1
|
Assis VR, Cifarelli G, Brehm AM, Orrock JL, Martin LB. Congeneric Rodents Differ in Immune Gene Expression: Implications for Host Competence for Tick-Borne Pathogens. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2025. [PMID: 39868592 DOI: 10.1002/jez.2908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/19/2024] [Accepted: 01/03/2025] [Indexed: 01/28/2025]
Abstract
Mice in the genus Peromyscus are abundant and geographically widespread in North America, serving as reservoirs for zoonotic pathogens, including Borrelia burgdorferi (B. burgdorferi), the causative agent of Lyme disease, transmitted by Ixodes scapularis ticks. While the white-footed mouse (Peromyscus leucopus (P. leucopus)) is the primary reservoir in the United States, the deer mouse (P. maniculatus), an ecologically similar congener, rarely transmits the pathogen to biting ticks. Understanding the factors that allow these similar species to serve as a poor and competent reservoir is critical for understanding tick-borne disease ecology and epidemiology, especially as climate change expands the habitats where ticks can transmit pathogens. Our study investigated immunological differences between these rodent species. Specifically, we compared the expression of six immune genes (i.e., TLR-2, IFN-γ, IL-6, IL-10, GATA-3, TGF-β) broadly involved in bacterial recognition, elimination, and/or pathology mitigation in ear biopsies collected by the National Ecological Observatory Network (NEON) as part of their routine surveillance. A principal components analysis indicated that immune gene expression in both species varied in two dimensions: TLR2, IFN-γ, IL-6, and IL-10 (comprising PC1) and TGF-β and GATA3 (comprising PC2) expression tended to covary within individuals. However, when we analyzed expression differences of each gene singly between species, P. maniculatus expressed more TLR2, IL-6, and IL-10 but less IFN-γ and GATA3 than P. leucopus. This immune profile could partly explain why P. leucopus is a better reservoir for bacterial pathogens such as B. burgdorferi.
Collapse
Affiliation(s)
- Vania R Assis
- Global Health and Interdisciplinary Disease Research Center and Center for Genomics, College of Public Health, Interdisciplinary Research Building (IDRB), Tampa, Florida, USA
| | - Gabriella Cifarelli
- Global Health and Interdisciplinary Disease Research Center and Center for Genomics, College of Public Health, Interdisciplinary Research Building (IDRB), Tampa, Florida, USA
| | - Allison M Brehm
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - John L Orrock
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lynn B Martin
- Global Health and Interdisciplinary Disease Research Center and Center for Genomics, College of Public Health, Interdisciplinary Research Building (IDRB), Tampa, Florida, USA
| |
Collapse
|
2
|
Monteith KM, Thornhill P, Vale PF. Genetic Variation in Trophic Avoidance Behaviour Shows Fruit Flies are Generally Attracted to Bacterial Substrates. Ecol Evol 2024; 14:e70541. [PMID: 39524313 PMCID: PMC11550905 DOI: 10.1002/ece3.70541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Pathogen avoidance behaviours are often assumed to be an adaptive host defence. However, there is limited experimental data on heritable, intrapopulation phenotypic variation for avoidance, a strong prerequisite for adaptive responses to selection. We investigated trophic pathogen avoidance in 122 inbred Drosophila melanogaster lines, and in a derived outbred population. Using the FlyPAD system, we tracked the feeding choice that flies made between substrates that were either clean or contained a bacterial pathogen. We uncovered significant, but weakly heritable variation in the preference index amongst fly lines. However, instead of avoidance, most lines demonstrated a preference for substrates containing several bacterial pathogens, showing avoidance only for extremely high bacterial concentrations. Bacterial preference was not associated with susceptibility to infection and was retained in flies with disrupted immune signalling. Phenotype-genotype association analysis indicated several novel genes (CG2321, CG2006, and ptp99A) associated with increased preference for the bacterial substrate, while the amino-acid transporter sobremesa was associated with greater aversion. Given the known fitness benefits of consuming high-protein diets, our results suggest that bacterial attraction may instead reflect a dietary preference for protein over carbohydrate. More work quantifying intrapopulation variation in avoidance behaviours is needed to fully assess its importance in host-pathogen evolutionary ecology.
Collapse
Affiliation(s)
- Katy M. Monteith
- Institute of Ecology and Evolution, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Phoebe Thornhill
- Institute of Ecology and Evolution, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Pedro F. Vale
- Institute of Ecology and Evolution, School of Biological SciencesUniversity of EdinburghEdinburghUK
| |
Collapse
|
3
|
Hawley DM, Pérez-Umphrey AA, Adelman JS, Fleming-Davies AE, Garrett-Larsen J, Geary SJ, Childs LM, Langwig KE. Prior exposure to pathogens augments host heterogeneity in susceptibility and has key epidemiological consequences. PLoS Pathog 2024; 20:e1012092. [PMID: 39231171 PMCID: PMC11404847 DOI: 10.1371/journal.ppat.1012092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/16/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024] Open
Abstract
Pathogen epidemics are key threats to human and wildlife health. Across systems, host protection from pathogens following initial exposure is often incomplete, resulting in recurrent epidemics through partially-immune hosts. Variation in population-level protection has important consequences for epidemic dynamics, but how acquired protection influences inter-individual heterogeneity in susceptibility and its epidemiological consequences remains understudied. We experimentally investigated whether prior exposure (none, low-dose, or high-dose) to a bacterial pathogen alters host heterogeneity in susceptibility among songbirds. Hosts with no prior pathogen exposure had little variation in protection, but heterogeneity in susceptibility was significantly augmented by prior pathogen exposure, with the highest variability detected in hosts given high-dose prior exposure. An epidemiological model parameterized with experimental data found that heterogeneity in susceptibility from prior exposure more than halved epidemic sizes compared with a homogeneous population with identical mean protection. However, because infection-induced mortality was also greatly reduced in hosts with prior pathogen exposure, reductions in epidemic size were smaller than expected in hosts with prior exposure. These results highlight the importance of variable protection from prior exposure and/or vaccination in driving population-level heterogeneity and epidemiological dynamics.
Collapse
Affiliation(s)
- Dana M Hawley
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virgina, United States of America
| | - Anna A Pérez-Umphrey
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virgina, United States of America
| | - James S Adelman
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee, United States of America
| | | | - Jesse Garrett-Larsen
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virgina, United States of America
| | - Steven J Geary
- Department of Pathobiology & Veterinary Science, University of Connecticut, Storrs, Connecticut, United States of America
| | - Lauren M Childs
- Department of Mathematics and Virginia Tech Center for the Mathematics of Biosystems, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Kate E Langwig
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virgina, United States of America
| |
Collapse
|
4
|
Hawley DM, Pérez-Umphrey AA, Adelman JS, Fleming-Davies AE, Garrett-Larsen J, Geary SJ, Childs LM, Langwig KE. Prior exposure to pathogens augments host heterogeneity in susceptibility and has key epidemiological consequences. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.05.583455. [PMID: 38496428 PMCID: PMC10942282 DOI: 10.1101/2024.03.05.583455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Pathogen epidemics are key threats to human and wildlife health. Across systems, host protection from pathogens following initial exposure is often incomplete, resulting in recurrent epidemics through partially-immune hosts. Variation in population-level protection has important consequences for epidemic dynamics, but how acquired protection influences inter-individual heterogeneity in susceptibility and its epidemiological consequences remains understudied. We experimentally investigated whether prior exposure (none, low-dose, or high-dose) to a bacterial pathogen alters host heterogeneity in susceptibility among songbirds. Hosts with no prior pathogen exposure had little variation in protection, but heterogeneity in susceptibility was significantly augmented by prior pathogen exposure, with the highest variability detected in hosts given high-dose prior exposure. An epidemiological model parameterized with experimental data found that heterogeneity in susceptibility from prior exposure more than halved epidemic sizes compared with a homogeneous population with identical mean protection. However, because infection-induced mortality was also greatly reduced in hosts with prior pathogen exposure, reductions in epidemic size were smaller than expected in hosts with prior exposure. These results highlight the importance of variable protection from prior exposure and/or vaccination in driving population-level heterogeneity and epidemiological dynamics.
Collapse
Affiliation(s)
- Dana M. Hawley
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | | | - James S. Adelman
- Department of Biological Sciences, University of Memphis, Memphis, TN, USA
| | | | | | - Steven J. Geary
- Department of Pathobiology & Veterinary Science, University of Connecticut, Storrs, CT, USA
| | - Lauren M. Childs
- Department of Mathematics and Virginia Tech Center for Mathematics of Biosystems, Virginia Tech, Blacksburg, VA, USA
| | - Kate E. Langwig
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
5
|
Gupte PR, Albery GF, Gismann J, Sweeny A, Weissing FJ. Novel pathogen introduction triggers rapid evolution in animal social movement strategies. eLife 2023; 12:e81805. [PMID: 37548365 PMCID: PMC10449382 DOI: 10.7554/elife.81805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/04/2023] [Indexed: 08/08/2023] Open
Abstract
Animal sociality emerges from individual decisions on how to balance the costs and benefits of being sociable. Novel pathogens introduced into wildlife populations should increase the costs of sociality, selecting against gregariousness. Using an individual-based model that captures essential features of pathogen transmission among social hosts, we show how novel pathogen introduction provokes the rapid evolutionary emergence and coexistence of distinct social movement strategies. These strategies differ in how they trade the benefits of social information against the risk of infection. Overall, pathogen-risk-adapted populations move more and have fewer associations with other individuals than their pathogen-risk-naive ancestors, reducing disease spread. Host evolution to be less social can be sufficient to cause a pathogen to be eliminated from a population, which is followed by a rapid recovery in social tendency. Our conceptual model is broadly applicable to a wide range of potential host-pathogen introductions and offers initial predictions for the eco-evolutionary consequences of wildlife pathogen spillover scenarios and a template for the development of theory in the ecology and evolution of animals' movement decisions.
Collapse
Affiliation(s)
- Pratik Rajan Gupte
- Groningen Institute for Evolutionary Life Sciences, University of GroningenGroningenNetherlands
| | - Gregory F Albery
- Georgetown UniversityWashingtonUnited States
- Wissenschaftskolleg zu BerlinBerlinGermany
| | - Jakob Gismann
- Groningen Institute for Evolutionary Life Sciences, University of GroningenGroningenNetherlands
| | - Amy Sweeny
- Institute of Evolutionary Biology, University of EdinburghEdinburghUnited Kingdom
| | - Franz J Weissing
- Groningen Institute for Evolutionary Life Sciences, University of GroningenGroningenNetherlands
| |
Collapse
|
6
|
Tepox-Vivar N, Stephenson JF, Guevara-Fiore P. Transmission dynamics of ectoparasitic gyrodactylids (Platyhelminthes, Monogenea): An integrative review. Parasitology 2022; 149:1-13. [PMID: 35481457 DOI: 10.1017/s0031182022000361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Parasite transmission is the ability of pathogens to move between hosts. As a key component of the interaction between hosts and parasites, it has crucial implications for the fitness of both. Here, we review the transmission dynamics of Gyrodactylus species, which are monogenean ectoparasites of teleost fishes and a prominent model for studies of parasite transmission. Particularly, we focus on the most studied host–parasite system within this genus: guppies, Poecilia reticulata, and G. turnbulli/G. bullatarudis. Through an integrative literature examination, we identify the main variables affecting Gyrodactylus spread between hosts, and the potential factors that enhance their transmission. Previous research indicates that Gyrodactylids spread when their current conditions are unsuitable. Transmission depends on abiotic factors like temperature, and biotic variables such as gyrodactylid biology, host heterogeneity, and their interaction. Variation in the degree of social contact between hosts and sexes might also result in distinct dynamics. Our review highlights a lack of mathematical models that could help predict the dynamics of gyrodactylids, and there is also a bias to study only a few species. Future research may usefully focus on how gyrodactylid reproductive traits and host heterogeneity promote transmission and should incorporate the feedbacks between host behaviour and parasite transmission.
Collapse
Affiliation(s)
- Natalia Tepox-Vivar
- Maestría en Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72592, Mexico
| | - Jessica F Stephenson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Palestina Guevara-Fiore
- Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72592, Mexico
| |
Collapse
|
7
|
Janecka MJ, Rovenolt F, Stephenson JF. How does host social behavior drive parasite non-selective evolution from the within-host to the landscape-scale? Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-03089-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Keesing F, Ostfeld RS. Dilution effects in disease ecology. Ecol Lett 2021; 24:2490-2505. [PMID: 34482609 PMCID: PMC9291114 DOI: 10.1111/ele.13875] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/19/2021] [Indexed: 01/03/2023]
Abstract
For decades, people have reduced the transmission of pathogens by adding low‐quality hosts to managed environments like agricultural fields. More recently, there has been interest in whether similar ‘dilution effects’ occur in natural disease systems, and whether these effects are eroded as diversity declines. For some pathogens of plants, humans and other animals, the highest‐quality hosts persist when diversity is lost, so that high‐quality hosts dominate low‐diversity communities, resulting in greater pathogen transmission. Meta‐analyses reveal that these natural dilution effects are common. However, studying them remains challenging due to limitations on the ability of researchers to manipulate many disease systems experimentally, difficulties of acquiring data on host quality and confusion about what should and should not be considered a dilution effect. Because dilution effects are widely used in managed disease systems and have been documented in a variety of natural disease systems, their existence should not be considered controversial. Important questions remain about how frequently they occur and under what conditions to expect them. There is also ongoing confusion about their relationships to both pathogen spillover and general biogeographical correlations between diversity and disease, which has resulted in an inconsistent and confusing literature. Progress will require rigorous and creative research.
Collapse
|
9
|
Bailey C, Strepparava N, Ros A, Wahli T, Schmidt-Posthaus H, Segner H, Tafalla C. It's a hard knock life for some: Heterogeneity in infection life history of salmonids influences parasite disease outcomes. J Anim Ecol 2021; 90:2573-2593. [PMID: 34165799 PMCID: PMC8597015 DOI: 10.1111/1365-2656.13562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/19/2021] [Indexed: 11/27/2022]
Abstract
Heterogeneity in immunity occurs across numerous disease systems with individuals from the same population having diverse disease outcomes. Proliferative kidney disease (PKD) caused by Tetracapsuloides bryosalmonae, is a persistent parasitic disease negatively impacting both wild and farmed salmonids. Little is known of how PKD is spread or maintained within wild susceptible populations. We investigated an aspect of fish disease that has been largely overlooked, that is, the role of the host phenotypic heterogeneity in disease outcome. We examined how host susceptibility to T. bryosalmonae infection, and the disease PKD, varied across different infection life-history stages and how it differs between naïve, re-infected and persistently infected hosts. We investigated the response to parasite exposure in host phenotypes with (a) different ages and (b) heterogeneous infection life histories. Among (a) the age phenotypes were young-of-the-year (YOY) fish and juvenile 1+ fish (fish older than one) and, for (b) juvenile 1+ infection survivors were either re-exposed or not re- exposed to the parasite and response phenotypes were assigned post-hoc dependant on infection status. In fish not re-exposed this included fish that cleared infection (CI) or had a persistent infection (PI). In fish re-exposed these included fish that were re-infected (RI), or re-exposed and uninfected (RCI). We assessed both parasite-centric (infection prevalence, parasite burden, malacospore transmission) and host-centric parameters (growth rates, disease severity, infection tolerance and the immune response). In (a), YOY fish, parasite success and disease severity were greater and differences in the immune response occurred, demonstrating an ontogenetic decline of susceptibility in older fish. In (b), in PI and RI fish, parasite success and disease severity were comparable. However, expression of several adaptive immunity markers was greater in RI fish, indicating concomitant immunity, as re-exposure did not intensify infection. We demonstrate the relevance of heterogeneity in infection life history on disease outcome and describe several distinctive features of immune ontogeny and protective immunity in this model not previously reported. The relevance of such themes on a population level requires greater research in many aquatic disease systems to generate clearer framework for understanding the spread and maintenance of aquatic pathogens.
Collapse
Affiliation(s)
- Christyn Bailey
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA-INIA), Madrid, Spain
| | - Nicole Strepparava
- Centre for Fish and Wildlife Health, University of Bern, Bern, Switzerland
| | - Albert Ros
- LAZBW, Fischereiforschungsstelle, Langenargen, Germany
| | - Thomas Wahli
- Centre for Fish and Wildlife Health, University of Bern, Bern, Switzerland
| | | | - Helmut Segner
- Centre for Fish and Wildlife Health, University of Bern, Bern, Switzerland
| | - Carolina Tafalla
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA-INIA), Madrid, Spain
| |
Collapse
|
10
|
Hawley DM, Gibson AK, Townsend AK, Craft ME, Stephenson JF. Bidirectional interactions between host social behaviour and parasites arise through ecological and evolutionary processes. Parasitology 2021; 148:274-288. [PMID: 33092680 PMCID: PMC11010184 DOI: 10.1017/s0031182020002048] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023]
Abstract
An animal's social behaviour both influences and changes in response to its parasites. Here we consider these bidirectional links between host social behaviours and parasite infection, both those that occur from ecological vs evolutionary processes. First, we review how social behaviours of individuals and groups influence ecological patterns of parasite transmission. We then discuss how parasite infection, in turn, can alter host social interactions by changing the behaviour of both infected and uninfected individuals. Together, these ecological feedbacks between social behaviour and parasite infection can result in important epidemiological consequences. Next, we consider the ways in which host social behaviours evolve in response to parasites, highlighting constraints that arise from the need for hosts to maintain benefits of sociality while minimizing fitness costs of parasites. Finally, we consider how host social behaviours shape the population genetic structure of parasites and the evolution of key parasite traits, such as virulence. Overall, these bidirectional relationships between host social behaviours and parasites are an important yet often underappreciated component of population-level disease dynamics and host-parasite coevolution.
Collapse
Affiliation(s)
- Dana M. Hawley
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA24061, USA
| | - Amanda K. Gibson
- Department of Biology, University of Virginia, Charlottesville, VA22903, USA
| | | | - Meggan E. Craft
- Department of Veterinary Population Medicine and Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN55108, USA
| | - Jessica F. Stephenson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA15260, USA
| |
Collapse
|
11
|
Siva-Jothy JA, Vale PF. Dissecting genetic and sex-specific sources of host heterogeneity in pathogen shedding and spread. PLoS Pathog 2021; 17:e1009196. [PMID: 33465160 PMCID: PMC7846003 DOI: 10.1371/journal.ppat.1009196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/29/2021] [Accepted: 11/30/2020] [Indexed: 11/18/2022] Open
Abstract
Host heterogeneity in disease transmission is widespread but precisely how different host traits drive this heterogeneity remains poorly understood. Part of the difficulty in linking individual variation to population-scale outcomes is that individual hosts can differ on multiple behavioral, physiological and immunological axes, which will together impact their transmission potential. Moreover, we lack well-characterized, empirical systems that enable the quantification of individual variation in key host traits, while also characterizing genetic or sex-based sources of such variation. Here we used Drosophila melanogaster and Drosophila C Virus as a host-pathogen model system to dissect the genetic and sex-specific sources of variation in multiple host traits that are central to pathogen transmission. Our findings show complex interactions between genetic background, sex, and female mating status accounting for a substantial proportion of variance in lifespan following infection, viral load, virus shedding, and viral load at death. Two notable findings include the interaction between genetic background and sex accounting for nearly 20% of the variance in viral load, and genetic background alone accounting for ~10% of the variance in viral shedding and in lifespan following infection. To understand how variation in these traits could generate heterogeneity in individual pathogen transmission potential, we combined measures of lifespan following infection, virus shedding, and previously published data on fly social aggregation. We found that the interaction between genetic background and sex explained ~12% of the variance in individual transmission potential. Our results highlight the importance of characterising the sources of variation in multiple host traits to understand the drivers of heterogeneity in disease transmission.
Collapse
Affiliation(s)
- Jonathon A. Siva-Jothy
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Pedro F. Vale
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
12
|
Hamilton DG, Jones ME, Cameron EZ, Kerlin DH, McCallum H, Storfer A, Hohenlohe PA, Hamede RK. Infectious disease and sickness behaviour: tumour progression affects interaction patterns and social network structure in wild Tasmanian devils. Proc Biol Sci 2020; 287:20202454. [PMID: 33290679 PMCID: PMC7739934 DOI: 10.1098/rspb.2020.2454] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Infectious diseases, including transmissible cancers, can have a broad range of impacts on host behaviour, particularly in the latter stages of disease progression. However, the difficulty of early diagnoses makes the study of behavioural influences of disease in wild animals a challenging task. Tasmanian devils (Sarcophilus harrisii) are affected by a transmissible cancer, devil facial tumour disease (DFTD), in which tumours are externally visible as they progress. Using telemetry and mark-recapture datasets, we quantify the impacts of cancer progression on the behaviour of wild devils by assessing how interaction patterns within the social network of a population change with increasing tumour load. The progression of DFTD negatively influences devils' likelihood of interaction within their network. Infected devils were more active within their network late in the mating season, a pattern with repercussions for DFTD transmission. Our study provides a rare opportunity to quantify and understand the behavioural feedbacks of disease in wildlife and how they may affect transmission and population dynamics in general.
Collapse
Affiliation(s)
- David G. Hamilton
- School of Natural Sciences, University of Tasmania, Hobart, Australia,e-mail:
| | - Menna E. Jones
- School of Natural Sciences, University of Tasmania, Hobart, Australia
| | - Elissa Z. Cameron
- School of Natural Sciences, University of Tasmania, Hobart, Australia,School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Douglas H. Kerlin
- Environmental Futures Research Institute, Griffith University, Nathan, Australia
| | - Hamish McCallum
- Environmental Futures Research Institute, Griffith University, Nathan, Australia
| | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, USA
| | | | - Rodrigo K. Hamede
- School of Natural Sciences, University of Tasmania, Hobart, Australia,CANECEV, Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC), Montpellier 34090, France,e-mail:
| |
Collapse
|
13
|
White LA, Siva-Jothy JA, Craft ME, Vale PF. Genotype and sex-based host variation in behaviour and susceptibility drives population disease dynamics. Proc Biol Sci 2020; 287:20201653. [PMID: 33171094 DOI: 10.1098/rspb.2020.1653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Host heterogeneity in pathogen transmission is widespread and presents a major hurdle to predicting and minimizing disease outbreaks. Using Drosophila melanogaster infected with Drosophila C virus as a model system, we integrated experimental measurements of social aggregation, virus shedding, and disease-induced mortality from different genetic lines and sexes into a disease modelling framework. The experimentally measured host heterogeneity produced substantial differences in simulated disease outbreaks, providing evidence for genetic and sex-specific effects on disease dynamics at a population level. While this was true for homogeneous populations of single sex/genetic line, the genetic background or sex of the index case did not alter outbreak dynamics in simulated, heterogeneous populations. Finally, to explore the relative effects of social aggregation, viral shedding and mortality, we compared simulations where we allowed these traits to vary, as measured experimentally, to simulations where we constrained variation in these traits to the population mean. In this context, variation in infectiousness, followed by social aggregation, was the most influential component of transmission. Overall, we show that host heterogeneity in three host traits dramatically affects population-level transmission, but the relative impact of this variation depends on both the susceptible population diversity and the distribution of population-level variation.
Collapse
Affiliation(s)
- Lauren A White
- National Socio-Environmental Synthesis Center SESYNC, 1 Park Place, Suite 300, Annapolis, MD 21401, USA.,Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN 55126, USA
| | - Jonathon A Siva-Jothy
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Ashworth Labs, Charlotte Auerbach Road, Edinburgh EH9 3JT, UK
| | - Meggan E Craft
- Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN 55126, USA
| | - Pedro F Vale
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Ashworth Labs, Charlotte Auerbach Road, Edinburgh EH9 3JT, UK
| |
Collapse
|
14
|
Borer ET, Asik L, Everett RA, Frenken T, Gonzalez AL, Paseka RE, Peace A, Seabloom EW, Strauss AT, Van de Waal DB, White LA. Elements of disease in a changing world: modelling feedbacks between infectious disease and ecosystems. Ecol Lett 2020; 24:6-19. [PMID: 33047456 DOI: 10.1111/ele.13617] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/15/2020] [Accepted: 09/01/2020] [Indexed: 11/30/2022]
Abstract
An overlooked effect of ecosystem eutrophication is the potential to alter disease dynamics in primary producers, inducing disease-mediated feedbacks that alter net primary productivity and elemental recycling. Models in disease ecology rarely track organisms past death, yet death from infection can alter important ecosystem processes including elemental recycling rates and nutrient supply to living hosts. In contrast, models in ecosystem ecology rarely track disease dynamics, yet elemental nutrient pools (e.g. nitrogen, phosphorus) can regulate important disease processes including pathogen reproduction and transmission. Thus, both disease and ecosystem ecology stand to grow as fields by exploring questions that arise at their intersection. However, we currently lack a framework explicitly linking these disciplines. We developed a stoichiometric model using elemental currencies to track primary producer biomass (carbon) in vegetation and soil pools, and to track prevalence and the basic reproduction number (R0 ) of a directly transmitted pathogen. This model, parameterised for a deciduous forest, demonstrates that anthropogenic nutrient supply can interact with disease to qualitatively alter both ecosystem and disease dynamics. Using this element-focused approach, we identify knowledge gaps and generate predictions about the impact of anthropogenic nutrient supply rates on infectious disease and feedbacks to ecosystem carbon and nutrient cycling.
Collapse
Affiliation(s)
- Elizabeth T Borer
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, 55108, USA
| | - Lale Asik
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX, 79409, USA.,Department of Mathematics, Data Sciences and Statistics, University of The Incarnate World, San Antonio, TX, 78209, USA
| | - Rebecca A Everett
- Department of Mathematics and Statistics, Haverford College, Haverford, PA, 19041, USA
| | - Thijs Frenken
- Netherlands Institute of Ecology (NIOO), Droevendaalsesteeg 10, Wageningen, 6708 PB, Netherlands.,Great Lakes Institute for Environmental Research (GLIER), University of Windsor, Windsor, Ontario, N9B 3P4, Canada
| | - Angelica L Gonzalez
- Department of Biology & Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, 80102, USA
| | - Rachel E Paseka
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, 55108, USA
| | - Angela Peace
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX, 79409, USA
| | - Eric W Seabloom
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, 55108, USA
| | - Alexander T Strauss
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, 55108, USA.,University of Georgia, Odum School of Ecology, Athens, GA, 30602, USA
| | - Dedmer B Van de Waal
- Netherlands Institute of Ecology (NIOO), Droevendaalsesteeg 10, Wageningen, 6708 PB, Netherlands
| | - Lauren A White
- National Socio-Environmental Synthesis Center, Annapolis, MD, 21401, USA
| |
Collapse
|
15
|
Ellner SP, Ng WH, Myers CR. Individual Specialization and Multihost Epidemics: Disease Spread in Plant-Pollinator Networks. Am Nat 2020; 195:E118-E131. [PMID: 32364778 DOI: 10.1086/708272] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Many parasites infect multiple species and persist through a combination of within- and between-species transmission. Multispecies transmission networks are typically constructed at the species level, linking two species if any individuals of those species interact. However, generalist species often consist of specialized individuals that prefer different subsets of available resources, so individual- and species-level contact networks can differ systematically. To explore the epidemiological impacts of host specialization, we build and study a model for pollinator pathogens on plant-pollinator networks, in which individual pollinators have dynamic preferences for different flower species. We find that modeling and analysis that ignore individual host specialization can predict die-off of a disease that is actually strongly persistent and can badly over- or underpredict steady-state disease prevalence. Effects of individual preferences remain substantial whenever mean preference duration exceeds half of the mean time from infection to recovery or death. Similar results hold in a model where hosts foraging in different habitats have different frequencies of contact with an environmental reservoir for the pathogen. Thus, even if all hosts have the same long-run average behavior, dynamic individual differences can profoundly affect disease persistence and prevalence.
Collapse
|
16
|
Leu ST, Sah P, Krzyszczyk E, Jacoby AM, Mann J, Bansal S. Sex, synchrony, and skin contact: integrating multiple behaviors to assess pathogen transmission risk. Behav Ecol 2020. [DOI: 10.1093/beheco/araa002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Direct pathogen and parasite transmission is fundamentally driven by a population’s contact network structure and its demographic composition and is further modulated by pathogen life-history traits. Importantly, populations are most often concurrently exposed to a suite of pathogens, which is rarely investigated, because contact networks are typically inferred from spatial proximity only. Here, we use 5 years of detailed observations of Indo-Pacific bottlenose dolphins (Tursiops aduncus) that distinguish between four different types of social contact. We investigate how demography (sex and age) affects these different social behaviors. Three of the four social behaviors can be used as a proxy for understanding key routes of direct pathogen transmission (sexual contact, skin contact, and aerosol contact of respiratory vapor above the water surface). We quantify the demography-dependent network connectedness, representing the risk of exposure associated with the three pathogen transmission routes, and quantify coexposure risks and relate them to individual sociability. Our results suggest demography-driven disease risk in bottlenose dolphins, with males at greater risk than females, and transmission route-dependent implications for different age classes. We hypothesize that male alliance formation and the divergent reproductive strategies in males and females drive the demography-dependent connectedness and, hence, exposure risk to pathogens. Our study provides evidence for the risk of coexposure to pathogens transmitted along different transmission routes and that they relate to individual sociability. Hence, our results highlight the importance of a multibehavioral approach for a more complete understanding of the overall pathogen transmission risk in animal populations, as well as the cumulative costs of sociality.
Collapse
Affiliation(s)
- Stephan T Leu
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Pratha Sah
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Ewa Krzyszczyk
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Ann-Marie Jacoby
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Janet Mann
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Shweta Bansal
- Department of Biology, Georgetown University, Washington, DC, USA
| |
Collapse
|
17
|
Fritz C, Lebacher M, Kauermann G. Tempus volat, hora fugit: A survey of tie‐oriented dynamic network models in discrete and continuous time. STAT NEERL 2019. [DOI: 10.1111/stan.12198] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cornelius Fritz
- Department of StatisticsLudwig‐Maximilians‐Universität München Munich Germany
| | - Michael Lebacher
- Department of StatisticsLudwig‐Maximilians‐Universität München Munich Germany
| | - Göran Kauermann
- Department of StatisticsLudwig‐Maximilians‐Universität München Munich Germany
| |
Collapse
|
18
|
Stephenson JF. Parasite-induced plasticity in host social behaviour depends on sex and susceptibility. Biol Lett 2019; 15:20190557. [PMID: 31744410 DOI: 10.1098/rsbl.2019.0557] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Understanding the effects of parasites on host behaviour, of host behaviour on parasite infection, and the reciprocal interactions between these processes is vital to improving our understanding of animal behaviour and disease dynamics. However, behaviour and parasite infection are both highly variable within and between individual hosts, and how this variation affects behaviour-parasite feedbacks is poorly understood. For example, it is unclear how an individual's behaviour before infection might change once it becomes infected, or as the infection progresses, and how these changes depend on the host's parasite susceptibility. Here, using the guppy, Poecilia reticulata, and a directly transmitted ectoparasite, Gyrodactylus turnbulli, I show that parasite-induced behavioural plasticity depends on host sex and susceptibility. Among females, time spent shoaling (sociality), a behaviour that increases parasite transmission, did not depend on infection status (infected/not) or susceptibility. By contrast, male sociality in the absence of infection was negatively correlated with susceptibility, suggesting that the most susceptible males use behaviour to avoid infection. However, in late infection, when parasite transmission is most likely, male sociality and susceptibility became positively correlated, suggesting that susceptible males modify their behaviour upon infection potentially to increase transmission and mating opportunities. I discuss the implications of these patterns for disease dynamics.
Collapse
Affiliation(s)
- Jessica F Stephenson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.,Department of Aquatic Ecology, EAWAG, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland.,Center for Adaptation to a Changing Environment, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
19
|
Burgan SC, Gervasi SS, Johnson LR, Martin LB. How Individual Variation in Host Tolerance Affects Competence to Transmit Parasites. Physiol Biochem Zool 2019; 92:49-57. [PMID: 30481116 DOI: 10.1086/701169] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Tolerance, or the maintenance of host health or fitness at a given parasite burden, has often been studied in evolutionary and medical contexts, particularly with respect to effects on the evolution of parasite virulence and individual patient outcomes. These bodies of work have provided insight about tolerance for evolutionary phenomena (e.g., virulence) and individual health (e.g., recovering from an infection). However, due to the specific motivations of that work, few studies have considered the ecological ramifications of variation in tolerance, namely, how variation in forms of tolerance could mediate parasite movement through populations and even community-level disease dynamics. Tolerance is most commonly regarded as the relationship between host fitness and parasite burden. However, few if any studies have actually quantified host fitness, instead utilizing proxies of fitness as the response variables to be regressed against parasite burden. Here, we address how attention to the effects of parasite burden on traits that are relevant to host competence (i.e., the ability to amplify parasites to levels transmissible to other hosts/vectors) will enhance our understanding of disease dynamics in nature. We also provide several forms of guidance for how to overcome the challenges of quantifying tolerance in wild organisms.
Collapse
|
20
|
Huyvaert KP, Russell RE, Patyk KA, Craft ME, Cross PC, Garner MG, Martin MK, Nol P, Walsh DP. Challenges and Opportunities Developing Mathematical Models of Shared Pathogens of Domestic and Wild Animals. Vet Sci 2018; 5:E92. [PMID: 30380736 PMCID: PMC6313884 DOI: 10.3390/vetsci5040092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/04/2018] [Accepted: 10/18/2018] [Indexed: 01/19/2023] Open
Abstract
Diseases that affect both wild and domestic animals can be particularly difficult to prevent, predict, mitigate, and control. Such multi-host diseases can have devastating economic impacts on domestic animal producers and can present significant challenges to wildlife populations, particularly for populations of conservation concern. Few mathematical models exist that capture the complexities of these multi-host pathogens, yet the development of such models would allow us to estimate and compare the potential effectiveness of management actions for mitigating or suppressing disease in wildlife and/or livestock host populations. We conducted a workshop in March 2014 to identify the challenges associated with developing models of pathogen transmission across the wildlife-livestock interface. The development of mathematical models of pathogen transmission at this interface is hampered by the difficulties associated with describing the host-pathogen systems, including: (1) the identity of wildlife hosts, their distributions, and movement patterns; (2) the pathogen transmission pathways between wildlife and domestic animals; (3) the effects of the disease and concomitant mitigation efforts on wild and domestic animal populations; and (4) barriers to communication between sectors. To promote the development of mathematical models of transmission at this interface, we recommend further integration of modern quantitative techniques and improvement of communication among wildlife biologists, mathematical modelers, veterinary medicine professionals, producers, and other stakeholders concerned with the consequences of pathogen transmission at this important, yet poorly understood, interface.
Collapse
Affiliation(s)
- Kathryn P Huyvaert
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO 80523, USA.
| | - Robin E Russell
- U.S. Geological Survey, National Wildlife Health Center, Madison, WI 53711, USA.
| | - Kelly A Patyk
- Center for Epidemiology and Animal Health, United States Department of Agriculture, Animal and Plant Health Inspection Service, Fort Collins, CO 80526, USA.
| | - Meggan E Craft
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA.
| | - Paul C Cross
- U.S. Geological Survey, Northern Rocky Mountain Science Center, Bozeman, MT 59715, USA.
| | - M Graeme Garner
- European Commission for the Control of Foot-and-Mouth Disease-Food and Agriculture Organization of the United Nations, 00153 Roma RM, Italy.
| | - Michael K Martin
- Livestock Poultry Health Division, Clemson University, Columbia, SC 29224, USA.
| | - Pauline Nol
- Center for Epidemiology and Animal Health, United States Department of Agriculture, Animal and Plant Health Inspection Service, Fort Collins, CO 80526, USA.
| | - Daniel P Walsh
- U.S. Geological Survey, National Wildlife Health Center, Madison, WI 53711, USA.
| |
Collapse
|
21
|
Sah P, Mann J, Bansal S. Disease implications of animal social network structure: A synthesis across social systems. J Anim Ecol 2018; 87:546-558. [PMID: 29247466 DOI: 10.1111/1365-2656.12786] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/14/2017] [Indexed: 12/22/2022]
Abstract
The disease costs of sociality have largely been understood through the link between group size and transmission. However, infectious disease spread is driven primarily by the social organization of interactions in a group and not its size. We used statistical models to review the social network organization of 47 species, including mammals, birds, reptiles, fish and insects by categorizing each species into one of three social systems, relatively solitary, gregarious and socially hierarchical. Additionally, using computational experiments of infection spread, we determined the disease costs of each social system. We find that relatively solitary species have large variation in number of social partners, that socially hierarchical species are the least clustered in their interactions, and that social networks of gregarious species tend to be the most fragmented. However, these structural differences are primarily driven by weak connections, which suggest that different social systems have evolved unique strategies to organize weak ties. Our synthetic disease experiments reveal that social network organization can mitigate the disease costs of group living for socially hierarchical species when the pathogen is highly transmissible. In contrast, highly transmissible pathogens cause frequent and prolonged epidemic outbreaks in gregarious species. We evaluate the implications of network organization across social systems despite methodological challenges, and our findings offer new perspective on the debate about the disease costs of group living. Additionally, our study demonstrates the potential of meta-analytic methods in social network analysis to test ecological and evolutionary hypotheses on cooperation, group living, communication and resilience to extrinsic pressures.
Collapse
Affiliation(s)
- Pratha Sah
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Janet Mann
- Department of Biology, Georgetown University, Washington, DC, USA.,Department of Psychology, Georgetown University, Washington, DC, USA
| | - Shweta Bansal
- Department of Biology, Georgetown University, Washington, DC, USA
| |
Collapse
|