1
|
Pedroso LGA, Klimov PB, Mironov SV, OConnor BM, Braig HR, Pepato AR, Johnson KP, He Q, Hernandes FA. Horizontal transmission maintains host specificity and codiversification of symbionts in a brood parasitic host. Commun Biol 2023; 6:1171. [PMID: 37973862 PMCID: PMC10654585 DOI: 10.1038/s42003-023-05535-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
In host-symbiont systems, interspecific transmissions create opportunities for host switches, potentially leading to cophylogenetic incongruence. In contrast, conspecific transmissions often result in high host specificity and congruent cophylogenies. In most bird-feather mite systems, conspecific transmission is considered dominant, while interspecific transmission is supposedly rare. However, while mites typically maintain high host specificity, incongruent cophylogenies are common. To explain this conundrum, we quantify the magnitude of conspecific vs. interspecific transmission in the brood parasitic shiny cowbird (Molothrus bonariensis). M. bonariensis lacks parental care, allowing the assessment of the role of horizontal transmission alone in maintaining host specificity. We found that despite frequent interspecific interactions via foster parental care, mite species dispersing via conspecific horizontal contacts are three times more likely to colonize M. bonariensis than mites transmitted vertically via foster parents. The results highlight the previously underappreciated rate of transmission via horizontal contacts in maintaining host specificity on a microevolutionary scale. On a macroevolutionary scale, however, host switches were estimated to have occurred as frequently as codivergences. This suggests that macroevolutionary patterns resulting from rare events cannot be easily generalized from short-term evolutionary trends.
Collapse
Affiliation(s)
- Luiz Gustavo A Pedroso
- Departamento de Zoologia, Av. 24-A, 1515, 13506-900, Universidade Estadual Paulista, Rio Claro, São Paulo State, Brazil.
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.
- Department of Ecology and Evolutionary Biology, Museum of Zoology, University of Michigan, Ann Arbor, MI, USA.
| | - Pavel B Klimov
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.
- Tyumen State University, 10 Semakova Str., 625003, Tyumen, Russia.
- Bangor University, Brambell 503, School of Natural Sciences, Bangor, LL57 2 UW, Wales, UK.
| | - Sergey V Mironov
- Zoological Institute of the Russian Academy of Sciences, Saint Petersburg, 199034, Russia
| | - Barry M OConnor
- Department of Ecology and Evolutionary Biology, Museum of Zoology, University of Michigan, Ann Arbor, MI, USA
| | - Henk R Braig
- Bangor University, Brambell 503, School of Natural Sciences, Bangor, LL57 2 UW, Wales, UK
- Institute and Museum of Natural Sciences, Faculty of Natural and Exact Sciences, National University of San Juan, San Juan, Argentina
| | - Almir R Pepato
- Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Kevin P Johnson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Qixin He
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.
| | - Fabio Akashi Hernandes
- Departamento de Zoologia, Av. 24-A, 1515, 13506-900, Universidade Estadual Paulista, Rio Claro, São Paulo State, Brazil
- Departamento de Ecologia e Zoologia, CCB/ECZ, Trindade, Universidade Federal de Santa Catarina, 88040-970, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
2
|
Mayfield MM, Lau JA, Tobias JA, Ives AR, Strauss SY. What Can Evolutionary History Tell Us about the Functioning of Ecological Communities? The ASN Presidential Debate. Am Nat 2023; 202:587-603. [PMID: 37963115 DOI: 10.1086/726336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
AbstractIn January 2018, Sharon Strauss, then president of the American Society of Naturalists, organized a debate on the following topic: does evolutionary history inform the current functioning of ecological communities? The debaters-Ives, Lau, Mayfield, and Tobias-presented pro and con arguments, caricatured in standard debating format. Numerous examples show that both recent microevolutionary and longer-term macroevolutionary history are important to the ecological functioning of communities. On the other hand, many other examples illustrate that the evolutionary history of communities or community members does not influence ecological function, or at least not very much. This article aims to provide a provocative discussion of the consistent and conflicting patterns that emerge in the study of contemporary and historical evolutionary influences on community function, as well as to identify questions for further study. It is intended as a thought-provoking exercise to explore this complex field, specifically addressing (1) key assumptions and how they can lead us astray and (2) issues that need additional study. The debaters all agree that evolutionary history can inform us about at least some aspects of community function. The underlying question at the root of the debate, however, is how the fields of ecology and evolution can most profitably collaborate to provide a deeper and broader understanding of ecological communities.
Collapse
|
3
|
Lima MA, Weckstein JD, Batista R, Ribas CC. DO PARASITIC LICE EXHIBIT ENDEMISM IN PARALLEL WITH THEIR AVIAN HOSTS? A COMPARISON ACROSS NORTHERN AMAZONIAN AREAS OF ENDEMISM. J Parasitol 2023; 109:506-513. [PMID: 37821101 DOI: 10.1645/18-135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
Areas of endemism are the smallest units in biogeography and can be defined as biologically unique areas comprising taxa with common geographic limits to their distributions. High beta diversity within Amazonia is often related to turnover among these areas. For decades, evolutionary biologists have tried to comprehend the mechanisms generating and maintaining the spatial structure and high diversity of free-living Amazonian organisms, particularly birds. However, few studies have tried to analyze these patterns among their parasites. Host and parasite associations involve shared history that may allow us to better understand the fine-scale evolutionary history of the host. Here we compare the coevolutionary patterns among 2 avian host species with distinct patterns of genetic structure in northern Amazonia, Dendrocincla fuliginosa (Aves: Dendrocolaptidae) and Dixiphia pipra (Aves: Pipridae), and their ectoparasitic lice (Insecta: Phthiraptera), Furnaricola sp. ex Dendrocincla fuliginosa, Myrsidea sp. ex Dixiphia pipra, and Tyranniphilopterus sp. ex Dixiphia pipra. We obtained sequences of the mitochondrial gene cytochrome oxidase subunit I from hosts and parasites collected on opposite banks of the Negro and Japurá rivers, which delimit 3 areas of endemism in northern Amazonia: Napo, Jau, and Guiana. Our results demonstrate that the Negro River is a geographical barrier for both Furnaricola sp. and its avian host, Dendrocincla fuliginosa. Phylogenies of both hosts, Dendrocincla fuliginosa, and the parasites, Furnaricola sp., show monophyletic clades on opposite margins of the river that are not sister taxa. These clades have a mean uncorrected p-distance of 17.8% for Furnaricola sp. and 6.0% for Dendrocincla fuliginosa. Thus, these parasite clades constitute distinct evolutionary lineages and may even be distinct species. In contrast, Dixiphia pipra has no population structure associated with either river. Accordingly, data from their lice Myrsidea sp. indicate weak support for different clades on opposite margins of the Negro River, whereas data from their lice Tyranniphilopterus sp. indicate weak structure across the Japurá. This study is a first step toward understanding the effects of biogeographic history on permanent ectoparasites and suggests that host biogeographic history is to some extent a determinant of the parasite's history. Furthermore, the parasite's evolutionary history is an additional source of information about their hosts' evolution in this highly diverse region of northern Amazonia.
Collapse
Affiliation(s)
- Mirna Amoêdo Lima
- Graduate Program in Ecology, Instituto Nacional de Pesquisas da Amazônia (INPA), Av. André Araújo, 2936, 69067-375, Manaus, AM, Brazil
| | - Jason D Weckstein
- Department of Ornithology, Academy of Natural Sciences of Drexel University and Department of Biodiversity, Earth, and Environmental Science, Drexel University, 1900 Benjamin Franklin Parkway, Philadelphia, Pennsylvania 19103
| | - Romina Batista
- Biodiversity Section, Instituto Nacional de Pesquisas da Amazônia (INPA), Av. André Araújo, 2936, 69067-375, Manaus, AM, Brazil
| | - Camila Cherem Ribas
- Biodiversity Section, Instituto Nacional de Pesquisas da Amazônia (INPA), Av. André Araújo, 2936, 69067-375, Manaus, AM, Brazil
| |
Collapse
|
4
|
Anjos CC, Bicudo T, Fecchio A, Anciães M, Mathias BS, Chagas CRF, Bell JA, Guimarães LO, Monteiro EF, Kirchgatter K. Prevalence and genetic diversity of avian haemosporidian parasites in islands within a mega hydroelectric dam in the Brazilian Amazon. Parasitol Res 2023; 122:2065-2077. [PMID: 37391644 DOI: 10.1007/s00436-023-07906-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/19/2023] [Indexed: 07/02/2023]
Abstract
The Brazilian Amazon supports an extremely diverse avifauna and serves as the diversification center for avian malaria parasites in South America. Construction of hydroelectric dams can drive biodiversity loss by creating islands incapable of sustaining the bird communities found in intact forest sites. Besides anthropogenic actions, the presence of parasites can also influence the dynamics and structure of bird communities. Avian malaria (Plasmodium) and related haemosporidian parasites (Haemoproteus and Leucocytozoon) are a globally distributed group of protozoan parasites recovered from all major bird groups. However, no study to date has analyzed the presence of avian haemosporidian parasites in fragmented areas such as land bridge islands formed during artificial flooding following the construction of hydroelectric dams. The aim of this study is to assess the prevalence and molecular diversity of haemosporidians in bird communities inhabiting artificial islands in the area of the Balbina Hydroelectric Dam. The reservoir area covers 443,700 ha with 3546 islands on the left bank of the Uatumã River known to contain more than 400 bird species. We surveyed haemosporidian infections in blood samples collected from 445 understory birds, belonging to 53 species, 24 families, and 8 orders. Passeriformes represented 95.5% of all analyzed samples. We found a low overall Plasmodium prevalence (2.9%), with 13 positive samples (two Plasmodium elongatum and 11 Plasmodium sp.) belonging to eight lineages. Six of these lineages were previously recorded in the Amazon, whereas two of them are new. Hypocnemis cantator, the Guianan Warbling Antbird, represented 38.5% of all infected individuals, even though it represents only 5.6% of the sampled individuals. Since comparison with Plasmodium prevalence data prior to construction of Balbina is not possible, other studies in artificially flooded areas are imperative to test if anthropogenic flooding may disrupt vector-parasite relationships leading to low Plasmodium prevalence.
Collapse
Affiliation(s)
- Carolina C Anjos
- Programa de Pós-Graduação em Medicina Tropical, Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, 05403-000, Brazil
| | - Thiago Bicudo
- Instituto de Desenvolvimento Sustentável Mamirauá, Tefé, AM, 69553-225, Brazil
| | - Alan Fecchio
- Centro de Investigación Esquel de Montaña y Estepa Patagónica (CIEMEP), CONICET - Universidad Nacional de la Patagonia San Juan Bosco, Esquel, Chubut, Argentina
| | - Marina Anciães
- Instituto Nacional de Pesquisas da Amazônia, Coordenação de Biodiversidade, Manaus, AM, 69081-000, Brazil
| | - Bruno S Mathias
- Programa de Pós-Graduação em Medicina Tropical, Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, 05403-000, Brazil
| | | | - Jeffrey A Bell
- Department of Biology, University of North Dakota, 10 Cornell Street, Grand Forks, ND, 58202, USA
| | - Lilian O Guimarães
- Laboratório de Bioquímica e Biologia Molecular, Instituto Pasteur, São Paulo, SP, 01027-000, Brazil
| | - Eliana F Monteiro
- Laboratório de Bioquímica e Biologia Molecular, Instituto Pasteur, São Paulo, SP, 01027-000, Brazil
| | - Karin Kirchgatter
- Programa de Pós-Graduação em Medicina Tropical, Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, 05403-000, Brazil.
- Laboratório de Bioquímica e Biologia Molecular, Instituto Pasteur, São Paulo, SP, 01027-000, Brazil.
| |
Collapse
|
5
|
Fecchio A, Batalha-Filho H, Dispoto JH, Bell JA, Weckstein JD. Distinct biogeographic processes and areas of endemism contributed differentially to Plasmodium and Parahaemoproteus community assembly on Marajó Island. Mol Phylogenet Evol 2023:107828. [PMID: 37247702 DOI: 10.1016/j.ympev.2023.107828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
Amazonia is the primary source of haemosporidian diversity for South American biomes. Yet, our understanding of the contribution of each area of endemism and the biogeographical processes that generated such diversity in this group of vector transmitted parasites remains incomplete. For example, a recently formed fluvial island in the Amazon delta - Marajó Island, is composed of avian lineages from adjacent Amazonian areas of endemism, but also from open habitats, such as Cerrado. This raises the question: Is the parasite assemblage found in avian hosts on this island formed by parasite lineages from adjacent Amazonian areas of endemism or Cerrado? Here, we assessed the spatiotemporal evolution of Plasmodium and Parahaemoproteus parasites. Our biogeographic analysis showed that dispersal dominated Plasmodium diversification, whereas duplication was more frequent for the genus Parahaemoproteus. We show that the Inambari area of endemism was the primary source for Plasmodium diversity on Marajó Island, but that this island received more Parahaemoproteus lineages from Cerrado than any Amazonian area of endemism. The unique patterns of dispersal for each parasite genus coupled with their propensity to shift hosts locally may have facilitated their diversification across Amazonia, suggesting that differences in deep evolutionary history may have constrained their colonization of Marajó Island.
Collapse
Affiliation(s)
- Alan Fecchio
- Centro de Investigación Esquel de Montaña y Estepa Patagónica (CIEMEP), CONICET - Universidad Nacional de la Patagonia San Juan Bosco, Esquel, Chubut, Argentina
| | - Henrique Batalha-Filho
- Laboratório de Evolução e Biogeografia, Instituto de Biologia, Universidade Federal da Bahia, Salvador, BA, Brazil
| | - Janice H Dispoto
- Department of Ornithology, Academy of Natural Sciences of Drexel University, Philadelphia, PA, USA
| | - Jeffrey A Bell
- Department of Biology, University of North Dakota, Grand Forks, ND, USA
| | - Jason D Weckstein
- Department of Ornithology, Academy of Natural Sciences of Drexel University, Philadelphia, PA, USA; Department of Biodiversity, Earth, and Environmental Sciences, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
6
|
Freire-Rallo S, Wedin M, Diederich P, Millanes AM. To explore strange new worlds - The diversification in Tremella caloplacae was linked to the adaptive radiation of the Teloschistaceae. Mol Phylogenet Evol 2023; 180:107680. [PMID: 36572164 DOI: 10.1016/j.ympev.2022.107680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 09/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Lichenicolous fungi are a heterogeneous group of organisms that grow exclusively on lichens, forming obligate associations with them. It has often been assumed that cospeciation has occurred between lichens and lichenicolous fungi, but this has been seldom analysed from a macroevolutionary perspective. Many lichenicolous species are rare or are rarely observed, which results in frequent and large gaps in the knowledge of the diversity of many groups. This, in turn, hampers evolutionary studies that necessarily are based on a reasonable knowledge of this diversity. Tremella caloplacae is a heterobasidiomycete growing on various hosts from the lichen-forming family Teloschistaceae, and evidence suggests that it may represent a species complex. We combine an exhaustive sampling with molecular and ecological data to study species delimitation, cophylogenetic events and temporal concordance of this association. Tremella caloplacae is here shown to include at least six distinct host-specific lineages (=putative species). Host switch is the dominant and most plausible event influencing diversification and explaining the coupled evolutionary history in this system, although cospeciation cannot be discarded. Speciation in T. caloplacae would therefore have occurred coinciding with the rapid diversification - by an adaptive radiation starting in the late Cretaceous - of their hosts. New species in T. caloplacae would have developed as a result of specialization on diversifying lichen hosts that suddenly offered abundant new ecological niches to explore or adapt to.
Collapse
Affiliation(s)
- Sandra Freire-Rallo
- Rey Juan Carlos University/Departamento de Biología y Geología, Física y Química Inorgánica, E-28933 Móstoles, Spain
| | - Mats Wedin
- Swedish Museum of Natural History/Botany Dept., PO Box 50007, SE-10405 Stockholm, Sweden.
| | - Paul Diederich
- Musée national d'histoire naturelle, 25 rue Munster, L-2160 Luxembourg, Luxembourg
| | - Ana M Millanes
- Rey Juan Carlos University/Departamento de Biología y Geología, Física y Química Inorgánica, E-28933 Móstoles, Spain
| |
Collapse
|
7
|
Ellis VA, Ciloglu A, Yildirim A, Bensch S. Host shift and natural long-distance dispersal to an oceanic island of a host-specific parasite. Biol Lett 2023; 19:20220459. [PMID: 36918035 PMCID: PMC10014241 DOI: 10.1098/rsbl.2022.0459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/22/2023] [Indexed: 03/16/2023] Open
Abstract
Parasite dispersal and host-switching may be better understood by knowing when they occurred. We estimated when the ancestor of a parasite of great reed warblers (Acrocephalus arundinaceus) dispersed to the Seychelles and began infecting the endemic Seychelles warbler (A. sechellensis). We used mitochondrial genomes and published molecular divergence rates to estimate the date of divergence between mitochondrial haplotypes of the parasite Haemoproteus nucleocondensis (lineage GRW01) in the great reed warbler and the Seychelles warbler. We also constructed a time-calibrated phylogeny of the hosts and their relatives to determine when the ancestor of the Seychelles warbler dispersed to the Seychelles. The two GRW01 lineages diverged ca 20-451 kya, long after the ancestor of the Seychelles warbler colonized the Seychelles ca 1.76-4.36 Mya. GRW01 rarely infects other species despite apparent opportunity. Humans were likely not involved in the dispersal of this parasite because humans settled the Seychelles long after the parasite diverged from its mainland relative. Furthermore, introduced birds are unlikely hosts of GRW01. Instead, the ancestor of GRW01 may have dispersed to the Seychelles with an errant migrating great reed warbler. Our results indicate that even specialized parasites can naturally disperse long distances to become emerging infectious diseases.
Collapse
Affiliation(s)
- Vincenzo A. Ellis
- Department of Entomology and Wildlife Ecology, University of Delaware, Newark, DE, USA
| | - Arif Ciloglu
- Department of Parasitology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Türkiye
- Vectors and Vector-Borne Diseases Implementation and Research Center, Erciyes University, Kayseri, Türkiye
| | - Alparslan Yildirim
- Department of Parasitology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Türkiye
- Vectors and Vector-Borne Diseases Implementation and Research Center, Erciyes University, Kayseri, Türkiye
| | | |
Collapse
|
8
|
Genetic diversity, phylogenetic position, and co-phylogenetic relationships of Karyolysus, a common blood parasite of lizards in the western Mediterranean. Int J Parasitol 2023; 53:185-196. [PMID: 36736608 DOI: 10.1016/j.ijpara.2022.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 02/05/2023]
Abstract
The genus Karyolysus was originally proposed to accommodate blood parasites of lacertid lizards in Western Europe. However, recent phylogenetic analyses suggested an inconclusive taxonomic position of these parasites of the order Adeleorina based on the available genetic information. Inconsistencies between molecular phylogeny, morphology, and/or life cycles can reflect lack of enough genetic information of the target group. We therefore surveyed 28 localities and collected blood samples from 828 lizards of 23 species including lacertids, skinks, and geckoes in the western Mediterranean, North Africa, and Macaronesia, where species of Karyolysus and other adeleorine parasites have been described. We combined molecular and microscopic methods to analyze the samples, including those from the host type species and the type locality of Karyolysus bicapsulatus. The phylogenetic relationship of these parasites was analyzed based on the 18S rRNA gene and the co-phylogenetic relationship with their vertebrate hosts was reconstructed. We molecularly detected adeleorine parasites in 37.9% of the blood samples and found 22 new parasite haplotypes. A phylogenetic reconstruction with 132 sequences indicated that 20 of the newly detected haplotypes clustered in a well-supported clade with another 18 sequences that included Karyolysus galloti and Karyolysus lacazei. Morphological evidence also supported that K. bicapsulatus clustered in this monophyletic clade. These results supported the taxonomic validity of the genus. In addition, we found some parasite haplotypes that infected different lizard host genera with ancient diverging histories, which suggested that Karyolysus is less host-specific than other blood parasites of lizards in the region. A co-phylogenetic analysis supported this interpretation because no significant co-speciation signal was shown between Karyolysus and lizard hosts.
Collapse
|
9
|
González-Olvera M, Hernandez-Colina A, Pérez JG, Ulloa GM, Montero S, Maguiña JL, Lescano AG, Santolalla ML, Baylis M, Mayor P. Haemosporidians from a Neglected Group of Terrestrial Wild Birds in the Peruvian Amazonia. ECOHEALTH 2022; 19:402-416. [PMID: 36030330 PMCID: PMC9573858 DOI: 10.1007/s10393-022-01612-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Haemosporidians are a widespread group of blood parasites transmitted by vectors. Despite their relevance for bird conservation, few studies have been conducted in the Amazonia and even less in terrestrial wild birds. We analysed blood samples from 168 game birds, collected from 2008 to 2015 by subsistence hunters of an indigenous rural community in the Peruvian Amazonia. DNA was tested for Haemoproteus spp., Plasmodium spp. and Leucocytozoon spp. and positive amplicons were sequenced and curated for phylogenetic analysis. Haemosporidian prevalence was 72% overall, 66.7% for Haemoproteus spp. and 5.4% for Plasmodium spp. and respectively by bird species: Spix's Guan (Penelope jacquacu, n = 72) 87.5% and 0%, Razor-billed Curassow (Mitu tuberosum, n = 45) 77.8% and 6.7%, White-winged Trumpeter (Psophia leucoptera, n = 20) 6.3% and 12.5%, Blue-throated Piping-guan (Pipile cumanensis, n = 16) 73.3% and 6.7%, and Great Tinamou (Tinamus major, n = 15) 10% and 15%. Leucocytozoon spp. was not found. P. leucoptera and T. major were less likely to be infected with Haemoproteus spp. Fruit abundance had a negative association with Haemoproteus spp. prevalence and precipitation was negatively associated with Plasmodium spp. prevalence. The 106 sequences examined represented 29 lineages, 82.8% of them were new lineages (Plasmodium n = 3, Haemoproteus n = 21). Novel host-parasite associations and lineages were unveiled, including probably new species of Plasmodium spp. Our results highlight the scientific value of alternative sampling methods and the collaboration with local communities.
Collapse
Affiliation(s)
- Merit González-Olvera
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, IC2 Liverpool Science Park, 146 Brownlow Hill, Liverpool, L3 5RF, UK
| | - Arturo Hernandez-Colina
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, IC2 Liverpool Science Park, 146 Brownlow Hill, Liverpool, L3 5RF, UK
- , Coventry, UK
| | - Jocelyn G Pérez
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, IC2 Liverpool Science Park, 146 Brownlow Hill, Liverpool, L3 5RF, UK
| | - Gabriela M Ulloa
- Programa de Pós-Graduação em Saúde e Produção Animal na Amazônia, Universidade Federal Rural da Amazônia (UFRA), Belém, Pará, Brazil
- Grupo Enfermedades Emergentes, Universidad Científica del Sur, Lima, Peru
| | - Stephanie Montero
- Emerge, Emerging Diseases and Climate Change Research Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jorge L Maguiña
- Emerge, Emerging Diseases and Climate Change Research Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Andrés G Lescano
- Emerge, Emerging Diseases and Climate Change Research Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Meddly L Santolalla
- Emerge, Emerging Diseases and Climate Change Research Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Matthew Baylis
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, IC2 Liverpool Science Park, 146 Brownlow Hill, Liverpool, L3 5RF, UK
- Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK
| | - Pedro Mayor
- Programa de Pós-Graduação em Saúde e Produção Animal na Amazônia, Universidade Federal Rural da Amazônia (UFRA), Belém, Pará, Brazil
- Departamento de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- ComFauna, Comunidad de Manejo de Fauna Silvestre en la Amazonía y en Latinoamérica, 332 Malecón Tarapacá, Iquitos, Peru
| |
Collapse
|
10
|
de Angeli Dutra D, Fecchio A, Braga ÉM, Poulin R. Migratory behaviour does not alter cophylogenetic congruence between avian hosts and their haemosporidian parasites. Parasitology 2022; 149:1-8. [PMID: 35393002 PMCID: PMC10090587 DOI: 10.1017/s0031182022000154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/27/2022] [Accepted: 02/04/2022] [Indexed: 11/07/2022]
Abstract
Parasites display various degrees of host specificity, reflecting different coevolutionary histories with their hosts. Avian hosts follow multiple migration patterns representing short but also long distances. As parasites infecting migratory birds are subjected to multiple environmental and biotic changes through their flyways, migration may disrupt or strengthen cophylogenetic congruence between hosts and parasites. On the one hand, parasites might adapt to a single migratory host, evolving to cope with the specific challenges associated with the multiple habitats occupied by the host. On the other, as migrants can introduce parasites into new habitats, higher rates of host switching could also disrupt cophylogenetic patterns. We analysed whether migratory behaviour shapes avian haemosporidian parasite–host cophylogenetic congruence by testing if contributions of host–parasite links to overall congruence differ among resident and short-, variable- and long-distance migrants globally and within South America only. On both scales, we found significant overall cophylogenetic congruence by testing whether overall congruence differed between haemosporidian lineages and bird species. However, we found no difference in contribution towards congruence among links involving resident vs migratory hosts in both models. Thus, migratory behaviour neither weakens nor strengthens bird–haemosporidian cophylogenetic congruence, suggesting that other avian host traits are more influential in generating phylogenetic congruence in this host–parasite system.
Collapse
Affiliation(s)
| | - Alan Fecchio
- Programa de Pós-graduação em Ecologia e Conservação da Biodiversidade, Universidade Federal de Mato Grosso, Cuiabá, MT 78060-900, Brazil
| | - Érika Martins Braga
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Robert Poulin
- Department of Zoology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
11
|
Garcia-Longoria L, Muriel J, Magallanes S, Villa-Galarce ZH, Ricopa L, Inga-Díaz WG, Fong E, Vecco D, Guerra-SaldaÑa C, Salas-Rengifo T, Flores-Saavedra W, Espinoza K, Mendoza C, SaldaÑa B, González-Blázquez M, Gonzales-Pinedo H, Luján-Vega C, Del Águila CA, Vilca-Herrera Y, Pineda CA, Reategui C, Cárdenas-Callirgos JM, Iannacone JA, Mendoza JL, Sehgal RNM, Marzal A. Diversity and host assemblage of avian haemosporidians in different terrestrial ecoregions of Peru. Curr Zool 2021; 68:27-40. [PMID: 35169627 PMCID: PMC8836326 DOI: 10.1093/cz/zoab030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/26/2021] [Indexed: 11/20/2022] Open
Abstract
Characterizing the diversity and structure of host–parasite communities is crucial to understanding their eco-evolutionary dynamics. Malaria and related haemosporidian parasites are responsible for fitness loss and mortality in bird species worldwide. However, despite exhibiting the greatest ornithological biodiversity, avian haemosporidians from Neotropical regions are quite unexplored. Here, we analyze the genetic diversity of bird haemosporidian parasites (Plasmodium and Haemoproteus) in 1,336 individuals belonging to 206 bird species to explore for differences in diversity of parasite lineages and bird species across 5 well-differentiated Peruvian ecoregions. We detected 70 different haemosporidian lineages infecting 74 bird species. We showed that 25 out of the 70 haplotypes had not been previously recorded. Moreover, we also identified 81 new host–parasite interactions representing new host records for these haemosporidian parasites. Our outcomes revealed that the effective diversity (as well as the richness, abundance, and Shannon–Weaver index) for both birds and parasite lineages was higher in Amazon basin ecoregions. Furthermore, we also showed that ecoregions with greater diversity of bird species also had high parasite richness, hence suggesting that host community is crucial in explaining parasite richness. Generalist parasites were found in ecoregions with lower bird diversity, implying that the abundance and richness of hosts may shape the exploitation strategy followed by haemosporidian parasites. These outcomes reveal that Neotropical region is a major reservoir of unidentified haemosporidian lineages. Further studies analyzing host distribution and specificity of these parasites in the tropics will provide important knowledge about phylogenetic relationships, phylogeography, and patterns of evolution and distribution of haemosporidian parasites.
Collapse
Affiliation(s)
- Luz Garcia-Longoria
- Departamento de Anatomía, Biología Celular y Zoología, Universidad de Extremadura, Badajoz E-506071, Spain
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Sölvegatan 37, SE-22362 Lund, Sweden
| | - Jaime Muriel
- Instituto Pirenaico de Ecología—IPE (CSIC), Avda. Nuestra Señora de la Victoria 16, Jaca 22700, Spain
| | - Sergio Magallanes
- Departamento de Anatomía, Biología Celular y Zoología, Universidad de Extremadura, Badajoz E-506071, Spain
| | - Zaira Hellen Villa-Galarce
- DIRESA, Dirección Regional de Salud, Loreto 16001, Peru
- Departamento Académico de Microbiología y Parasitología. Facultad de Ciencias Biológicas, Universidad Nacional de la Amazonía Peruana, Iquitos 16001, Peru
| | - Leonila Ricopa
- Departamento Académico de Microbiología y Parasitología. Facultad de Ciencias Biológicas, Universidad Nacional de la Amazonía Peruana, Iquitos 16001, Peru
| | | | - Esteban Fong
- EverGreen Institute—San Rafael, Distrito de Indiana, Loreto 16200, Peru
- Observatorio de Aves Loreto (LBO), Distrito de San Juan, Loreto 16008, Peru
| | - Daniel Vecco
- Centro Urku de Estudios Amazónicos, Tarapoto 22200, Peru
| | | | | | - Wendy Flores-Saavedra
- Sanidad Animal—Facultad de Zootecnia, Universidad Nacional Agraria La Molina, Lima 15012, Peru
| | - Kathya Espinoza
- Laboratorio de Microbiología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cient쥩ca del Sur, Lima 15067, Peru
| | - Carlos Mendoza
- Laboratorio de Análisis Clínico Moraleslab SAC, Morales, San Martín 22201, Peru
| | - Blanca SaldaÑa
- Laboratorio de Análisis Clínico Moraleslab SAC, Morales, San Martín 22201, Peru
| | - Manuel González-Blázquez
- Departamento de Anatomía, Biología Celular y Zoología, Universidad de Extremadura, Badajoz E-506071, Spain
| | | | - Charlene Luján-Vega
- Pharmacology and Toxicology Graduate Group, University of California, Davis, DA 95616, USA
| | | | - Yessica Vilca-Herrera
- Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima 15081, Perú
| | - Carlos Alberto Pineda
- Facultad de Medicina Veterinaria, Universidad Nacional Hermilio Valdizan, Huánuco, 10160, Peru
| | - Carmen Reategui
- Departamento Académico de Microbiología y Parasitología. Facultad de Ciencias Biológicas, Universidad Nacional de la Amazonía Peruana, Iquitos 16001, Peru
| | | | - José Alberto Iannacone
- Laboratorio de Ecología y Biodiversidad Animal, Universidad Nacional Federico Villarreal, El Agustino, Lima 15007, Peru
- Laboratorio de Invertebrados, Universidad Ricardo Palma—Santiago de Surco, Lima 15537, Peru
| | - Jorge Luis Mendoza
- Laboratorio de Ecología y Biodiversidad Animal, Universidad Nacional Federico Villarreal, El Agustino, Lima 15007, Peru
| | - Ravinder N M Sehgal
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | - Alfonso Marzal
- Departamento de Anatomía, Biología Celular y Zoología, Universidad de Extremadura, Badajoz E-506071, Spain
| |
Collapse
|
12
|
Fecchio A, Lima MR, Bell JA, Schunck F, Corrêa AH, Beco R, Jahn AE, Fontana CS, da Silva TW, Repenning M, Braga ÉM, Garcia JE, Lugarini C, Silva JCR, Andrade LHM, Dispoto JH, Dos Anjos CC, Weckstein JD, Kirchgatter K, Ellis VA, Ricklefs RE, De La Torre GM. Loss of forest cover and host functional diversity increases prevalence of avian malaria parasites in the Atlantic Forest. Int J Parasitol 2021; 51:719-728. [PMID: 33722680 DOI: 10.1016/j.ijpara.2021.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 12/25/2022]
Abstract
Host phylogenetic relatedness and ecological similarity are thought to contribute to parasite community assembly and infection rates. However, recent landscape level anthropogenic changes may disrupt host-parasite systems by impacting functional and phylogenetic diversity of host communities. We examined whether changes in host functional and phylogenetic diversity, forest cover, and minimum temperature influence the prevalence, diversity, and distributions of avian haemosporidian parasites (genera Haemoproteus and Plasmodium) across 18 avian communities in the Atlantic Forest. To explore spatial patterns in avian haemosporidian prevalence and taxonomic and phylogenetic diversity, we surveyed 2241 individuals belonging to 233 avian species across a deforestation gradient. Mean prevalence and parasite diversity varied considerably across avian communities and parasites responded differently to host attributes and anthropogenic changes. Avian malaria prevalence (termed herein as an infection caused by Plasmodium parasites) was higher in deforested sites, and both Plasmodium prevalence and taxonomic diversity were negatively related to host functional diversity. Increased diversity of avian hosts increased local taxonomic diversity of Plasmodium lineages but decreased phylogenetic diversity of this parasite genus. Temperature and host phylogenetic diversity did not influence prevalence and diversity of haemosporidian parasites. Variation in the diversity of avian host traits that promote parasite encounter and vector exposure (host functional diversity) partially explained the variation in avian malaria prevalence and diversity. Recent anthropogenic landscape transformation (reduced proportion of native forest cover) had a major influence on avian malaria occurrence across the Atlantic Forest. This suggests that, for Plasmodium, host phylogenetic diversity was not a biotic filter to parasite transmission as prevalence was largely explained by host ecological attributes and recent anthropogenic factors. Our results demonstrate that, similar to human malaria and other vector-transmitted pathogens, prevalence of avian malaria parasites will likely increase with deforestation.
Collapse
Affiliation(s)
- Alan Fecchio
- Programa de Pós-graduação em Ecologia e Conservação da Biodiversidade, Universidade Federal de Mato Grosso, Cuiabá, MT 78060900, Brazil.
| | - Marcos R Lima
- Department of Animal and Plant Biology, State University of Londrina, Londrina, PR 86051-970, Brazil
| | - Jeffrey A Bell
- Department of Biology, University of North Dakota, Grand Forks, ND 58202, USA
| | - Fabio Schunck
- Brazilian Committee for Ornithological Records - CBRO, São Paulo, SP, Brazil
| | - Aline H Corrêa
- Instituto de Biociências, Universidade de São Paulo, São Paulo, SP 05508-900, Brazil
| | - Renata Beco
- Instituto de Biociências, Universidade de São Paulo, São Paulo, SP 05508-900, Brazil
| | - Alex E Jahn
- Environmental Resilience Institute, Indiana University, Bloomington, IN 47408, USA
| | - Carla S Fontana
- Laboratório de Ornitologia, Museu de Ciências e Tecnologia, Programa de Pós-graduação em Ecologia e Conservação da Biodiversidade, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS 90619-900, Brazil
| | - Thaiane W da Silva
- Laboratório de Ornitologia, Museu de Ciências e Tecnologia, Programa de Pós-graduação em Ecologia e Conservação da Biodiversidade, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS 90619-900, Brazil
| | - Márcio Repenning
- Laboratório de Ornitologia, Museu de Ciências e Tecnologia, Programa de Pós-graduação em Ecologia e Conservação da Biodiversidade, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS 90619-900, Brazil; Laboratório de Aves Aquáticas e Tartarugas Marinhas, Universidade Federal do Rio Grande. Campus Carreiros, Rio Grande, RS 96203-900, Brazil
| | - Érika M Braga
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - José E Garcia
- Universidade Federal de Pernambuco, Centro Acadêmico de Vitória, Vitoria de Santo Antao, PE 55608-680, Brazil
| | - Camile Lugarini
- Centro Nacional de Pesquisa e Conservação de Aves Silvestres, Instituto Chico Mendes de Conservação da Biodiversidade, Florianópolis, SC, Brazil; Laboratório de Saúde Única, Epidemiologia e Geoprocessamento, Departamento de Medicina Veterinária, Universidade Federal Rural de Pernambuco, Recife, PE 52061-030, Brazil
| | - Jean C R Silva
- Laboratório de Saúde Única, Epidemiologia e Geoprocessamento, Departamento de Medicina Veterinária, Universidade Federal Rural de Pernambuco, Recife, PE 52061-030, Brazil
| | - Leontina H M Andrade
- Laboratório de Saúde Única, Epidemiologia e Geoprocessamento, Departamento de Medicina Veterinária, Universidade Federal Rural de Pernambuco, Recife, PE 52061-030, Brazil
| | - Janice H Dispoto
- Department of Ornithology, Academy of Natural Sciences of Drexel University, Philadelphia, PA 19103, USA
| | - Carolina C Dos Anjos
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP 05403-000, Brazil
| | - Jason D Weckstein
- Department of Ornithology, Academy of Natural Sciences of Drexel University, Philadelphia, PA 19103, USA; Department of Biodiversity, Earth, and Environmental Sciences, Drexel University, Philadelphia, PA 19103, USA
| | - Karin Kirchgatter
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP 05403-000, Brazil; Laboratório de Bioquímica e Biologia Molecular, Superintendência de Controle de Endemias, São Paulo, SP 01027-000, Brazil
| | - Vincenzo A Ellis
- Department of Entomology and Wildlife Ecology, University of Delaware, Newark, DE, USA
| | - Robert E Ricklefs
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA
| | - Gabriel M De La Torre
- Programa de Pós-graduação em Ecologia e Conservação, Universidade Federal do Paraná, Curitiba, PR 80210-170, Brazil
| |
Collapse
|
13
|
DE LA Torre GM, Campião KM. Bird habitat preferences drive hemoparasite infection in the Neotropical region. Integr Zool 2021; 16:755-768. [PMID: 33452842 DOI: 10.1111/1749-4877.12515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The role that the environment plays in vector-borne parasite infection is one of the central factors for understanding disease dynamics. We assessed how Neotropical bird foraging strata and habitat preferences determine infection by parasites of the genera Haemoproteus, Plasmodium, Leucocytozoon, and Trypanosoma and filarioids, and tested for phylogenetic signal in these host-parasite associations. We performed extensive searches of the scientific literature and created a database of hemoparasite surveys. We collected data on host body mass, foraging strata, habitat preference, and migratory status, and tested if host ecological traits predict each hemoparasite occurrence and prevalence using a phylogenetic Bayesian framework. Species of Plasmodium tend to infect birds from tropical forests while birds from altitudinal environments are likely to be infected by species of Leucocytozoon. The probability of a bird being infected by filarioid or Trypanosoma is higher in lowland forests. Bird species that occur in anthropic environments and dry habitats of tropical latitudes are more susceptible to infection by species of Haemoproteus. Host foraging strata is also influential and bird species that forage in the mid-high and canopy strata are more prone to infection by species of Haemoproteus and filarioids. We also identified phylogenetic signal for host-parasite associations with the probability of infection of Neotropical birds by any hemoparasite being more similar among more closely related species. We provided a useful framework to identify environments that correlate with hemoparasite infection, which is also helpful for detecting areas with potential suitability for hemoparasite infection due to land conversion and climate change.
Collapse
Affiliation(s)
- Gabriel Massaccesi DE LA Torre
- Biological Interactions, Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, Brazil.,Programa de Pós-graduação em Ecologia e Conservação, Universidade Federal do Paraná, Curitiba, Brazil
| | - Karla Magalhães Campião
- Biological Interactions, Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, Brazil
| |
Collapse
|
14
|
Fecchio A, de Faria IP, Bell JA, Nunes R, Weckstein JD, Lima MR. Mining increases the prevalence of avian haemosporidian parasites in Northeast Amazonia. Parasitol Res 2021; 120:605-613. [PMID: 33415388 DOI: 10.1007/s00436-020-06986-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/22/2020] [Indexed: 11/26/2022]
Abstract
Studies contrasting parasite prevalence and host-parasite community structure between pristine and disturbed environments will improve our understanding of how deforestation affects disease transmission and parasite extinction. To determine how infection rates of a common and diverse group of avian blood parasites (Plasmodium and Haemoproteus) respond to changes in avian host composition after mining, we surveyed 25 bird communities from pristine forests (two forest types: plateau and hillside) and reforested sites in Northeast Amazonia. Infection rates and both parasite and avian host community structure exhibited considerable variation across the deforestation gradient. In opposition to the emerging pattern of lower avian haemosporidian prevalence in disturbed tropical forests in Africa, we show that secondary forests had higher haemosporidian prevalence in one of the largest mining areas of Amazonia. The dissimilarity displayed by bird communities may explain, in part, the higher prevalence of Haemoproteus in reforested areas owing to the tolerance of some bird species to open-canopy forest habitat. On the other hand, deforestation may cause local extinction of Plasmodium parasites due to the loss of their avian hosts that depend on closed-canopy primary forest habitats. Our results demonstrate that forest loss induced by anthropogenic changes can affect a host-parasite system and disturb both parasite transmission and diversity.
Collapse
Affiliation(s)
- Alan Fecchio
- Programa de Pós-graduação em Ecologia e Conservação da Biodiversidade, Universidade Federal de Mato Grosso, Avenida Fernando Corrêa da Costa 2367, Cuiabá, MT, 78060-900, Brazil.
- Department of Ornithology, Academy of Natural Sciences of Drexel University, Philadelphia, PA, 19103, USA.
| | - Iubatã P de Faria
- Grupo de Pesquisa sobre Populações de Aves Frugívoras, Universidade Federal do Mato Grosso do Sul, Três Lagoas, Brazil
| | - Jeffrey A Bell
- Department of Biology, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Renata Nunes
- Veredas Instituto Ambiental e Consultoria, Núcleo Bandeirante, DF, Brazil
| | - Jason D Weckstein
- Department of Ornithology, Academy of Natural Sciences of Drexel University, Philadelphia, PA, 19103, USA
- Department of Biodiversity, Earth, and Environmental Science, Drexel University, Philadelphia, PA, 19103, USA
| | - Marcos R Lima
- Department of Animal and Plant Biology, State University of Londrina, CP 10.011, Londrina, PR, 86051-970, Brazil
| |
Collapse
|
15
|
Bensch S, Inumaru M, Sato Y, Lee Cruz L, Cunningham AA, Goodman SJ, Levin II, Parker PG, Casanueva P, Hernández MA, Moreno-Rueda G, Rojo MA. Contaminations contaminate common databases. Mol Ecol Resour 2020; 21:355-362. [PMID: 33037786 PMCID: PMC7820996 DOI: 10.1111/1755-0998.13272] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/10/2020] [Accepted: 09/24/2020] [Indexed: 11/25/2022]
Abstract
The polymerase chain reaction (PCR) is a very powerful method to detect and identify pathogens. The high sensitivity of the method, however, comes with a cost; any of the millions of artificial DNA copies generated by PCR can serve as a template in a following experiment. If not identified as contaminations, these may result in erroneous conclusions on the occurrence of the pathogen, thereby inflating estimates of host range and geographic distribution. In the present paper, we evaluate whether several published records of avian haemosporidian parasites, in either unusual host species or geographical regions, might stem from PCR contaminations rather than novel biological findings. The detailed descriptions of these cases are shedding light upon the steps in the work process that might lead to PCR contaminations. By increasing the awareness of this problem, it will aid in developing procedures that keep these to a minimum. The examples in the present paper are from haemosporidians of birds, however the problem of contaminations and suggested actions should apply generally to all kinds of PCR‐based identifications, not just of parasites and pathogens.
Collapse
Affiliation(s)
- Staffan Bensch
- Department of Biology, MEEL, Lund University, Lund, Sweden
| | - Mizue Inumaru
- Laboratory of Biomedical Science, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Yukita Sato
- Laboratory of Biomedical Science, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Larisa Lee Cruz
- Maison de la Télédétection, Montpellier, France.,School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | | | - Simon J Goodman
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Iris I Levin
- Department of Biology, Kenyon College, Gambier, OH, USA
| | - Patricia G Parker
- Department of Biology and Whitney R. Harris World Ecology Center, University of Missouri -St. Louis, St. Louis, MO, USA
| | - Patricia Casanueva
- Departamento de Ciencias Experimentales, Universidad Europea Miguel de Cervantes, Calle Padre Julio Chevalier, Valladolid, Spain
| | - Maria-Angeles Hernández
- Departamento de Biología Ambiental, Facultad de Ciencias, Universidad de Navarra, Pamplona, Spain
| | | | - Maria-Angeles Rojo
- Departamento de Ciencias Experimentales, Universidad Europea Miguel de Cervantes, Calle Padre Julio Chevalier, Valladolid, Spain
| |
Collapse
|
16
|
Oliveira L, Dias RJP, Rossi MF, D'Agosto M, Santos HA. Molecular diversity and coalescent species delimitation of avian haemosporidian parasites in an endemic bird species of South America. Parasitol Res 2020; 119:4033-4047. [PMID: 33030600 DOI: 10.1007/s00436-020-06908-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 09/27/2020] [Indexed: 12/18/2022]
Abstract
Haemoproteus spp. and Plasmodium spp. are blood parasites that occur in birds worldwide. Identifying the species within this group is complex, especially in wild birds that present low parasitemia when captured, making morphological identification very difficult. Thus, the use of alternative tools to identify species may be useful in the elucidation of the distribution of parasites that circulate in bird populations. The objectives of this study were to determine the prevalence and parasitemia of the genera Plasmodium and Haemoproteus in Tachyphonus coronatus in the Atlantic Forest, Brazil, and to evaluate the molecular diversity, geographic distribution, and specificity of these parasites based on coalescent species delimitation methods. Microscopic analysis, PCR, cyt b gene sequencing, phylogenetic analysis and coalescent species delimitation using single-locus algorithms were performed (Poisson tree process (PTP) and multi-rate Poisson tree process (MPTP) methods). The analyses were performed in 117 avian host individuals. The prevalence was 55.5% for Plasmodium and 1.7% for Haemoproteus, with a mean parasitemia of 0.06%. Twenty-five Plasmodium and two Haemoproteus lineages were recovered. The MPTP method recovered seven different evolutionarily significant units (ESUs) of Plasmodium and one of Haemoproteus, whereas PTP presented fourteen ESUs of Plasmodium and one of Haemoproteus. The MPTP was more consistent with current taxonomy, while PTP overestimated the number of lineages. These ESUs are widely distributed and have already been found in 22 orders of birds that, all together, inhabit every continent, except Antarctica. The computational methods of species delimitation proved to be effective in cases where the classification of Haemosporida based just on morphology is insufficient.
Collapse
Affiliation(s)
- Luísa Oliveira
- Department of Animal Parasitology, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - Roberto Júnio Pedroso Dias
- Department of Zoology (LabProto), Biological Sciences Institute, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil.,Laboratory of Protozoology (LabProto), Biological Sciences Institute, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Mariana F Rossi
- Department of Zoology (LabProto), Biological Sciences Institute, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil. .,Laboratory of Protozoology (LabProto), Biological Sciences Institute, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil.
| | - Marta D'Agosto
- Department of Zoology (LabProto), Biological Sciences Institute, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Huarrisson A Santos
- Department of Epidemiology and Public Health, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| |
Collapse
|
17
|
Ciloglu A, Ellis VA, Duc M, Downing PA, Inci A, Bensch S. Evolution of vector transmitted parasites by host switching revealed through sequencing of Haemoproteus parasite mitochondrial genomes. Mol Phylogenet Evol 2020; 153:106947. [PMID: 32866615 DOI: 10.1016/j.ympev.2020.106947] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/18/2020] [Accepted: 08/24/2020] [Indexed: 12/30/2022]
Abstract
Parasite species evolve by switching to new hosts, cospeciating with their current hosts, or speciating on their current hosts. Vector transmitted parasites are expected to speciate by host switching, but confirming this hypothesis has proved challenging. Parasite DNA can be difficult to sequence, thus well resolved parasite phylogenies that are needed to distinguish modes of parasite speciation are often lacking. Here, we studied speciation in vector transmitted avian haemosporidian parasites in the genus Haemoproteus and their warbler hosts (family Acrocephalidae). We overcome the difficulty of generating parasite genetic data by combining nested long-range PCR with next generation sequencing to sequence whole mitochondrial genomes from 19 parasite haplotypes confined to Acrocephalidae warblers, resulting in a well-supported parasite phylogeny. We also generated a well-supported host phylogeny using five genes from published sources. Our phylogenetic analyses confirm that these parasites have speciated by host switching. We also found that closely related host species shared parasites which themselves were not closely related. Sharing of parasites by closely related host species is not due to host geographic range overlap, but may be the result of phylogenetically conserved host immune systems.
Collapse
Affiliation(s)
- Arif Ciloglu
- Department of Parasitology, Faculty of Veterinary Medicine, Erciyes University, 38039 Kayseri, Turkey; Molecular Ecology and Evolution Laboratory, Department of Biology, Lund University, S-22362 Lund, Sweden; Vectors and Vector-Borne Diseases Implementation and Research Center, Erciyes University, 38039 Kayseri, Turkey.
| | - Vincenzo A Ellis
- Molecular Ecology and Evolution Laboratory, Department of Biology, Lund University, S-22362 Lund, Sweden; Department of Entomology and Wildlife Ecology, University of Delaware, Newark, DE, USA
| | - Mélanie Duc
- Molecular Ecology and Evolution Laboratory, Department of Biology, Lund University, S-22362 Lund, Sweden; Nature Research Centre, Akademijos 2, Vilnius 08412, Lithuania
| | - Philip A Downing
- Molecular Ecology and Evolution Laboratory, Department of Biology, Lund University, S-22362 Lund, Sweden
| | - Abdullah Inci
- Department of Parasitology, Faculty of Veterinary Medicine, Erciyes University, 38039 Kayseri, Turkey; Vectors and Vector-Borne Diseases Implementation and Research Center, Erciyes University, 38039 Kayseri, Turkey
| | - Staffan Bensch
- Molecular Ecology and Evolution Laboratory, Department of Biology, Lund University, S-22362 Lund, Sweden
| |
Collapse
|
18
|
Sweet AD, Wilson RE, Sonsthagen SA, Johnson KP. Lousy grouse: Comparing evolutionary patterns in Alaska galliform lice to understand host evolution and host-parasite interactions. Ecol Evol 2020; 10:8379-8393. [PMID: 32788987 PMCID: PMC7417246 DOI: 10.1002/ece3.6545] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/05/2020] [Accepted: 06/11/2020] [Indexed: 11/08/2022] Open
Abstract
Understanding both sides of host-parasite relationships can provide more complete insights into host and parasite biology in natural systems. For example, phylogenetic and population genetic comparisons between a group of hosts and their closely associated parasites can reveal patterns of host dispersal, interspecies interactions, and population structure that might not be evident from host data alone. These comparisons are also useful for understanding factors that drive host-parasite coevolutionary patterns (e.g., codivergence or host switching) over different periods of time. However, few studies have compared the evolutionary histories between multiple groups of parasites from the same group of hosts at a regional geographic scale. Here, we used genomic data to compare phylogenomic and population genomic patterns of Alaska ptarmigan and grouse species (Aves: Tetraoninae) and two genera of their associated feather lice: Lagopoecus and Goniodes. We used whole-genome sequencing to obtain hundreds of genes and thousands of single-nucleotide polymorphisms (SNPs) for the lice and double-digest restriction-associated DNA sequences to obtain SNPs from Alaska populations of two species of ptarmigan. We found that both genera of lice have some codivergence with their galliform hosts, but these relationships are primarily characterized by host switching and phylogenetic incongruence. Population structure was also uncorrelated between the hosts and lice. These patterns suggest that grouse, and ptarmigan in particular, share habitats and have likely had historical and ongoing dispersal within Alaska. However, the two genera of lice also have sufficient dissimilarities in the relationships with their hosts to suggest there are other factors, such as differences in louse dispersal ability, that shape the evolutionary patterns with their hosts.
Collapse
Affiliation(s)
- Andrew D. Sweet
- Department of EntomologyPurdue UniversityWest LafayetteINUSA
| | | | | | - Kevin P. Johnson
- Illinois Natural History SurveyPrairie Research InstituteUniversity of IllinoisChampaignILUSA
| |
Collapse
|
19
|
Bell JA, González-Acuña D, Tkach VV. Haemosporidian Parasites of Chilean Ducks: The Importance of Biogeography and Nonpasserine Hosts. J Parasitol 2020; 106:211-220. [PMID: 32164026 DOI: 10.1645/19-130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Biogeography is known to have shaped the diversity and evolutionary history of avian haemosporidian parasites across the Neotropics. However, a paucity of information exists for the temperate Neotropics and especially from nonpasserine hosts. To understand the effect of biogeography in the temperate Neotropics on haemosporidians of nonpasserine hosts we screened ducks (Anseriformes) from central Chile for the presence of these parasites. Forty-two individuals of 4 duck species (Anas flavirostris, Anas georgica, Mareca sibilatrix, Spatula cyanoptera cyanoptera) were collected and assessed for haemosporidian parasite infections by real-time polymerase chain reaction screening and subsequent sequencing of the mitochondrial cytochrome b gene. Haemoproteus (subgenus Haemoproteus) and Plasmodium were detected in 2 host species, A. georgica and S. c. cyanoptera, with no Leucocytozoon found. Overall haemosporidian prevalence was low (14.2%), with the prevalence of Plasmodium (11.9%) being substantially greater than that of Haemoproteus (4.8%). Six haemosporidian cytochrome b lineages were recovered, 2 Haemoproteus and 4 Plasmodium, with all 6 lineages identified for the first time. In phylogenetic reconstruction, the Chilean Plasmodium lineages were more closely related to South American lineages from passerine birds than to known lineages from anseriforms. The subgenus Haemoproteus known from nonpasseriformes has never been identified from any anseriform host; however, we recovered 2 lineages from this subgenus, one from each A. georgica and S. c. cyanoptera. Further work is needed to determine if this presents true parasitism in ducks or only a spillover infection. The results of phylogenetic reconstruction demonstrate a unique evolutionary history of these Chilean parasites, differing from what is known for this host group. The unique geography of Chile, with a large part of the country being relatively isolated by the Atacama Desert in the north and the Andes in the east and south, would present opportunities for parasite diversification. Further work is needed to investigate how strongly the biogeographical isolation has shaped the haemosporidian parasites of this area. Our results add to the growing body of evidence that nonpasserine hosts support unique lineages of haemosporidian parasites, while also demonstrating the role of biogeography in haemosporidian parasite diversity in the temperate Neotropics.
Collapse
Affiliation(s)
- Jeffrey A Bell
- Department of Biology, University of North Dakota, 10 Cornell Street STOP 9019, Grand Forks, North Dakota 58202
| | - Daniel González-Acuña
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Box 10 537, Chillán 3780000, Chile
| | - Vasyl V Tkach
- Department of Biology, University of North Dakota, 10 Cornell Street STOP 9019, Grand Forks, North Dakota 58202
| |
Collapse
|
20
|
Evolutionary ecology, taxonomy, and systematics of avian malaria and related parasites. Acta Trop 2020; 204:105364. [PMID: 32007445 DOI: 10.1016/j.actatropica.2020.105364] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/25/2022]
Abstract
Haemosporidian parasites of the genera Plasmodium, Leucocytozoon, and Haemoproteus are one of the most prevalent and widely studied groups of parasites infecting birds. Plasmodium is the most well-known haemosporidian as the avian parasite Plasmodium relictum was the original transmission model for human malaria and was also responsible for catastrophic effects on native avifauna when introduced to Hawaii. The past two decades have seen a dramatic increase in research on avian haemosporidian parasites as a model system to understand evolutionary and ecological parasite-host relationships. Despite haemosporidians being one the best studied groups of avian parasites their specialization among avian hosts and variation in prevalence amongst regions and host taxa are not fully understood. In this review we focus on describing the current phylogenetic and morphological diversity of haemosporidian parasites, their specificity among avian and vector hosts, and identifying the determinants of haemosporidian prevalence among avian species. We also discuss how these parasites might spread across regions due to global climate change and the importance of avian migratory behavior in parasite dispersion and subsequent diversification.
Collapse
|
21
|
Mestre A, Poulin R, Hortal J. A niche perspective on the range expansion of symbionts. Biol Rev Camb Philos Soc 2019; 95:491-516. [DOI: 10.1111/brv.12574] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Alexandre Mestre
- Cavanilles Institute of Biodiversity and Evolutionary BiologyUniversity of Valencia Av. Dr. Moliner 50, 46100 Burjassot Spain
- Department of BiologyUniversity of Concordia Richard J. Renaud Science Complex, 7141 Sherbrooke W., H4B 1R6 Montreal Canada
| | - Robert Poulin
- Department of ZoologyUniversity of Otago 340 Great King Street, 9054 Dunedin New Zealand
| | - Joaquín Hortal
- Department of Biogeography and Global ChangeMuseo Nacional de Ciencias Naturales (MNCN‐CSIC) C/José Gutiérrez Abascal 2, 28006 Madrid Spain
- Departamento de EcologiaICB, Universidade Federal de Goiás (UFG), Rodovia Goiânia‐Nerópolis Km 5, Campus II, Setor Itatiaia, Goiânia GO 74001‐970 Brazil
- cE3c–Centre for EcologyEvolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Edifício C2 Piso 5, 1749‐016 Lisboa Portugal
| |
Collapse
|
22
|
de Moya RS, Allen JM, Sweet AD, Walden KKO, Palma RL, Smith VS, Cameron SL, Valim MP, Galloway TD, Weckstein JD, Johnson KP. Extensive host-switching of avian feather lice following the Cretaceous-Paleogene mass extinction event. Commun Biol 2019; 2:445. [PMID: 31815200 PMCID: PMC6884534 DOI: 10.1038/s42003-019-0689-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/08/2019] [Indexed: 01/08/2023] Open
Abstract
Nearly all lineages of birds host parasitic feather lice. Based on recent phylogenomic studies, the three major lineages of modern birds diverged from each other before the Cretaceous-Paleogene (K-Pg) mass extinction event. In contrast, studies of the phylogeny of feather lice on birds, indicate that these parasites diversified largely after this event. However, these studies were unable to reconstruct the ancestral avian host lineage for feather lice. Here we use genome sequences of a broad diversity of lice to reconstruct a phylogeny based on 1,075 genes. By comparing this louse evolutionary tree to the avian host tree, we show that feather lice began diversifying on the common ancestor of waterfowl and landfowl, then radiated onto other avian lineages by extensive host-switching. Dating analyses and cophylogenetic comparisons revealed that two of three lineages of birds that diverged before the K-Pg boundary acquired their feather lice after this event via host-switching.
Collapse
Affiliation(s)
- Robert S. de Moya
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL USA
- Department of Entomology, University of Illinois, Urbana, IL USA
| | - Julie M. Allen
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL USA
- Department of Biology, University of Nevada, Reno, NV USA
| | - Andrew D. Sweet
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL USA
- Department of Entomology, Purdue University, West Lafayette, IN USA
| | | | - Ricardo L. Palma
- Museum of New Zealand Te Papa Tongarewa, Wellington, New Zealand
| | - Vincent S. Smith
- Department of Life Sciences, The Natural History Museum, London, UK
| | | | | | - Terry D. Galloway
- Department of Entomology, University of Manitoba, Winnipeg, Manitoba Canada
| | - Jason D. Weckstein
- Department of Ornithology, Academy of Natural Sciences of Drexel University, Philadelphia, PA USA
| | - Kevin P. Johnson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL USA
| |
Collapse
|
23
|
Fecchio A, Collins MD, Bell JA, García-Trejo EA, Sánchez-González LA, Dispoto JH, Rice NH, Weckstein JD. Bird Tissues from Museum Collections are Reliable for Assessing Avian Haemosporidian Diversity. J Parasitol 2019. [DOI: 10.1645/18-130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Alan Fecchio
- Laboratório de Evolução e Biogeografia, Universidade Federal da Bahia, Salvador, BA 40170115, Brazil
| | | | - Jeffrey A. Bell
- Department of Biology, University of North Dakota, Grand Forks, North Dakota 58201
| | - Erick A. García-Trejo
- Unidad de Informática para la Biodiversidad, UniCiencias. Departamento Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Luis A. Sánchez-González
- Museo de Zoología “Alfonso L. Herrera”, Depto. de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México. Apdo. Postal 70-399, Ciudad de México, 04510, Mexico
| | - Janice H. Dispoto
- Department of Ornithology, Academy of Natural Sciences of Drexel University, Philadelphia, Pennsylvania 19103
| | - Nathan H. Rice
- Department of Ornithology, Academy of Natural Sciences of Drexel University, Philadelphia, Pennsylvania 19103
| | - Jason D. Weckstein
- Department of Ornithology, Academy of Natural Sciences of Drexel University, Philadelphia, Pennsylvania 19103
| |
Collapse
|
24
|
Flying into the future: avian haemosporidians and the advancement of understanding host–parasite systems. Parasitology 2019; 146:1487-1489. [DOI: 10.1017/s003118201900057x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
Gupta P, Vishnudas CK, Ramakrishnan U, Robin VV, Dharmarajan G. Geographical and host species barriers differentially affect generalist and specialist parasite community structure in a tropical sky-island archipelago. Proc Biol Sci 2019; 286:20190439. [PMID: 31161909 DOI: 10.1098/rspb.2019.0439] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Understanding why some parasites emerge in novel host communities while others do not has broad implications for human and wildlife health. In the case of haemosporidian blood parasites, epidemic wild bird mortalities on oceanic islands have been linked to Plasmodium spp., but not genera like Haemoproteus. Indeed, Haemoproteus is absent from many oceanic islands. By contrast, birds on continental islands share long coevolutionary histories with both Plasmodium and Haemoproteus, and are thus ideal model systems to elucidate eco-evolutionary endpoints associated with these parasites in oceanic islands. Here, we examine eco-evolutionary dynamics of avian haemosporidian in the Shola sky-island archipelago of the Western Ghats, India. Our analyses reveal that compared to Plasmodium, Haemoproteus lineages were highly host-specific and diversified via co-speciation with their hosts. We show that community structure of host-generalist Plasmodium was primarily driven by geographical factors (e.g. biogeographic barriers), while that of host-specialist Haemoproteus was driven by host species barriers (e.g. phylogenetic distance). Consequently, a few host species can harbour a high diversity of Plasmodium lineages which, in turn, are capable of infecting multiple host species. These two mechanisms can act in concert to increase the risk of introduction, establishment, and emergence of novel Plasmodium lineages in island systems.
Collapse
Affiliation(s)
- Pooja Gupta
- 1 Savannah River Ecology Laboratory, University of Georgia , Aiken, SC , USA.,2 Warnell School of Forestry and Natural Resources, University of Georgia , Athens, GA 30602 , USA
| | - C K Vishnudas
- 3 Indian Institute of Science Education and Research Tirupati , Mangalam, Tirupati 517507 , India
| | - Uma Ramakrishnan
- 4 National Centre for Biological Sciences, TIFR , Bangalore 560065 , India
| | - V V Robin
- 3 Indian Institute of Science Education and Research Tirupati , Mangalam, Tirupati 517507 , India
| | - Guha Dharmarajan
- 1 Savannah River Ecology Laboratory, University of Georgia , Aiken, SC , USA
| |
Collapse
|
26
|
Fecchio A, Bell JA, Pinheiro RB, Cueto VR, Gorosito CA, Lutz HL, Gaiotti MG, Paiva LV, França LF, Toledo‐Lima G, Tolentino M, Pinho JB, Tkach VV, Fontana CS, Grande JM, Santillán MA, Caparroz R, Roos AL, Bessa R, Nogueira W, Moura T, Nolasco EC, Comiche KJ, Kirchgatter K, Guimarães LO, Dispoto JH, Marini MÂ, Weckstein JD, Batalha‐Filho H, Collins MD. Avian host composition, local speciation and dispersal drive the regional assembly of avian malaria parasites in South American birds. Mol Ecol 2019; 28:2681-2693. [DOI: 10.1111/mec.15094] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Alan Fecchio
- Laboratório de Evolução e Biogeografia Universidade Federal da Bahia Salvador Brazil
| | - Jeffrey A. Bell
- Department of Biology University of North Dakota Grand Forks North Dakota
| | - Rafael B.P. Pinheiro
- Programa de Pós‐Graduação em Ecologia Conservação e Manejo da Vida Silvestre, Universidade Federal de Minas Gerais Belo Horizonte Brazil
| | - Victor R. Cueto
- Centro de Investigación Esquel de Montaña y Estepa Patagónica (CIEMEP) CONICET – Universidad Nacional de la Patagonia San Juan Bosco Esquel, Chubut Argentina
| | - Cristian A. Gorosito
- Centro de Investigación Esquel de Montaña y Estepa Patagónica (CIEMEP) CONICET – Universidad Nacional de la Patagonia San Juan Bosco Esquel, Chubut Argentina
| | - Holly L. Lutz
- Department of Surgery University of Chicago Chicago Illinios
- Integrative Research Center, Field Museum of Natural History Chicago Illinios
| | - Milene G. Gaiotti
- Programa de Pós‐Graduação em Ecologia Universidade de Brasília Brasília Brazil
| | - Luciana V. Paiva
- Laboratório de Ecologia de Populações Animais, Departamento de Biociências Universidade Federal Rural do Semiárido Mossoró Brazil
| | - Leonardo F. França
- Laboratório de Ecologia de Populações Animais, Departamento de Biociências Universidade Federal Rural do Semiárido Mossoró Brazil
| | - Guilherme Toledo‐Lima
- Laboratório de Ornitologia, Departamento de Botânica e Zoologia, Centro de Biociências Universidade Federal do Rio Grande do Norte Natal Brazil
| | - Mariana Tolentino
- Laboratório de Evolução e Comportamento Animal, Coordenação de Biodiversidade Instituto Nacional de Pesquisas da Amazônia Manaus Brazil
| | - João B. Pinho
- Laboratório de Ecologia de Aves Universidade Federal de Mato Grosso Cuiabá Brazil
| | - Vasyl V. Tkach
- Department of Biology University of North Dakota Grand Forks North Dakota
| | - Carla S. Fontana
- Laboratório de Ornitologia, Museu de Ciências e Tecnologia e Programa de Pós‐graduação em Ecologia e Evolução da Biodiversidade PUCRS Porto Alegre Brazil
| | - Juan Manuel Grande
- Facultad de Ciencias Exactas y Naturales Universidad Nacional de La Pampa Santa Rosa Argentina
| | - Miguel A. Santillán
- División Zoología Museo de Historia Natural de la Provincia de La Pampa Santa Rosa Argentina
| | - Renato Caparroz
- Laboratório de Genética e Biodiversidade, Departamento de Genética e Morfologia Instituto de Ciências Biológicas, Universidade de Brasilia Brasília Brazil
| | - Andrei L. Roos
- Instituto Chico Mendes de Conservação da Biodiversidade Florianópolis Brazil
- Programa de Pós‐Graduação em Ecologia Universidade Federal de Santa Catarina Florianópolis Brazil
| | | | - Wagner Nogueira
- Programa de Pós‐Graduação em Manejo e Conservação de Ecossistemas Naturais e Agrários, Universidade Federal de Viçosa Florestal Brazil
| | - Thiago Moura
- Departamento de Zoologia Universidade Estadual de Feira de Santana Feira de Santana Brazil
| | - Erica C. Nolasco
- Departamento de Zoologia Universidade Estadual de Feira de Santana Feira de Santana Brazil
| | - Kiba J.M. Comiche
- Núcleo de Estudos em Malária Superintendência de Controle de Endemias, Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo Brazil
| | - Karin Kirchgatter
- Núcleo de Estudos em Malária Superintendência de Controle de Endemias, Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo Brazil
| | - Lilian O. Guimarães
- Núcleo de Estudos em Malária Superintendência de Controle de Endemias, Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo Brazil
| | - Janice H. Dispoto
- Department of Ornithology Academy of Natural Sciences of Drexel University Philadelphia Pennsylvania
| | - Miguel Â. Marini
- Departamento de Zoologia Universidade de Brasília Brasília Brazil
| | - Jason D. Weckstein
- Department of Ornithology Academy of Natural Sciences of Drexel University Philadelphia Pennsylvania
- Department of Biodiversity, Earth, and Environmental Science Drexel University Philadelphia Pennsylvania
| | | | | |
Collapse
|
27
|
Barrow LN, McNew SM, Mitchell N, Galen SC, Lutz HL, Skeen H, Valqui T, Weckstein JD, Witt CC. Deeply conserved susceptibility in a multi-host, multi-parasite system. Ecol Lett 2019; 22:987-998. [PMID: 30912262 DOI: 10.1111/ele.13263] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/24/2019] [Accepted: 02/20/2019] [Indexed: 01/06/2023]
Abstract
Variation in susceptibility is ubiquitous in multi-host, multi-parasite assemblages, and can have profound implications for ecology and evolution in these systems. The extent to which susceptibility to parasites is phylogenetically conserved among hosts can be revealed by analysing diverse regional communities. We screened for haemosporidian parasites in 3983 birds representing 40 families and 523 species, spanning ~ 4500 m elevation in the tropical Andes. To quantify the influence of host phylogeny on infection status, we applied Bayesian phylogenetic multilevel models that included a suite of environmental, spatial, temporal, life history and ecological predictors. We found evidence of deeply conserved susceptibility across the avian tree; host phylogeny explained substantial variation in infection status, and results were robust to phylogenetic uncertainty. Our study suggests that susceptibility is governed, in part, by conserved, latent aspects of anti-parasite defence. This demonstrates the importance of deep phylogeny for understanding present-day ecological interactions.
Collapse
Affiliation(s)
- Lisa N Barrow
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA.,Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Sabrina M McNew
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA.,Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA.,Cornell Lab of Ornithology, Cornell University, Ithaca, NY, USA
| | - Nora Mitchell
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Spencer C Galen
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA.,Sackler Institute for Comparative Genomics & Richard Gilder Graduate School, American Museum of Natural History, New York, NY, 10024, USA.,Department of Ornithology, Academy of Natural Sciences of Drexel University, Philadelphia, PA, 19103, USA.,Department of Biodiversity, Earth, and Environmental Sciences, Drexel University, Philadelphia, PA, 19103, USA
| | - Holly L Lutz
- Cornell Lab of Ornithology, Cornell University, Ithaca, NY, USA.,Integrative Research Center, The Field Museum, Chicago, IL, 60605, USA.,Department of Surgery, University of Chicago, Chicago, IL, 60637, USA
| | - Heather Skeen
- Integrative Research Center, The Field Museum, Chicago, IL, 60605, USA.,Committee on Evolutionary Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Thomas Valqui
- Centro de Ornitología y Biodiversidad (CORBIDI), Lima, Perú
| | - Jason D Weckstein
- Department of Ornithology, Academy of Natural Sciences of Drexel University, Philadelphia, PA, 19103, USA.,Department of Biodiversity, Earth, and Environmental Sciences, Drexel University, Philadelphia, PA, 19103, USA.,Integrative Research Center, The Field Museum, Chicago, IL, 60605, USA
| | - Christopher C Witt
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA.,Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
28
|
Garcia-Longoria L, Marzal A, de Lope F, Garamszegi L. Host-parasite interaction explains variation in the prevalence of avian haemosporidians at the community level. PLoS One 2019; 14:e0205624. [PMID: 30840636 PMCID: PMC6402683 DOI: 10.1371/journal.pone.0205624] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/15/2019] [Indexed: 11/25/2022] Open
Abstract
Parasites are a selective force that shape host community structure and dynamics, but host communities can also influence parasitism. Understanding the dual nature from host-parasite interactions can be facilitated by quantifying the variation in parasite prevalence among host species and then comparing that variation to other ecological factors that are known to also shape host communities. Avian haemosporidian parasites (e.g. Plasmodium and Haemoproteus) are abundant and widespread representing an excellent model for the study of host-parasite interactions. Several geographic and environmental factors have been suggested to determine prevalence of avian haemosporidians in bird communities. However, it remains unknown whether host and parasite traits, represented by phylogenetic distances among species and degree of specialization in host-parasite relationships, can influence infection status. The aims of this study were to analyze factors affecting infection status in a bird community and to test whether the degree of parasite specialization on their hosts is determined by host traits. Our statistical analyses suggest that infection status is mainly determined by the interaction between host species and parasite lineages where tolerance and/or susceptibility to parasites plays an essential role. Additionally, we found that although some of the parasite lineages infected a low number of bird individuals, the species they infected were distantly related and therefore the parasites themselves should not be considered typical host specialists. Infection status was higher for generalist than for specialist parasites in some, but not all, host species. These results suggest that detected prevalence in a species mainly results from the interaction between host immune defences and parasite exploitation strategies wherein the result of an association between particular parasite lineages and particular host species is idiosyncratic.
Collapse
Affiliation(s)
- Luz Garcia-Longoria
- Departamento de Anatomía, Biología Celular y Zoología, Universidad de Extremadura, Badajoz (Spain)
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Sölvegatan 37, Lund, Sweden
- * E-mail:
| | - Alfonso Marzal
- Departamento de Anatomía, Biología Celular y Zoología, Universidad de Extremadura, Badajoz (Spain)
| | - Florentino de Lope
- Departamento de Anatomía, Biología Celular y Zoología, Universidad de Extremadura, Badajoz (Spain)
| | - Laszlo Garamszegi
- Department of Evolutionary Ecology, Estación Biológica de Doñana-CSIC, Seville, Spain
- MTA-ELTE, Theoretical Biology and Evolutionary Ecology Research Group, Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Budapest, Hungary
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
29
|
Pacheco MA, García-Amado MA, Manzano J, Matta NE, Escalante AA. Blood parasites infecting the Hoatzin ( Opisthocomus hoazin), a unique neotropical folivorous bird. PeerJ 2019; 7:e6361. [PMID: 30740273 PMCID: PMC6368046 DOI: 10.7717/peerj.6361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/30/2018] [Indexed: 12/15/2022] Open
Abstract
The Hoatzin (Opisthocomus hoazin) is the only extant member of the order Opisthocomiformes. This unique South American bird lives in the riparian lowland vegetation characteristic of the Amazon and Orinoco basins. Hoatzins nest in communal social units close to water bodies; they are strictly folivores being the only bird with pregastric fermentation in the crop. Because of the complex logistics involved in capturing this bird, there is a knowledge gap on its parasites. This study documents two distant lineages of haemosporidian parasites (Plasmodium spp.) in a juvenile and two adults sampled in the Cojedes state, Venezuela. Although negative by microscopy, the parasite identification was possible by using molecular methods. We estimated the phylogenetic relationships on the parasite cytochrome b (cytb, 480 bp) gene and the mitochondrial DNA. We found one of the parasites lineages in two individuals (nestling and adult), and the corresponding fragment of cytb was identical to a one found in Wood Stork (Mycteria americana) from Brazil. The other lineage, found in an adult, has an identity of 469 out of 478 bp (98%) with Plasmodium sp. GAL-2012 (isolate THAMB08) from Brazil. Although a morphological description of these parasites was not possible, this is the first molecular study focusing on Hoatzin haemosporidian parasites and the first documentation of Plasmodium infections in the Hoatzin from Venezuela. Furthermore, we reported microfilaria in two adults as well as hematological parameters for six individuals. Information on hematological parameters could contribute to establishing the necessary baseline to detect underlying conditions, such as infections, in this bird species.
Collapse
Affiliation(s)
- M Andreína Pacheco
- Department of Biology/Institute for Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA, United States of America
| | - M Alexandra García-Amado
- Laboratorio de Fisiología Gastrointestinal, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Miranda, Venezuela
| | - Jaime Manzano
- Departamento de Biología, Grupo de Investigación Caracterización genética e Inmunología, Universidad Nacional de Colombia, Sede Bogotá-Facultad de Ciencias, Bogota, Colombia
| | - Nubia E Matta
- Departamento de Biología, Grupo de Investigación Caracterización genética e Inmunología, Universidad Nacional de Colombia, Sede Bogotá-Facultad de Ciencias, Bogota, Colombia
| | - Ananias A Escalante
- Department of Biology/Institute for Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA, United States of America
| |
Collapse
|
30
|
Fecchio A, Wells K, Bell JA, Tkach VV, Lutz HL, Weckstein JD, Clegg SM, Clark NJ. Climate variation influences host specificity in avian malaria parasites. Ecol Lett 2019; 22:547-557. [PMID: 30637890 DOI: 10.1111/ele.13215] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/13/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022]
Abstract
Parasites with low host specificity (e.g. infecting a large diversity of host species) are of special interest in disease ecology, as they are likely more capable of circumventing ecological or evolutionary barriers to infect new hosts than are specialist parasites. Yet for many parasites, host specificity is not fixed and can vary in response to environmental conditions. Using data on host associations for avian malaria parasites (Apicomplexa: Haemosporida), we develop a hierarchical model that quantifies this environmental dependency by partitioning host specificity variation into region- and parasite-level effects. Parasites were generally phylogenetic host specialists, infecting phylogenetically clustered subsets of available avian hosts. However, the magnitude of this specialisation varied biogeographically, with parasites exhibiting higher host specificity in regions with more pronounced rainfall seasonality and wetter dry seasons. Recognising the environmental dependency of parasite specialisation can provide useful leverage for improving predictions of infection risk in response to global climate change.
Collapse
Affiliation(s)
- Alan Fecchio
- Laboratório de Evolução e Biogeografia, Universidade Federal da Bahia, Rua Barão de Jeremoabo 147, Salvador, BA, 40170115, Brazil
| | - Konstans Wells
- Department of Biosciences, Swansea University, Swansea, SA2 8PP, UK
| | - Jeffrey A Bell
- Department of Biology, University of North Dakota, 1 Campus Drive and Cornell Street, Grand Forks, ND, 58202, USA
| | - Vasyl V Tkach
- Department of Biology, University of North Dakota, 10 Cornell Street, Grand Forks, ND, 58202, USA
| | - Holly L Lutz
- Department of Surgery, University of Chicago, 5812 S. Ellis Ave., Chicago, IL, 606372, USA.,Integrative Research Center, Field Museum of Natural History, 1400 S. Lake Shore Drive, Chicago, IL, 60605, USA
| | - Jason D Weckstein
- Department of Ornithology, Academy of Natural Sciences and Department of Biodiversity, Earth, and Environmental Sciences, Drexel University, 1900 Benjamin Franklin Parkway, Philadelphia, PA, 19103, USA
| | - Sonya M Clegg
- Edward Grey Institute of Field Ornithology, Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | - Nicholas J Clark
- School of Veterinary Science, University of Queensland, Gatton, Qld, Australia
| |
Collapse
|