1
|
Zhao YJ, Wang S, Liao ZY, Parepa M, Zhang L, Cao P, Bi J, Guo Y, Bossdorf O, Richards CL, Wu J, Li B, Ju RT. Geographic variation in leaf traits and palatability of a native plant invader during domestic expansion. Ecology 2024; 105:e4425. [PMID: 39311032 DOI: 10.1002/ecy.4425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/18/2024] [Indexed: 11/05/2024]
Abstract
Like alien plant invasion, range expansion of native plants may threaten biodiversity and economies, rendering them native invaders. Variation in abiotic and biotic conditions across a large geographic scale greatly affects variation in traits and interactions with herbivores of native plant invaders, which is an interesting yet mostly unexplored issue. We used a common garden experiment to compare defensive/nutritional traits and palatability to generalist herbivores of 20 native (23.64° N-30.18° N) and introduced range (31.58° N-36.87° N) populations of Reynoutria japonica, which is a native invader following range expansion in China. We analyzed the relationships among herbivore pressure, climate, plant chloroplast haplotypes, leaf traits, and herbivore performance. Of the 16 variables tested, we observed range differences in 11 variables and latitudinal clines in nine variables. In general, herbivores performed better on the introduced plants than on the native plants, and better on the high-latitude plants than on the low-latitude plants within the introduced populations. Three key traits (leaf thickness, specific leaf area, and carbon-to-nitrogen [C:N] ratio) determined palatability to herbivores and were significantly associated with temperature and/or precipitation of plant provenance as well as with plant haplotypes but not with herbivore pressure. Our results revealed a causal sequence from plant-range-based environmental forces and genetic context to plant quality and palatability to herbivores in R. japonica. These findings suggest a post-introduction evolution of R. japonica, which may partly explain the colonization success of this important native, but invasive plant.
Collapse
Affiliation(s)
- Yu-Jie Zhao
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Shengyu Wang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhi-Yong Liao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Madalin Parepa
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Tübingen, Germany
| | - Lei Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Peipei Cao
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Jingwen Bi
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Yaolin Guo
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Oliver Bossdorf
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Tübingen, Germany
| | - Christina L Richards
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Tübingen, Germany
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Jihua Wu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Bo Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Rui-Ting Ju
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Liu S, Tong J, Xu M, Meng Q, Shi Y, Zhao H, Li Y. The Effect of Elevation Gradient on Distribution and Body Size of Carabid Beetles in the Changbaishan Nature Reserve in Northeast Asia. INSECTS 2024; 15:688. [PMID: 39336656 PMCID: PMC11432507 DOI: 10.3390/insects15090688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/07/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024]
Abstract
The environment of mountain ecosystems can change greatly in short distances as elevation increases. The effects of elevation change on the distribution and body size of carabid beetles were investigated at elevations of 750-2600 m in the Changbaishan Nature Reserve (Northeast China). The richness and abundance of carabid species decreased significantly as elevation increased. However, the change trends are different in forests and tundra. In the broad-leaved Korean pine forest and coniferous forest at low elevations, carabid beetle species have high richness and abundance. The community composition of carabid beetles was significantly different at different elevations and among different vegetation types. Some species only occurred at specific elevations. There were fewer indicator species in high-elevation areas, but Carabus macleayi Dejean, Nebria pektusanica Horratovich and Pterostichus jaechi Kirschenhofer were mainly found in high-elevation areas. The average body size of species in the carabid beetle community was negatively correlated with elevation. The sizes of the larger Carabus canaliculatus Adams and Carabus venustus Morawitz were negatively correlated with elevation. Their body sizes decreased obviously in the tundra at elevations above 2000 m. Changes in vegetation types at high elevations affect the distribution and body sizes of beetles along the elevation gradient. Some large carabid species may be smaller at high elevations where a unique insect fauna has developed. The body size and distribution range of the carabid may be the factors that affect body size reduction at high elevation. Although some high-elevation species also occur in low-elevation areas, the protection of species diversity in high-elevation areas should be emphasized in the context of global climate change. The results illustrate the mechanisms of carabid beetles' response to elevation change and the need for carabid beetles' diversity conservation under global climate change.
Collapse
Affiliation(s)
| | | | | | - Qingfan Meng
- Jilin Provincial Key Laboratory of Insect Biodiversity and Ecosystem Function of Changbai Mountains, Beihua University, Jilin 132013, China
| | - Ying Shi
- Jilin Provincial Key Laboratory of Insect Biodiversity and Ecosystem Function of Changbai Mountains, Beihua University, Jilin 132013, China
| | | | | |
Collapse
|
3
|
Harenčár JG, Salazar‐Amoretti D, García‐Robledo C, Kay KM. Growth-defense trade-offs promote habitat isolation between recently-diverged species. Ecol Evol 2024; 14:e11609. [PMID: 38952661 PMCID: PMC11214971 DOI: 10.1002/ece3.11609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024] Open
Abstract
Trade-offs are crucial for species divergence and reproductive isolation. Trade-offs between investment in growth versus defense against herbivores are implicated in tropical forest diversity. Empirically exploring the role of growth-defense trade-offs in closely related species' reproductive isolation can clarify the eco-evolutionary dynamics through which growth-defense trade-offs contribute to diversity. Costus villosissimus and C. allenii are recently diverged, interfertile, and partially sympatric neotropical understory plant species primarily isolated by divergent habitat adaptation. This divergent adaptation involves differences in growth rate, which may constrain investment in defense. Here, we investigate growth-defense trade-offs and how they relate to the divergent habitat adaptation that isolates these species. We characterize leaf toughness and chemistry, evaluate the feeding preferences of primary beetle herbivores in controlled trials and field-based experiments, and investigate natural herbivory patterns. We find clear trade-offs between growth and defense: slower-growing C. allenii has tougher leaves and higher defensive chemical concentrations than faster-growing C. villosissimus. Costus villosissimus has rapid growth-based drought avoidance, enabling growth in drier habitats with few specialist herbivores. Therefore, growth-defense trade-offs mediate synergistic biotic and abiotic selection, causing the divergent habitat adaptation that prevents most interspecific mating between C. villosissimus and C. allenii. Our findings advance understanding of ecological speciation by highlighting the interplay of biotic and abiotic selection that dictates the outcome of trade-offs.
Collapse
Affiliation(s)
- Julia G. Harenčár
- Ecology and Evolutionary Biology DepartmentUniversity of CaliforniaSanta CruzCaliforniaUSA
| | | | - Carlos García‐Robledo
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticutUSA
| | - Kathleen M. Kay
- Ecology and Evolutionary Biology DepartmentUniversity of CaliforniaSanta CruzCaliforniaUSA
| |
Collapse
|
4
|
Liu M, Jiang P, Chase JM, Liu X. Global insect herbivory and its response to climate change. Curr Biol 2024; 34:2558-2569.e3. [PMID: 38776900 DOI: 10.1016/j.cub.2024.04.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/22/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
Herbivorous insects consume a large proportion of the energy flow in terrestrial ecosystems and play a major role in the dynamics of plant populations and communities. However, high-resolution, quantitative predictions of the global patterns of insect herbivory and their potential underlying drivers remain elusive. Here, we compiled and analyzed a dataset consisting of 9,682 records of the severity of insect herbivory from across natural communities worldwide to quantify its global patterns and environmental determinants. Global mapping revealed strong spatial variation in insect herbivory at the global scale, showing that insect herbivory did not significantly vary with latitude for herbaceous plants but increased with latitude for woody plants. We found that the cation-exchange capacity in soil was a main predictor of levels of herbivory on herbaceous plants, while climate largely determined herbivory on woody plants. We next used well-established scenarios for future climate change to forecast how spatial patterns of insect herbivory may be expected to change with climate change across the world. We project that herbivore pressure will intensify on herbaceous plants worldwide but would likely only increase in certain biomes (e.g., northern coniferous forests) for woody plants. Our assessment provides quantitative evidence of how environmental conditions shape the spatial pattern of insect herbivory, which enables a more accurate prediction of the vulnerabilities of plant communities and ecosystem functions in the Anthropocene.
Collapse
Affiliation(s)
- Mu Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, 730000 Lanzhou, P.R. China
| | - Peixi Jiang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, 730000 Lanzhou, P.R. China
| | - Jonathan M Chase
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig 04103, Germany; Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale) 06099, Germany
| | - Xiang Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, 730000 Lanzhou, P.R. China.
| |
Collapse
|
5
|
Alonso‐Crespo IM, Hernández‐Agüero JA. Shedding light on trophic interactions: A field experiment on the effect of human population between latitudes on herbivory and predation patterns. Ecol Evol 2023; 13:e10449. [PMID: 37664505 PMCID: PMC10468994 DOI: 10.1002/ece3.10449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/25/2023] [Accepted: 08/09/2023] [Indexed: 09/05/2023] Open
Abstract
Interactions between species within an ecosystem (e.g. predation and herbivory) play a vital role in sustaining the ecosystem functionality, which includes aspects like pest control and nutrient cycling. Unfortunately, human activities are progressively disrupting these trophic relationships, thereby contributing to the ongoing biodiversity decline. Additionally, certain human activities like urbanization may further impact the intensity of these trophic interactions, which are already known to be influenced by latitudinal gradients. The aim of this study was to test the hypothesis of whether the impact of human population, used as a proxy for human pressure, differs between latitudes. To test it, we selected 18 study sites at two latitudes (i.e. ~53°N and ~50°N) with varying human population density (HPD). We used artificial caterpillars placed on European beech branches to assess bird predation and took standardized pictures of the leaves to estimate insect herbivory. Remote sensing techniques were used to estimate human pressure. We found that the intensity of bird predation varied in response to HPD, with opposite trends observed depending on the latitude. At our upper latitude, bird predation increased with HPD, while the opposite was observed at the lower latitude. Herbivory was not affected by urbanization and we found higher levels of herbivory in the lower compared to the higher latitude. At the lower latitude, certain species may experience a disadvantage attributed to the urban heat island effect due to their sensitivity to temperature fluctuations. Conversely, at the higher latitude, where minimum temperatures can be a limitation, certain species may benefit from milder winters. Overall, this study highlights the complex and dynamic nature of trophic relationships in the face of human-driven changes to ecosystems. It also emphasizes the importance of considering both human pressure and latitudinal gradients when assessing the ecological consequences of future climate change scenarios, especially in urban environments.
Collapse
Affiliation(s)
| | - Juan Antonio Hernández‐Agüero
- Senckenberg Gesellschaft für NaturforschungFrankfurt (am Main)Germany
- Department of Environmental GeographyVrije Universiteit AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
6
|
Xirocostas ZA, Ollerton J, Tamme R, Peco B, Lesieur V, Slavich E, Junker RR, Pärtel M, Raghu S, Uesugi A, Bonser SP, Chiarenza GM, Hovenden MJ, Moles AT. The great escape: patterns of enemy release are not explained by time, space or climate. Proc Biol Sci 2023; 290:20231022. [PMID: 37583319 PMCID: PMC10427826 DOI: 10.1098/rspb.2023.1022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/21/2023] [Indexed: 08/17/2023] Open
Abstract
When a plant is introduced to a new ecosystem it may escape from some of its coevolved herbivores. Reduced herbivore damage, and the ability of introduced plants to allocate resources from defence to growth and reproduction can increase the success of introduced species. This mechanism is known as enemy release and is known to occur in some species and situations, but not in others. Understanding the conditions under which enemy release is most likely to occur is important, as this will help us to identify which species and habitats may be most at risk of invasion. We compared in situ measurements of herbivory on 16 plant species at 12 locations within their native European and introduced Australian ranges to quantify their level of enemy release and understand the relationship between enemy release and time, space and climate. Overall, plants experienced approximately seven times more herbivore damage in their native range than in their introduced range. We found no evidence that enemy release was related to time since introduction, introduced range size, temperature, precipitation, humidity or elevation. From here, we can explore whether traits, such as leaf defences or phylogenetic relatedness to neighbouring plants, are stronger indicators of enemy release across species.
Collapse
Affiliation(s)
- Zoe A. Xirocostas
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, New South Wales 2052, Australia
| | - Jeff Ollerton
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People's Republic of China
- Faculty of Arts, Science and Technology, University of Northampton, Northampton, UK
| | - Riin Tamme
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, 50409 Tartu, Estonia
| | - Begoña Peco
- Terrestrial Ecology Group (TEG), Department of Ecology, Institute for Biodiversity and Global Change, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Vincent Lesieur
- CSIRO European Laboratory, 830 Avenue du Campus Agropolis, 34980 Montferrier sur Lez, France
| | - Eve Slavich
- Stats Central, Mark Wainwright Analytical Centre, UNSW Sydney, New South Wales 2052, Australia
| | - Robert R. Junker
- Evolutionary Ecology of Plants, Department of Biology, University of Marburg, 35043 Marburg, Germany
- Department of Environment and Biodiversity, University of Salzburg, 5020 Salzburg, Austria
| | - Meelis Pärtel
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, 50409 Tartu, Estonia
| | - S. Raghu
- CSIRO Health & Biosecurity, Brisbane, Queensland, Australia
| | - Akane Uesugi
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
- Biosciences and Food Technology Division, School of Science, RMIT University, Bundoora, Victoria 3083, Australia
| | - Stephen P. Bonser
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, New South Wales 2052, Australia
| | - Giancarlo M. Chiarenza
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, New South Wales 2052, Australia
| | - Mark J. Hovenden
- Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Angela T. Moles
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, New South Wales 2052, Australia
| |
Collapse
|
7
|
Jones DG, Kobelt J, Ross JM, Powell THQ, Prior KM. Latitudinal gradient in species diversity provides high niche opportunities for a range-expanding phytophagous insect. J Anim Ecol 2022; 91:2037-2049. [PMID: 35945806 DOI: 10.1111/1365-2656.13780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/06/2022] [Indexed: 11/29/2022]
Abstract
When species undergo poleward range expansions in response to anthropogenic change, they likely encounter less diverse communities in new locations. If low diversity communities provide weak biotic interactions, such as reduced competition or predation, range-expanding species may experience high niche opportunities. Here, we investigated if oak gall wasp communities follow a latitudinal diversity gradient (LDG) and if lower diversity communities provide weaker interactions at the poles for a range-expanding community member, Neuroterus saltatorius. We performed systematic surveys of gall wasps on a dominant oak, Quercus garryana, throughout most of its range, from northern California to Vancouver Island, British Columbia. On 540 trees at 18 sites, we identified 23 oak gall wasp morphotypes in three guilds (leaf detachable, leaf integral, and stem galls). We performed regressions between oak gall wasp diversity, latitude, and other abiotic (e.g. temperature) and habitat (e.g. oak patch size) factors to reveal if gall wasp communities followed an LDG. To uncover patterns in local interactions, we first performed partial correlations of gall wasp morphotype occurrences on trees within regions). We then performed regressions between abundances of co-occurring gall wasps on trees to reveal if interactions are putatively competitive or antagonistic. Q. garryana-gall wasp communities followed an LDG, with lower diversity at higher latitudes, particularly with a loss of detachable leaf gall morphotypes. Detachable leaf gall wasps, including the range-expanding species, co-occurred most on trees, with weak co-occurrences on trees in the northern expanded region. Abundances of N. saltatorius and detachable and integral leaf galls co-occurring on trees were negatively related, suggesting antagonistic interactions. Overall, we found that LDGs create communities with weaker associations at the poles that might facilitate ecological release in a range-expanding community member. Given the ubiquity of LDGs in nature, poleward range-expanding species are likely moving into low diversity communities. Yet, understanding if latitudinal diversity pattern provides weak biotic interactions for range-expanding species is not well explored. Our large-scale study documenting diversity in a related community of phytophagous insects that co-occur on a host plant reveals that LDGs create high niche opportunities for a range-expanding community member. Biogeographical patterns in diversity and species interactions are likely important mechanisms contributing to altered biotic interactions under range-expansions.
Collapse
Affiliation(s)
- Dylan G Jones
- Department of Biological Sciences, Binghamton University SUNY, Binghamton, NY, USA
| | - Julia Kobelt
- Department of Biological Sciences, Binghamton University SUNY, Binghamton, NY, USA
| | - Jenna M Ross
- Department of Biological Sciences, Binghamton University SUNY, Binghamton, NY, USA
| | - Thomas H Q Powell
- Department of Biological Sciences, Binghamton University SUNY, Binghamton, NY, USA
| | - Kirsten M Prior
- Department of Biological Sciences, Binghamton University SUNY, Binghamton, NY, USA
| |
Collapse
|
8
|
Xirocostas ZA, Debono SA, Slavich E, Moles AT. The ZAX Herbivory Trainer—Free software for training researchers to visually estimate leaf damage. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Zoe A. Xirocostas
- Evolution & Ecology Research Centre School of Biological, Earth and Environmental Sciences UNSW Sydney Sydney NSW Australia
| | | | - Eve Slavich
- Evolution & Ecology Research Centre School of Biological, Earth and Environmental Sciences UNSW Sydney Sydney NSW Australia
- Stats Central Mark Wainwright Analytical Centre School of Mathematics and Statistics UNSW Sydney Sydney NSW Australia
| | - Angela T. Moles
- Evolution & Ecology Research Centre School of Biological, Earth and Environmental Sciences UNSW Sydney Sydney NSW Australia
| |
Collapse
|
9
|
López-Goldar X, Agrawal AA. Ecological Interactions, Environmental Gradients, and Gene Flow in Local Adaptation. TRENDS IN PLANT SCIENCE 2021; 26:796-809. [PMID: 33865704 DOI: 10.1016/j.tplants.2021.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/02/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Despite long-standing interest in local adaptation of plants to their biotic and abiotic environment, existing theory, and many case studies, little work to date has addressed within-species evolution of concerted strategies and how these might contrast with patterns across species. Here we consider the interactions between pollinators, herbivores, and resource availability in shaping plant local adaptation, how these interactions impact plant phenotypes and gene flow, and the conditions where multiple traits align along major environmental gradients such as latitude and elevation. Continued work in emerging model systems will benefit from the melding of classic experimental approaches with novel population genetic analyses to reveal patterns and processes in plant local adaptation.
Collapse
Affiliation(s)
- Xosé López-Goldar
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA.
| | - Anurag A Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
10
|
Primacy of plants in driving the response of arthropod communities to drought. Oecologia 2021; 195:833-842. [PMID: 33449208 DOI: 10.1007/s00442-020-04844-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 12/23/2020] [Indexed: 10/22/2022]
Abstract
Drought threatens arthropod communities worldwide. Water limitation affects the quantity and quality of plants available to herbivores as food, and can also affect higher trophic-level consumers through variability in prey quality and reduced availability of suitable habitats. Our study assessed the response of an arthropod community to water limited wheat (Triticum aestivum L.) in a field setting. We used rainout shelters to exclude precipitation, irrigated raised bed plots to create three levels of water availability, and monitored arthropod community development over 8 weeks. First, we compared arthropod communities in habitats with different levels of water limitation and found that community composition was reliant on the magnitude of the water stress. This difference was largely due to the loss of piercing-sucking herbivores and predators in high-stress environments. Next, we focused on aphids and their natural enemies to investigate the underlying mechanisms driving community responses using structural equation modeling (SEM). Aphid abundance was negatively affected by water limitation, and this response was primarily associated with stress-induced plant physiological changes and not plant biomass or natural enemy abundance. Natural enemy abundance was also reduced in water-limited habitats, but natural enemies responded to plant biomass and not prey availability. These effects were exacerbated as water stress increased. The absence of natural enemy effects on aphids indicates that top-down predation effects were dampened by strong bottom-up effects of plant water limitation. This study revealed the importance of considering water stress intensity when predicting outcomes of droughts for arthropod communities.
Collapse
|
11
|
Xiao L, Ding J, Zhang J, Huang W, Siemann E. Chemical responses of an invasive plant to herbivory and abiotic environments reveal a novel invasion mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140452. [PMID: 32886966 DOI: 10.1016/j.scitotenv.2020.140452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/16/2020] [Accepted: 06/21/2020] [Indexed: 06/11/2023]
Abstract
Invasive plant environments differ along latitudes and between native and introduced ranges. In response to herbivory and abiotic stresses that vary with latitudes and between ranges, invasive plants may shift their secondary chemicals to facilitate invasion success. However, it remains unclear whether and how invasive plant chemical responses to herbivory and chemical responses to abiotic environments are associated. We conducted large scale field surveys of herbivory on the invasive tallow tree (Triadica sebifera) along latitudes in both its native (China) and introduced ranges (United States) and collected leaf samples for analyses of tannins and flavonoids. We used data on climate and solar radiation to examine these chemical responses to abiotic environments and their variations along these latitudes and between ranges. We also re-analyzed previously published data from multiple common garden experiments on tallow tree to investigate genetic divergence of secondary chemical concentrations between introduced and native populations. We found foliar tannins and herbivory (chewing, sucking) were higher in the native range compared to the invasive range. Allocation to tannins versus flavonoids decreased with latitude in the native range but did not vary in the invasive range. Analyses of previously published common garden experimental data indicated genetic divergence contributes to chemical concentration differences between ranges. Our field data further indicated that the latitudinal patterns were primarily phenotypic responses to herbivory in China while in US they were primarily phenotypic responses to abiotic environments. The variation of tannins may be linked to flavonoids, given tannins and flavonoids share a biosynthesis pathway. Together, our results suggest that invasive plants adjust their secondary metabolism to decrease chemicals that primarily defend against herbivory and increase those that help them to respond to their abiotic environment. These findings deepen our understanding of how invasive plants adapt to biogeographically heterogeneous environments through trade-offs between secondary chemical responses.
Collapse
Affiliation(s)
- Li Xiao
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in Southern China, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jianqing Ding
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China.
| | - Jialiang Zhang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Huang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Evan Siemann
- Biosciences Department, Rice University, Houston, TX, USA
| |
Collapse
|
12
|
Zvereva EL, Zverev V, Kozlov MV. Predation and parasitism on herbivorous insects change in opposite directions in a latitudinal gradient crossing a boreal forest zone. J Anim Ecol 2020; 89:2946-2957. [DOI: 10.1111/1365-2656.13350] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/08/2020] [Indexed: 12/29/2022]
Affiliation(s)
| | - Vitali Zverev
- Department of Biology University of Turku Turku Finland
| | | |
Collapse
|
13
|
Kent DR, Lynn JS, Pennings SC, Souza LA, Smith MD, Rudgers JA. Weak latitudinal gradients in insect herbivory for dominant rangeland grasses of North America. Ecol Evol 2020; 10:6385-6394. [PMID: 32724520 PMCID: PMC7381578 DOI: 10.1002/ece3.6374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 12/05/2022] Open
Abstract
Patterns of insect herbivory may follow predictable geographical gradients, with greater herbivory at low latitudes. However, biogeographic studies of insect herbivory often do not account for multiple abiotic factors (e.g., precipitation and soil nutrients) that could underlie gradients. We tested for latitudinal clines in insect herbivory as well as climatic, edaphic, and trait-based drivers of herbivory. We quantified herbivory on five dominant grass species over 23 sites across the Great Plains, USA. We examined the importance of climate, edaphic factors, and traits as correlates of herbivory. Herbivory increased at low latitudes when all grass species were analyzed together and for two grass species individually, while two other grasses trended in this direction. Higher precipitation was related to more herbivory for two species but less herbivory for a different species, while higher specific root length was related to more herbivory for one species and less herbivory for a different species. Taken together, results highlight that climate and trait-based correlates of herbivory can be highly contextual and species-specific. Patterns of insect herbivory on dominant grasses support the hypothesis that herbivory increases toward lower latitudes, though weakly, and indicates that climate change may have species-specific effects on plant-herbivore interactions.
Collapse
Affiliation(s)
- Dylan R. Kent
- Department of BiologyUniversity of New MexicoAlbuquerqueNMUSA
| | - Joshua S. Lynn
- Department of BiologyUniversity of New MexicoAlbuquerqueNMUSA
- Present address:
Department of BiologyUniversity of BergenBergenNorway
| | | | - Lara A. Souza
- Oklahoma Biological Survey & Department of Microbiology and Plant BiologyUniversity of OklahomaNormanOKUSA
| | | | | |
Collapse
|
14
|
López‐Goldar X, Zas R, Sampedro L. Resource availability drives microevolutionary patterns of plant defences. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13610] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xosé López‐Goldar
- Department of Ecology and Evolutionary Biology Cornell University Ithaca NY USA
- Misión Biológica de Galicia Consejo Superior de Investigaciones Científicas Pontevedra Spain
| | - Rafael Zas
- Misión Biológica de Galicia Consejo Superior de Investigaciones Científicas Pontevedra Spain
| | - Luis Sampedro
- Misión Biológica de Galicia Consejo Superior de Investigaciones Científicas Pontevedra Spain
| |
Collapse
|
15
|
Moreira X, Abdala-Roberts L, Bruun HH, Covelo F, De Frenne P, Galmán A, Gaytán Á, Jaatinen R, Pulkkinen P, Ten Hoopen JPJG, Timmermans BGH, Tack AJM, Castagneyrol B. Latitudinal variation in seed predation correlates with latitudinal variation in seed defensive and nutritional traits in a widespread oak species. ANNALS OF BOTANY 2020; 125:881-890. [PMID: 31858135 PMCID: PMC7218813 DOI: 10.1093/aob/mcz207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND AIMS Classic theory on geographical gradients in plant-herbivore interactions assumes that herbivore pressure and plant defences increase towards warmer and more stable climates found at lower latitudes. However, the generality of these expectations has been recently called into question by conflicting empirical evidence. One possible explanation for this ambiguity is that most studies have reported on patterns of either herbivory or plant defences whereas few have measured both, thus preventing a full understanding of the implications of observed patterns for plant-herbivore interactions. In addition, studies have typically not measured climatic factors affecting plant-herbivore interactions, despite their expected influence on plant and herbivore traits. METHODS Here we tested for latitudinal variation in insect seed predation and seed traits putatively associated with insect attack across 36 Quercus robur populations distributed along a 20° latitudinal gradient. We then further investigated the associations between climatic factors, seed traits and seed predation to test for climate-based mechanisms of latitudinal variation in seed predation. KEY RESULTS We found strong but contrasting latitudinal clines in seed predation and seed traits, whereby seed predation increased whereas seed phenolics and phosphorus decreased towards lower latitudes. We also found a strong direct association between temperature and seed predation, with the latter increasing towards warmer climates. In addition, temperature was negatively associated with seed traits, with populations at warmer sites having lower levels of total phenolics and phosphorus. In turn, these negative associations between temperature and seed traits led to a positive indirect association between temperature and seed predation. CONCLUSIONS These results help unravel how plant-herbivore interactions play out along latitudinal gradients and expose the role of climate in driving these outcomes through its dual effects on plant defences and herbivores. Accordingly, this emphasizes the need to account for abiotic variation while testing concurrently for latitudinal variation in plant traits and herbivore pressure.
Collapse
Affiliation(s)
- Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), Pontevedra, Galicia, Spain
| | - Luis Abdala-Roberts
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Itzimná, Mérida, Yucatán, Mexico
| | - Hans Henrik Bruun
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Felisa Covelo
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Sevilla, Spain
| | | | - Andrea Galmán
- Misión Biológica de Galicia (MBG-CSIC), Pontevedra, Galicia, Spain
| | - Álvaro Gaytán
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Raimo Jaatinen
- Natural Resources Institute Finland, Haapastensyrjä Breeding Station, Läyliäinen, Finland
| | - Pertti Pulkkinen
- Natural Resources Institute Finland, Haapastensyrjä Breeding Station, Läyliäinen, Finland
| | | | - Bart G H Timmermans
- Department of Agriculture, Louis Bolk Institute, LA Driebergen, the Netherlands
| | - Ayco J M Tack
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | | |
Collapse
|
16
|
Baskett CA, Schroeder L, Weber MG, Schemske DW. Multiple metrics of latitudinal patterns in insect pollination and herbivory for a tropical‐temperate congener pair. ECOL MONOGR 2020. [DOI: 10.1002/ecm.1397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Carina A. Baskett
- Department of Plant Biology Ecology, Evolutionary Biology, and Behavior Program Michigan State University East Lansing Michigan 48824 USA
| | - Lucy Schroeder
- Department of Plant Biology Michigan State University East Lansing Michigan 48824 USA
| | - Marjorie G. Weber
- Department of Plant Biology Ecology, Evolutionary Biology, and Behavior Program Michigan State University East Lansing Michigan 48824 USA
| | - Douglas W. Schemske
- Department of Plant Biology Ecology, Evolutionary Biology, and Behavior Program Michigan State University East Lansing Michigan 48824 USA
- W.K. Kellogg Biological Station Michigan State University Hickory Corners Michigan 49060 USA
| |
Collapse
|
17
|
Zvereva EL, Castagneyrol B, Cornelissen T, Forsman A, Hernández‐Agüero JA, Klemola T, Paolucci L, Polo V, Salinas N, Theron KJ, Xu G, Zverev V, Kozlov MV. Opposite latitudinal patterns for bird and arthropod predation revealed in experiments with differently colored artificial prey. Ecol Evol 2019; 9:14273-14285. [PMID: 31938518 PMCID: PMC6953658 DOI: 10.1002/ece3.5862] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/18/2019] [Accepted: 11/03/2019] [Indexed: 11/20/2022] Open
Abstract
The strength of biotic interactions is generally thought to increase toward the equator, but support for this hypothesis is contradictory. We explored whether predator attacks on artificial prey of eight different colors vary among climates and whether this variation affects the detection of latitudinal patterns in predation. Bird attack rates negatively correlated with model luminance in cold and temperate environments, but not in tropical environments. Bird predation on black and on white (extremes in luminance) models demonstrated different latitudinal patterns, presumably due to differences in prey conspicuousness between habitats with different light regimes. When attacks on models of all colors were combined, arthropod predation decreased, whereas bird predation increased with increasing latitude. We conclude that selection for prey coloration may vary geographically and according to predator identity, and that the importance of different predators may show contrasting patterns, thus weakening the overall latitudinal trend in top-down control of herbivorous insects.
Collapse
Affiliation(s)
| | | | - Tatiana Cornelissen
- Departamento de Genética, Ecologia e EvoluçãoUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Anders Forsman
- Department of Biology and Environmental ScienceLinnaeus UniversityKalmarSweden
| | | | - Tero Klemola
- Department of BiologyUniversity of TurkuTurkuFinland
| | - Lucas Paolucci
- Setor de Ecologia e ConservaçãoDepartamento de BiologiaUniversidade Federal de LavrasLavrasBrazil
- Instituto de Pesquisa Ambiental da AmazôniaBrasíliaBrazil
- Departamento de Biologia GeralUniversidade Federal de Viçosa, Campus UniversitárioViçosaBrazil
| | - Vicente Polo
- Department of Biology and Geology, Physics and Inorganic ChemistryUniversity Rey Juan CarlosMóstolesSpain
| | - Norma Salinas
- Instituto de Ciencias de la Naturaleza, Territorio y Energías RenovablesPontificia Universidad Católica del PerúLimaPeru
| | - Kasselman Jurie Theron
- Department of Conservation Ecology and EntomologyStellenbosch UniversityMatielandSouth Africa
| | - Guorui Xu
- CAS Key Laboratory of Tropical Forest EcologyXishuangbanna Tropical Botanical GardenChinese Academy of SciencesMenglunChina
| | - Vitali Zverev
- Department of BiologyUniversity of TurkuTurkuFinland
| | | |
Collapse
|
18
|
Abdala-Roberts L, Quijano-Medina T, Moreira X, Vázquez-González C, Parra-Tabla V, Berny Mier Y Terán JC, Grandi L, Glauser G, Turlings TCJ, Benrey B. Bottom-up control of geographic variation in insect herbivory on wild cotton (Gossypium hirsutum) by plant defenses and climate. AMERICAN JOURNAL OF BOTANY 2019; 106:1059-1067. [PMID: 31322738 DOI: 10.1002/ajb2.1330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 05/28/2019] [Indexed: 06/10/2023]
Abstract
PREMISE The occurrence and amount of herbivory are shaped by bottom-up forces, primarily plant traits (e.g., defenses), and by abiotic factors. Addressing these concurrent effects in a spatial context has been useful in efforts to understand the mechanisms governing variation in plant-herbivore interactions. Still, few studies have evaluated the simultaneous influence of multiple sources of bottom-up variation on spatial variation in herbivory. METHODS We tested to what extent chemical (phenolics, production of terpenoid glands) and physical (pubescence) defensive plant traits and climatic factors are associated with variation in herbivory by leaf-chewing insects across populations of wild cotton (Gossypium hirsutum). RESULTS We found substantial population variation in cotton leaf defenses and insect leaf herbivory. Leaf pubescence, but not gossypol gland density or phenolic content, was significantly negatively associated with herbivory by leaf-chewing insects. In addition, there were direct effects of climate on defenses and herbivory, with leaf pubescence increasing toward drier conditions and leaf damage increasing toward wetter and cooler conditions. There was no evidence, however, of indirect effects (via plant defenses) of climate on herbivory. CONCLUSIONS These results suggest that spatial variation in insect herbivory on wild G. hirsutum is predominantly driven by concurrent and independent influences of population variation in leaf pubescence and climatic factors.
Collapse
Affiliation(s)
- Luis Abdala-Roberts
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apartado Postal 4-116, Itzimná, 97000, Mérida, Yucatán, Mexico
| | - Teresa Quijano-Medina
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apartado Postal 4-116, Itzimná, 97000, Mérida, Yucatán, Mexico
| | - Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), Apdo. 28, 36080, Pontevedra, Spain
| | | | - Víctor Parra-Tabla
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apartado Postal 4-116, Itzimná, 97000, Mérida, Yucatán, Mexico
| | | | - Luca Grandi
- Fundamental and Applied Research in Chemical Ecology (FARCE Lab), Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Rue Emile Argand 11, 2000, Neuchâtel, Switzerland
| | - Ted C J Turlings
- Fundamental and Applied Research in Chemical Ecology (FARCE Lab), Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| | - Betty Benrey
- Laboratory of Evolutionary Entomology, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| |
Collapse
|
19
|
Gao J, Fang C, Zhao B. The latitudinal herbivory hypothesis revisited: To be part is to be whole. Ecol Evol 2019; 9:3681-3688. [PMID: 31015958 PMCID: PMC6467846 DOI: 10.1002/ece3.2759] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 12/24/2016] [Accepted: 12/29/2016] [Indexed: 11/17/2022] Open
Abstract
As the big data accumulation in ecology picks up pace, we now have the opportunity to test several macroecological hypotheses, such as the latitudinal herbivory hypothesis (LHH) dated from the 1990s. The LHH proposes that plant-herbivore interactions decrease as latitude increases, that is, from lower latitudinal areas (i.e., the equator) to higher latitudinal areas (i.e., the poles). This hypothesis has been challenged in recent years. In this study, we used the greatest volume dataset of leaf herbivory from the study of Zhang et al. (Journal of Ecology, 104, 2016, 1089) to test the LHH at a global scale, based on a quantile regression model. We found that the mean annual temperature, mean annual precipitation, and potential net primary production were heterogeneously correlated with herbivory at different quantiles or variable intervals. Although the Northern Hemisphere (NH) and the global-scale trends are in accordance with the expected latitudinal variation, the Southern Hemisphere (SH) was found to exhibit inverse trends. The latitude has a negative effect on plant-herbivore interactions in the NH and on a global scale; leaf herbivory decreased more at a given latitude in higher latitudinal areas, which is attributed to harsher survival conditions in these areas. The uniformity of leaf herbivory variability along the climate and latitude gradient in the NH and on a global scale motivates that the loosening of this herbivory variability in the SH is not significant enough to dismiss the prevalence of the LHH, a testable macroecology hypothesis.
Collapse
Affiliation(s)
- Jianguo Gao
- Coastal Ecosystems Research Station of the Yangtze River EstuaryMinistry of Education Key Laboratory for Biodiversity Science and Ecological EngineeringInstitute of Biodiversity ScienceFudan UniversityShanghaiChina
| | - Changming Fang
- Coastal Ecosystems Research Station of the Yangtze River EstuaryMinistry of Education Key Laboratory for Biodiversity Science and Ecological EngineeringInstitute of Biodiversity ScienceFudan UniversityShanghaiChina
| | - Bin Zhao
- Coastal Ecosystems Research Station of the Yangtze River EstuaryMinistry of Education Key Laboratory for Biodiversity Science and Ecological EngineeringInstitute of Biodiversity ScienceFudan UniversityShanghaiChina
| |
Collapse
|
20
|
Galmán A, Petry WK, Abdala-Roberts L, Butrón A, de la Fuente M, Francisco M, Kergunteuil A, Rasmann S, Moreira X. Inducibility of chemical defences in young oak trees is stronger in species with high elevational ranges. TREE PHYSIOLOGY 2019; 39:606-614. [PMID: 30597091 DOI: 10.1093/treephys/tpy139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/20/2018] [Accepted: 12/01/2018] [Indexed: 06/09/2023]
Abstract
Elevational gradients have been highly useful for understanding the underlying forces driving variation in plant traits and plant-insect herbivore interactions. A widely held view from these studies has been that greater herbivory under warmer and less variable climatic conditions found at low elevations has resulted in stronger herbivore selection on plant defences. However, this prediction has been called into question by conflicting empirical evidence, which could be explained by a number of causes such as an incomplete assessment of defensive strategies (ignoring other axes of defence such as defence inducibility) or unaccounted variation in abiotic factors along elevational clines. We conducted a greenhouse experiment testing for inter-specific variation in constitutive leaf chemical defences (phenolic compounds) and their inducibility in response to feeding by gypsy moth larvae (Lymantria dispar L., Lepidoptera) using saplings of 18 oak (Quercus, Fagaceae) species. These species vary in their elevational distribution and together span >2400 m in elevation, therefore allowing us to test for among-species elevational clines in defences based on the elevational range of each species. In addition, we further tested for elevational gradients in the correlated expression of constitutive defences and their inducibility and for associations between defences and climatic factors potentially underlying elevational gradients in defences. Our results showed that oak species with high elevational ranges exhibited a greater inducibility of phenolic compounds (hydrolysable tannins), but this gradient was not accounted for by climatic predictors. In contrast, constitutive defences and the correlated expression of constitutive phenolics and their inducibility did not exhibit elevational clines. Overall, this study builds towards a more robust and integrative understanding of how multivariate plant defensive phenotypes vary along ecological gradients and their underlying abiotic drivers.
Collapse
Affiliation(s)
- Andrea Galmán
- Misión Biológica de Galicia (MBG-CSIC), Apartado de correos 28, Pontevedra, Galicia, Spain
| | - William K Petry
- Institute of Integrative Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Universitätstrasse 16, Zurich, Switzerland
| | - Luis Abdala-Roberts
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apartado Postal 4-116, Itzimná, Mérida, Yucatán, México
| | - Ana Butrón
- Misión Biológica de Galicia (MBG-CSIC), Apartado de correos 28, Pontevedra, Galicia, Spain
| | - María de la Fuente
- Misión Biológica de Galicia (MBG-CSIC), Apartado de correos 28, Pontevedra, Galicia, Spain
| | - Marta Francisco
- Misión Biológica de Galicia (MBG-CSIC), Apartado de correos 28, Pontevedra, Galicia, Spain
| | - Alan Kergunteuil
- Institute of Biology, Laboratory of Functional Ecology, University of Neuchâtel, Rue Emile-Argand 11, Neuchâtel, Switzerland
| | - Sergio Rasmann
- Institute of Biology, Laboratory of Functional Ecology, University of Neuchâtel, Rue Emile-Argand 11, Neuchâtel, Switzerland
| | - Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), Apartado de correos 28, Pontevedra, Galicia, Spain
| |
Collapse
|
21
|
Just MG, Dale AG, Long LC, Frank SD. Urbanization drives unique latitudinal patterns of insect herbivory and tree condition. OIKOS 2019. [DOI: 10.1111/oik.05874] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael G. Just
- Dept of Entomology and Plant Pathology, North Carolina State University Raleigh NC 27695 USA
| | - Adam G. Dale
- Entomology and Nematology Dept, Univ. of Florida Gainesville FL USA
| | - Lawrence C. Long
- Dept of Entomology and Plant Pathology, North Carolina State University Raleigh NC 27695 USA
| | - Steven D. Frank
- Dept of Entomology and Plant Pathology, North Carolina State University Raleigh NC 27695 USA
| |
Collapse
|
22
|
Monroy P, García-Verdugo C. Testing the hypothesis of loss of defenses on islands across a wide latitudinal gradient of Periploca laevigata populations. AMERICAN JOURNAL OF BOTANY 2019; 106:303-312. [PMID: 30742704 DOI: 10.1002/ajb2.1232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
PREMISE OF THE STUDY We tested a hypothesis that predicts loss of chemical defenses on island plant populations (LCDIH) as an evolutionary response to limited herbivore pressures. METHODS Using a common garden approach, we grew 16 populations (N = 286 seedlings) of Periploca laevigata, a Mediterranean shrub for which previous studies suggested that animal browsing elicits defensive responses mediated by tannins. Our experimental setting represented a wide latitudinal gradient (37-15°N) encompassing three island systems, virtually free of large herbivores, and three mainland areas. Putative chemical defenses were estimated from tannin-protein precipitation assays, and inducible responses in growth and chemical traits were assessed between seasons and by subjecting plants to a pruning treatment. KEY RESULTS We failed to find support for the LCDIH, since island populations (Canary Islands, Cape Verde) had increasingly higher constitutive levels of tannins at lower latitudes. Seasonality, but not experimental pruning, induced variation in levels of tannins in a consistent pattern across populations. Thus, net differences in leaf tannin concentration remained similar among geographical areas regardless of the factor considered, with latitude being the best explanatory factor for this trait over seasonal growth patterns. CONCLUSIONS Geographical variation in total tannin pools appears to be mediated by factors other than herbivore pressure in P. laevigata. We hypothesize that abiotic correlates of latitude not considered in our study have promoted high constitutive levels of leaf tannins across Macaronesian populations, which ultimately may explain the pattern of seasonal variation and latitudinal increase from Mediterranean to subtropical Cape Verde populations.
Collapse
Affiliation(s)
- Pedro Monroy
- Departamento de Biodiversidad Molecular y Banco de ADN, Jardín Botánico Canario 'Viera y Clavijo' - Unidad Asociada CSIC, Cabildo de Gran Canaria, Camino del Palmeral 15 de Tafira Alta, 35017, Las Palmas de Gran Canaria, Spain
| | - Carlos García-Verdugo
- Departamento de Biodiversidad Molecular y Banco de ADN, Jardín Botánico Canario 'Viera y Clavijo' - Unidad Asociada CSIC, Cabildo de Gran Canaria, Camino del Palmeral 15 de Tafira Alta, 35017, Las Palmas de Gran Canaria, Spain
- Institut Mediterrani d'Estudis Avançats (CSIC-UIB), C/Miquel Marqués 21, 07190, Esporles, Balearic Islands, Spain
| |
Collapse
|
23
|
Vázquez-González C, López-Goldar X, Zas R, Sampedro L. Neutral and Climate-Driven Adaptive Processes Contribute to Explain Population Variation in Resin Duct Traits in a Mediterranean Pine Species. FRONTIERS IN PLANT SCIENCE 2019; 10:1613. [PMID: 31921257 PMCID: PMC6923275 DOI: 10.3389/fpls.2019.01613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 11/15/2019] [Indexed: 05/20/2023]
Abstract
Resin ducts are important anatomical defensive traits related to biotic resistance in conifers. Previous studies have reported intraspecific genetic variation in resin duct characteristics. However, little is currently known about the micro-evolutionary patterns and adaptive value of these defensive structures. Here, we quantified inter-population genetic variation in resin duct features and their inducibility in Pinus pinaster and assessed whether such variation was associated with climate gradients. To that end, we characterized the resin duct system of 2-year-old saplings from 10 populations across the species' distribution range. We measured axial resin duct features (density, mean size, and percentage conductive area of resin ducts) and their inducibility in response to methyl jasmonate. Genotyping of single nucleotide polymorphisms allowed to account for the population genetic structure in our models in order to avoid spurious correlations between resin duct characteristics and climate. We found large inter-population variation in resin duct density and conductive area, but not in their inducibility. Our results suggest that population variation in the percentage conductive area of resin ducts likely arise from adaptation to local climate conditions. This study highlights the adaptive relevance of resin ducts and helps to shed light on the micro-evolutionary patterns of resin-based defenses in conifers.
Collapse
|
24
|
Wu J, Zhang J, Pan H, Ma H. Temporal variation in bottom-up and top-down effects differ among herbivores with different seasonality. Basic Appl Ecol 2018. [DOI: 10.1016/j.baae.2018.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Anstett DN, Ahern JR, Johnson MTJ, Salminen JP. Testing for latitudinal gradients in defense at the macroevolutionary scale. Evolution 2018; 72:2129-2143. [PMID: 30101976 DOI: 10.1111/evo.13579] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 08/02/2018] [Indexed: 01/29/2023]
Abstract
Plant defenses against herbivores are predicted to evolve to be greater in warmer climates, such as lower latitudes where herbivore pressure is also thought to be higher. Instead, recent findings are often inconsistent with this expectation, suggesting alternative hypotheses are needed. We tested for latitudinal gradients in plant defense evolution at the macroevolutionary scale by characterizing plant chemical defenses across 80 species of the evening primroses, spanning both North and South America. We quantified phenolics in leaves, flowers, and fruits, using advanced analytical chemistry techniques. Dominant individual ellagitannin compounds, total concentrations of ellagitannins, flavonoids, total phenolics, and compound diversity were quantified. Variation in these compounds was predicted with latitude, temperature, precipitation, and continent using phylogenetic generalized least squares (PGLS) multiple regression models. Latitude did not strongly explain variation in chemical defenses. Instead, fruit total ellagitannins, oenothein A, and total phenolics were greater in species inhabiting regions with colder climates. Using analytical chemistry and 80 species in two continents, we show that contrary to classic predictions, concentrations of secondary metabolites are not greater at lower latitudes or in warmer regions. We propose higher herbivore pressure in colder climates and gradients in resource availability as potential drivers of the observed patterns in Oenothera.
Collapse
Affiliation(s)
- Daniel N Anstett
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada.,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada.,Current Address: Biodiversity Research Centre and Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Jeffrey R Ahern
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Marc T J Johnson
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada.,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Juha-Pekka Salminen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
26
|
Baskett CA, Schemske DW. Latitudinal patterns of herbivore pressure in a temperate herb support the biotic interactions hypothesis. Ecol Lett 2018; 21:578-587. [DOI: 10.1111/ele.12925] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/19/2017] [Accepted: 12/08/2017] [Indexed: 01/10/2023]
Affiliation(s)
- Carina A. Baskett
- Department of Plant Biology and Ecology Evolutionary Biology, and Behavior Program Michigan State University East Lansing MI48824 USA
| | - Douglas W. Schemske
- Department of Plant Biology and Ecology Evolutionary Biology, and Behavior Program Michigan State University East Lansing MI48824 USA
| |
Collapse
|
27
|
Abdala-Roberts L, Covelo F, Parra-Tabla V, Terán JCBMY, Mooney KA, Moreira X. Intra-Specific Latitudinal Clines in Leaf Carbon, Nitrogen, and Phosphorus and their Underlying Abiotic Correlates in Ruellia Nudiflora. Sci Rep 2018; 8:596. [PMID: 29330375 PMCID: PMC5766631 DOI: 10.1038/s41598-017-18875-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/18/2017] [Indexed: 11/10/2022] Open
Abstract
While plant intra-specific variation in the stoichiometry of nutrients and carbon is well documented, clines for such traits have been less studied, despite their potential to reveal the mechanisms underlying such variation. Here we analyze latitudinal variation in the concentration of leaf nitrogen (N), phosphorus (P), carbon (C) and their ratios across 30 populations of the perennial herb Ruellia nudiflora. In addition, we further determined whether climatic and soil variables underlie any such latitudinal clines in leaf traits. The sampled transect spanned 5° latitude (ca. 900 km) and exhibited a four-fold precipitation gradient and 2 °C variation in mean annual temperature. We found that leaf P concentration increased with precipitation towards lower latitudes, whereas N and C did not exhibit latitudinal clines. In addition, N:P and C:P decreased towards lower latitudes and latitudinal variation in the former was weakly associated with soil conditions (clay content and cation exchange capacity); C:N did not exhibit a latitudinal gradient. Overall, these results emphasize the importance of addressing and disentangling the simultaneous effects of abiotic factors associated with intra-specific clines in plant stoichiometric traits, and highlight the previously underappreciated influence of abiotic factors on plant nutrients operating under sharp abiotic gradients over smaller spatial scales.
Collapse
Affiliation(s)
- Luis Abdala-Roberts
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apartado Postal 4-116, Itzimná, 97000 Mérida, Yucatán, Mexico.
| | - Felisa Covelo
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Carretera de Utrera km. 1, 41013, Sevilla, Spain
| | - Víctor Parra-Tabla
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apartado Postal 4-116, Itzimná, 97000 Mérida, Yucatán, Mexico
| | - Jorge C Berny Mier Y Terán
- Department of Plant Sciences, University of California-Davis, One Shields Avenue, Davis, California, 95616, USA
| | - Kailen A Mooney
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, 92697, USA
| | - Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), Apdo. 28, 36080, Pontevedra, Spain.
| |
Collapse
|
28
|
Zhang H, Bonser SP, Chen SC, Hitchcock T, Moles AT. Is the proportion of clonal species higher at higher latitudes in Australia? AUSTRAL ECOL 2017. [DOI: 10.1111/aec.12536] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hongxiang Zhang
- Evolution & Ecology Research Centre; School of Biological, Earth and Environmental Sciences; UNSW Sydney; NSW 2052 Australia
- Northeast Institute of Geography and Agroecology; CAS; Changchun China
| | - Stephen P. Bonser
- Evolution & Ecology Research Centre; School of Biological, Earth and Environmental Sciences; UNSW Sydney; NSW 2052 Australia
| | - Si-Chong Chen
- Evolution & Ecology Research Centre; School of Biological, Earth and Environmental Sciences; UNSW Sydney; NSW 2052 Australia
| | - Timothy Hitchcock
- Evolution & Ecology Research Centre; School of Biological, Earth and Environmental Sciences; UNSW Sydney; NSW 2052 Australia
| | - Angela T. Moles
- Evolution & Ecology Research Centre; School of Biological, Earth and Environmental Sciences; UNSW Sydney; NSW 2052 Australia
| |
Collapse
|
29
|
Sakata Y, Craig TP, Itami JK, Yamasaki M, Ohgushi T. Parallel environmental factors drive variation in insect density and plant resistance in the native and invaded ranges. Ecology 2017; 98:2873-2884. [DOI: 10.1002/ecy.1978] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 07/05/2017] [Accepted: 07/24/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Yuzu Sakata
- Center for Ecological Research; Kyoto University; Otsu 520-2113 Japan
| | - Timothy P. Craig
- Department of Biology; University of Minnesota Duluth; Duluth Minnesota 55812 USA
| | - Joanne K. Itami
- Department of Biology; University of Minnesota Duluth; Duluth Minnesota 55812 USA
| | - Michimasa Yamasaki
- Laboratory of Forest Biology; Division of Forest and Biomaterials Science; Graduate School of Agriculture; Kyoto University; Kyoto 606-8502 Japan
| | - Takayuki Ohgushi
- Center for Ecological Research; Kyoto University; Otsu 520-2113 Japan
| |
Collapse
|
30
|
Background invertebrate herbivory on dwarf birch (Betula glandulosa-nana complex) increases with temperature and precipitation across the tundra biome. Polar Biol 2017. [DOI: 10.1007/s00300-017-2139-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
Leles B, Xiao X, Pasion BO, Nakamura A, Tomlinson KW. Does plant diversity increase top-down control of herbivorous insects in tropical forest? OIKOS 2017. [DOI: 10.1111/oik.03562] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bruno Leles
- Program for Field Studies in Tropical Asia, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla; Yunnan PR China
| | - Xue Xiao
- Program for Field Studies in Tropical Asia, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla; Yunnan PR China
| | - Bonifacio O. Pasion
- Program for Field Studies in Tropical Asia, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla; Yunnan PR China
- Dept of Biology; Univ. of Naples FredericoII; IT-80126 Naples Italy
- Univ. of Chinese Academy of Sciences; Beijing PR China
| | - Akihiro Nakamura
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla; Yunnan PR China
| | - Kyle W. Tomlinson
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla; Yunnan PR China
| |
Collapse
|
32
|
Barton KE, Boege K. Future directions in the ontogeny of plant defence: understanding the evolutionary causes and consequences. Ecol Lett 2017; 20:403-411. [DOI: 10.1111/ele.12744] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 12/23/2016] [Accepted: 01/09/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Kasey E. Barton
- Department of Botany University of Hawai'i at Mānoa 3190 Maile Way Room 101 Honolulu Hawai'i 96822 USA
| | - Karina Boege
- Instituto de Ecología Universidad Nacional Autónoma de México. A.P. 20‐275. Ciudad Universitaria C.P. 04510 Ciudad De México México
| |
Collapse
|
33
|
Kozlov MV, Skoracka A, Zverev V, Lewandowski M, Zvereva EL. Two Birch Species Demonstrate Opposite Latitudinal Patterns in Infestation by Gall-Making Mites in Northern Europe. PLoS One 2016; 11:e0166641. [PMID: 27835702 PMCID: PMC5105990 DOI: 10.1371/journal.pone.0166641] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/01/2016] [Indexed: 11/19/2022] Open
Abstract
Latitudinal patterns in herbivory, i.e. variations in plant losses to animals with latitude, are generally explained by temperature gradients. However, earlier studies suggest that geographical variation in abundance and diversity of gall-makers may be driven by precipitation rather than by temperature. To test the above hypothesis, we examined communities of eriophyoid mites (Acari: Eriophyoidea) on leaves of Betula pendula and B. pubescens in boreal forests in Northern Europe. We sampled ten sites for each of five latitudinal gradients from 2008-2011, counted galls of six morphological types and identified mites extracted from these galls. DNA analysis revealed cryptic species within two of six morphologically defined mite species, and these cryptic species induced different types of galls. When data from all types of galls and from two birch species were pooled, the percentage of galled leaves did not change with latitude. However, we discovered pronounced variation in latitudinal changes between birch species. Infestation by eriophyoid mites increased towards the north in B. pendula and decreased in B. pubescens, while diversity of galls decreased towards the north in B. pendula and did not change in B. pubescens. The percentage of galled leaves did not differ among geographical gradients and study years, but was 20% lower in late summer relative to early summer, indicating premature abscission of infested leaves. Our data suggest that precipitation has little effect on abundance and diversity of eriophyoid mites, and that climate warming may impose opposite effects on infestation of two birch species by galling mites, favouring B. pendula near the northern tree limit.
Collapse
Affiliation(s)
- Mikhail V. Kozlov
- Section of Ecology, Department of Biology, University of Turku, Turku, Finland
- * E-mail:
| | - Anna Skoracka
- Population Ecology Laboratory, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Vitali Zverev
- Section of Ecology, Department of Biology, University of Turku, Turku, Finland
| | - Mariusz Lewandowski
- Department of Applied Entomology, Faculty of Agriculture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences—SGGW, Warsaw, Poland
| | - Elena L. Zvereva
- Section of Ecology, Department of Biology, University of Turku, Turku, Finland
| |
Collapse
|
34
|
Kozlov MV, Zverev V, Zvereva EL. Shelters of leaf-tying herbivores decompose faster than leaves damaged by free-living insects: Implications for nutrient turnover in polluted habitats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 568:946-951. [PMID: 27288287 DOI: 10.1016/j.scitotenv.2016.04.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/13/2016] [Accepted: 04/14/2016] [Indexed: 06/06/2023]
Abstract
Leaf-eating insects can influence decomposition processes by modifying quality of leaf litter, and this impact can be especially pronounced in habitats where leaf-eating insects reach high densities, for example in heavily polluted areas. We hypothesized that the decomposition rate is faster for shelters of leaf-tying larvae than for leaves damaged by free-living insects, in particular due to the accumulation of larval frass within shelters. We exposed litter bags containing samples of three different compositions (shelters built by moth larvae, leaves damaged by free-living insects and intact leaves of mountain birch, Betula pubescens ssp. czerepanovii) for one year at two heavily polluted sites near the nickel-copper smelter at Monchegorsk in north-western Russia and at two unpolluted sites. The decomposition rate of leaves damaged by free-living insects was 91% of that of undamaged leaves, whereas the mass loss of leaves composing shelters did not differ of that of undamaged leaves. These differences between leaves damaged by different guilds of herbivorous insects were uniform across the study sites, although the decomposition rate in polluted sites was reduced to 77% of that in unpolluted sites. Addition of larval frass to undamaged leaves had no effect on the subsequent decomposition rate. Therefore we suggest that damaged leaves tied by shelter-building larvae decompose faster than untied damaged leaves due to a looser physical structure of the litter, which creates favourable conditions for detritivores and soil decomposers. Thus, while leaf damage by insects per se reduces litter quality and its decomposition rate, structuring of litter by leaf-tying insects counterbalances these negative effects. We conclude that leaf-tying larvae, in contrast to free-living defoliators, do not impose negative effects on nutrient turnover rate even at their high densities, which are frequently observed in heavily polluted sites.
Collapse
Affiliation(s)
- Mikhail V Kozlov
- Section of Ecology, Department of Biology, University of Turku, FI-20014 Turku, Finland.
| | - Vitali Zverev
- Section of Ecology, Department of Biology, University of Turku, FI-20014 Turku, Finland
| | - Elena L Zvereva
- Section of Ecology, Department of Biology, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
35
|
Anstett DN, Nunes KA, Baskett C, Kotanen PM. Sources of Controversy Surrounding Latitudinal Patterns in Herbivory and Defense. Trends Ecol Evol 2016; 31:789-802. [DOI: 10.1016/j.tree.2016.07.011] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/09/2016] [Accepted: 07/21/2016] [Indexed: 12/23/2022]
|
36
|
Latitudinal Gradients in Induced and Constitutive Resistance against Herbivores. J Chem Ecol 2016; 42:772-781. [PMID: 27501815 DOI: 10.1007/s10886-016-0735-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/11/2016] [Accepted: 07/25/2016] [Indexed: 01/14/2023]
Abstract
Plants are hypothesized to evolve increased defense against herbivores at lower latitudes, but an increasing number of studies report evidence that contradicts this hypothesis. Few studies have examined the evolution of constitutive and induced resistance along latitudinal gradients. When induction is not considered, underlying patterns of latitudinal clines in resistance can be obscured because plant resistance represents a combination of induced and constitutive resistance, which may show contrasting patterns with latitude. Here, we asked if there are latitudinal gradients in constitutive versus induced resistance by using genotypes of Oenothera biennis (Onagraceae) sampled along an 18° latitudinal gradient. We conducted two bioassay experiments to compare the resistance of plant genotypes against one generalist (Spodoptera exigua) and one specialist (Acanthoscelidius acephalus) herbivore. These insects were assayed on: i) undamaged control plants, ii) plants that had been induced with jasmonic acid, and iii) plants induced with herbivore damage. Additionally, we examined latitudinal gradients of constitutive and induced chemical resistance by measuring the concentrations of total phenolics, the concentration of oxidized phenolics, and the percentage of phenolics that were oxidized. Spodoptera exigua showed lower performance on plants from lower latitudes, whereas A. acephalus showed no latitudinal pattern. Constitutive total phenolics were greater in plants from lower latitudes, but induced plants showed higher total phenolics at higher latitudes. Oxidative activity was greatest at higher latitudes regardless of induction. Overall, both latitude and induction have an impact on different metrics of plant resistance to herbivory. Further studies should consider the effect of induction and herbivore specialization more explicitly, which may help to resolve the controversy in latitudinal gradients in herbivory and defense.
Collapse
|
37
|
A Framework for Predicting Intraspecific Variation in Plant Defense. Trends Ecol Evol 2016; 31:646-656. [DOI: 10.1016/j.tree.2016.05.007] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 01/01/2023]
|
38
|
Wang XF, Liu JF, Gao WQ, Deng YP, Ni YY, Xiao YH, Kang FF, Wang Q, Lei JP, Jiang ZP. Defense pattern of Chinese cork oak across latitudinal gradients: influences of ontogeny, herbivory, climate and soil nutrients. Sci Rep 2016; 6:27269. [PMID: 27252112 PMCID: PMC4890039 DOI: 10.1038/srep27269] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/09/2016] [Indexed: 11/09/2022] Open
Abstract
Knowledge of latitudinal patterns in plant defense and herbivory is crucial for understanding the mechanisms that govern ecosystem functioning and for predicting their responses to climate change. Using a widely distributed species in East Asia, Quercus variabilis, we aim to reveal defense patterns of trees with respect to ontogeny along latitudinal gradients. Six leaf chemical (total phenolics and total condensed tannin concentrations) and physical (cellulose, hemicellulose, lignin and dry mass concentration) defensive traits as well as leaf herbivory (% leaf area loss) were investigated in natural Chinese cork oak (Q. variabilis) forests across two ontogenetic stages (juvenile and mature trees) along a ~14°-latitudinal gradient. Our results showed that juveniles had higher herbivory values and a higher concentration of leaf chemical defense substances compared with mature trees across the latitudinal gradient. In addition, chemical defense and herbivory in both ontogenetic stages decreased with increasing latitude, which supports the latitudinal herbivory-defense hypothesis and optimal defense theory. The identified trade-offs between chemical and physical defense were primarily determined by environmental variation associated with the latitudinal gradient, with the climatic factors (annual precipitation, minimum temperature of the coldest month) largely contributing to the latitudinal defense pattern in both juvenile and mature oak trees.
Collapse
Affiliation(s)
- Xiao-Fei Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Jian-Feng Liu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Wen-Qiang Gao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yun-Peng Deng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yan-Yan Ni
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yi-Hua Xiao
- The Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
| | - Feng-Feng Kang
- College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Qi Wang
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650, China
| | - Jing-Pin Lei
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Ze-Ping Jiang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
39
|
Stevens MT, Brown SC, Bothwell HM, Bryant JP. Biogeography of Alaska paper birch (Betula neoalaskana): latitudinal patterns in chemical defense and plant architecture. Ecology 2016; 97:494-502. [PMID: 27145623 DOI: 10.1890/15-0968] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The latitudinal herbivory-defense hypothesis (LHDH) predicts that plants near the equator will be more heavily defended against herbivores than are plants at higher latitudes. Although this idea is widely found in the literature, recent studies have called this biogeographic pattern into question. We sought to evaluate the LHDH in a high-latitude terrestrial ecosystem where fire and mammalian herbivores may contribute to selection for higher levels of defensive chemistry. To address this objective, we collected seeds of Alaska paper birch (Betula neoalaskana) from nine locations along two north-south transects between 55 degrees N and 62 degrees N latitudes in western, interior Canada. The birch seeds were planted in pots in a common garden in Madison, Wisconsin, USA. From the resulting seedlings, we determined levels of chemical defense by assessing the density of resin glands, which have been shown to be negatively correlated with browsing. To assess plant architectural traits such as height, mean individual leaf area, and root-to-shoot ratio, we harvested a subset of the birch seedlings. Further, we used these traits to examine growth-defense trade-offs. Contrary to the LHDH, we found a positive correlation between chemical defense and latitude. Investigating relationships with fire, we found a strong positive correlation between resin gland density and percentage of area annually burned (PAAB) around each collection location and also between PAAB and latitude. Additionally, birch seedlings originating from higher latitudes were shorter, smaller-leaved, and rootier than their lower-latitude counterparts. Growth-defense trade-offs were observed in negative correlations between resin gland density and height and leaf size. Seedlings with higher resin gland densities also allocated less biomass to shoots and more to roots. These results further call into question the LHDH and provide specific information about latitudinal trends in plant defense at high, northern latitudes where fire is a major ecosystem driver and mammals are the main herbivores of deciduous trees such as birches. We propose that these interconnected relationships are the key drivers of the positive correlation between defense and latitude in B. neoalaskana. Understanding patterns of boreal plant defense and growth is especially important because high latitude ecosystems are particularly susceptible to climate change. Key words: Alaska paper birch; Betula neoalaskana; biogeography; chemical defense; grotvth-defense trade-offs; inherent growth rate; latitude; latitudinal herbivory-defense hypothesis; papyr'feric acid; plant ar- chitecture; resin glands; root-to-shoot ratio.
Collapse
|
40
|
Moles AT, Ollerton J. Is the notion that species interactions are stronger and more specialized in the tropics a zombie idea? Biotropica 2016. [DOI: 10.1111/btp.12281] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Angela T. Moles
- Evolution & Ecology Research Centre School of Biological, Earth and Environmental Sciences UNSW Australia NSW 2052 Australia
| | - Jeff Ollerton
- School of Science and Technology University of Northampton Newton Building Avenue Campus Northampton NN2 6JD UK
| |
Collapse
|