotypic diversity could destabilise belowground food webs. This highlights the importance of conserving intraspecific plant diversity.
Collapse
Affiliation(s)
- Jun Yan
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Coastal Ecosystems Research Station of Yangtze River Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Youzheng Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Coastal Ecosystems Research Station of Yangtze River Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Kerri M Crawford
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, 77204, USA
| | - Xiaoyong Chen
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Shuo Yu
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
- Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, 536000, China
| | - Jihua Wu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Coastal Ecosystems Research Station of Yangtze River Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, 200433, China
| |
Collapse
|
9
|
Barton KE, Shiels AB. Additive and non‐additive responses of seedlings to simulated herbivory and drought. Biotropica 2020. [DOI: 10.1111/btp.12829] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kasey E. Barton
- School of Life Sciences University of Hawai'i at Mānoa Honolulu Hawaii USA
| | - Aaron B. Shiels
- USDA National Wildlife Research Center Fort Collins Colorado USA
| |
Collapse
|
10
|
Bongers FJ, Schmid B, Durka W, Li S, Bruelheide H, Hahn CZ, Yan H, Ma K, Liu X. Genetic richness affects trait variation but not community productivity in a tree diversity experiment. THE NEW PHYTOLOGIST 2020; 227:744-756. [PMID: 32242938 DOI: 10.1111/nph.16567] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
Biodiversity-ecosystem functioning experiments found that productivity generally increases with species richness, but less is known about effects of within-species genetic richness and potential interactions between the two. While functional differences between species can explain species richness effects, empirical evidence regarding functional differences between genotypes within species and potential consequences for productivity is largely lacking. We therefore measured within- and among-species variation in functional traits and growth and determined stand-level tree biomass in a large forest experiment factorially manipulating species and genetic richness in subtropical China. Within-species variation across genetic seed families, in addition to variation across species, explained a substantial amount of trait variation. Furthermore, trait responses to species and genetic richness varied significantly within and between species. Multivariate trait variation was larger among individuals from species mixtures than those from species monocultures, but similar among individuals from genetically diverse vs genetically uniform monocultures. Correspondingly, species but not genetic richness had a positive effect on stand-level tree biomass. We argue that identifying functional diversity within and among species in forest communities is necessary to separate effects of species and genetic diversity on tree growth and community productivity.
Collapse
Affiliation(s)
- Franca J Bongers
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, 100093, Beijing, China
| | - Bernhard Schmid
- Department of Geography, University of Zurich, 8057, Zurich, Switzerland
| | - Walter Durka
- Department of Community Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Shan Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, 100093, Beijing, China
| | - Helge Bruelheide
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
- Institute of Biology, Martin Luther University Halle-Wittenberg, D-06108, Halle, Germany
| | - Christoph Z Hahn
- Department of Community Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120, Halle, Germany
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Haoru Yan
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, 100093, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Keping Ma
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, 100093, Beijing, China
| | - Xiaojuan Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, 100093, Beijing, China
| |
Collapse
|
11
|
Guyot V, Jactel H, Imbaud B, Burnel L, Castagneyrol B, Heinz W, Deconchat M, Vialatte A. Tree diversity drives associational resistance to herbivory at both forest edge and interior. Ecol Evol 2019; 9:9040-9051. [PMID: 31463002 PMCID: PMC6706233 DOI: 10.1002/ece3.5450] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 11/12/2022] Open
Abstract
Tree diversity is increasingly acknowledged as an important driver of insect herbivory. However, there is still a debate about the direction of associational effects that can range from associational resistance (i.e., less damage in mixed stands than in monocultures) to the opposite, associational susceptibility. Discrepancies among published studies may be due to the overlooked effect of spatially dependent processes such as tree location within forests. We addressed this issue by measuring crown defoliation and leaf damage made by different guilds of insect herbivores on oaks growing among conspecific versus heterospecific neighbors at forest edges versus interior, in two closed sites in SW France forests. Overall, oaks were significantly less defoliated among heterospecific neighbors (i.e., associational resistance), at both forest edge and interior. At the leaf level, guild diversity and leaf miner herbivory significantly increased with tree diversity regardless of oak location within stands. Other guilds showed no clear response to tree diversity or oak location. We showed that herbivore response to tree diversity varied among insect feeding guilds but not between forest edges and interior, with inconsistent patterns between sites. Importantly, we show that oaks were more defoliated in pure oak plots than in mixed plots at both edge and forest interior and that, on average, defoliation decreased with increasing tree diversity from one to seven species. We conclude that edge conditions could be interacting with tree diversity to regulate insect defoliation, but future investigations are needed to integrate them into the management of temperate forests, notably by better understanding the role of the landscape context.
Collapse
Affiliation(s)
- Virginie Guyot
- DYNAFOR, INRA, Université de ToulouseCastanet TolosanFrance
- BIOGECO, INRA, Univ. BordeauxCestasFrance
- LTSER Zone Atelier «PYRÉNÉES GARONNE»Auzeville‐TolosaneFrance
| | | | | | - Laurent Burnel
- DYNAFOR, INRA, Université de ToulouseCastanet TolosanFrance
- LTSER Zone Atelier «PYRÉNÉES GARONNE»Auzeville‐TolosaneFrance
| | | | - Wilfried Heinz
- DYNAFOR, INRA, Université de ToulouseCastanet TolosanFrance
- LTSER Zone Atelier «PYRÉNÉES GARONNE»Auzeville‐TolosaneFrance
| | - Marc Deconchat
- DYNAFOR, INRA, Université de ToulouseCastanet TolosanFrance
- LTSER Zone Atelier «PYRÉNÉES GARONNE»Auzeville‐TolosaneFrance
| | - Aude Vialatte
- DYNAFOR, INRA, Université de ToulouseCastanet TolosanFrance
- LTSER Zone Atelier «PYRÉNÉES GARONNE»Auzeville‐TolosaneFrance
| |
Collapse
|
12
|
Barantal S, Castagneyrol B, Durka W, Iason G, Morath S, Koricheva J. Contrasting effects of tree species and genetic diversity on the leaf-miner communities associated with silver birch. Oecologia 2019; 189:687-697. [PMID: 30799514 PMCID: PMC6418074 DOI: 10.1007/s00442-019-04351-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 01/30/2019] [Indexed: 11/29/2022]
Abstract
Both species and genetic diversity of plant communities can affect insect herbivores, but a few studies have compared the effects of both diversity levels within the same experimental context. We compared the effects of tree species and genetic diversity on abundance, species richness, and β-diversity of leaf-miner communities associated with silver birch using two long-term forest diversity experiments in Finland where birch trees were planted in monocultures and mixtures of birch genotypes or other trees species. Although both abundance and species richness of leaf miners differed among birch genotypes at the tree level, birch genetic diversity had no significant effect on miner abundance and species richness at the plot level. Instead, birch genetic diversity affected leaf-miner β-diversity with species turnover being higher among trees within genotypic mixtures than among trees within monoclonal plots. In contrast, tree species diversity had a significant negative effect on both leaf-miner abundance and species richness at plot level, but no effect on miner β-diversity. Significant tree species diversity effects on leaf-miner abundance and species richness were found only in plots with high tree density. We have demonstrated that plant species and genetic diversity play important but contrasting roles in structuring associated herbivore communities. Tree species diversity largely affects miner abundance and species richness, whereas tree genetic diversity affects miner β-diversity. These results have important implications for conservation and management of woodlands.
Collapse
Affiliation(s)
- Sandra Barantal
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK. .,Ecotron-CNRS, 1 Chemin du Rioux, 34980, Monferrier, France.
| | | | - Walter Durka
- Helmholtz Centre for Environmental Research-UFZ, 06120, Halle, Germany
| | - Glenn Iason
- James Hutton Institute, Aberdeen, AB15 8QH, UK
| | - Simon Morath
- Forest Research, Alice Holt Lodge, Farnham, Surrey, GU10 4LH, UK
| | - Julia Koricheva
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| |
Collapse
|
13
|
Kagiya S, Yasugi M, Kudoh H, Nagano AJ, Utsumi S. Does genomic variation in a foundation species predict arthropod community structure in a riparian forest? Mol Ecol 2018; 27:1284-1295. [PMID: 29508497 DOI: 10.1111/mec.14515] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/27/2017] [Accepted: 01/08/2018] [Indexed: 01/15/2023]
Abstract
Understanding how genetic variation within a foundation species determines the structure of associated communities and ecosystem processes has been an emerging frontier in ecology. Previous studies in common gardens identified close links between intraspecific variation and multispecies community structure, and these findings are now being evaluated directly in the complex natural ecosystem. In this study, we examined to what extent genomic variation in a foundation tree species explains the structure of associated arthropod communities in the field, comparing with spatial, temporal and environmental factors. In a continuous mixed forest, arthropods were surveyed on 85 mature alders (Alnus hirsuta) in 2 years. Moreover, we estimated Nei's genetic distance among the alders based on 1,077 single nucleotide polymorphisms obtained from restricted-site-associated DNA sequencing of the alders' genome. In both years, we detected significant correlations between genetic distance and dissimilarity of arthropod communities. A generalized dissimilarity modelling indicated that the genetic distance of alder populations was the most important predictor to explain the variance of arthropod communities. Among arthropod functional groups, carnivores were consistently correlated with genetic distance of the foundation species in both years. Furthermore, the extent of year-to-year changes in arthropod communities was more similar between more genetically closed alder populations. This study demonstrates that the genetic similarity rule would be primarily prominent in community assembly of plant-associated arthropods under temporally and spatially variable environments in the field.
Collapse
Affiliation(s)
- Shinnosuke Kagiya
- Graduate School of Environmental Science, Hokkaido University, Nayoro, Japan
| | - Masaki Yasugi
- Laboratory of Neurophysiology, National Institute for Basic Biology, Okazaki, Japan
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Otsu, Japan
| | | | - Shunsuke Utsumi
- Uryu Experimental Forest, Field Science Center of Northern Biosphere, Hokkaido University, Horokanai, Hokkaido, Japan
| |
Collapse
|
14
|
Koricheva J, Hayes D. The relative importance of plant intraspecific diversity in structuring arthropod communities: A meta‐analysis. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13062] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Julia Koricheva
- School of Biological SciencesRoyal Holloway University of London Egham Surrey UK
| | - Dexter Hayes
- School of Biological SciencesRoyal Holloway University of London Egham Surrey UK
| |
Collapse
|
15
|
Rosado-Sánchez S, Parra-Tabla V, Betancur-Ancona D, Moreira X, Abdala-Roberts L. Tree species diversity alters plant defense investment in an experimental forest plantation in southern Mexico. Biotropica 2017. [DOI: 10.1111/btp.12527] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Silvia Rosado-Sánchez
- Departamento de Ecología Tropical; Campus de Ciencias Biológicas y Agropecuarias; Universidad Autónoma de Yucatán; Carretera Mérida-Xmatkuil Km 15.5 C.P. 97100 Mérida Yuc. México
| | - Víctor Parra-Tabla
- Departamento de Ecología Tropical; Campus de Ciencias Biológicas y Agropecuarias; Universidad Autónoma de Yucatán; Carretera Mérida-Xmatkuil Km 15.5 C.P. 97100 Mérida Yuc. México
| | - David Betancur-Ancona
- Facultad de Ingeniería Química; Universidad Autónoma de Yucatán; Periférico Nte. Km. 33.5, Tablaje Catastral 13615, Col. Chuburná de Hidalgo Inn. C.P. 97203 Mérida Yuc. México
| | - Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC); Apdo. 28 36080 Pontevedra, Galicia Spain
| | - Luis Abdala-Roberts
- Departamento de Ecología Tropical; Campus de Ciencias Biológicas y Agropecuarias; Universidad Autónoma de Yucatán; Carretera Mérida-Xmatkuil Km 15.5 C.P. 97100 Mérida Yuc. México
| |
Collapse
|
16
|
Semchenko M, Saar S, Lepik A. Intraspecific genetic diversity modulates plant-soil feedback and nutrient cycling. THE NEW PHYTOLOGIST 2017; 216:90-98. [PMID: 28608591 DOI: 10.1111/nph.14653] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/07/2017] [Indexed: 06/07/2023]
Abstract
Plant genetic diversity can affect ecosystem functioning by enhancing productivity, litter decomposition and resistance to natural enemies. However, the mechanisms underlying these effects remain poorly understood. We hypothesized that genetic diversity may influence ecosystem processes by eliciting functional plasticity among individuals encountering kin or genetically diverse neighbourhoods. We used soil conditioned by groups of closely related (siblings) and diverse genotypes of Deschampsia cespitosa - a species known to exhibit kin recognition via root exudation - to investigate the consequences of kin interactions for root litter decomposition and negative feedback between plants and soil biota. Genetically diverse groups produced root litter that had higher nitrogen (N) content, decomposed faster and resulted in greater N uptake by the next generation of seedlings compared with litter produced by sibling groups. However, a similar degree of negative soil feedback on plant productivity was observed in soil conditioned by siblings and genetically diverse groups. This suggests that characteristics of roots produced by sibling groups slow down N cycling but moderate the expected negative impact of soil pathogens in low-diversity stands. These findings highlight interactions between neighbouring genotypes as an overlooked mechanism by which genetic diversity can affect biotic soil feedback and nutrient cycling.
Collapse
Affiliation(s)
- Marina Semchenko
- School of Earth and Environmental Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Sirgi Saar
- School of Earth and Environmental Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Anu Lepik
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| |
Collapse
|
17
|
Gosney B, O'Reilly-Wapstra J, Forster L, Whiteley C, Potts B. The Extended Community-Level Effects of Genetic Variation in Foliar Wax Chemistry in the Forest Tree Eucalyptus globulus. J Chem Ecol 2017; 43:532-542. [PMID: 28478546 DOI: 10.1007/s10886-017-0849-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 03/30/2017] [Accepted: 04/25/2017] [Indexed: 11/25/2022]
Abstract
Genetic variation in foundation trees can influence dependent communities, but little is known about the mechanisms driving these extended genetic effects. We studied the potential chemical drivers of genetic variation in the dependent foliar community of the focal tree Eucalyptus globulus. We focus on the role of cuticular waxes and compare the effects to that of the terpenes, a well-studied group of secondary compounds known to be bioactive in eucalypts. The canopy community was quantified based on the abundance of thirty-nine distinctive arthropod and fungal symptoms on foliar samples collected from canopies of 246 progeny from 13 E. globulus sub-races grown in a common garden trial. Cuticular waxes and foliar terpenes were quantified using gas chromatography - mass spectrometry (GC-MC). A total of 4 of the 13 quantified waxes and 7 of the 16 quantified terpenes were significantly associated with the dependent foliar community. Variation in waxes explained 22.9% of the community variation among sub-races, which was equivalent to that explained by terpenes. In combination, waxes and terpenes explained 35% of the genetic variation among sub-races. Only a small proportion of wax and terpene compounds showing statistically significant differences among sub-races were implicated in community level effects. The few significant waxes have previously shown evidence of divergent selection in E. globulus, which signals that adaptive variation in phenotypic traits may have extended effects. While highlighting the role of the understudied cuticular waxes, this study demonstrates the complexity of factors likely to lead to community genetic effects in foundation trees.
Collapse
Affiliation(s)
- Benjamin Gosney
- School of Biological Science, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia.
| | | | - Lynne Forster
- School of Agricultural Science, University of Tasmania, Private Bag 50, Hobart, TAS, 7001, Australia
| | - Carmen Whiteley
- School of Biological Science, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
- ARC Training Centre for Forest Value, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - Brad Potts
- School of Biological Science, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
- ARC Training Centre for Forest Value, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| |
Collapse
|
18
|
Barton KE, Boege K. Future directions in the ontogeny of plant defence: understanding the evolutionary causes and consequences. Ecol Lett 2017; 20:403-411. [DOI: 10.1111/ele.12744] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 12/23/2016] [Accepted: 01/09/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Kasey E. Barton
- Department of Botany University of Hawai'i at Mānoa 3190 Maile Way Room 101 Honolulu Hawai'i 96822 USA
| | - Karina Boege
- Instituto de Ecología Universidad Nacional Autónoma de México. A.P. 20‐275. Ciudad Universitaria C.P. 04510 Ciudad De México México
| |
Collapse
|
19
|
Fernandez-Conradi P, Jactel H, Hampe A, Leiva MJ, Castagneyrol B. The effect of tree genetic diversity on insect herbivory varies with insect abundance. Ecosphere 2017. [DOI: 10.1002/ecs2.1637] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Pilar Fernandez-Conradi
- Biogeco; INRA; University of Bordeaux; F-33610 Cestas France
- Departamento de Biología Vegetal y Ecología; Universidad de Sevilla; Apdo, 1095 41080 Sevilla Spain
| | - Hervé Jactel
- Biogeco; INRA; University of Bordeaux; F-33610 Cestas France
| | - Arndt Hampe
- Biogeco; INRA; University of Bordeaux; F-33610 Cestas France
| | - Maria José Leiva
- Departamento de Biología Vegetal y Ecología; Universidad de Sevilla; Apdo, 1095 41080 Sevilla Spain
| | | |
Collapse
|
20
|
Fischer DG, Wimp GM, Hersch‐Green E, Bangert RK, LeRoy CJ, Bailey JK, Schweitzer JA, Dirks C, Hart SC, Allan GJ, Whitham TG. Tree genetics strongly affect forest productivity, but intraspecific diversity–productivity relationships do not. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12733] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dylan G. Fischer
- The Evergreen State College 2700 Evergreen Parkway NW Olympia WA98505 USA
| | - Gina M. Wimp
- Biology Department Georgetown University Reiss Science Building, 37th and O Streets NW Washington DC20057 USA
| | - Erika Hersch‐Green
- Department of Biological Sciences Michigan Technological University 1400 Townsend Drive Houghton MI49931‐1295 USA
| | - Randy K. Bangert
- Department of Biological Sciences Northern Arizona University PO Box 5460 Flagstaff AZ86001 USA
- School of Earth Sciences and Environmental Sustainability Northern Arizona University PO Box 5694 Flagstaff AZ86011 USA
| | - Carri J. LeRoy
- The Evergreen State College 2700 Evergreen Parkway NW Olympia WA98505 USA
| | - Joseph K. Bailey
- Department of Ecology and Evolutionary Biology University of Tennessee 569 Dabney Hall Knoxville TN37996 USA
| | - Jennifer A. Schweitzer
- Department of Ecology and Evolutionary Biology University of Tennessee 569 Dabney Hall Knoxville TN37996 USA
| | - Clarissa Dirks
- The Evergreen State College 2700 Evergreen Parkway NW Olympia WA98505 USA
| | - Stephen C. Hart
- Life & Environmental Sciences and Sierra Nevada Research Institute University of California Merced CA95344 USA
| | - Gerard J. Allan
- Department of Biological Sciences Northern Arizona University PO Box 5460 Flagstaff AZ86001 USA
| | - Thomas G. Whitham
- Department of Biological Sciences Northern Arizona University PO Box 5460 Flagstaff AZ86001 USA
| |
Collapse
|
21
|
Huber H, During HJ, Bruine de Bruin F, Vermeulen PJ, Anten NPR. Genotypic and Phenotypic Diversity Does Not Affect Productivity and Drought Response in Competitive Stands of Trifolium repens. FRONTIERS IN PLANT SCIENCE 2016; 7:364. [PMID: 27064974 PMCID: PMC4809891 DOI: 10.3389/fpls.2016.00364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/08/2016] [Indexed: 06/05/2023]
Abstract
Clonal plants can form dense canopies in which plants of different genetic origin are competing for the uptake of essential resources. The competitive relationships among these clones are likely to be affected by extreme environmental conditions, such as prolonged drought spells, which are predicted to occur more frequently due to global climate change. This, in turn, may alter characteristics of the ecological system and its associated functioning. We hypothesized that the relative success of individual clones will depend on the size of the ramets as ramets with larger leaves and longer petioles (large ramets) were predicted to have a competitive advantage in terms of increased light interception over smaller-sized ramets. Under drier conditions the relative performances of genotypes were expected to change leading to a change in genotype ranking. We also hypothesized that increased genotypic and phenotypic diversity will increase stand performance and resistance to drought. These hypotheses and the mechanisms responsible for shifts in competitive relationships were investigated by subjecting genotypes of the important pasture legume Trifolium repens to competition with either genetically identical clones, genetically different but similarly sized clones, or genetically as well as morphologically different clones under well-watered and dry conditions. Competitive relationships were affected by ramet size with large genotypes outperforming small genotypes in diverse stands in terms of biomass production. However, large genotypes also produced relatively fewer ramets than small genotypes and could not benefit in terms of clonal reproduction from competing with smaller genotypes, indicating that evolutionary shifts in genotype composition will depend on whether ramet size or ramet number is under selection. In contrast to our hypotheses, diversity did not increase stand performance under different selection regimes and genotype ranking was hardly affected by soil moisture, indicating that increasing fluctuations in water availability result in few short-term effects on genotypic diversity in this stoloniferous grassland species. Communities dominated by stoloniferous herbs such as T. repens may be relatively resilient to environmental change and to low levels of genetic diversity.
Collapse
Affiliation(s)
- Heidrun Huber
- Department of Experimental Plant Ecology, Institute for Water and Wetland Research, Radboud University Nijmegen Nijmegen, Netherlands
| | - Heinjo J During
- Section of Ecology and Biodiversity, Institute of Environmental Biology, Utrecht University Utrecht, Netherlands
| | - Fabienne Bruine de Bruin
- Department of Experimental Plant Ecology, Institute for Water and Wetland Research, Radboud University Nijmegen Nijmegen, Netherlands
| | - Peter J Vermeulen
- Centre for Crop Systems Analysis, Wageningen University Wageningen, Netherlands
| | - Niels P R Anten
- Centre for Crop Systems Analysis, Wageningen University Wageningen, Netherlands
| |
Collapse
|
22
|
Evans SM, Sinclair EA, Poore AGB, Bain KF, Vergés A. Genotypic richness predicts phenotypic variation in an endangered clonal plant. PeerJ 2016; 4:e1633. [PMID: 26925313 PMCID: PMC4768672 DOI: 10.7717/peerj.1633] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 01/06/2016] [Indexed: 11/20/2022] Open
Abstract
Declines in genetic diversity within a species can affect the stability and functioning of populations. The conservation of genetic diversity is thus a priority, especially for threatened or endangered species. The importance of genetic variation, however, is dependent on the degree to which it translates into phenotypic variation for traits that affect individual performance and ecological processes. This is especially important for predominantly clonal species, as no single clone is likely to maximise all aspects of performance. Here we show that intraspecific genotypic diversity as measured using microsatellites is a strong predictor of phenotypic variation in morphological traits and shoot productivity of the threatened, predominantly clonal seagrass Posidonia australis, on the east coast of Australia. Biomass and surface area variation was most strongly predicted by genotypic richness, while variation in leaf chemistry (phenolics and nitrogen) was unrelated to genotypic richness. Genotypic richness did not predict tissue loss to herbivores or epiphyte load, however we did find that increased herbivore damage was positively correlated with allelic richness. Although there was no clear relationship between higher primary productivity and genotypic richness, variation in shoot productivity within a meadow was significantly greater in more genotypically diverse meadows. The proportion of phenotypic variation explained by environmental conditions varied among different genotypes, and there was generally no variation in phenotypic traits among genotypes present in the same meadows. Our results show that genotypic richness as measured through the use of presumably neutral DNA markers does covary with phenotypic variation in functionally relevant traits such as leaf morphology and shoot productivity. The remarkably long lifespan of individual Posidonia plants suggests that plasticity within genotypes has played an important role in the longevity of the species. However, the strong link between genotypic and phenotypic variation suggests that a range of genotypes is still the best case scenario for adaptation to and recovery from predicted environmental change.
Collapse
Affiliation(s)
- Suzanna M Evans
- Centre for Marine Bio-Innovation, University of New South Wales, Sydney, New South Wales, Australia; Evolution & Ecology Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Elizabeth A Sinclair
- School of Plant Biology and Oceans Institute, University of Western Australia, Perth, Western Australia, Australia; Science Directorate, Botanic Gardens and Parks Authority, West Perth Western Australia, Australia
| | - Alistair G B Poore
- Evolution & Ecology Research Centre, University of New South Wales , Sydney, New South Wales , Australia
| | - Keryn F Bain
- Evolution & Ecology Research Centre, University of New South Wales , Sydney, New South Wales , Australia
| | - Adriana Vergés
- Centre for Marine Bio-Innovation, University of New South Wales, Sydney, New South Wales, Australia; Evolution & Ecology Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|