1
|
Chen YD, Bu ZJ, Wang M, Zhang MM, Ma JZ, Guo HB. Drought mediates Sphagnum defense response to herbivory. AMERICAN JOURNAL OF BOTANY 2024; 111:e16427. [PMID: 39431323 DOI: 10.1002/ajb2.16427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 10/22/2024]
Abstract
PREMISE The expected concomitant increase in multiple stressors such as herbivory and drought may threaten peatland ecosystems. How Sphagnum, the ecological engineers of peatlands, responds to combined stressors remains largely unexplored. Here we aimed to clarify resource allocations in Sphagnum during concomitant herbivory and drought. METHODS S. magellanicum and S. fuscum were exposed to drought and herbivory together or separately in laboratory experiments and analyzed for growth (biomass production and net photosynthetic rate), defense (phenolics in leachates and phenolics in extraction) and nonstructural carbohydrates (soluble sugar and starch) in relation to untreated controls. RESULTS Herbivory and drought had significant interactive effects on Sphagnum growth and defense. In both species, drought without herbivory reduced the phenolics in leachate, but with herbivory increased phenolics, indicating a synergistic effect between herbivory and drought on Sphagnum defense. Both stressors significantly decreased biomass production, with the combined stress having a more negative effect. Interestingly, a growth-defense trade-off was found in the drought treatment of both Sphagnum species, but disappeared in the wet treatment. Conversely, a trade-off between soluble sugars and phenolics was found in the wet but not in the drought treatment, suggesting that soluble sugars may play a role in inducing the defense and hence mask the growth-defense trade-off in peat mosses. CONCLUSIONS Our results emphasize that predicting the impact of combined stressors on peat moss traits is complex and challenging. Future models should account for the effects of multiple environmental stressors to guide peatland conservation under climate warming.
Collapse
Affiliation(s)
- Yong-Da Chen
- School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, China
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, 130024, China
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Institute for Peat and Mire Research, Northeast Normal University, Changchun, 130024, China
- Jilin Provincial Key Laboratory for Wetland Ecological Processes and Environmental Change in the Changbai Mountains, Changchun, 130024, China
| | - Zhao-Jun Bu
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, 130024, China
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Institute for Peat and Mire Research, Northeast Normal University, Changchun, 130024, China
- Jilin Provincial Key Laboratory for Wetland Ecological Processes and Environmental Change in the Changbai Mountains, Changchun, 130024, China
| | - Meng Wang
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, 130024, China
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Institute for Peat and Mire Research, Northeast Normal University, Changchun, 130024, China
- Jilin Provincial Key Laboratory for Wetland Ecological Processes and Environmental Change in the Changbai Mountains, Changchun, 130024, China
| | - Ming-Ming Zhang
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, 130024, China
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Institute for Peat and Mire Research, Northeast Normal University, Changchun, 130024, China
- Jilin Provincial Key Laboratory for Wetland Ecological Processes and Environmental Change in the Changbai Mountains, Changchun, 130024, China
| | - Jin-Ze Ma
- School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Hong-Bo Guo
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
2
|
Le Geay M, Mayers K, Küttim M, Lauga B, Jassey VEJ. Development of a digital droplet PCR approach for the quantification of soil micro-organisms involved in atmospheric CO 2 fixation. Environ Microbiol 2024; 26:e16666. [PMID: 38889760 DOI: 10.1111/1462-2920.16666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024]
Abstract
Carbon-fixing micro-organisms (CFMs) play a pivotal role in soil carbon cycling, contributing to carbon uptake and sequestration through various metabolic pathways. Despite their importance, accurately quantifying the absolute abundance of these micro-organisms in soils has been challenging. This study used a digital droplet polymerase chain reaction (ddPCR) approach to measure the abundance of key and emerging CFMs pathways in fen and bog soils at different depths, ranging from 0 to 15 cm. We targeted total prokaryotes, oxygenic phototrophs, aerobic anoxygenic phototrophic bacteria and chemoautotrophs, optimizing the conditions to achieve absolute quantification of these genes. Our results revealed that oxygenic phototrophs were the most abundant CFMs, making up 15% of the total prokaryotic abundance. They were followed by chemoautotrophs at 10% and aerobic anoxygenic phototrophic bacteria at 9%. We observed higher gene concentrations in fen than in bog. There were also variations in depth, which differed between fen and bog for all genes. Our findings underscore the abundance of oxygenic phototrophs and chemoautotrophs in peatlands, challenging previous estimates that relied solely on oxygenic phototrophs for microbial carbon dioxide fixation assessments. Incorporating absolute gene quantification is essential for a comprehensive understanding of microbial contributions to soil processes. This approach sheds light on the complex mechanisms of soil functioning in peatlands.
Collapse
Affiliation(s)
- Marie Le Geay
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRE, IRD, Toulouse INP, Université Toulouse 3-Paul Sabatier (UT3), Toulouse, France
| | - Kyle Mayers
- NORCE Norwegian Research Centre AS, Bergen, Norway
| | - Martin Küttim
- Institute of Ecology, School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
| | - Béatrice Lauga
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Vincent E J Jassey
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRE, IRD, Toulouse INP, Université Toulouse 3-Paul Sabatier (UT3), Toulouse, France
| |
Collapse
|
3
|
Sytiuk A, Hamard S, Céréghino R, Dorrepaal E, Geissel H, Küttim M, Lamentowicz M, Tuittila ES, Jassey VEJ. Linkages between Sphagnum metabolites and peatland CO 2 uptake are sensitive to seasonality in warming trends. THE NEW PHYTOLOGIST 2023; 237:1164-1178. [PMID: 36336780 PMCID: PMC10108112 DOI: 10.1111/nph.18601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Plants produce a wide diversity of metabolites. Yet, our understanding of how shifts in plant metabolites as a response to climate change feedback on ecosystem processes remains scarce. Here, we test to what extent climate warming shifts the seasonality of metabolites produced by Sphagnum mosses, and what are the consequences of these shifts for peatland C uptake. We used a reciprocal transplant experiment along a climate gradient in Europe to simulate climate change. We evaluated the responses of primary and secondary metabolites in five Sphagnum species and related their responses to gross ecosystem productivity (GEP). When transplanted to a warmer climate, Sphagnum species showed consistent responses to warming, with an upregulation of either their primary or secondary metabolite according to seasons. Moreover, these shifts were correlated to changes in GEP, especially in spring and autumn. Our results indicate that the Sphagnum metabolome is very plastic and sensitive to warming. We also show that warming-induced changes in the seasonality of Sphagnum metabolites have consequences on peatland GEP. Our findings demonstrate the capacity for plant metabolic plasticity to impact ecosystem C processes and reveal a further mechanism through which Sphagnum could shape peatland responses to climate change.
Collapse
Affiliation(s)
- Anna Sytiuk
- Laboratoire Ecologie Fonctionnelle et Environnement (LEFE)Université Paul Sabatier, CNRSF‐31000ToulouseFrance
| | - Samuel Hamard
- Laboratoire Ecologie Fonctionnelle et Environnement (LEFE)Université Paul Sabatier, CNRSF‐31000ToulouseFrance
| | - Régis Céréghino
- Laboratoire Ecologie Fonctionnelle et Environnement (LEFE)Université Paul Sabatier, CNRSF‐31000ToulouseFrance
| | - Ellen Dorrepaal
- Department of Ecology and Environmental Science, Climate Impacts Research CentreUmeå UniversitySE‐981 07AbiskoSweden
| | - Honorine Geissel
- Laboratoire Ecologie Fonctionnelle et Environnement (LEFE)Université Paul Sabatier, CNRSF‐31000ToulouseFrance
| | - Martin Küttim
- Institute of Ecology, School of Natural Sciences and HealthTallinn UniversityUus‐Sadama 510120TallinnEstonia
| | - Mariusz Lamentowicz
- Climate Change Ecology Research Unit, Faculty of Geographical and Geological SciencesAdam Mickiewicz University in PoznańBogumiła Krygowskiego 1061‐680PoznańPoland
| | - Eeva Stiina Tuittila
- School of Forest SciencesUniversity of Eastern FinlandJoensuu CampusFI‐80100JoensuuFinland
| | - Vincent E. J. Jassey
- Laboratoire Ecologie Fonctionnelle et Environnement (LEFE)Université Paul Sabatier, CNRSF‐31000ToulouseFrance
| |
Collapse
|
4
|
Jassey VEJ, Hamard S, Lepère C, Céréghino R, Corbara B, Küttim M, Leflaive J, Leroy C, Carrias JF. Photosynthetic microorganisms effectively contribute to bryophyte CO 2 fixation in boreal and tropical regions. ISME COMMUNICATIONS 2022; 2:64. [PMID: 37938283 PMCID: PMC9723567 DOI: 10.1038/s43705-022-00149-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 04/26/2023]
Abstract
Photosynthetic microbes are omnipresent in land and water. While they critically influence primary productivity in aquatic systems, their importance in terrestrial ecosystems remains largely overlooked. In terrestrial systems, photoautotrophs occur in a variety of habitats, such as sub-surface soils, exposed rocks, and bryophytes. Here, we study photosynthetic microbial communities associated with bryophytes from a boreal peatland and a tropical rainforest. We interrogate their contribution to bryophyte C uptake and identify the main drivers of that contribution. We found that photosynthetic microbes take up twice more C in the boreal peatland (~4.4 mg CO2.h-1.m-2) than in the tropical rainforest (~2.4 mg CO2.h-1.m-2), which corresponded to an average contribution of 4% and 2% of the bryophyte C uptake, respectively. Our findings revealed that such patterns were driven by the proportion of photosynthetic protists in the moss microbiomes. Low moss water content and light conditions were not favourable to the development of photosynthetic protists in the tropical rainforest, which indirectly reduced the overall photosynthetic microbial C uptake. Our investigations clearly show that photosynthetic microbes associated with bryophyte effectively contribute to moss C uptake despite species turnover. Terrestrial photosynthetic microbes clearly have the capacity to take up atmospheric C in bryophytes living under various environmental conditions, and therefore potentially support rates of ecosystem-level net C exchanges with the atmosphere.
Collapse
Affiliation(s)
- Vincent E J Jassey
- Laboratoire Ecologie Fonctionnelle et Environnement (LEFE), Université Toulouse 3-Paul Sabatier (UT3), CNRS, 31062, Toulouse, France.
| | - Samuel Hamard
- Laboratoire Ecologie Fonctionnelle et Environnement (LEFE), Université Toulouse 3-Paul Sabatier (UT3), CNRS, 31062, Toulouse, France
| | - Cécile Lepère
- Laboratoire Microorganismes, Génome Et Environnement (LMGE), Université Clermont Auvergne, CNRS, Clermont-Ferrand, France
| | - Régis Céréghino
- Laboratoire Ecologie Fonctionnelle et Environnement (LEFE), Université Toulouse 3-Paul Sabatier (UT3), CNRS, 31062, Toulouse, France
| | - Bruno Corbara
- Laboratoire Microorganismes, Génome Et Environnement (LMGE), Université Clermont Auvergne, CNRS, Clermont-Ferrand, France
| | - Martin Küttim
- Institute of Ecology, School of Natural Sciences and Health, Tallinn University, Uus-Sadama 5, 10120, Tallinn, Estonia
| | - Joséphine Leflaive
- Laboratoire Ecologie Fonctionnelle et Environnement (LEFE), Université Toulouse 3-Paul Sabatier (UT3), CNRS, 31062, Toulouse, France
| | - Céline Leroy
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
- ECOFOG, AgroParisTech, CIRAD, CNRS, INRAE, Université de Guyane, Université des Antilles, Campus Agronomique, Kourou, France
| | - Jean-François Carrias
- Laboratoire Microorganismes, Génome Et Environnement (LMGE), Université Clermont Auvergne, CNRS, Clermont-Ferrand, France
| |
Collapse
|
5
|
Kulshrestha S, Jibran R, van Klink JW, Zhou Y, Brummell DA, Albert NW, Schwinn KE, Chagné D, Landi M, Bowman JL, Davies KM. Stress, senescence, and specialized metabolites in bryophytes. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4396-4411. [PMID: 35259256 PMCID: PMC9291361 DOI: 10.1093/jxb/erac085] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/07/2022] [Indexed: 05/04/2023]
Abstract
Life on land exposes plants to varied abiotic and biotic environmental stresses. These environmental drivers contributed to a large expansion of metabolic capabilities during land plant evolution and species diversification. In this review we summarize knowledge on how the specialized metabolite pathways of bryophytes may contribute to stress tolerance capabilities. Bryophytes are the non-tracheophyte land plant group (comprising the hornworts, liverworts, and mosses) and rapidly diversified following the colonization of land. Mosses and liverworts have as wide a distribution as flowering plants with regard to available environments, able to grow in polar regions through to hot desert landscapes. Yet in contrast to flowering plants, for which the biosynthetic pathways, transcriptional regulation, and compound function of stress tolerance-related metabolite pathways have been extensively characterized, it is only recently that similar data have become available for bryophytes. The bryophyte data are compared with those available for angiosperms, including examining how the differing plant forms of bryophytes and angiosperms may influence specialized metabolite diversity and function. The involvement of stress-induced specialized metabolites in senescence and nutrient response pathways is also discussed.
Collapse
Affiliation(s)
- Samarth Kulshrestha
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - Rubina Jibran
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - John W van Klink
- The New Zealand Institute for Plant and Food Research Limited, Department of Chemistry, Otago University, Dunedin, New Zealand
| | - Yanfei Zhou
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - David A Brummell
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - Nick W Albert
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - Kathy E Schwinn
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - David Chagné
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Italy
| | - John L Bowman
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Kevin M Davies
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| |
Collapse
|