1
|
Graf L, Thurfjell H, Ericsson G, Neumann W. Naivety dies with the calf: calf loss to human hunters imposes behavioral change in a long-lived but heavily harvested ungulate. MOVEMENT ECOLOGY 2024; 12:66. [PMID: 39313823 PMCID: PMC11421125 DOI: 10.1186/s40462-024-00506-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND In prey, patterns of individual habitat selection and movement can be a consequence of an individuals' anti-predator behavior. Adjustments of anti-predator behavior are important for prey to increase their survival. Hunters may alter the anti-predator behavior of prey. In long-lived animals, experience may cause behavioral changes during individuals' lifetime, which may result in altered habitat selection and movement. Our knowledge of which specific events related to hunting activity induce behavioral changes in solitary living species is still limited. METHODS We used offspring loss in a solitary and long-lived ungulate species, moose (Alces alces), as our model system. We investigated whether offspring loss to hunters induces behavioral changes in a species subjected to heavy human harvest but free from natural predation. To test for behavioral change in relation to two proxies for experience (calf fate and age), we combined movement data from 51 adult female moose with data on their offspring survival and female age. We tested for adjustments in females' habitat selection and movement following calf harvest using Hidden Markov Models and integrated Step Selection Analysis to obtain behavioral state specific habitat selection coefficients. RESULTS We found that females with a harvested calf modified habitat selection and movement during the following hunting season. Female moose selected for shorter distance to roads during the night, selected for shorter distance to forests and greater distance to human settlements following calf harvest than females who had not lost a calf. The survival of twins in a given hunting season was related to female age. Older females we more likely to have twins survive the hunting season. CONCLUSIONS Our findings suggest that losing offspring to human harvest imposes behavioral changes in a long-lived ungulate species, leading to adjustments in females' habitat selection and movement behavior, which may lower the risk of encountering hunters. In our study, female moose that experienced calf loss selected for lower distance to forest and selected for greater distance to human settlements during periods of high hunting pressure compared to females without the experience of calf loss during the previous hunting season. We interpret this as potential learning effects.
Collapse
Affiliation(s)
- Lukas Graf
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd, 901 83, Umeå, Sweden.
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Sundsvägen 3, 234 22, Lomma, Sweden.
| | - Henrik Thurfjell
- Swedish Species Information Centre, Swedish University of Agricultural Sciences, Alma Allé 8E, 756 51, Uppsala, Sweden
| | - Göran Ericsson
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd, 901 83, Umeå, Sweden
| | - Wiebke Neumann
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd, 901 83, Umeå, Sweden
| |
Collapse
|
2
|
McGann K, Johnson CN, Clinchy M, Zanette LY, Cunningham CX. Fear of the human 'super predator' in native marsupials and introduced deer in Australia. Proc Biol Sci 2024; 291:20232849. [PMID: 38775542 DOI: 10.1098/rspb.2023.2849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 03/29/2024] [Indexed: 07/31/2024] Open
Abstract
Recent experiments have demonstrated that carnivores and ungulates in Africa, Asia, Europe and North America fear the human 'super predator' far more than other predators. Australian mammals have been a focus of research on predator naiveté because it is suspected they show atypical antipredator responses. To experimentally test if mammals in Australia also most fear humans, we quantified the responses of four native marsupials (eastern grey kangaroo, Bennett's wallaby, Tasmanian pademelon, common brushtail possum) and introduced fallow deer to playbacks of predator (human, dog, Tasmanian devil, wolf) or non-predator control (sheep) vocalizations. Native marsupials most feared the human 'super predator', fleeing humans 2.4 times more often than the next most frightening predator (dogs), and being most, and significantly, vigilant to humans. These results demonstrate that native marsupials are not naïve to the peril humans pose, substantially expanding the taxonomic and geographic scope of the growing experimental evidence that wildlife worldwide generally perceive humans as the planet's most frightening predator. Introduced fallow deer fled humans, but not more than other predators, which we suggest may result from their being introduced. Our results point to both challenges concerning marsupial conservation and opportunities for exploiting fear of humans as a wildlife management tool.
Collapse
Affiliation(s)
- Katherine McGann
- School of Natural Resources, University of Tasmania, Private Bag 55 , Hobart, Tasmania 7001, Australia
| | - Christopher N Johnson
- School of Natural Resources, University of Tasmania, Private Bag 55 , Hobart, Tasmania 7001, Australia
| | - Michael Clinchy
- Department of Biology, Western University , London, Ontario N6A 5B7, Canada
| | - Liana Y Zanette
- Department of Biology, Western University , London, Ontario N6A 5B7, Canada
| | - Calum X Cunningham
- School of Natural Resources, University of Tasmania, Private Bag 55 , Hobart, Tasmania 7001, Australia
- School of Environmental and Forest Sciences, College of the Environment, University of Washington , Seattle, WA 98195-2100, USA
| |
Collapse
|
3
|
Harrison ND, Steven R, Phillips BL, Hemmi JM, Wayne AF, Mitchell NJ. Identifying the most effective behavioural assays and predator cues for quantifying anti-predator responses in mammals: a systematic review. ENVIRONMENTAL EVIDENCE 2023; 12:5. [PMID: 39294799 PMCID: PMC11378833 DOI: 10.1186/s13750-023-00299-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/12/2023] [Indexed: 09/21/2024]
Abstract
BACKGROUND Mammals, globally, are facing population declines. Protecting and breeding threatened populations inside predator-free havens and translocating them back to the wild is commonly viewed as a solution. These approaches can expose predator-naïve animals to predators they have never encountered and as a result, many conservation projects have failed due to the predation of individuals that lacked appropriate anti-predator responses. Hence, robust ways to measure anti-predator responses are urgently needed to help identify naïve populations at risk, to select appropriate animals for translocation, and to monitor managed populations for changes in anti-predator traits. Here, we undertake a systematic review that collates existing behavioural assays of anti-predator responses and identifies assay types and predator cues that provoke the greatest behavioural responses. METHODS We retrieved articles from academic bibliographic databases and grey literature sources (such as government and conservation management reports), using a Boolean search string. Each article was screened against eligibility criteria determined using the PICO (Population-Intervention-Comparator-Outcome) framework. Using data extracted from each article, we mapped all known behavioural assays for quantifying anti-predator responses in mammals and examined the context in which each assay has been implemented (e.g., species tested, predator cue characteristics). Finally, with mixed effects modelling, we determined which of these assays and predator cue types elicit the greatest behavioural responses based on standardised difference in response between treatment and control groups. REVIEW FINDINGS We reviewed 5168 articles, 211 of which were eligible, constituting 1016 studies on 126 mammal species, a quarter of which are threatened by invasive species. We identified six major types of behavioural assays: behavioural focals, capture probability, feeding station, flight initiation distance, giving-up density, and stimulus presentations. Across studies, there were five primary behaviours measured: activity, escape, exploration, foraging, and vigilance. These behaviours yielded similar effect sizes across studies. With regard to study design, however, studies that used natural olfactory cues tended to report larger effect sizes than those that used artificial cues. Effect sizes were larger in studies that analysed sexes individually, rather than combining males and females. Studies that used 'blank' control treatments (the absence of a stimulus) rather than a treatment with a control stimulus had higher effect sizes. Although many studies involved repeat measures of known individuals, only 15.4% of these used their data to calculate measures of individual repeatability. CONCLUSIONS Our review highlights important aspects of experimental design and reporting that should be considered. Where possible, studies of anti-predator behaviour should use appropriate control treatments, analyse males and females separately, and choose organic predator cues. Studies should also look to report the individual repeatability of behavioural traits, and to correctly identify measures of uncertainty (error bars). The review highlights robust methodology, reveals promising techniques on which to focus future assay development, and collates relevant information for conservation managers.
Collapse
Affiliation(s)
- Natasha D Harrison
- School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia.
| | - Rochelle Steven
- School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia
- Environmental and Conservation Sciences, Harry Butler Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Ben L Phillips
- School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia
- School of BioSciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jan M Hemmi
- School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia
- The UWA Oceans Institute, The University of Western Australia, Perth, WA, 6009, Australia
| | - Adrian F Wayne
- School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Manjimup, WA, 6258, Australia
| | - Nicola J Mitchell
- School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| |
Collapse
|
4
|
Of mice and cats: interspecific variation in prey responses to direct and indirect predator cues. Behav Ecol Sociobiol 2023. [DOI: 10.1007/s00265-022-03277-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Badenes‐Pérez FR. The impacts of free‐roaming cats cannot be generalized and their role in rodent management should not be overlooked. CONSERVATION SCIENCE AND PRACTICE 2022. [DOI: 10.1111/csp2.12861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
6
|
Evans MJ, Weeks AR, Scheele BC, Gordon IJ, Neaves LE, Andrewartha TA, Brockett B, Rapley S, Smith KJ, Wilson BA, Manning AD. Coexistence conservation: Reconciling threatened species and invasive predators through adaptive ecological and evolutionary approaches. CONSERVATION SCIENCE AND PRACTICE 2022. [DOI: 10.1111/csp2.12742] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Maldwyn J. Evans
- Fenner School of Environment and Society The Australian National University Canberra Australian Capital Territory Australia
- Department of Ecosystem Studies, Graduate School of Agricultural and Life Sciences The University of Tokyo Tokyo Japan
| | - Andrew R. Weeks
- School of BioSciences The University of Melbourne Parkville Victoria Australia
| | - Ben C. Scheele
- Fenner School of Environment and Society The Australian National University Canberra Australian Capital Territory Australia
| | - Iain J. Gordon
- Fenner School of Environment and Society The Australian National University Canberra Australian Capital Territory Australia
- The James Hutton Institute Dundee UK
- Central Queensland University Townsville Queensland Australia
- Land & water, CSIRO Townsville Queensland Australia
- Lead, Protected Places Mission, National Environmental Science Program Reef and Rainforest Research Centre Cairns Queensland Australia
| | - Linda E. Neaves
- Fenner School of Environment and Society The Australian National University Canberra Australian Capital Territory Australia
| | - Tim A. Andrewartha
- Fenner School of Environment and Society The Australian National University Canberra Australian Capital Territory Australia
| | - Brittany Brockett
- Fenner School of Environment and Society The Australian National University Canberra Australian Capital Territory Australia
| | - Shoshana Rapley
- Fenner School of Environment and Society The Australian National University Canberra Australian Capital Territory Australia
| | - Kiarrah J. Smith
- Fenner School of Environment and Society The Australian National University Canberra Australian Capital Territory Australia
| | - Belinda A. Wilson
- Fenner School of Environment and Society The Australian National University Canberra Australian Capital Territory Australia
| | - Adrian D. Manning
- Fenner School of Environment and Society The Australian National University Canberra Australian Capital Territory Australia
| |
Collapse
|
7
|
Limited influence of experimentally induced predation risk on granivory in a tropical forest. JOURNAL OF TROPICAL ECOLOGY 2022. [DOI: 10.1017/s0266467422000050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Abstract
Seed predation by rodents can strongly influence plant recruitment and establishment. The extent to which predation risk indirectly alters plant survival in tropical forests via impacts on granivory is unclear, making it difficult to assess the cascading impacts of widespread predator loss on tree recruitment and species composition. Experimental field studies that manipulate predation risk can help address these knowledge gaps and reveal whether antipredator responses among small mammals influence plant survival. We used camera traps and seed predation experiments to test the effects of perceived predation risk (via predator urine gel) on foraging behaviour of and seed removal by murid rodents in an unlogged and unhunted rainforest in Malaysian Borneo. We also explored the influence of seed traits (e.g., seed size) on removal by granivores and assessed whether granivore preferences for particular species were affected by predator urine. Murid visits to seed plots were positively related to overall seed removal, but were not affected by predator scent. Granivory was the lowest for the largest-seeded (>6 g) plant in our study, but was not influenced by predation risk. Predator urine significantly affected removal of one seed taxon (Dimoocarpus, ∼0.8 g), suggesting that removal by granivores may be affected by predation risk for some seed species but not others. This could have implications for plant species composition but may not affect the overall level of granivory.
Collapse
|
8
|
Cliff HB, Jones ME, Johnson CN, Pech RP, Biemans BT, Barmuta LA, Norbury GL. Rapid gain and loss of predator recognition by an evolutionarily naïve lizard. AUSTRAL ECOL 2022. [DOI: 10.1111/aec.13148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hannah B. Cliff
- School of Natural Sciences University of Tasmania Hobart Tasmania Australia
- Indigenous Desert Alliance 587 Newcastle St West Perth Western Australia 6005 Australia
| | - Menna E. Jones
- School of Natural Sciences University of Tasmania Hobart Tasmania Australia
| | - Chris N. Johnson
- School of Natural Sciences University of Tasmania Hobart Tasmania Australia
| | - Roger P. Pech
- Manaaki Whenua – Landcare Research PO Box 69040 Lincoln 7640 New Zealand
| | - Bart T. Biemans
- Wageningen University and Research Wageningen The Netherlands
- Arcadis Nederland B.V. 5223 LL s‐Hertogenbosch The Netherlands
| | - Leon A. Barmuta
- School of Natural Sciences University of Tasmania Hobart Tasmania Australia
| | - Grant L. Norbury
- Manaaki Whenua – Landcare Research PO Box 176 Alexandra 9340 New Zealand
| |
Collapse
|
9
|
Heise-Pavlov S, Bradley A. When ancestry haunts – can evolutionary links to ancestors affect vulnerability of Australian prey to introduced predators? A preliminary study. AUSTRALIAN MAMMALOGY 2022. [DOI: 10.1071/am20061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The high extinction risk of Australian marsupials has been attributed to their failure to recognise novel predators, the application of inappropriate antipredator responses, and advanced hunting strategies of novel predators. This study is a preliminary attempt to explore whether the Lumholtz’ tree-kangaroo (Dendrolagus lumholtzi) (a) is able to recognise odour cues from different predators as threats, and (b) possesses predator-archetype specific antipredator responses. A small number of available captive tree-kangaroos were exposed to faecal odours from two extant predators of different archetypes (python, dingo), a regionally extinct predator which closely matches past terrestrial predators (Tasmanian devil), and a novel predator (domestic dog). Lavender oil was used as non-predator novel odour and water as control. Results suggest that all subjects associated the presented odours with a threat, albeit to different degrees, but did not display predator-archetype specific responses. It appears that this species applies an ancestral antipredator response of flight-on-the ground when encountering predators, including novel predators. Although the results need to be confirmed with more animals, further studies on the vulnerability of Australian prey to novel predators should take the ancestral history of Australian prey species into account.
Collapse
|
10
|
Wilson JC, White DP, Detmer TM, Wahl DH. Behavioral response of juvenile silver and bighead carp to conspecific and heterospecific alarm cues. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02502-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Bedoya-Pérez MA, Le A, McGregor IS, Crowther MS. Antipredator responses toward cat fur in wild brown rats tested in a semi-natural environment. Behav Ecol 2021. [DOI: 10.1093/beheco/arab038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Sensitivity to predator-related cues and performance of antipredator behaviors are universal among prey species. Rodents exhibit a diverse suite of antipredator behaviors that have been examined in both field and laboratory studies. However, the results from the laboratory have not always translated to the field. While laboratory studies consistently indicate strong fear-inducing effects of cat fur/skin odors, it is unclear whether this occurs in the field with wild rats. To address this issue, we tested the antipredator responses of wild brown rats (Rattus norvegicus) to predatory (domestic cat fur) and nonpredatory (common brushtail possum fur) odor cues in a semi-natural experimental paradigm. Rats were housed in open air enclosures containing two feeding stations. Following several nights of acclimatization, the feeding stations were paired with cat fur, possum fur, or no fur. Rats spent less time at a feeding station that was paired with cat fur. Duration of time spent at feeding stations increased across consecutive test days and across hours within individual test nights, although the rate of increase within nights was lower for cat fur paired stations. This overall increase might reflect habituation of antipredator behaviors, increasing hunger, or loss of cue potency over time. We suggest that wild brown rats recognize and respond to cat fur odor cues, but their behavioral response is highly adaptable and finely tuned to the trade-off between predation risk and starvation that occurs across short temporal scales.
Collapse
Affiliation(s)
- Miguel A Bedoya-Pérez
- Brain and Mind Centre, 94 Mallett Street, Camperdown, New South Wales 2050, Australia
- Faculty of Science, School of Psychology, The University of Sydney, Camperdown, New South Wales 2006, Australia
- School of Life and Environmental Sciences, Science road, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Anna Le
- School of Life and Environmental Sciences, Science road, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Iain S McGregor
- Brain and Mind Centre, 94 Mallett Street, Camperdown, New South Wales 2050, Australia
- Faculty of Science, School of Psychology, The University of Sydney, Camperdown, New South Wales 2006, Australia
- The University of Sydney, Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, 94 Mallett Street, Camperdown, New South Wales 2050, Australia
| | - Mathew S Crowther
- School of Life and Environmental Sciences, Science road, The University of Sydney, Camperdown, New South Wales 2006, Australia
| |
Collapse
|
12
|
Blount JD, Chynoweth MW, Green AM, Şekercioğlu ÇH. Review: COVID-19 highlights the importance of camera traps for wildlife conservation research and management. BIOLOGICAL CONSERVATION 2021; 256:108984. [PMID: 36531528 PMCID: PMC9746925 DOI: 10.1016/j.biocon.2021.108984] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/11/2021] [Accepted: 01/16/2021] [Indexed: 05/26/2023]
Abstract
COVID-19 has altered many aspects of everyday life. For the scientific community, the pandemic has called upon investigators to continue work in novel ways, curtailing field and lab research. However, this unprecedented situation also offers an opportunity for researchers to optimize and further develop available field methods. Camera traps are one example of a tool used in science to answer questions about wildlife ecology, conservation, and management. Camera traps have long battery lives, lasting more than a year in certain cases, and photo storage capacity, with some models capable of wirelessly transmitting images from the field. This allows researchers to deploy cameras without having to check them for up to a year or more, making them an ideal field research tool during restrictions on in-person research activities such as COVID-19 lockdowns. As technological advances allow cameras to collect increasingly greater numbers of photos and videos, the analysis techniques for large amounts of data are evolving. Here, we describe the most common research questions suitable for camera trap studies and their importance for biodiversity conservation. As COVID-19 continues to affect how people interact with the natural environment, we discuss novel questions for which camera traps can provide insights on. We conclude by summarizing the results of a systematic review of camera trap studies, providing data on target taxa, geographic distribution, publication rate, and publication venues to help researchers planning to use camera traps in response to the current changes in human activity.
Collapse
Affiliation(s)
- J David Blount
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112-0840, USA
| | - Mark W Chynoweth
- Department of Wildland Resources, Utah State University, Uintah Basin, 320 North Aggie Blvd., Vernal, UT 84078, USA
| | - Austin M Green
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112-0840, USA
| | - Çağan H Şekercioğlu
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112-0840, USA
- College of Sciences, Koç University, Rumelifeneri, İstanbul, Sarıyer, Turkey
| |
Collapse
|
13
|
Hamer RP, Gardiner RZ, Proft KM, Johnson CN, Jones ME. A triple threat: high population density, high foraging intensity and flexible habitat preferences explain high impact of feral cats on prey. Proc Biol Sci 2021; 288:20201194. [PMID: 33402069 DOI: 10.1098/rspb.2020.1194] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Alien mammalian carnivores have contributed disproportionately to global loss of biodiversity. In Australia, predation by the feral cat and red fox is one of the most significant causes of the decline of native vertebrates. To discover why cats have greater impacts on prey than native predators, we compared the ecology of the feral cat to a marsupial counterpart, the spotted-tailed quoll. Individual prey are 20-200 times more likely to encounter feral cats, because of the combined effects of cats' higher population densities, greater intensity of home-range use and broader habitat preferences. These characteristics also mean that the costs to the prey of adopting anti-predator behaviours against feral cats are likely to be much higher than adopting such behaviours in response to spotted-tailed quolls, due to the reliability and ubiquity of feral cat cues. These results help explain the devastating impacts of cats on wildlife in Australia and other parts of the world.
Collapse
Affiliation(s)
- Rowena P Hamer
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania 7005, Australia.,Tasmanian Land Conservancy, Hobart, Tasmania 7005, Australia
| | - Riana Z Gardiner
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania 7005, Australia
| | - Kirstin M Proft
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania 7005, Australia
| | - Christopher N Johnson
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania 7005, Australia
| | - Menna E Jones
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania 7005, Australia
| |
Collapse
|
14
|
Greggor AL, Berger-Tal O, Blumstein DT. The Rules of Attraction: The Necessary Role of Animal Cognition in Explaining Conservation Failures and Successes. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-011720-103212] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Integrating knowledge and principles of animal behavior into wildlife conservation and management has led to some concrete successes but has failed to improve conservation outcomes in other cases. Many conservation interventions involve attempts to either attract or repel animals, which we refer to as approach/avoidance issues. These attempts can be reframed as issues of manipulating the decisions animals make, which are driven by their perceptual abilities and attentional biases, as well as the value animals attribute to current stimuli and past learned experiences. These processes all fall under the umbrella of animal cognition. Here, we highlight rules that emerge when considering approach/avoidance conservation issues through the lens of cognitive-based management. For each rule, we review relevant conservation successes and failures to better predict the conditions in which behavior can be manipulated, and we suggest how to avoid future failures.
Collapse
Affiliation(s)
- Alison L. Greggor
- Department of Recovery Ecology, Institute for Conservation Research, San Diego Zoo Global, Escondido, California 92027, USA
| | - Oded Berger-Tal
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel
| | - Daniel T. Blumstein
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
15
|
Steindler LA, Blumstein DT, West R, Moseby KE, Letnic M. Exposure to a novel predator induces visual predator recognition by naïve prey. Behav Ecol Sociobiol 2020. [DOI: 10.1007/s00265-020-02884-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Smith JA, Suraci JP, Hunter JS, Gaynor KM, Keller CB, Palmer MS, Atkins JL, Castañeda I, Cherry MJ, Garvey PM, Huebner SE, Morin DJ, Teckentrup L, Weterings MJA, Beaudrot L. Zooming in on mechanistic predator-prey ecology: Integrating camera traps with experimental methods to reveal the drivers of ecological interactions. J Anim Ecol 2020; 89:1997-2012. [PMID: 32441766 DOI: 10.1111/1365-2656.13264] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/10/2020] [Indexed: 11/27/2022]
Abstract
Camera trap technology has galvanized the study of predator-prey ecology in wild animal communities by expanding the scale and diversity of predator-prey interactions that can be analysed. While observational data from systematic camera arrays have informed inferences on the spatiotemporal outcomes of predator-prey interactions, the capacity for observational studies to identify mechanistic drivers of species interactions is limited. Experimental study designs that utilize camera traps uniquely allow for testing hypothesized mechanisms that drive predator and prey behaviour, incorporating environmental realism not possible in the laboratory while benefiting from the distinct capacity of camera traps to generate large datasets from multiple species with minimal observer interference. However, such pairings of camera traps with experimental methods remain underutilized. We review recent advances in the experimental application of camera traps to investigate fundamental mechanisms underlying predator-prey ecology and present a conceptual guide for designing experimental camera trap studies. Only 9% of camera trap studies on predator-prey ecology in our review use experimental methods, but the application of experimental approaches is increasing. To illustrate the utility of camera trap-based experiments using a case study, we propose a study design that integrates observational and experimental techniques to test a perennial question in predator-prey ecology: how prey balance foraging and safety, as formalized by the risk allocation hypothesis. We discuss applications of camera trap-based experiments to evaluate the diversity of anthropogenic influences on wildlife communities globally. Finally, we review challenges to conducting experimental camera trap studies. Experimental camera trap studies have already begun to play an important role in understanding the predator-prey ecology of free-living animals, and such methods will become increasingly critical to quantifying drivers of community interactions in a rapidly changing world. We recommend increased application of experimental methods in the study of predator and prey responses to humans, synanthropic and invasive species, and other anthropogenic disturbances.
Collapse
Affiliation(s)
- Justine A Smith
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, CA, USA
| | - Justin P Suraci
- Environmental Studies Department, Center for Integrated Spatial Research, University of California, Santa Cruz, CA, USA
| | - Jennifer S Hunter
- Hastings Natural History Reservation, University of California, Berkeley, CA, USA
| | - Kaitlyn M Gaynor
- National Center for Ecological Analysis and Synthesis, Santa Barbara, CA, USA
| | - Carson B Keller
- Department of Biology, California State University, Northridge, CA, USA
| | - Meredith S Palmer
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Justine L Atkins
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Irene Castañeda
- Centre d'Ecologie et des Sciences de la Conservation (CESCO UMR 7204), Sorbonne Universités, MNHN, CNRS, UPMC, Paris, France.,Ecologie, Systématique et Evolution, UMR CNRS 8079, Université Paris-Sud, Orsay Cedex, France
| | - Michael J Cherry
- Caesar Kleberg Wildlife Research Institute, Texas A&M University - Kingsville, Kingsville, TX, USA
| | | | - Sarah E Huebner
- College of Biological Sciences, University of Minnesota, St. Paul, MN, USA
| | - Dana J Morin
- Department of Wildlife, Fisheries, & Aquaculture, Mississippi State University, Starkville, MS, USA
| | - Lisa Teckentrup
- BioMove Research Training Group, University of Potsdam, Potsdam, Germany
| | - Martijn J A Weterings
- Wildlife Ecology and Conservation Group, Wageningen University, Wageningen, The Netherlands.,Department of Wildlife Management, Van Hall Larenstein University of Applied Sciences, Leeuwarden, The Netherlands
| | - Lydia Beaudrot
- Department of BioSciences, Program in Ecology and Evolutionary Biology, Rice University, Houston, TX, USA
| |
Collapse
|
17
|
Caravaggi A, Burton AC, Clark DA, Fisher JT, Grass A, Green S, Hobaiter C, Hofmeester TR, Kalan AK, Rabaiotti D, Rivet D. A review of factors to consider when using camera traps to study animal behavior to inform wildlife ecology and conservation. CONSERVATION SCIENCE AND PRACTICE 2020. [DOI: 10.1111/csp2.239] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
| | - A. Cole Burton
- Department of Forest Resources Management and Biodiversity Research CentreUniversity of British Columbia Vancouver Canada
| | - Douglas A. Clark
- School of Environment and Sustainability, University of Saskatchewan Saskatoon Saskatchewan Canada
| | | | - Amelia Grass
- School of Applied SciencesUniversity of South Wales Pontypridd UK
| | - Sian Green
- Department of AnthropologyDurham University Durham UK
| | - Catherine Hobaiter
- School of Psychology and NeuroscienceUniversity of St Andrews St Andrews UK
| | - Tim R. Hofmeester
- Department of Wildlife, Fish, and Environmental studiesSwedish University of Agricultural Sciences Umeå Sweden
| | - Ammie K. Kalan
- Department of PrimatologyMax Planck Institute for Evolutionary Anthropology Leipzig Germany
| | | | - Danielle Rivet
- Department of BiologyUniversity of Saskatchewan Saskatoon Saskatchewan Canada
| |
Collapse
|
18
|
Anton A, Geraldi NR, Ricciardi A, Dick JTA. Global determinants of prey naiveté to exotic predators. Proc Biol Sci 2020; 287:20192978. [PMID: 32486977 DOI: 10.1098/rspb.2019.2978] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Prey naiveté-the failure of prey to recognize novel predators as threats-is thought to exacerbate the impact that exotic predators exert on prey populations. Prey naiveté varies under the influence of eco-evolutionary mediating factors, such as biogeographic isolation and prey adaptation, although an overall quantification of their influence is lacking. We conducted a global meta-analysis to test the effects of several hypothesized mediating factors on the expression of prey naiveté. Prey were overall naive towards exotic predators in marine and freshwater systems but not in terrestrial systems. Prey naiveté was most pronounced towards exotic predators that did not have native congeneric relatives in the recipient community. Time since introduction was relevant, as prey naiveté declined with the number of generations since introduction; on average, around 200 generations may be required to erode naiveté sufficiently for prey to display antipredator behaviour towards exotic predators. Given that exotic predators are a major cause of extinction, the global predictors and trends of prey naiveté presented here can inform efforts to meet conservation targets.
Collapse
Affiliation(s)
- Andrea Anton
- School of Biological Sciences, Queen's University Belfast, Northern Ireland, UK.,Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Nathan R Geraldi
- School of Biological Sciences, Queen's University Belfast, Northern Ireland, UK.,Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | - Jaimie T A Dick
- School of Biological Sciences, Queen's University Belfast, Northern Ireland, UK.,Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Northern Ireland, UK
| |
Collapse
|
19
|
Edwards MC, Hoy JM, FitzGibbon SI, Murray PJ. Relaxed predation theory: size, sex and brains matter. Biol Rev Camb Philos Soc 2020; 96:153-161. [PMID: 32441454 DOI: 10.1111/brv.12611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 01/23/2023]
Abstract
Australia's wildlife is being considerably impacted by introduced mammalian predators such as cats (Felis catus), dogs (Canis lupus familiaris), and foxes (Vulpes vulpes). This is often attributed to native wildlife being naïve to these introduced predators. A systematic review of the literature reveals that native metatherians (body mass range 0.02-25 kg) do not recognise, and show relaxed antipredator behaviours towards, native and some introduced mammalian predators. Native eutherians (all with body mass < 2 kg), however, do appear to recognise and exhibit antipredator behaviours towards both native and introduced predators. Based on our findings, we propose a novel theory, the 'Relaxed Predation Theory'. Our new theory is based on the absence of large mammalian predators leading to reduced predation pressure in Australia during the past 40000-50000 years, and on three key differences between Australian metatherians and eutherians: size, sex, and brains. In light of this Relaxed Predation Theory, we make a number of recommendations for the conservation of Australian wildlife: (i) predator avoidance training of suitable species; (ii) exclusion fencing to exclude some, but not all, predators to facilitate the development of antipredator behaviours; (iii) captive breeding programs to prevent the extinction of some species; and (iv) reintroduction of Australia's larger predators, potentially to compete with and displace introduced predators. A more detailed understanding of the responses of Australian mammals to predators will hopefully contribute to the improved conservation of susceptible species.
Collapse
Affiliation(s)
- Megan C Edwards
- School of Agriculture and Food Sciences, The University of Queensland, Gatton Campus, 4343, Queensland, Australia.,Hidden Vale Wildlife Centre, The University of Queensland, 617 Grandchester Mount-Mort Road, Grandchester, 4340, Queensland, Australia
| | - Julia M Hoy
- Hidden Vale Wildlife Centre, The University of Queensland, 617 Grandchester Mount-Mort Road, Grandchester, 4340, Queensland, Australia
| | - Sean I FitzGibbon
- School of Agriculture and Food Sciences, The University of Queensland, Gatton Campus, 4343, Queensland, Australia
| | - Peter J Murray
- School of Agriculture and Food Sciences, The University of Queensland, Gatton Campus, 4343, Queensland, Australia
| |
Collapse
|
20
|
Fardell LL, Pavey CR, Dickman CR. Fear and stressing in predator-prey ecology: considering the twin stressors of predators and people on mammals. PeerJ 2020; 8:e9104. [PMID: 32391213 PMCID: PMC7196326 DOI: 10.7717/peerj.9104] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 04/09/2020] [Indexed: 12/28/2022] Open
Abstract
Predators induce stress in prey and can have beneficial effects in ecosystems, but can also have negative effects on biodiversity if they are overabundant or have been introduced. The growth of human populations is, at the same time, causing degradation of natural habitats and increasing interaction rates of humans with wildlife, such that conservation management routinely considers the effects of human disturbance as tantamount to or surpassing those of predators. The need to simultaneously manage both of these threats is particularly acute in urban areas that are, increasingly, being recognized as global hotspots of wildlife activity. Pressures from altered predator-prey interactions and human activity may each initiate fear responses in prey species above those that are triggered by natural stressors in ecosystems. If fear responses are experienced by prey at elevated levels, on top of responses to multiple environmental stressors, chronic stress impacts may occur. Despite common knowledge of the negative effects of stress, however, it is rare that stress management is considered in conservation, except in intensive ex situ situations such as in captive breeding facilities or zoos. We propose that mitigation of stress impacts on wildlife is crucial for preserving biodiversity, especially as the value of habitats within urban areas increases. As such, we highlight the need for future studies to consider fear and stress in predator-prey ecology to preserve both biodiversity and ecosystem functioning, especially in areas where human disturbance occurs. We suggest, in particular, that non-invasive in situ investigations of endocrinology and ethology be partnered in conservation planning with surveys of habitat resources to incorporate and reduce the effects of fear and stress on wildlife.
Collapse
Affiliation(s)
- Loren L. Fardell
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | | | | |
Collapse
|
21
|
van Ginkel HAL, Smit C, Kuijper DPJ. Behavioral response of naïve and non-naïve deer to wolf urine. PLoS One 2019; 14:e0223248. [PMID: 31774819 PMCID: PMC6880981 DOI: 10.1371/journal.pone.0223248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 09/17/2019] [Indexed: 11/19/2022] Open
Abstract
Large carnivores are recolonizing many regions in Europe, where their ungulate prey have lived without them for >150 years. Whether the returning large carnivores will modify ungulate behavior and indirectly affect lower trophic levels, depends on the ability of ungulates to recognize risk based on past encounters and cues indicating carnivore presence. In two case studies, we tested, by means of camera trapping, the behavioral response of deer to wolf urine. The first case study was in the Netherlands where deer (still) live in absence of wolves, and the second in Poland with long-term wolf presence. As controls we used water (no scent) and all-purpose soap (unfamiliar scent). Deer vigilance level on control plots was 20% in both case studies indicating that wolf occupancy per se does not lead to a consistent difference in behavior. Placing wolf urine did not significantly affect deer behavior in either the wolf-absent or the wolf-present area. More intense cues, or a combination of cues, are likely needed to affect deer behavior. Moreover, we found an unexpected reaction of deer towards all-purpose soap of reduced foraging (and tendency for increased vigilance) in the wolf-present area, whereas it did not affect deer behavior in the wolf-absent area. We hypothesize that deer associate all-purpose soap with human presence, causing no response in human-dominated landscapes (the Netherlands), but triggering a behavioral reaction in more remote areas (Poland). This illustrates attention should be paid to controls used in scent experiments as they may be associated differently than intended.
Collapse
Affiliation(s)
- Hermine Annette Lisa van Ginkel
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
- Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland
| | - Christian Smit
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | | |
Collapse
|
22
|
Greggor AL, Trimmer PC, Barrett BJ, Sih A. Challenges of Learning to Escape Evolutionary Traps. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00408] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
23
|
Bedoya-Pérez MA, Smith KL, Kevin RC, Luo JL, Crowther MS, McGregor IS. Parameters That Affect Fear Responses in Rodents and How to Use Them for Management. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00136] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
24
|
Bytheway JP, Banks PB. Overcoming prey naiveté: Free-living marsupials develop recognition and effective behavioral responses to alien predators in Australia. GLOBAL CHANGE BIOLOGY 2019; 25:1685-1695. [PMID: 30822357 DOI: 10.1111/gcb.14607] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 02/12/2019] [Indexed: 06/09/2023]
Abstract
Naiveté in prey arises from novel ecological mismatches in cue recognition systems and antipredator responses following the arrival of alien predators. The multilevel naiveté framework suggests that animals can progress through levels of naiveté toward predator awareness. Alternatively, native prey may be preadapted to recognize novel predators via common constituents in predator odors or familiar predator archetypes. We tested predictions of these competing hypotheses on the mechanisms driving behavioral responses of native species to alien predators by measuring responses of native free-living northern brown bandicoots (Isoodon macrourus) to alien red fox (Vulpes vulpes) odor. We compared multiple bandicoot populations either sympatric or allopatric with foxes. Bandicoots sympatric with foxes showed recognition and appropriate antipredator behavior toward fox odor via avoidance. On the few occasions bandicoots did visit, their vigilance significantly increased, and their foraging decreased. In contrast, bandicoots allopatric with foxes showed no recognition of this predator cue. Our results suggest that vulnerable Australian mammals were likely naïve to foxes when they first arrived, which explains why so many native mammals declined soon after fox arrival. Our results also suggest such naiveté can be overcome within a relatively short time frame, driven by experience with predators, thus supporting the multilevel naiveté framework.
Collapse
Affiliation(s)
- Jenna P Bytheway
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Peter B Banks
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
25
|
Sadowski JS, Grosholz ED. Predator foraging mode controls the effect of antipredator behavior in a tritrophic model. THEOR ECOL-NETH 2019. [DOI: 10.1007/s12080-019-0426-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Ehlman SM, Trimmer PC, Sih A. Prey Responses to Exotic Predators: Effects of Old Risks and New Cues. Am Nat 2019; 193:575-587. [PMID: 30912973 DOI: 10.1086/702252] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Exotic predators can have major negative impacts on prey. Importantly, prey vary considerably in their behavioral responses to exotic predators. Factors proposed to explain variation in prey response to exotic predators include the similarity of new predators to familiar, native predators, the prevalence and diversity of predators in a prey's past, and variation in a prey's innate ability to discriminate between predators and safety. While these factors have been put forth verbally in the literature, no theory exists that combines these hypotheses in a common conceptual framework using a unified behavioral model. Here, we formalize existing verbal arguments by modeling variation in prey responses to new predators in a state-dependent detection theory framework. We find that while some conventional wisdom is upheld, novel predictions emerge. As expected, prey respond poorly to exotic predators that do not closely resemble familiar predators. Furthermore, a history with more abundant or diverse native predators can lessen effects of some exotic predators on prey; however, under some conditions, the opposite prediction emerges. Also, prey that evolved in situations where they easily discriminate between safe and dangerous situations can be more susceptible to novel predators.
Collapse
|
27
|
Webster C, Massaro M, Michael DR, Bambrick D, Riley JL, Nimmo DG. Native reptiles alter their foraging in the presence of the olfactory cues of invasive mammalian predators. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180136. [PMID: 30473801 PMCID: PMC6227964 DOI: 10.1098/rsos.180136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 09/28/2018] [Indexed: 06/09/2023]
Abstract
Invasive mammalian predators are linked to terrestrial vertebrate extinctions worldwide. Prey naïveté may explain the large impact invasive predators have on native prey; prey may fail to detect and react appropriately to the cues of novel predators, which results in high levels of depredation. In Australia, the feral cat (Felis catus) and the red fox (Vulpes vulpes) are implicated in more than 30 animal extinctions and the naïveté of native prey is often used to explain this high extinction rate. Reptiles are one group of animals that are heavily preyed upon by F. catus and V. vulpes. However, very few studies have examined whether reptiles are naive to their cues. In this study, we examine the ability of two native reptile species (Morethia boulengeri and Christinus marmoratus) to detect and distinguish between the chemical cues of two invasive predators (V. vulpes and F. catus) and three native predators (spotted-tailed quoll, Dasyurus maculatus; dingo, Canis lupus dingo; eastern brown snake, Pseudonaja textilis), as well as two non-predator controls (eastern grey kangaroo, Macropus giganteus and water). We conducted experiments to quantify the effects of predator scents on lizard foraging (the amount of food eaten) during 1 h trials within Y-maze arenas. We found both study species reduced the amount they consumed when exposed to predator scents-both native and invasive-indicating that these species are not naive to invasive predators. An evolved generalized predator-recognition system, rapid evolution or learned behaviour could each explain the lack of naïveté in some native Australian reptiles towards invasive predators.
Collapse
Affiliation(s)
- C. Webster
- Institute for Land, Water and Society, School of Environmental Sciences, Charles Sturt University, Albury, New South Wales 2640, Australia
| | - M. Massaro
- Institute for Land, Water and Society, School of Environmental Sciences, Charles Sturt University, Albury, New South Wales 2640, Australia
| | - D. R. Michael
- Fenner School of Environment and Society, The Australian National University, Canberra, Australian Capital Territory 2611, Australia
| | - D. Bambrick
- Institute for Land, Water and Society, School of Environmental Sciences, Charles Sturt University, Albury, New South Wales 2640, Australia
| | - J. L. Riley
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - D. G. Nimmo
- Institute for Land, Water and Society, School of Environmental Sciences, Charles Sturt University, Albury, New South Wales 2640, Australia
| |
Collapse
|
28
|
Cozzoli F, Ligetta G, Vignes F, Basset A. Revisiting GUD: An empirical test of the size-dependency of patch departure behaviour. PLoS One 2018; 13:e0204448. [PMID: 30260989 PMCID: PMC6160073 DOI: 10.1371/journal.pone.0204448] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/08/2018] [Indexed: 12/11/2022] Open
Abstract
Behaviour related to patch resource exploitation is a major determinant of individual fitness. Assuming the size-dependency of patch departure behaviour, model-based approaches have shown size-mediated coexistence in systems of competing species. However, experimental evidence for the influence of body size on patch use behaviour is scarce. In this study, we explore whether allometric principles provide an underlying framework for interspecific patterns of resource use. To this end, we propose a meso-cosm approach using three species of gastropods differing in size as a model system and 32P radio-isotopic techniques as a measure of resource use. Foragers of different size were placed in an artificial patch, provided with a limited amount of labelled resource and let them free to move as resources decrease and scarcity is sensed. We investigated the extent to which individual body size affects the exploitation of resources by examining Giving Up Density (GUD), Giving Up Time (GUT), resource absorption rate and exploitation efficiency as components of individual exploitation behaviour. To compare positive, constant and negative individual size scaling of population energy requirements, experimental trials with an equal numbers and equal biomass of differently sized foragers were carried out, and an experimental trial with equal metabolic requirements was simulated. We observed clear size dependency in the patch departure behaviour of the experimental organisms. Even under conditions of equivalent overall population energy requirements, larger foragers decided to leave the resource patch earlier and at a higher density of resources than smaller ones. Smaller foragers were able to prolong their presence and make more use of the resources, resulting in an inverse body-size scaling of resource exploitation efficiency.
Collapse
Affiliation(s)
- Francesco Cozzoli
- Laboratory of Ecology, Department of Biological and Environmental Sciences and Technologies, University of the Salento, S.P. Lecce-Monteroni, Lecce, Italy
| | - Giovanna Ligetta
- Laboratory of Ecology, Department of Biological and Environmental Sciences and Technologies, University of the Salento, S.P. Lecce-Monteroni, Lecce, Italy
| | - Fabio Vignes
- Laboratory of Ecology, Department of Biological and Environmental Sciences and Technologies, University of the Salento, S.P. Lecce-Monteroni, Lecce, Italy
| | - Alberto Basset
- Laboratory of Ecology, Department of Biological and Environmental Sciences and Technologies, University of the Salento, S.P. Lecce-Monteroni, Lecce, Italy
| |
Collapse
|
29
|
Závorka L, Buoro M, Cucherousset J. The negative ecological impacts of a globally introduced species decrease with time since introduction. GLOBAL CHANGE BIOLOGY 2018; 24:4428-4437. [PMID: 29799654 DOI: 10.1111/gcb.14323] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/19/2018] [Accepted: 04/28/2018] [Indexed: 06/08/2023]
Abstract
While there is a long-history of biological invasions and their ecological impacts have been widely demonstrated across taxa and ecosystems, our knowledge on the temporal dynamic of these impacts remains extremely limited. Using a meta-analytic approach, we investigated how the ecological impacts of non-native brown trout (Salmo trutta), a model species with a 170-year-long and well-documented history of intentional introductions across the globe, vary with time since introduction. We first observed significant negative ecological impacts immediately after the species introduction. Second, we found that the negative ecological impacts decrease with time since introduction and that the average ecological impacts become nonsignificant more than one century after introduction. This pattern was consistent across other ecological contexts (i.e., geographical location, levels of biological organization, and methodological approach). However, overall negative ecological impacts were more pronounced at the individual and population levels and in experimental studies. While the mechanisms leading to this decrease remain to be determined, our results indicate that rapid response of native organisms (e.g. adaptation, but also local extinction) may play an important role in this dynamic. Changes in native species traits and local extinction can have important conservation implications. Therefore, we argue that the decline of the negative ecological impacts over time should not be used as an argument to neglect the negative impacts of biological invasions.
Collapse
Affiliation(s)
- Libor Závorka
- Laboratoire Evolution et Diversité Biologique (EDB UMR 5174), Université de Toulouse, CNRS, ENFA, UPS, Toulouse, France
| | - Mathieu Buoro
- Laboratoire Evolution et Diversité Biologique (EDB UMR 5174), Université de Toulouse, CNRS, ENFA, UPS, Toulouse, France
- ECOBIOP, INRA, Univ. Pau & Pays Adour, St Pée sur Nivelle, France
| | - Julien Cucherousset
- Laboratoire Evolution et Diversité Biologique (EDB UMR 5174), Université de Toulouse, CNRS, ENFA, UPS, Toulouse, France
| |
Collapse
|
30
|
Carthey AJR, Banks PB. Naïve, bold, or just hungry? An invasive exotic prey species recognises but does not respond to its predators. Biol Invasions 2018. [DOI: 10.1007/s10530-018-1782-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
31
|
Steindler LA, Blumstein DT, West R, Moseby KE, Letnic M. Discrimination of introduced predators by ontogenetically naïve prey scales with duration of shared evolutionary history. Anim Behav 2018. [DOI: 10.1016/j.anbehav.2018.01.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Predicting Predator Recognition in a Changing World. Trends Ecol Evol 2018; 33:106-115. [DOI: 10.1016/j.tree.2017.10.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/17/2017] [Accepted: 10/17/2017] [Indexed: 11/20/2022]
|
33
|
Kuijper DPJ, Sahlén E, Elmhagen B, Chamaillé-Jammes S, Sand H, Lone K, Cromsigt JPGM. Paws without claws? Ecological effects of large carnivores in anthropogenic landscapes. Proc Biol Sci 2017; 283:rspb.2016.1625. [PMID: 27798302 DOI: 10.1098/rspb.2016.1625] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 09/28/2016] [Indexed: 11/12/2022] Open
Abstract
Large carnivores are frequently presented as saviours of biodiversity and ecosystem functioning through their creation of trophic cascades, an idea largely based on studies coming primarily out of relatively natural landscapes. However, in large parts of the world, particularly in Europe, large carnivores live in and are returning to strongly human-modified ecosystems. At present, we lack a coherent framework to predict the effects of large carnivores in these anthropogenic landscapes. We review how human actions influence the ecological roles of large carnivores by affecting their density or behaviour or those of mesopredators or prey species. We argue that the potential for density-mediated trophic cascades in anthropogenic landscapes is limited to unproductive areas where even low carnivore numbers may impact prey densities or to the limited parts of the landscape where carnivores are allowed to reach ecologically functional densities. The potential for behaviourally mediated trophic cascades may be larger and more widespread, because even low carnivore densities affect prey behaviour. We conclude that predator-prey interactions in anthropogenic landscapes will be highly context-dependent and human actions will often attenuate the ecological effects of large carnivores. We highlight the knowledge gaps and outline a new research avenue to study the role of carnivores in anthropogenic landscapes.
Collapse
Affiliation(s)
- D P J Kuijper
- Mammal Research Institute, Polish Academy of Sciences, ul. Waszkiewicza 1d, 17-230 Białowieża, Poland
| | - E Sahlén
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd, 901 83 Umeå, Sweden.,Fisheries, Wildlife and Conservation Biology Program, Department of Forestry and Environmental Resources, North Carolina State University, 110 Brooks Avenue, Raleigh, NC 27607, USA
| | - B Elmhagen
- Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden
| | - S Chamaillé-Jammes
- CEFE UMR 5175, CNRS-Université de Montpellier-Université Paul-Valéry Montpellier-EPHE, 1919 Route Mende, 34293 Montpellier 5, France
| | - H Sand
- Grimsö Wildlife Research Station, Department of Ecology, Swedish University of Agricultural Sciences, Riddarhyttan, Sweden
| | - K Lone
- Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway
| | - J P G M Cromsigt
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd, 901 83 Umeå, Sweden.,Centre for African Conservation Ecology, Department of Zoology, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031, South Africa
| |
Collapse
|
34
|
Carthey AJR, Bucknall MP, Wierucka K, Banks PB. Novel predators emit novel cues: a mechanism for prey naivety towards alien predators. Sci Rep 2017; 7:16377. [PMID: 29180825 PMCID: PMC5703908 DOI: 10.1038/s41598-017-16656-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/15/2017] [Indexed: 11/20/2022] Open
Abstract
Detecting enemies is crucial for survival and a trait that develops over an evolutionary timeframe. Introduced species disrupt coevolved systems of communication and detection in their new ranges, often leading to devastating impacts. The classic example is prey naivety towards alien predators, whereby prey fail to recognise a new predator. Yet exactly why native prey fail to recognise alien predators remains puzzling. Naivety theory predicts that it is because novel predators emit novel cues. Distantly related animals have distinct evolutionary histories, physiologies and ecologies, predicting they will emit different cues. Yet it also possible that all predators emit similar cues because they are carnivorous. We investigate whether odour cues differ between placental and marsupial carnivores in Australia, where native prey experienced only marsupial mammal predation until ~4000 years ago. We compared volatile chemical profiles of urine, scats and bedding from four placental and three marsupial predators. Chemical profiles showed little overlap between placental and marsupial carnivores across all odour types, suggesting that cue novelty is a plausible mechanism for prey naivety towards alien predators. Our results also suggest a role for olfactory cues to complement visual appearance and vocalisations as biologically meaningful ways to differentiate species.
Collapse
Affiliation(s)
| | - Martin P Bucknall
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, 2052, Australia
| | - Kaja Wierucka
- Department of Biological Sciences, Macquarie University, Sydney, 2109, Australia.,Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, CNRS (UMR 9197), Université Paris-Sud, Orsay, 91405, France
| | - Peter B Banks
- School of Life and Environmental Sciences, The University of Sydney, Sydney, 2006, Australia
| |
Collapse
|
35
|
Thurfjell H, Ciuti S, Boyce MS. Learning from the mistakes of others: How female elk (Cervus elaphus) adjust behaviour with age to avoid hunters. PLoS One 2017; 12:e0178082. [PMID: 28614406 PMCID: PMC5470680 DOI: 10.1371/journal.pone.0178082] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/07/2017] [Indexed: 11/19/2022] Open
Abstract
In animal behaviour, there is a dichotomy between innate behaviours (e.g., temperament or personality traits) versus those behaviours shaped by learning. Innate personality traits are supposedly less evident in animals when confounded by learning acquired with experience through time. Learning might play a key role in the development and adoption of successful anti-predator strategies, and the related adaptation has the potential to make animals that are more experienced less vulnerable to predation. We carried out a study in a system involving a large herbivorous mammal, female elk, Cervus elaphus, and their primary predator, i.e., human hunters. Using fine-scale satellite telemetry relocations, we tested whether differences in behaviour depending on age were due solely to selection pressure imposed by human hunters, meaning that females that were more cautious were more likely to survive and become older. Or whether learning also was involved, meaning that females adjusted their behaviour as they aged. Our results indicated that both human selection and learning contributed to the adoption of more cautious behavioural strategies in older females. Whereas human selection of behavioural traits has been shown in our previous research, we here provide evidence of additive learning processes being responsible for shaping the behaviour of individuals in this population. Female elk are indeed almost invulnerable to human hunters when older than 9-10 y.o., confirming that experience contributes to their survival. Female elk monitored in our study showed individually changing behaviours and clear adaptation as they aged, such as reduced movement rates (decreased likelihood of encountering human hunters), and increased use of secure areas (forest and steeper terrain), especially when close to roads. We also found that elk adjusted behaviours depending on the type of threat (bow and arrow vs. rifle hunters). This fine-tuning by elk to avoid hunters, rather than just becoming more cautious during the hunting season, highlights the behavioural plasticity of this species. Selection on behavioural traits and/or behavioural shifts via learning are an important but often-ignored consequence of human exploitation of wild animals. Such information is a critical component of the effects of human exploitation of wildlife populations with implications for improving their management and conservation.
Collapse
Affiliation(s)
- Henrik Thurfjell
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
- Swedish Species Information Centre, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Simone Ciuti
- Department of Biometry and Environmental System Analysis, University of Freiburg, Freiburg, Germany
| | - Mark S. Boyce
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| |
Collapse
|
36
|
Thomsen SK, Green DJ. Cascading effects of predation risk determine how marine predators become terrestrial prey on an oceanic island. Ecology 2017; 97:3530-3537. [PMID: 27912006 DOI: 10.1002/ecy.1614] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 09/06/2016] [Accepted: 09/08/2016] [Indexed: 11/05/2022]
Abstract
Apex predators can suppress the foraging activity of mesopredators, which may then result in cascading benefits for the prey of those mesopredators. We studied the interactions between a top predator, the Barn Owl (Tyto alba), and their primary prey, an island endemic deer mouse (Peromyscus maniculatus elusus), which in turn consumes the eggs of seabirds nesting on Santa Barbara Island in California. Scripps's Murrelets (Synthliboramphus scrippsi), a threatened nocturnal seabird, arrive annually to breed on this island, and whose first egg is particularly vulnerable to predation by mice. We took advantage of naturally occurring extreme variations in the density of mice and owls on the island over 3 years and predicted that (1) mouse foraging would decrease with increasing predation risk from owls and moonlight and (2) these decreases in foraging would reduce predation on murrelet eggs. We measured the giving up densities of mice with experimental foraging stations and found that mice were sensitive to predation risk and foraged less when owls were more abundant and less during the full moon compared to the new moon. We also monitored the fates of 151 murrelet eggs, and found that murrelet egg predation declined as owl abundance increased, and was lower during the full moon compared to the new moon. Moreover, high owl abundance suppressed egg predation even when mice were extremely abundant. We conclude that there is a behaviorally mediated cascade such that owls on the island had a positive indirect effect on murrelet egg survival. Our study adds to the wider recognition of the strength of risk effects to structure food webs, as well as highlighting the complex ways that marine and terrestrial food webs can intersect.
Collapse
Affiliation(s)
- Sarah K Thomsen
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - David J Green
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
37
|
Parsons MH, Apfelbach R, Banks PB, Cameron EZ, Dickman CR, Frank ASK, Jones ME, McGregor IS, McLean S, Müller-Schwarze D, Sparrow EE, Blumstein DT. Biologically meaningful scents: a framework for understanding predator-prey research across disciplines. Biol Rev Camb Philos Soc 2017; 93:98-114. [DOI: 10.1111/brv.12334] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Michael H. Parsons
- Department of Biology; Hofstra University; Hempstead NY 11549 U.S.A
- Department of Biological Sciences; Fordham University; Bronx NY 10458 U.S.A
| | - Raimund Apfelbach
- Institut für Neurobiologie; Universität Tübingen; Tübingen 72076 Germany
| | - Peter B. Banks
- School of Life and Environmental Sciences; The University of Sydney; Camperdown 2006 Australia
| | - Elissa Z. Cameron
- School of Biological Sciences; University of Tasmania; Hobart TAS 7001 Australia
| | - Chris R. Dickman
- Desert Ecology Research Group, School of Life and Environmental Sciences; The University of Sydney; Camperdown 2006 Australia
| | - Anke S. K. Frank
- School of Biological Sciences; University of Tasmania; Hobart TAS 7001 Australia
- Botanisches Institut, AG Linstädter; Universität zu Köln; D-50674 Köln Germany
| | - Menna E. Jones
- School of Biological Sciences; University of Tasmania; Hobart TAS 7001 Australia
| | - Ian S. McGregor
- School of Psychology, Brain and Mind Centre; University of Sydney; Camperdown 2050 Australia
| | - Stuart McLean
- School of Medicine; University of Tasmania; Hobart TAS 7001 Australia
| | - Dietland Müller-Schwarze
- College of Environmental Science and Forestry; State University of New York; Syracuse NY 13210 U.S.A
| | - Elisa E. Sparrow
- Department of Environment, Water and Natural Resources; Natural Resources Adelaide and Mt Lofty Ranges; Willunga 5172 Australia
| | - Daniel T. Blumstein
- Department of Ecology and Evolutionary Biology; University of California; Los Angeles CA 90095-1606 U.S.A
| |
Collapse
|
38
|
Evolution alters the consequences of invasions in experimental communities. Nat Ecol Evol 2016; 1:13. [PMID: 28812559 DOI: 10.1038/s41559-016-0013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/09/2016] [Indexed: 01/16/2023]
Abstract
Evolution has the capacity to alter the course of biological invasions, although such changes remain mostly unexplored by experiments. Integrating evolution into studies of invasions is important, because species traits can potentially evolve in ways that either moderate or exacerbate the impacts of invasions. We have assessed whether species evolved during experimental invasions by comparing the performance of founder populations and their potentially evolved descendants in communities of ciliates and rotifers. Residents (analogous to native species) that have previous experience with invaders consistently reduced the performance of naive invaders, supporting the emergence of increased biotic resistance as one consequence of evolution during invasions. Experienced invaders exhibited both increased and decreased performance depending on the invader species considered. Through its influence on performance and species abundance, evolution also changed community composition during the course of invasions. The idiosyncratic patterns of evolutionary changes in invading and resident species complicate predictions about the long-term consequences of invasions from initial post-invasion dynamics.
Collapse
|
39
|
Sparrow EE, Parsons MH, Blumstein DT. Novel use for a predator scent: preliminary data suggest that wombats avoid recolonising collapsed burrows following application of dingo scent. AUST J ZOOL 2016. [DOI: 10.1071/zo15068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Southern hairy-nosed wombats (Lasiorhinus latifrons) are fossorial marsupials that live in large burrow systems where their digging behaviour brings them into conflict with agriculture. In the absence of any available control options, non-selective culling is the primary mode of wombat management. This approach is contentious and has unknown implications for long-term wombat conservation. Predator scents, however, have been effective in altering behaviours of some herbivores and may offer a non-lethal alternative to culling if they discourage wombats from burrowing in perceived problem areas. Therefore, we trialled two dingo scents (faeces, urine) over 75 days to determine whether these scents would deter wombats from repopulating collapsed burrows. Ten inhabited single-entrance burrows were excavated over three days (to allow time for inhabitants to exit), collapsed and then filled in. Five burrows, separated by at least 200 m, were used for dingo scent treatments (three urine; two faeces) and three burrows, separated by the same distance, served as negative controls (unscented), along with two ‘farmer-monitored’ active controls (dog urine and a dingo carcass). We used a rank-sum score to assess wombat activity: scratching was scored with a value of (1), digging (2), and recolonisation (5), with each value reflecting total energy and time spent in the vicinity of the treatment. We fitted Generalised Estimating Equations (repeated-measures, Fisher Method) to explain variation within, and across, treatment and control burrows. Within 20 days, all 10 sites had signs of wombat activity that ranged from fresh digging, to fully functional burrows. Among the five treatment sites, scratching and tracks identified wombats as being present, but they did not dig. After 75 days, the five sites treated with dingo scents had minimal activity and no new burrows, while wombats recolonised all control burrows. Though we used only 10 burrows for this preliminary study, our findings suggest the need for further testing of dingo scents as a tool for dissuading wombats from digging and recolonisation of collapsed burrows. This represents a novel use for a predator scent, in that prey may remain in the vicinity near the deterrent, but curb problematic behaviours of economic consequence.
Collapse
|