1
|
Martín-González E, Hernández-Pérez JM, Pérez JAP, Pérez-García J, Herrera-Luis E, González-Pérez R, González-González O, Mederos-Luis E, Sánchez-Machín I, Poza-Guedes P, Sardón O, Corcuera P, Cruz MJ, González-Barcala FJ, Martínez-Rivera C, Mullol J, Muñoz X, Olaguibel JM, Plaza V, Quirce S, Valero A, Sastre J, Korta-Murua J, Del Pozo V, Lorenzo-Díaz F, Villar J, Pino-Yanes M, González-Carracedo MA. Alpha-1 antitrypsin deficiency and Pi*S and Pi*Z SERPINA1 variants are associated with asthma exacerbations. Pulmonology 2023:S2531-0437(23)00091-0. [PMID: 37236906 DOI: 10.1016/j.pulmoe.2023.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
INTRODUCTION AND OBJECTIVES Asthma is a chronic inflammatory disease of the airways. Asthma patients may experience potentially life-threatening episodic flare-ups, known as exacerbations, which may significantly contribute to the asthma burden. The Pi*S and Pi*Z variants of the SERPINA1 gene, which usually involve alpha-1 antitrypsin (AAT) deficiency, had previously been associated with asthma. The link between AAT deficiency and asthma might be represented by the elastase/antielastase imbalance. However, their role in asthma exacerbations remains unknown. Our objective was to assess whether SERPINA1 genetic variants and reduced AAT protein levels are associated with asthma exacerbations. MATERIALS AND METHODS In the discovery analysis, SERPINA1 Pi*S and Pi*Z variants and serum AAT levels were analyzed in 369 subjects from La Palma (Canary Islands, Spain). As replication, genomic data from two studies focused on 525 Spaniards and publicly available data from UK Biobank, FinnGen, and GWAS Catalog (Open Targets Genetics) were analyzed. The associations between SERPINA1 Pi*S and Pi*Z variants and AAT deficiency with asthma exacerbations were analyzed with logistic regression models, including age, sex, and genotype principal components as covariates. RESULTS In the discovery, a significant association with asthma exacerbations was found for both Pi*S (odds ratio [OR]=2.38, 95% confidence interval [CI]= 1.40-4.04, p-value=0.001) and Pi*Z (OR=3.49, 95%CI=1.55-7.85, p-value=0.003)Likewise, AAT deficiency was associated with a higher risk for asthma exacerbations (OR=5.18, 95%CI=1.58-16.92, p-value=0.007) as well as AAT protein levels (OR= 0.72, 95%CI=0.57-0.91, p-value=0.005). The Pi*Z association with exacerbations was replicated in samples from Spaniards with two generations of Canary Islander origin (OR=3.79, p-value=0.028), and a significant association with asthma hospitalizations was found in the Finnish population (OR=1.12, p-value=0.007). CONCLUSIONS AAT deficiency could be a potential therapeutic target for asthma exacerbations in specific populations.
Collapse
Affiliation(s)
- Elena Martín-González
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 La Laguna, Tenerife, Spain
| | - José M Hernández-Pérez
- Department of Respiratory Medicine, Hospital Universitario de N.S de Candelaria, 38010 Santa Cruz de Tenerife, Spain; Respiratory Medicine, Hospital Universitario de La Palma, 38713 Breña Alta, Santa Cruz de Tenerife, Spain
| | - José A Pérez Pérez
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 La Laguna, Tenerife, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
| | - Javier Pérez-García
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 La Laguna, Tenerife, Spain
| | - Esther Herrera-Luis
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 La Laguna, Tenerife, Spain
| | - Ruperto González-Pérez
- Allergy Department, Hospital Universitario de Canarias, 38320 La Laguna, Tenerife, Spain; Severe Asthma Unit, Allergy Department, Hospital Universitario de Canarias, 38320 La Laguna, Spain
| | | | - Elena Mederos-Luis
- Allergy Department, Hospital Universitario de Canarias, 38320 La Laguna, Tenerife, Spain
| | | | - Paloma Poza-Guedes
- Allergy Department, Hospital Universitario de Canarias, 38320 La Laguna, Tenerife, Spain; Severe Asthma Unit, Allergy Department, Hospital Universitario de Canarias, 38320 La Laguna, Spain
| | - Olaia Sardón
- Division of Pediatric Respiratory Medicine, Hospital Universitario Donostia, San Sebastián, Spain; Department of Pediatrics, University of the Basque Country (UPV/EHU), San Sebastián, Spain
| | - Paula Corcuera
- Division of Pediatric Respiratory Medicine, Hospital Universitario Donostia, San Sebastián, Spain
| | - María J Cruz
- Department of Respiratory Medicine, Hospital Vall d'Hebron, Barcelona, Spain; CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco J González-Barcala
- Department of Respiratory Medicine, Complejo Hospitalario Universitario de Santiago, Santiago de Compostela, La Coruña, Spain
| | - Carlos Martínez-Rivera
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain; Department of Respiratory Medicine, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Joaquim Mullol
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain; Rhinology Unit & Smell Clinic, ENT Department, Clinical and Experimental Respiratory Immunoallergy (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Xavier Muñoz
- Department of Respiratory Medicine, Hospital Vall d'Hebron, Barcelona, Spain; CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - José M Olaguibel
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain; Department of Allergy, Hospital Universitario de Navarra, Pamplona, Navarra, Spain
| | - Vicente Plaza
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain; Department of Respiratory Medicine, Hospital de la Santa Creu i Sant Pau, Instituto de Investigación Biomédica Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Santiago Quirce
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain; Department of Allergy, Hospital Universitario La Paz, IdiPAZ, Madrid, Spain
| | - Antonio Valero
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain; Allergy Unit & Severe Asthma Unit, Pneumonology and Allergy Department, Hospital Clínic, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Joaquín Sastre
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain; Department of Allergy, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Javier Korta-Murua
- Division of Pediatric Respiratory Medicine, Hospital Universitario Donostia, San Sebastián, Spain
| | - Victoria Del Pozo
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain; Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Fabián Lorenzo-Díaz
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 La Laguna, Tenerife, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
| | - Jesús Villar
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain; Multidisciplinary Organ Dysfunction Evaluation Research Network (MODERN), Research Unit, Hospital Universitario Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - María Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 La Laguna, Tenerife, Spain; CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain; Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Tenerife, Spain.
| | - Mario A González-Carracedo
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 La Laguna, Tenerife, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain.
| |
Collapse
|
2
|
Khare M, Piparia S, Tantisira KG. Pharmacogenetics of childhood uncontrolled asthma. Expert Rev Clin Immunol 2023:1-14. [PMID: 37190963 PMCID: PMC10657335 DOI: 10.1080/1744666x.2023.2214363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/11/2023] [Indexed: 05/17/2023]
Abstract
INTRODUCTION Asthma is a heterogeneous, multifactorial disease with multiple genetic and environmental risk factors playing a role in pathogenesis and therapeutic response. Understanding of pharmacogenetics can help with matching individualized treatments to specific genotypes of asthma to improve therapeutic outcomes especially in uncontrolled or severe asthma. AREAS COVERED In this review, we outline novel information about biology, pathways, and mechanisms related to interindividual variability in drug response (corticosteroids, bronchodilators, leukotriene modifiers, and biologics) for childhood asthma. We discuss candidate gene, genome-wide association studies and newer omics studies including epigenomics, transcriptomics, proteomics, and metabolomics as well as integrative genomics and systems biology methods related to childhood asthma. The articles were obtained after a series of searches, last updated November 2022, using database PubMed/CINAHL DB. EXPERT OPINION Implementation of pharmacogenetic algorithms can improve therapeutic targeting in children with asthma, particularly with severe or uncontrolled asthma who typically have challenges in clinical management and carry considerable financial burden. Future studies focusing on potential biomarkers both clinical and pharmacogenetic can help formulate a prognostic test for asthma treatment response that would represent true bench to bedside clinical implementation.
Collapse
Affiliation(s)
- Manaswitha Khare
- Division of Pediatric Hospital Medicine, Department of Pediatrics, University of California San Diego, San Diego, CA, USA
- Division of Pediatric Hospital Medicine, Department of Pediatrics, Rady Children's Hospital of San Diego, San Diego, CA, USA
| | - Shraddha Piparia
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, University of California San Diego, San Diego, CA, USA
| | - Kelan G Tantisira
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, University of California San Diego, San Diego, CA, USA
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, Rady Children's Hospital of San Diego, San Diego, CA, USA
| |
Collapse
|
3
|
Pacheco-Quito EM, Jaramillo J, Sarmiento-Ordoñez J, Cuenca-León K. Drugs Prescribed for Asthma and Their Adverse Effects on Dental Health. Dent J (Basel) 2023; 11:dj11050113. [PMID: 37232764 DOI: 10.3390/dj11050113] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/16/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023] Open
Abstract
Asthma is a chronic, heterogeneous respiratory pathology characterized by reversible airway inflammation. Therapeutics focus on symptom reduction and control, aimed at preserving normal pulmonary function and inducing bronchodilatation. The objective of this review is to describe the adverse effects produced by anti-asthmatic drugs on dental health, according to the reported scientific evidence. A bibliographic review was carried out on databases, such as Web of science, Scopus, and ScienceDirect. Most anti-asthmatic medications are administered using inhalers or nebulizers, making it impossible to avoid contact of the drug with hard dental tissues and oral mucosa, and thus promoting a greater risk of oral alterations, mainly due to decreases in the salivary flow and pH. Such changes can cause diseases, such as dental caries, dental erosion, tooth loss, periodontal disease, bone resorption, as well as fungal infections, such as oral candidiasis.
Collapse
Affiliation(s)
- Edisson-Mauricio Pacheco-Quito
- Academic Unit of Health and Wellness, Faculty of Dentistry, Catholic University of Cuenca, Cuenca 010105, Ecuador
- Innovation and Pharmaceutical Development in Dentistry Research Group, Faculty of Dentistry, Head of Research and Innovation, Catholic University of Cuenca, Cuenca 010105, Ecuador
| | | | - Jéssica Sarmiento-Ordoñez
- Academic Unit of Health and Wellness, Faculty of Dentistry, Catholic University of Cuenca, Cuenca 010105, Ecuador
- Innovation and Pharmaceutical Development in Dentistry Research Group, Faculty of Dentistry, Head of Research and Innovation, Catholic University of Cuenca, Cuenca 010105, Ecuador
| | - Katherine Cuenca-León
- Academic Unit of Health and Wellness, Faculty of Dentistry, Catholic University of Cuenca, Cuenca 010105, Ecuador
- Innovation and Pharmaceutical Development in Dentistry Research Group, Faculty of Dentistry, Head of Research and Innovation, Catholic University of Cuenca, Cuenca 010105, Ecuador
| |
Collapse
|
4
|
Herrera-Luis E, Forno E, Celedón JC, Pino-Yanes M. Asthma Exacerbations: The Genes Behind the Scenes. J Investig Allergol Clin Immunol 2023; 33:76-94. [PMID: 36420738 PMCID: PMC10638677 DOI: 10.18176/jiaci.0878] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The clinical and socioeconomic burden of asthma exacerbations (AEs) constitutes a major public health problem. In the last 4 years, there has been an increase in ethnic diversity in candidate-gene and genome-wide association studies of AEs, which in the latter case led to the identification of novel genes and underlying pathobiological processes. Pharmacogenomics, admixture mapping analyses, and the combination of multiple "omics" layers have helped to prioritize genomic regions of interest and/or facilitated our understanding of the functional consequences of genetic variation. Nevertheless, the field still lags behind the genomics of asthma, where a vast compendium of genetic approaches has been used (eg, gene-environment nteractions, next-generation sequencing, and polygenic risk scores). Furthermore, the roles of the DNA methylome and histone modifications in AEs have received little attention, and microRNA findings remain to be validated in independent studies. Likewise, the most recent transcriptomic studies highlight the importance of the host-airway microbiome interaction in the modulation of risk of AEs. Leveraging -omics and deep-phenotyping data from subtypes or homogenous subgroups of patients will be crucial if we are to overcome the inherent heterogeneity of AEs, boost the identification of potential therapeutic targets, and implement precision medicine approaches to AEs in clinical practice.
Collapse
Affiliation(s)
- E Herrera-Luis
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
| | - E Forno
- Division of Pediatric Pulmonary Medicine, UPMC Children´s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - J C Celedón
- Division of Pediatric Pulmonary Medicine, UPMC Children´s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - M Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain 4 Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
| |
Collapse
|
5
|
Principe S, Vijverberg SJH, Abdel-Aziz MI, Scichilone N, Maitland-van der Zee AH. Precision Medicine in Asthma Therapy. Handb Exp Pharmacol 2023; 280:85-106. [PMID: 35852633 DOI: 10.1007/164_2022_598] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Asthma is a complex, heterogeneous disease that necessitates a proper patient evaluation to decide the correct treatment and optimize disease control. The recent introduction of new target therapies for the most severe form of the disease has heralded a new era of treatment options, intending to treat and control specific molecular pathways in asthma pathophysiology. Precision medicine, using omics sciences, investigates biological and molecular mechanisms to find novel biomarkers that can be used to guide treatment selection and predict response. The identification of reliable biomarkers indicative of the pathological mechanisms in asthma is essential to unravel new potential treatment targets. In this chapter, we provide a general description of the currently available -omics techniques, focusing on their implications in asthma therapy.
Collapse
Affiliation(s)
- Stefania Principe
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
- Dipartimento Universitario di Promozione della Salute, Materno Infantile, Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro" (PROMISE) c/o Pneumologia, AOUP "Policlinico Paolo Giaccone", University of Palermo, Palermo, Italy.
| | - Susanne J H Vijverberg
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Mahmoud I Abdel-Aziz
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Nicola Scichilone
- Dipartimento Universitario di Promozione della Salute, Materno Infantile, Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro" (PROMISE) c/o Pneumologia, AOUP "Policlinico Paolo Giaccone", University of Palermo, Palermo, Italy
| | | |
Collapse
|
6
|
Lim JJ, Lim YYE, Ng JY, Malipeddi P, Ng YT, Teo WY, Wong QYA, Matta SA, Sio YY, Wong YR, Teh KF, Rawanan Shah SM, Reginald K, Say YH, Chew FT. An update on the prevalence, chronicity, and severity of atopic dermatitis and the associated epidemiological risk factors in the Singapore/Malaysia Chinese young adult population: A detailed description of the Singapore/Malaysia Cross-Sectional Genetics Epidemiology Study (SMCGES) cohort. World Allergy Organ J 2022; 15:100722. [DOI: 10.1016/j.waojou.2022.100722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022] Open
|
7
|
Alizadeh Bahmani AH, Abdel-Aziz MI, Maitland-van der Zee AH, Vijverberg SJH. Recent advances in the treatment of childhood asthma: a clinical pharmacology perspective. Expert Rev Clin Pharmacol 2022; 15:1165-1176. [PMID: 36196626 DOI: 10.1080/17512433.2022.2131537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Childhood asthma is a complex heterogenous inflammatory disease that can pose a large burden on patients and their caregivers. There is a strong need to adapt asthma treatment to the individual patient taking into account underlying inflammatory profiles, moving from a 'one size fits all' approach toward a much-needed personalized approach. AREAS COVERED This review article aims to provide an overview of recent advances in the management and treatment of pediatric asthma, including novel insights on the molecular heterogeneity of childhood asthma, the emergence of biologicals to treat severe asthma, and innovative e-health and home monitoring techniques to make asthma management more convenient and accessible. EXPERT OPINION Molecular technologies have provided new treatment leads. E-health and home monitoring technologies have helped to gain more insights into disease dynamics and improve adherence to treatment while bringing health care to the patient. However, uncontrolled childhood asthma is still a major unmet clinical need and precision-medicine approaches are still scarce in clinical practice. Advanced omics methods may help researchers or clinicians to more accurately phenotype and treat subtypes of childhood asthma and gain more insight into the complexity of the disease.
Collapse
Affiliation(s)
| | - Mahmoud I Abdel-Aziz
- Amsterdam UMC Location University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, The Netherlands.,Department of Clinical Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Anke H Maitland-van der Zee
- Amsterdam UMC Location University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, The Netherlands.,Amsterdam UMC Location University of Amsterdam, Department of Paediatric Pulmonology, Amsterdam, The Netherlands
| | - Susanne J H Vijverberg
- Amsterdam UMC Location University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, The Netherlands.,Amsterdam UMC Location University of Amsterdam, Department of Paediatric Pulmonology, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Herrera‐Luis E, Ortega VE, Ampleford EJ, Sio YY, Granell R, de Roos E, Terzikhan N, Vergara E, Hernandez‐Pacheco N, Perez‐Garcia J, Martin‐Gonzalez E, Lorenzo‐Diaz F, Hashimoto S, Brinkman P, Jorgensen AL, Yan Q, Forno E, Vijverberg SJ, Lethem R, Espuela‐Ortiz A, Gorenjak M, Eng C, González‐Pérez R, Hernández‐Pérez JM, Poza‐Guedes P, Sardón O, Corcuera P, Hawkins G, Marsico A, Bahmer T, Rabe KF, Hansen G, Kopp MV, Rios R, Cruz M, González‐Barcala F, Olaguibel JM, Plaza V, Quirce S, Canino G, Cloutier M, del Pozo V, Rodriguez‐Santana JR, Korta‐Murua J, Villar J, Potočnik U, Figueiredo C, Kabesch M, Mukhopadhyay S, Pirmohamed M, Hawcutt D, Melén E, Palmer CN, Turner S, Maitland‐van der Zee AH, von Mutius E, Celedón JC, Brusselle G, Chew FT, Bleecker E, Meyers D, Burchard EG, Pino‐Yanes M. Multi-ancestry genome-wide association study of asthma exacerbations. Pediatr Allergy Immunol 2022; 33:e13802. [PMID: 35754128 PMCID: PMC9671132 DOI: 10.1111/pai.13802] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND Asthma exacerbations are a serious public health concern due to high healthcare resource utilization, work/school productivity loss, impact on quality of life, and risk of mortality. The genetic basis of asthma exacerbations has been studied in several populations, but no prior study has performed a multi-ancestry meta-analysis of genome-wide association studies (meta-GWAS) for this trait. We aimed to identify common genetic loci associated with asthma exacerbations across diverse populations and to assess their functional role in regulating DNA methylation and gene expression. METHODS A meta-GWAS of asthma exacerbations in 4989 Europeans, 2181 Hispanics/Latinos, 1250 Singaporean Chinese, and 972 African Americans analyzed 9.6 million genetic variants. Suggestively associated variants (p ≤ 5 × 10-5 ) were assessed for replication in 36,477 European and 1078 non-European asthma patients. Functional effects on DNA methylation were assessed in 595 Hispanic/Latino and African American asthma patients and in publicly available databases. The effect on gene expression was evaluated in silico. RESULTS One hundred and twenty-six independent variants were suggestively associated with asthma exacerbations in the discovery phase. Two variants independently replicated: rs12091010 located at vascular cell adhesion molecule-1/exostosin like glycosyltransferase-2 (VCAM1/EXTL2) (discovery: odds ratio (ORT allele ) = 0.82, p = 9.05 × 10-6 and replication: ORT allele = 0.89, p = 5.35 × 10-3 ) and rs943126 from pantothenate kinase 1 (PANK1) (discovery: ORC allele = 0.85, p = 3.10 × 10-5 and replication: ORC allele = 0.89, p = 1.30 × 10-2 ). Both variants regulate gene expression of genes where they locate and DNA methylation levels of nearby genes in whole blood. CONCLUSIONS This multi-ancestry study revealed novel suggestive regulatory loci for asthma exacerbations located in genomic regions participating in inflammation and host defense.
Collapse
Affiliation(s)
- Esther Herrera‐Luis
- Genomics and Health GroupDepartment of Biochemistry, Microbiology, Cell Biology and GeneticsUniversidad de La Laguna (ULL)San Cristóbal de La Laguna, TenerifeSpain
| | - Victor E. Ortega
- Division of Respiratory MedicineDepartment of Internal MedicineMayo ClinicScottsdaleArizonaUSA
| | - Elizabeth J. Ampleford
- Department of Internal MedicineCenter for Precision MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Yang Yie Sio
- Department of Biological SciencesNational University of SingaporeSingapore CitySingapore
| | - Raquel Granell
- MRC Integrative Epidemiology Unit (IEU)Population Health SciencesBristol Medical SchoolUniversity of BristolBristolUK
| | - Emmely de Roos
- Department of EpidemiologyErasmus University Medical CenterRotterdamThe Netherlands
- Department of Respiratory MedicineGhent University HospitalGhentBelgium
| | - Natalie Terzikhan
- Department of EpidemiologyErasmus University Medical CenterRotterdamThe Netherlands
- Department of Respiratory MedicineGhent University HospitalGhentBelgium
| | - Ernesto Elorduy Vergara
- Institute of Computation BiologyHelmholtz Zentrum MünchenGerman Research Center for Environmental HealthMunichGermany
| | - Natalia Hernandez‐Pacheco
- Department of Clinical Sciences and EducationSödersjukhusetKarolinska InstitutetStockholmSweden
- CIBER de Enfermedades Respiratorias (CIBERES)MadridSpain
| | - Javier Perez‐Garcia
- Genomics and Health GroupDepartment of Biochemistry, Microbiology, Cell Biology and GeneticsUniversidad de La Laguna (ULL)San Cristóbal de La Laguna, TenerifeSpain
| | - Elena Martin‐Gonzalez
- Genomics and Health GroupDepartment of Biochemistry, Microbiology, Cell Biology and GeneticsUniversidad de La Laguna (ULL)San Cristóbal de La Laguna, TenerifeSpain
| | - Fabian Lorenzo‐Diaz
- Genomics and Health GroupDepartment of Biochemistry, Microbiology, Cell Biology and GeneticsUniversidad de La Laguna (ULL)San Cristóbal de La Laguna, TenerifeSpain
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC)Universidad de La Laguna (ULL)San Cristóbal de La Laguna, TenerifeSpain
| | - Simone Hashimoto
- Department of Respiratory MedicineAmsterdam University Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | - Paul Brinkman
- Department of Respiratory MedicineAmsterdam University Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | | | - Andrea L. Jorgensen
- Department of Health Data ScienceInstitute of Population HealthUniversity of LiverpoolLiverpoolUK
| | - Qi Yan
- Department of Obstetrics and GynecologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Erick Forno
- Division of Pediatric Pulmonary MedicineUPMC Children's Hospital of PittsburghUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Susanne J. Vijverberg
- Department of Respiratory MedicineAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Division of Pharmacoepidemiology and Clinical PharmacologyFaculty of ScienceUtrecht UniversityUtrechtThe Netherlands
- Department of Paediatric Respiratory Medicine and AllergyEmma's Children HospitalAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Ryan Lethem
- MRC Integrative Epidemiology Unit (IEU)Population Health SciencesBristol Medical SchoolUniversity of BristolBristolUK
| | - Antonio Espuela‐Ortiz
- Genomics and Health GroupDepartment of Biochemistry, Microbiology, Cell Biology and GeneticsUniversidad de La Laguna (ULL)San Cristóbal de La Laguna, TenerifeSpain
| | - Mario Gorenjak
- Center for Human Molecular Genetics and PharmacogenomicsFaculty of MedicineUniversity of MariborMariborSlovenia
| | - Celeste Eng
- Department of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Ruperto González‐Pérez
- Allergy DepartmentHospital Universitario de CanariasSanta Cruz de TenerifeTenerifeSpain
- Severe Asthma Unit, Allergy DepartmentHospital Universitario de CanariasSanta Cruz de TenerifeTenerifeSpain
| | - José M. Hernández‐Pérez
- Pulmonary MedicineHospital Universitario de N.S de CandelariaSanta Cruz de TenerifeSpain
- Pulmonary MedicineHospital General de La PalmaLa Palma, Santa Cruz de TenerifeSpain
| | - Paloma Poza‐Guedes
- Allergy DepartmentHospital Universitario de CanariasSanta Cruz de TenerifeTenerifeSpain
- Severe Asthma Unit, Allergy DepartmentHospital Universitario de CanariasSanta Cruz de TenerifeTenerifeSpain
| | - Olaia Sardón
- Division of Pediatric Respiratory MedicineHospital Universitario DonostiaSan SebastiánSpain
- Department of PediatricsUniversity of the Basque Country (UPV/EHU)San SebastiánSpain
| | - Paula Corcuera
- Division of Pediatric Respiratory MedicineHospital Universitario DonostiaSan SebastiánSpain
| | - Greg A. Hawkins
- Department of BiochemistryWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Annalisa Marsico
- Computational Health CenterHelmholtz Zentrum MünchenGerman Research Center for Environmental HealthMunichGermany
| | - Thomas Bahmer
- LungenClinic Grosshansdorf, PneumologyGrosshansdorfGermany
- Airway Research Center North (ARCN)Members of the Germany Center for Lung Research (DZL)GrosshansdorfGermany
| | - Klaus F. Rabe
- LungenClinic Grosshansdorf, PneumologyGrosshansdorfGermany
- Airway Research Center North (ARCN)Members of the Germany Center for Lung Research (DZL)GrosshansdorfGermany
| | - Gesine Hansen
- Department of Pediatric Pneumology, Allergology and NeonatologyHannover Medical SchoolHannoverGermany
| | - Matthias Volkmar Kopp
- Division of Pediatric Pneumology & AllergologyUniversity Medical Center Schleswig‐HolsteinLübeckGermany
- Airway Research Center North (ARCN)Members of the Germany Center for Lung Research (DZL)LübeckGermany
- Department of Paediatric Respiratory MedicineInselspitalUniversity Children's Hospital of BernUniversity of BernBernSwitzerland
| | - Raimon Rios
- Programa de Pós Graduação em Imunologia (PPGIm)Instituto de Ciências da SaúdeUniversidade Federal da Bahia (UFBA)SalvadorBrazil
| | - Maria Jesus Cruz
- CIBER de Enfermedades Respiratorias (CIBERES)MadridSpain
- Servicio de NeumologíaHospital Vall d’HebronBarcelonaSpain
| | | | - José María Olaguibel
- CIBER de Enfermedades Respiratorias (CIBERES)MadridSpain
- Servicio de AlergologíaComplejo Hospitalario de NavarraPamplonaNavarraSpain
| | - Vicente Plaza
- CIBER de Enfermedades Respiratorias (CIBERES)MadridSpain
- Departamento de Medicina RespiratoriaHospital de la Santa Creu i Sant PauInstituto de Investigación Biomédica Sant Pau (IIB Sant Pau)BarcelonaSpain
| | - Santiago Quirce
- CIBER de Enfermedades Respiratorias (CIBERES)MadridSpain
- Department of AllergyLa Paz University HospitalIdiPAZMadridSpain
| | - Glorisa Canino
- Behavioral Sciences Research InstituteUniversity of Puerto RicoSan JuanPuerto Rico
| | - Michelle Cloutier
- Department of PediatricsUniversity of ConnecticutFarmingtonConnecticutUSA
| | - Victoria del Pozo
- CIBER de Enfermedades Respiratorias (CIBERES)MadridSpain
- Immunology DepartmentInstituto de Investigación Sanitaria Hospital Universitario Fundación Jiménez DíazMadridSpain
| | | | - Javier Korta‐Murua
- Department of PediatricsUniversity of the Basque Country (UPV/EHU)San SebastiánSpain
| | - Jesús Villar
- CIBER de Enfermedades Respiratorias (CIBERES)MadridSpain
- Multidisciplinary Organ Dysfunction Evaluation Research NetworkResearch UnitHospital Universitario Dr. NegrínLas Palmas de Gran CanariaSpain
| | - Uroš Potočnik
- Laboratory for Biochemistry, Molecular Biology and GenomicsFaculty for Chemistry and Chemical EngineeringUniversity of MariborMariborSlovenia
| | - Camila Figueiredo
- Instituto de Ciências da SaúdeUniversidade Federal da BahiaSalvadorBrazil
| | - Michael Kabesch
- Department of Paediatric Pneumology and AllergyUniversity Children's Hospital Regensburg (KUNO)RegensburgGermany
| | - Somnath Mukhopadhyay
- Academic Department of PaediatricsBrighton and Sussex Medical School, Royal Alexandra Children's HospitalBrightonUK
- Population Pharmacogenetics GroupBiomedical Research InstituteNinewells Hospital and Medical SchoolUniversity of DundeeDundeeUK
| | - Munir Pirmohamed
- Department of Pharmacology and TherapeuticsInstitute of Systems, Molecular and Integrative BiologyUniversity of LiverpoolLiverpoolUK
| | - Daniel B. Hawcutt
- Department of Women's and Children's HealthUniversity of LiverpoolLiverpoolUK
- Alder Hey Children's HospitalLiverpoolUK
- NIHR Alder Hey Clinical Research FacilityAlder Hey Children's HospitalLiverpoolUK
| | - Erik Melén
- Department of Clinical Sciences and EducationSödersjukhusetKarolinska InstitutetStockholmSweden
- Sachs’ Children’s HospitalSouth General HospitalStockholmSweden
| | - Colin N. Palmer
- Population Pharmacogenetics GroupBiomedical Research InstituteNinewells Hospital and Medical SchoolUniversity of DundeeDundeeUK
| | | | - Anke H. Maitland‐van der Zee
- Department of Respiratory MedicineAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Division of Pharmacoepidemiology and Clinical PharmacologyFaculty of ScienceUtrecht UniversityUtrechtThe Netherlands
- Department of Paediatric Respiratory Medicine and AllergyEmma's Children HospitalAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Erika von Mutius
- Institute for Asthma and Allergy PreventionHelmholtz Zentrum MünchenGerman Research Center for Environmental HealthMunichGermany
- Dr von Hauner Children's HospitalLudwig‐Maximilians‐UniversitätMunichGermany
- Comprehensive Pneumology Center Munich (CPC‐M)Member of the German Center for Lung ResearchMunichGermany
| | - Juan C. Celedón
- Division of Pediatric Pulmonary MedicineUPMC Children's Hospital of PittsburghUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Guy Brusselle
- Department of EpidemiologyErasmus University Medical CenterRotterdamThe Netherlands
- Department of Respiratory MedicineGhent University HospitalGhentBelgium
- Department of Respiratory MedicineErasmus University Medical CenterRotterdamThe Netherlands
| | - Fook Tim Chew
- Department of Biological SciencesNational University of SingaporeSingapore CitySingapore
| | - Eugene Bleecker
- Division of Genetics, Genomics, and Precision MedicineDepartment of Internal MedicineUniversity of Arizona College of MedicineTucsonArizonaUSA
| | - Deborah Meyers
- Division of Genetics, Genomics, and Precision MedicineDepartment of Internal MedicineUniversity of Arizona College of MedicineTucsonArizonaUSA
| | - Esteban G. Burchard
- Severe Asthma Unit, Allergy DepartmentHospital Universitario de CanariasSanta Cruz de TenerifeTenerifeSpain
- Department of Bioengineering and Therapeutic SciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Maria Pino‐Yanes
- Genomics and Health GroupDepartment of Biochemistry, Microbiology, Cell Biology and GeneticsUniversidad de La Laguna (ULL)San Cristóbal de La Laguna, TenerifeSpain
- CIBER de Enfermedades Respiratorias (CIBERES)MadridSpain
- Instituto de Tecnologías Biomédicas (ITB)Universidad de La Laguna (ULL)San Cristóbal de La Laguna, TenerifeSpain
| |
Collapse
|
9
|
Parry CM, Seddon G, Rogers N, Sinha IP, Bracken L, King C, Peak M, Hawcutt DB. Pharmacogenomics and asthma treatment: acceptability to children, families and healthcare professionals. Arch Dis Child 2022; 107:394-399. [PMID: 35074833 DOI: 10.1136/archdischild-2021-322396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 12/30/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Evidence supporting personalised treatment for asthma based on an individual's genetics is mounting. The views of children and young people (CYP), parents and healthcare professionals (HCPs) about this evolution of clinical care are not known. METHODS A pilot prospective questionnaire-based study was undertaken of CYP with asthma, their parents and HCPs at a secondary/tertiary children's hospital in the UK. RESULTS Fifty-nine questionnaires were distributed and 50 returned (response rate 84.7%), comprising 26 CYP (10 were 5-11 years, 11 were 12-15 years and 5 were 16-18 years old), 13 parents and 11 HCPs. For all types of data, personal information was ranked as the 'most important' (n=19, 47.5%) and 'most private' (n=16, 40%), but with considerable variation across groups. Within health data, allergies were rated as 'most important' (n=12, 30.8%), and mental health records the 'most private' (n=21, 53.8%), again with variation across groups. A 'personalised genetic asthma plan' was acceptable to the majority overall (n=40, 80.0%). With regard to sharing CYP's genetic data, 23 (46%) of participants were happy for unconditional sharing between HCPs, and 23 (46%) agreed to sharing solely in relation to the CYP's asthma management. Forty-two (84.0%) of participants felt CYP should be informed about genetic data being shared, and the majority felt this should commence by 12 years of age. CONCLUSION The use of genetic information to guide management of asthma in CYP is largely acceptable to CYP, parents/guardians and HCPs. However, there are key differences between the opinions of CYP, parents and HCPs.
Collapse
Affiliation(s)
- Christopher Mark Parry
- Department of Research, NIHR Alder Hey Clinical Research Facility, Liverpool, UK.,Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
| | - Gabrielle Seddon
- Paediatric Medicines Research Unit, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Naomi Rogers
- Paediatric Medicines Research Unit, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Ian P Sinha
- Department of Respiratory Medicine, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Louise Bracken
- Paediatric Medicines Research Unit, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Charlotte King
- Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
| | - Matthew Peak
- Paediatric Medicines Research Unit, Alder Hey Children's NHS Foundation Trust, Liverpool, UK.,Research and Development, NIHR Alder Hey Clinical Research Facility, Liverpool, UK
| | - Daniel B Hawcutt
- Department of Research, NIHR Alder Hey Clinical Research Facility, Liverpool, UK .,Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
| |
Collapse
|
10
|
Ortega VE, Daya M, Szefler SJ, Bleecker ER, Chinchilli VM, Phipatanakul W, Mauger D, Martinez FD, Herrera-Luis E, Pino-Yanes M, Hawkins GA, Ampleford EJ, Kunselman SJ, Cox C, Bacharier LB, Cabana MD, Cardet JC, Castro M, Denlinger LC, Eng C, Fitzpatrick AM, Holguin F, Hu D, Jackson DJ, Jarjour N, Kraft M, Krishnan JA, Lazarus SC, Lemanske RF, Lima JJ, Lugogo N, Mak A, Moore WC, Naureckas ET, Peters SP, Pongracic JA, Sajuthi SP, Seibold MA, Smith LJ, Solway J, Sorkness CA, Wenzel S, White SR, Burchard EG, Barnes K, Meyers DA, Israel E, Wechsler ME. Pharmacogenetic studies of long-acting beta agonist and inhaled corticosteroid responsiveness in randomised controlled trials of individuals of African descent with asthma. THE LANCET. CHILD & ADOLESCENT HEALTH 2021; 5:862-872. [PMID: 34762840 PMCID: PMC8787857 DOI: 10.1016/s2352-4642(21)00268-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Pharmacogenetic studies in asthma cohorts, primarily made up of White people of European descent, have identified loci associated with response to inhaled beta agonists and corticosteroids (ICSs). Differences exist in how individuals from different ancestral backgrounds respond to long-acting beta agonist (LABA) and ICSs. Therefore, we sought to understand the pharmacogenetic mechanisms regulating therapeutic responsiveness in individuals of African descent. METHODS We did ancestry-based pharmacogenetic studies of children (aged 5-11 years) and adolescents and adults (aged 12-69 years) from the Best African Response to Drug (BARD) trials, in which participants with asthma uncontrolled with low-dose ICS (fluticasone propionate 50 μg in children, 100 μg in adolescents and adults) received different step-up combination therapies. The hierarchal composite outcome of pairwise superior responsiveness in BARD was based on asthma exacerbations, a 31-day difference in annualised asthma-control days, or a 5% difference in percentage predicted FEV1. We did whole-genome admixture mapping of 15 159 ancestral segments within 312 independent regions, stratified by the two age groups. The two co-primary outcome comparisons were the step up from low-dose ICS to the quintuple dose of ICS (5 × ICS: 250 μg twice daily in children and 500 μg twice daily in adolescents and adults) versus double dose (2-2·5 × ICS: 100 μg twice daily in children, 250 μg twice daily in adolescents and adults), and 5 × ICS versus 100 μg fluticasone plus a LABA (salmeterol 50 μg twice daily). We used a genome-wide significance threshold of p<1·6 × 10-4, and tested for replication using independent cohorts of individuals of African descent with asthma. FINDINGS We included 249 unrelated children and 267 unrelated adolescents and adults in the BARD pharmacogenetic analysis. In children, we identified a significant admixture mapping peak for superior responsiveness to 5 × ICS versus 100 μg fluticasone plus salmeterol on chromosome 12 (odds ratio [ORlocal African] 3·95, 95% CI 2·02-7·72, p=6·1 × 10-5) fine mapped to a locus adjacent to RNFT2 and NOS1 (rs73399224, ORallele dose 0·17, 95% CI 0·07-0·42, p=8·4 × 10-5). In adolescents and adults, we identified a peak for superior responsiveness to 5 × ICS versus 2·5 × ICS on chromosome 22 (ORlocal African 3·35, 1·98-5·67, p=6·8 × 10-6) containing a locus adjacent to TPST2 (rs5752429, ORallele dose 0·21, 0·09-0·52, p=5·7 × 10-4). We replicated rs5752429 and nominally replicated rs73399224 in independent African American cohorts. INTERPRETATION BARD is the first genome-wide pharmacogenetic study of LABA and ICS response in clinical trials of individuals of African descent to detect and replicate genome-wide significant loci. Admixture mapping of the composite BARD trial outcome enabled the identification of novel pharmacogenetic variation accounting for differential therapeutic responses in people of African descent with asthma. FUNDING National Institutes of Health, National Heart, Lung, and Blood Institute.
Collapse
Affiliation(s)
- Victor E Ortega
- Department of Internal Medicine, Section for Pulmonary, Critical Care, Allergy, and Immunologic Diseases, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| | - Michelle Daya
- Department of Medicine, University of Colorado Anschutz Medical Campus, Denver, CO, USA
| | - Stanley J Szefler
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Denver, CO, USA
| | - Eugene R Bleecker
- Department of Internal Medicine, Division of Genetics, Genomics, and Precision Medicine, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Vernon M Chinchilli
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Wanda Phipatanakul
- Division of Pediatric Allergy and Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dave Mauger
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Fernando D Martinez
- Asthma and Airway Disease Research Center, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Esther Herrera-Luis
- Department of Biochemistry, La Laguna, Tenerife, Spain; Microbiology, Cell Biology, and Genetics, La Laguna, Tenerife, Spain; Genomics and Health Group, La Laguna, Tenerife, Spain; Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Maria Pino-Yanes
- Department of Biochemistry, La Laguna, Tenerife, Spain; Microbiology, Cell Biology, and Genetics, La Laguna, Tenerife, Spain; Genomics and Health Group, La Laguna, Tenerife, Spain; Universidad de La Laguna, La Laguna, Tenerife, Spain; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Gregory A Hawkins
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Elizabeth J Ampleford
- Department of Internal Medicine, Section for Pulmonary, Critical Care, Allergy, and Immunologic Diseases, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Susan J Kunselman
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Corey Cox
- Department of Medicine, University of Colorado Anschutz Medical Campus, Denver, CO, USA
| | - Leonard B Bacharier
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
| | - Michael D Cabana
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Juan Carlos Cardet
- Department of Internal Medicine, Division of Allergy and Immunology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Mario Castro
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Loren C Denlinger
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Celeste Eng
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | | | - Fernando Holguin
- Department of Medicine, University of Colorado Anschutz Medical Campus, Denver, CO, USA
| | - Donglei Hu
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Daniel J Jackson
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
| | - Nizar Jarjour
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Monica Kraft
- Department of Internal Medicine, Division of Genetics, Genomics, and Precision Medicine, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Jerry A Krishnan
- Breathe Chicago Center, Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois, Chicago, IL, USA
| | - Stephen C Lazarus
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Robert F Lemanske
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
| | - John J Lima
- Center for Pharmacogenomics and Translational Research, Nemours Children's Health System, Jacksonville, FL, USA
| | - Njira Lugogo
- Department of Medicine, Division of Pulmonary and Critical Care, University of Michigan, Ann Arbor, MI, USA
| | - Angel Mak
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Wendy C Moore
- Department of Internal Medicine, Section for Pulmonary, Critical Care, Allergy, and Immunologic Diseases, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Stephen P Peters
- Department of Internal Medicine, Section for Pulmonary, Critical Care, Allergy, and Immunologic Diseases, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jacqueline A Pongracic
- Department of Pediatrics, Ann & Robert H Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Satria P Sajuthi
- Center for Genes, Environment, and Health, Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | - Max A Seibold
- Department of Medicine, University of Colorado Anschutz Medical Campus, Denver, CO, USA; Center for Genes, Environment, and Health, Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | - Lewis J Smith
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Julian Solway
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Christine A Sorkness
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Sally Wenzel
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven R White
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Esteban G Burchard
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Kathleen Barnes
- Department of Medicine, University of Colorado Anschutz Medical Campus, Denver, CO, USA
| | - Deborah A Meyers
- Department of Internal Medicine, Division of Genetics, Genomics, and Precision Medicine, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Elliot Israel
- Department of Pulmonary and Critical Care Medicine and Allergy and Immunology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
11
|
Eigenmann P. Comments on vitamin D and sensitization, asthma treatment, and lung function development. Pediatr Allergy Immunol 2021; 32:1137-1140. [PMID: 34333802 DOI: 10.1111/pai.13575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 11/26/2022]
Affiliation(s)
- Philippe Eigenmann
- Department of Pediatrics Gynecology and Obstetrics, University Hospital of Geneva, Geneva, Switzerland
| |
Collapse
|
12
|
Genetic Determinants of Poor Response to Treatment in Severe Asthma. Int J Mol Sci 2021; 22:ijms22084251. [PMID: 33923891 PMCID: PMC8073667 DOI: 10.3390/ijms22084251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 01/02/2023] Open
Abstract
Severe asthma is a multifactorial disorder with marked phenotypic heterogeneity and complex interactions between genetics and environmental risk factors, which could, at least in part, explain why during standard pharmacologic treatment, many patients remain poorly controlled and at an increased risk of airway remodeling and disease progression. The concept of “precision medicine” to better suit individual unique needs is an emerging trend in the management of chronic respiratory diseases. Over the past few years, Genome-Wide Association Studies (GWAS) have revealed novel pharmacogenetic variants related to responses to inhaled corticosteroids and the clinical efficacy of bronchodilators. Optimal clinical response to treatment may vary between racial/ethnic groups or individuals due to genetic differences. It is also plausible to assume that epigenetic factors play a key role in the modulation of gene expression patterns and inflammatory cytokines. Remarkably, specific genetic variants related to treatment effectiveness may indicate promising pathways for novel therapies in severe asthma. In this review, we provide a concise update of genetic determinants of poor response to treatment in severe asthma and future directions in the field.
Collapse
|