1
|
Ikram AU, Khan MSS, Islam F, Ahmed S, Ling T, Feng F, Sun Z, Chen H, Chen J. All Roads Lead to Rome: Pathways to Engineering Disease Resistance in Plants. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2412223. [PMID: 39691979 DOI: 10.1002/advs.202412223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/27/2024] [Indexed: 12/19/2024]
Abstract
Unlike animals, plants are unable to move and lack specialized immune cells and circulating antibodies. As a result, they are always threatened by a large number of microbial pathogens and harmful pests that can significantly reduce crop yield worldwide. Therefore, the development of new strategies to control them is essential to mitigate the increasing risk of crops lost to plant diseases. Recent developments in genetic engineering, including efficient gene manipulation and transformation methods, gene editing and synthetic biology, coupled with the understanding of microbial pathogenicity and plant immunity, both at molecular and genomic levels, have enhanced the capabilities to develop disease resistance in plants. This review comprehensively explains the fundamental mechanisms underlying the tug-of-war between pathogens and hosts, and provides a detailed overview of different strategies for developing disease resistance in plants. Additionally, it provides a summary of the potential genes that can be employed in resistance breeding for key crops to combat a wide range of potential pathogens and pests, including fungi, oomycetes, bacteria, viruses, nematodes, and insects. Furthermore, this review addresses the limitations associated with these strategies and their possible solutions. Finally, it discusses the future perspectives for producing plants with durable and broad-spectrum disease resistance.
Collapse
Affiliation(s)
- Aziz Ul Ikram
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | | | - Faisal Islam
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Sulaiman Ahmed
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Tengfang Ling
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Feng Feng
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Huan Chen
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
2
|
Zhang Y, Chen G, Zang Y, Bhavani S, Bai B, Liu W, Zhao M, Cheng Y, Li S, Chen W, Yan W, Mao H, Su H, Singh RP, Lagudah E, Li Q, Lan C. Lr34/Yr18/Sr57/Pm38 confers broad-spectrum resistance to fungal diseases via sinapyl alcohol transport for cell wall lignification in wheat. PLANT COMMUNICATIONS 2024; 5:101077. [PMID: 39233441 PMCID: PMC11671766 DOI: 10.1016/j.xplc.2024.101077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/26/2024] [Accepted: 09/02/2024] [Indexed: 09/06/2024]
Abstract
The widely recognized pleiotropic adult plant resistance gene Lr34 encodes an ATP-binding cassette transporter and plays an important role in breeding wheat for enhanced resistance to multiple fungal diseases. Despite its significance, the mechanisms underlying Lr34-mediated pathogen defense remain largely unknown. Our study demonstrates that wheat lines carrying the Lr34res allele exhibit thicker cell walls and enhanced resistance to fungal penetration compared to those without Lr34res. Transcriptome and metabolite profiling revealed that the lignin biosynthetic pathway is suppressed in lr34 mutants, indicating a disruption in cell wall lignification. Additionally, we discovered that lr34 mutant lines are hypersensitive to sinapyl alcohol, a major monolignol crucial for cell wall lignification. Yeast accumulation and efflux assays confirmed that the LR34 protein functions as a sinapyl alcohol transporter. Both genetic and virus-induced gene silencing experiments demonstrated that the disease resistance conferred by Lr34 can be enhanced by incorporating the TaCOMT-3B gene, which is responsible for the biosynthesis of sinapyl alcohol. Collectively, our findings provide novel insights into the role of Lr34 in disease resistance through mediating sinapyl alcohol transport and cell wall deposition, and highlight the synergistic effect of TaCOMT-3B and Lr34 against multiple fungal pathogens by mediating cell wall lignification in adult wheat plants.
Collapse
Affiliation(s)
- Yichen Zhang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Guang Chen
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Yiming Zang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Sridhar Bhavani
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera, México-Veracruz, El Batán, Texcoco CP 56237E do, de México, Mexico
| | - Bin Bai
- Wheat Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou City, Gansu Province 730070, China
| | - Wei Liu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Miaomiao Zhao
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Yikeng Cheng
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Shunda Li
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Wei Chen
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Wenhao Yan
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Hailiang Mao
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Handong Su
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Ravi P Singh
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China; International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera, México-Veracruz, El Batán, Texcoco CP 56237E do, de México, Mexico
| | - Evans Lagudah
- CSIRO Agriculture & Food, Canberra, ACT 2601, Australia
| | - Qiang Li
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China.
| | - Caixia Lan
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China.
| |
Collapse
|
3
|
Sun P, Han X, Milne RJ, Li G. Trans-crop applications of atypical R genes for multipathogen resistance. TRENDS IN PLANT SCIENCE 2024; 29:1103-1112. [PMID: 38811244 DOI: 10.1016/j.tplants.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/31/2024]
Abstract
Genetic resistance to plant diseases is essential for global food security. Significant progress has been achieved for plant disease-resistance (R) genes comprising nucleotide-binding domain, leucine-rich repeat-containing receptors (NLRs), and membrane-localized receptor-like kinases or proteins (RLKs/RLPs), which we refer to as typical R genes. However, there is a knowledge gap in how non-receptor-type or atypical R genes contribute to plant immunity. Here, we summarize resources and technologies facilitating the study of atypical R genes, examine diverse atypical R proteins for broad-spectrum resistance, and outline potential approaches for trans-crop applications of atypical R genes. Studies of atypical R genes are important for a holistic understanding of plant immunity and the development of novel strategies in disease control and crop improvement.
Collapse
Affiliation(s)
- Peng Sun
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinyu Han
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ricky J Milne
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia.
| | - Guotian Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
4
|
Wang CY, Li XM, Du HX, Yan Y, Chen ZZ, Zhang CX, Yan XB, Hao SY, Gou JY. Change of Flavonoid Content in Wheatgrass in a Historic Collection of Wheat Cultivars. Antioxidants (Basel) 2024; 13:899. [PMID: 39199145 PMCID: PMC11351879 DOI: 10.3390/antiox13080899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 09/01/2024] Open
Abstract
Wheatgrass is recognized for its nutritional and medicinal properties, partly attributed to its flavonoid content. The objective of this study was to assess the flavonoid content and antioxidant properties of wheatgrass obtained from a wide range of 145 wheat cultivars, which included Chinese landraces (CL), modern Chinese cultivars (MCC), and introduced modern cultivars (IMC). The flavonoids were extracted using a solution of 80% methanol, and their content was evaluated using ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS). The results revealed the assessed cultivars showed significant variation in their total flavonoid content (TFC), with MCCs generally having higher amounts compared to CLs. PCA analysis demonstrated clear variations in flavonoid profiles between different cultivar groups, emphasizing the evolutionary inconsistencies in wheat breeding. The antioxidant assays, ABTS, DPPH, and FRAP, exhibited robust abilities for eliminating radicals, which were found to be directly associated with the amounts of flavonoids. In addition, this study investigated the correlation between the content of flavonoids and the ability to resist powdery mildew in a collection of mutated wheat plants. Mutants exhibiting heightened flavonoid accumulation demonstrated a decreased severity of powdery mildew, suggesting that flavonoids play a protective role against fungal infections. The results highlight the potential of wheatgrass as a valuable source of flavonoids that have antioxidant and protective effects. This potential is influenced by the genetic diversity and breeding history of wheatgrass. Gaining insight into these connections can guide future wheat breeding endeavors aimed at improving nutritional value and in strengthening disease resistance. The current finding provides critical information for developing wheatgrass with high flavonoid content and antioxidant activity.
Collapse
Affiliation(s)
- Chu-Yang Wang
- MOE Engineering Research Center of Gene Technology, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China; (C.-Y.W.); (X.-M.L.); (H.-X.D.); (Y.Y.); (Z.-Z.C.)
| | - Xiao-Ming Li
- MOE Engineering Research Center of Gene Technology, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China; (C.-Y.W.); (X.-M.L.); (H.-X.D.); (Y.Y.); (Z.-Z.C.)
| | - Han-Xiao Du
- MOE Engineering Research Center of Gene Technology, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China; (C.-Y.W.); (X.-M.L.); (H.-X.D.); (Y.Y.); (Z.-Z.C.)
| | - Yan Yan
- MOE Engineering Research Center of Gene Technology, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China; (C.-Y.W.); (X.-M.L.); (H.-X.D.); (Y.Y.); (Z.-Z.C.)
- Xianghu Laboratory, Hangzhou 311231, China
| | - Zhong-Zhong Chen
- MOE Engineering Research Center of Gene Technology, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China; (C.-Y.W.); (X.-M.L.); (H.-X.D.); (Y.Y.); (Z.-Z.C.)
| | - Chen-Xi Zhang
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China; (C.-X.Z.); (X.-B.Y.)
| | - Xin-Bo Yan
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China; (C.-X.Z.); (X.-B.Y.)
| | - Shui-Yuan Hao
- Department of Agronomy, Hetao College, Bayannur 015000, China
| | - Jin-Ying Gou
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China; (C.-X.Z.); (X.-B.Y.)
| |
Collapse
|
5
|
Camenzind M, Koller T, Armbruster C, Jung E, Brunner S, Herren G, Keller B. Breeding for durable resistance against biotrophic fungal pathogens using transgenes from wheat. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:8. [PMID: 38263979 PMCID: PMC10803697 DOI: 10.1007/s11032-024-01451-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024]
Abstract
Breeding for resistant crops is a sustainable way to control disease and relies on the introduction of novel resistance genes. Here, we tested three strategies on how to use transgenes from wheat to achieve durable resistance against fungal pathogens in the field. First, we tested the highly effective, overexpressed single transgene Pm3e in the background of spring wheat cultivar Bobwhite in a long-term field trial over many years. Together with previous results, this revealed that transgenic wheat line Pm3e#2 conferred complete powdery mildew resistance during a total of nine field seasons without a negative impact on yield. Furthermore, overexpressed Pm3e provided resistance to powdery mildew isolates from our worldwide collection when crossed into the elite wheat cultivar Fiorina. Second, we pyramided the four overexpressed transgenes Pm3a, Pm3b, Pm3d, and Pm3f in the background of cultivar Bobwhite and showed that the pyramided line Pm3a,b,d,f was completely resistant to powdery mildew in five field seasons. Third, we performed field trials with three barley lines expressing adult plant resistance gene Lr34 from wheat during three field seasons. Line GLP8 expressed Lr34 under control of the pathogen-inducible Hv-Ger4c promoter and provided partial barley powdery mildew and leaf rust resistance in the field with small, negative effects on yield components which might need compensatory breeding. Overall, our study demonstrates and discusses three successful strategies for achieving fungal disease resistance of wheat and barley in the field using transgenes from wheat. These strategies might confer long-term resistance if applied in a sustainable way. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01451-2.
Collapse
Affiliation(s)
- Marcela Camenzind
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Teresa Koller
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Cygni Armbruster
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Esther Jung
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | | | - Gerhard Herren
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Beat Keller
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| |
Collapse
|
6
|
Li H, Zhang P, Luo M, Hoque M, Chakraborty S, Brooks B, Li J, Singh S, Forest K, Binney A, Zhang L, Mather D, Ayliffe M. Introgression of the bread wheat D genome encoded Lr34/Yr18/Sr57/Pm38/Ltn1 adult plant resistance gene into Triticum turgidum (durum wheat). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:226. [PMID: 37847385 PMCID: PMC10581953 DOI: 10.1007/s00122-023-04466-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/18/2023] [Indexed: 10/18/2023]
Abstract
KEY MESSAGE Lack of function of a D-genome adult plant resistance gene upon introgression into durum wheat. The wheat Lr34/Yr18/Sr57/Pm38/Ltn1 adult plant resistance gene (Lr34), located on chromosome arm 7DS, provides broad spectrum, partial, adult plant resistance to leaf rust, stripe rust, stem rust and powdery mildew. It has been used extensively in hexaploid bread wheat (AABBDD) and conferred durable resistance for many decades. These same diseases also occur on cultivated tetraploid durum wheat and emmer wheat but transfer of D genome sequences to those subspecies is restricted due to very limited intergenomic recombination. Herein we have introgressed the Lr34 gene into chromosome 7A of durum wheat. Durum chromosome substitution line Langdon 7D(7A) was crossed to Cappelli ph1c, a mutant derivative of durum cultivar Cappelli homozygous for a deletion of the chromosome pairing locus Ph1. Screening of BC1F2 plants and their progeny by KASP and PCR markers, 90 K SNP genotyping and cytology identified 7A chromosomes containing small chromosome 7D fragments encoding Lr34. However, in contrast to previous transgenesis experiments in durum wheat, resistance to wheat stripe rust was not observed in either Cappelli/Langdon 7D(7A) or Bansi durum plants carrying this Lr34 encoding segment due to low levels of Lr34 gene expression. KEY MESSAGE
Collapse
Affiliation(s)
- Hongyu Li
- CSIRO Agriculture and Food, Clunies Ross Street, GPO Box 1700, Canberra, ACT, 2601, Australia
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Peng Zhang
- Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Cobbitty, NSW, 2570, Australia
| | - Ming Luo
- CSIRO Agriculture and Food, Clunies Ross Street, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Mohammad Hoque
- CSIRO Agriculture and Food, Clunies Ross Street, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Soma Chakraborty
- CSIRO Agriculture and Food, Clunies Ross Street, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Brenton Brooks
- CSIRO Agriculture and Food, Clunies Ross Street, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Jianbo Li
- Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Cobbitty, NSW, 2570, Australia
| | - Smriti Singh
- Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Cobbitty, NSW, 2570, Australia
| | - Kerrie Forest
- Agriculture Victoria, Department of Energy, Environment and Climate Action, AgriBio Centre for AgriBioscience, 5 Ring Rd, Bundoora, VIC, 3083, Australia
| | - Allan Binney
- School of Agriculture, Food & Wine, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
| | - Lianquan Zhang
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Diane Mather
- School of Agriculture, Food & Wine, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
| | - Michael Ayliffe
- CSIRO Agriculture and Food, Clunies Ross Street, GPO Box 1700, Canberra, ACT, 2601, Australia.
| |
Collapse
|
7
|
Milne RJ, Dibley KE, Bose J, Ashton AR, Ryan PR, Tyerman SD, Lagudah ES. Expression of the wheat multipathogen resistance hexose transporter Lr67res is associated with anion fluxes. PLANT PHYSIOLOGY 2023; 192:1254-1267. [PMID: 36806945 DOI: 10.1093/plphys/kiad104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/24/2023] [Accepted: 01/29/2023] [Indexed: 06/01/2023]
Abstract
Many disease resistance genes in wheat (Triticum aestivum L.) confer strong resistance to specific pathogen races or strains, and only a small number of genes confer multipathogen resistance. The Leaf rust resistance 67 (Lr67) gene fits into the latter category as it confers partial resistance to multiple biotrophic fungal pathogens in wheat and encodes a Sugar Transport Protein 13 (STP13) family hexose-proton symporter variant. Two mutations (G144R, V387L) in the resistant variant, Lr67res, differentiate it from the susceptible Lr67sus variant. The molecular function of the Lr67res protein is not understood, and this study aimed to broaden our knowledge on this topic. Biophysical analysis of the wheat Lr67sus and Lr67res protein variants was performed using Xenopus laevis oocytes as a heterologous expression system. Oocytes injected with Lr67sus displayed properties typically associated with proton-coupled sugar transport proteins-glucose-dependent inward currents, a Km of 110 ± 10 µM glucose, and a substrate selectivity permitting the transport of pentoses and hexoses. By contrast, Lr67res induced much larger sugar-independent inward currents in oocytes, implicating an alternative function. Since Lr67res is a mutated hexose-proton symporter, the possibility of protons underlying these currents was investigated but rejected. Instead, currents in Lr67res oocytes appeared to be dominated by anions. This conclusion was supported by electrophysiology and 36Cl- uptake studies and the similarities with oocytes expressing the known chloride channel from Torpedo marmorata, TmClC-0. This study provides insights into the function of an important disease resistance gene in wheat, which can be used to determine how this gene variant underpins disease resistance in planta.
Collapse
Affiliation(s)
- Ricky J Milne
- CSIRO, Agriculture and Food, Canberra, ACT 2601, Australia
| | | | - Jayakumar Bose
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA 5064, Australia
- School of Science, Western Sydney University, Richmond, NSW 2753, Australia
| | | | - Peter R Ryan
- CSIRO, Agriculture and Food, Canberra, ACT 2601, Australia
| | - Stephen D Tyerman
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA 5064, Australia
| | | |
Collapse
|
8
|
Harnessing adult-plant resistance genes to deploy durable disease resistance in crops. Essays Biochem 2022; 66:571-580. [PMID: 35912968 PMCID: PMC9528086 DOI: 10.1042/ebc20210096] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022]
Abstract
Adult-plant resistance (APR) is a type of genetic resistance in cereals that is effective during the later growth stages and can protect plants from a range of disease-causing pathogens. Our understanding of the functions of APR-associated genes stems from the well-studied wheat-rust pathosystem. Genes conferring APR can offer pathogen-specific resistance or multi-pathogen resistance, whereby resistance is activated following a molecular recognition event. The breeding community prefers APR to other types of resistance because it offers broad-spectrum protection that has proven to be more durable. In practice, however, deployment of new cultivars incorporating APR is challenging because there is a lack of well-characterised APRs in elite germplasm and multiple loci must be combined to achieve high levels of resistance. Genebanks provide an excellent source of genetic diversity that can be used to diversify resistance factors, but introgression of novel alleles into elite germplasm is a lengthy and challenging process. To overcome this bottleneck, new tools in breeding for resistance must be integrated to fast-track the discovery, introgression and pyramiding of APR genes. This review highlights recent advances in understanding the functions of APR genes in the well-studied wheat-rust pathosystem, the opportunities to adopt APR genes in other crops and the technology that can speed up the utilisation of new sources of APR in genebank accessions.
Collapse
|
9
|
Sinha A, Singh L, Rawat N. Current understanding of atypical resistance against fungal pathogens in wheat. CURRENT OPINION IN PLANT BIOLOGY 2022; 68:102247. [PMID: 35716636 DOI: 10.1016/j.pbi.2022.102247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/05/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Pathogens and pests are a major challenge to global food security. Around one hundred different pests and pathogens challenge wheat, one of the most important food crops in the world. Traditional worldwide use of a few key resistance genes in wheat cultivars has necessitated a diversification of the toolbox of resistance genes in wheat varieties over the coming decades to meet the global production demands. Recent advances in gene discovery and functional characterization of genetic resistance mechanisms in wheat reveal great diversity in the types and effectiveness of the underlying resistance genes. This article summarizes the recent developments in the discovery of non-traditional "atypical" resistance genes in wheat against diverse fungal pathogens.
Collapse
Affiliation(s)
- Arunima Sinha
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
| | - Lovepreet Singh
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
| | - Nidhi Rawat
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
10
|
Unconventional R proteins in the botanical tribe Triticeae. Essays Biochem 2022; 66:561-569. [PMID: 35670039 DOI: 10.1042/ebc20210081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022]
Abstract
Plant immunity is triggered following the perception of pathogen-derived molecules by plant receptor proteins. Two protein families, membrane-localized receptor-like kinases (RLK) and intracellular nucleotide-binding leucine-rich repeat (NLR) receptors, play key roles in pathogen perception and in the initiation of downstream signaling cascades that lead to defense responses. In addition to RLKs and NLRs, recent research has identified additional protein families that function as plant resistance (R) proteins. In particular, the botanical tribe Triticeae, which includes the globally important crop species wheat and barley, has played a significant role in the discovery of 'unconventional' R proteins. In this review, we will summarize the current knowledge on unconventional R genes in Triticeae and the proteins they encode. The knowledge on unconventional R proteins will not only broaden our understanding of plant-pathogen interactions but also have great implications for disease resistance breeding in crops.
Collapse
|
11
|
Dong Y, Xu D, Xu X, Ren Y, Gao F, Song J, Jia A, Hao Y, He Z, Xia X. Fine mapping of QPm.caas-3BS, a stable QTL for adult-plant resistance to powdery mildew in wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1083-1099. [PMID: 35006334 DOI: 10.1007/s00122-021-04019-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
A stable QTL QPm.caas-3BS for adult-plant resistance to powdery mildew was mapped in an interval of 431 kb, and candidate genes were predicted based on gene sequences and expression profiles. Powdery mildew is a devastating foliar disease occurring in most wheat-growing areas. Characterization and fine mapping of genes for powdery mildew resistance can benefit marker-assisted breeding. We previously identified a stable quantitative trait locus (QTL) QPm.caas-3BS for adult-plant resistance to powdery mildew in a recombinant inbred line population of Zhou8425B/Chinese Spring by phenotyping across four environments. Using 11 heterozygous recombinants and high-density molecular markers, QPm.caas-3BS was delimited in a physical interval of approximately 3.91 Mb. Based on re-sequenced data and expression profiles, three genes TraesCS3B02G014800, TraesCS3B02G016800 and TraesCS3B02G019900 were associated with the powdery mildew resistance locus. Three gene-specific kompetitive allele-specific PCR (KASP) markers were developed from these genes and validated in the Zhou8425B derivatives and Zhou8425B/Chinese Spring population in which the resistance gene was mapped to a 0.3 cM interval flanked by KASP14800 and snp_50465, corresponding to a 431 kb region at the distal end of chromosome 3BS. Within the interval, TraesCS3B02G014800 was the most likely candidate gene for QPm.caas-3BS, but TraesCS3B02G016300 and TraesCS3B02G016400 were less likely candidates based on gene annotations and sequence variation between the parents. These results not only offer high-throughput KASP markers for improvement of powdery mildew resistance but also pave the way to map-based cloning of the resistance gene.
Collapse
Affiliation(s)
- Yan Dong
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Dengan Xu
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Xiaowan Xu
- College of Agronomy, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Yan Ren
- College of Agronomy, Henan Agricultural University, 63 Agricultural Road, Zhengzhou, 450002, Henan, China
| | - Fengmei Gao
- Institute of Crop Germplasm Resources, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, Heilongjiang, China
| | - Jie Song
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Aolin Jia
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Yuanfeng Hao
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Zhonghu He
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China.
| |
Collapse
|
12
|
Saini DK, Chahal A, Pal N, Srivastava P, Gupta PK. Meta-analysis reveals consensus genomic regions associated with multiple disease resistance in wheat ( Triticum aestivum L.). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:11. [PMID: 37309411 PMCID: PMC10248701 DOI: 10.1007/s11032-022-01282-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
In wheat, meta-QTLs (MQTLs) and candidate genes (CGs) were identified for multiple disease resistance (MDR). For this purpose, information was collected from 58 studies for mapping QTLs for resistance to one or more of the five diseases. As many as 493 QTLs were available from these studies, which were distributed in five diseases as follows: septoria tritici blotch (STB) 126 QTLs; septoria nodorum blotch (SNB), 103 QTLs; fusarium head blight (FHB), 184 QTLs; karnal bunt (KB), 66 QTLs; and loose smut (LS), 14 QTLs. Of these 493 QTLs, only 291 QTLs could be projected onto a consensus genetic map, giving 63 MQTLs. The CI of the MQTLs ranged from 0.04 to 15.31 cM with an average of 3.09 cM per MQTL. This is a ~ 4.39 fold reduction from the CI of QTLs, which ranged from 0 to 197.6 cM, with a mean of 13.57 cM. Of 63 MQTLs, 60 were anchored to the reference physical map of wheat (the physical interval of these MQTLs ranged from 0.30 to 726.01 Mb with an average of 74.09 Mb). Thirty-eight (38) of these MQTLs were verified using marker-trait associations (MTAs) derived from genome-wide association studies. As many as 874 CGs were also identified which were further investigated for differential expression using data from five transcriptome studies, resulting in 194 differentially expressed candidate genes (DECGs). Among the DECGs, 85 genes had functions previously reported to be associated with disease resistance. These results should prove useful for fine mapping and cloning of MDR genes and marker-assisted breeding. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01282-z.
Collapse
Affiliation(s)
- Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab-141004 India
| | - Amneek Chahal
- College of Agriculture, Punjab Agricultural University, Ludhiana, Punjab-141004 India
| | - Neeraj Pal
- Department of Molecular Biology and Genetic Engineering, G. B. Pant, University of Agriculture and Technology, Pantnagar, Uttrakhand-263145 India
| | - Puja Srivastava
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab-141004 India
| | - Pushpendra Kumar Gupta
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004 India
| |
Collapse
|
13
|
Banasiak J, Jasiński M. ATP-binding cassette transporters in nonmodel plants. THE NEW PHYTOLOGIST 2022; 233:1597-1612. [PMID: 34614235 DOI: 10.1111/nph.17779] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Knowledge about plant ATP-binding cassette (ABC) proteins is of great value for sustainable agriculture, economic yield, and the generation of high-quality products, especially under unfavorable growth conditions. We have learned much about ABC proteins in model organisms, notably Arabidopsis thaliana; however, the importance of research dedicated to these transporters extends far beyond Arabidopsis biology. Recent progress in genomic and transcriptomic approaches for nonmodel and noncanonical model plants allows us to look at ABC transporters from a wider perspective and consider chemodiversity and functionally driven adaptation as distinctive mechanisms during their evolution. Here, by considering several representatives from agriculturally important families and recent progress in functional characterization of nonArabidopsis ABC proteins, we aim to bring attention to understanding the evolutionary background, distribution among lineages and possible mechanisms underlying the adaptation of this versatile transport system for plant needs. Increasing the knowledge of ABC proteins in nonmodel plants will facilitate breeding and development of new varieties based on, for example, genetic variations of endogenous genes and/or genome editing, representing an alternative to transgenic approaches.
Collapse
Affiliation(s)
- Joanna Banasiak
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Michał Jasiński
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznań, Poland
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632, Poznań, Poland
| |
Collapse
|
14
|
Silva TN, Thomas JB, Dahlberg J, Rhee SY, Mortimer JC. Progress and challenges in sorghum biotechnology, a multipurpose feedstock for the bioeconomy. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:646-664. [PMID: 34644381 PMCID: PMC8793871 DOI: 10.1093/jxb/erab450] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/10/2021] [Indexed: 05/09/2023]
Abstract
Sorghum [Sorghum bicolor (L.) Moench] is the fifth most important cereal crop globally by harvested area and production. Its drought and heat tolerance allow high yields with minimal input. It is a promising biomass crop for the production of biofuels and bioproducts. In addition, as an annual diploid with a relatively small genome compared with other C4 grasses, and excellent germplasm diversity, sorghum is an excellent research species for other C4 crops such as maize. As a result, an increasing number of researchers are looking to test the transferability of findings from other organisms such as Arabidopsis thaliana and Brachypodium distachyon to sorghum, as well as to engineer new biomass sorghum varieties. Here, we provide an overview of sorghum as a multipurpose feedstock crop which can support the growing bioeconomy, and as a monocot research model system. We review what makes sorghum such a successful crop and identify some key traits for future improvement. We assess recent progress in sorghum transformation and highlight how transformation limitations still restrict its widespread adoption. Finally, we summarize available sorghum genetic, genomic, and bioinformatics resources. This review is intended for researchers new to sorghum research, as well as those wishing to include non-food and forage applications in their research.
Collapse
Affiliation(s)
- Tallyta N Silva
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jason B Thomas
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, USA
| | - Jeff Dahlberg
- Joint BioEnergy Institute, Emeryville, CA, USA
- UC-ANR-KARE, 9240 S. Riverbend Ave, Parlier, CA, USA
| | - Seung Y Rhee
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, USA
- Correspondence: or
| | - Jenny C Mortimer
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, SA, Australia
- Correspondence: or
| |
Collapse
|
15
|
Song Y, Li S, Sui Y, Zheng H, Han G, Sun X, Yang W, Wang H, Zhuang K, Kong F, Meng Q, Sui N. SbbHLH85, a bHLH member, modulates resilience to salt stress by regulating root hair growth in sorghum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:201-216. [PMID: 34633473 DOI: 10.1007/s00122-021-03960-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/29/2021] [Indexed: 05/23/2023]
Abstract
bHLH family proteins play an important role in plant stress response. However, the molecular mechanism regulating the salt response of bHLH is largely unknown. This study aimed to investigate the function and regulating mechanism of the sweet sorghum SbbHLH85 during salt stress. The results showed that SbbHLH85 was different from its homologs in other species. Also, it was a new atypical bHLH transcription factor and a key gene for root development in sweet sorghum. The overexpression of SbbHLH85 resulted in significantly increased number and length of root hairs via ABA and auxin signaling pathways, increasing the absorption of Na+. Thus, SbbHLH85 plays a negative regulatory role in the salt tolerance of sorghum. We identified a potential interaction partner of SbbHLH85, which was phosphate transporter chaperone PHF1 and modulated the distribution of phosphate, through screening a yeast two-hybrid library. Both yeast two-hybrid and BiFC experiments confirmed the interaction between SbbHLH85 and PHF1. The overexpression of SbbHLH85 led to a decrease in the expression of PHF1 as well as the content of Pi. Based on these results, we suggested that the increase in the Na+ content and the decrease in the Pi content resulted in the salt sensitivity of transgenic sorghum.
Collapse
Affiliation(s)
- Yushuang Song
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Simin Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Yi Sui
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongxiang Zheng
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Xi Sun
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Wenjing Yang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Hailian Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Kunyang Zhuang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Fanying Kong
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Qingwei Meng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
16
|
Dmochowska-Boguta M, Kloc Y, Orczyk W. Polyamine Oxidation Is Indispensable for Wheat (Triticum aestivum L.) Oxidative Response and Necrotic Reactions during Leaf Rust (Puccinia triticina Eriks.) Infection. PLANTS 2021; 10:plants10122787. [PMID: 34961257 PMCID: PMC8703351 DOI: 10.3390/plants10122787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022]
Abstract
Hydrogen peroxide is a signal and effector molecule in the plant response to pathogen infection. Wheat resistance to Puccinia triticina Eriks. is associated with necrosis triggered by oxidative burst. We investigated which enzyme system dominated in host oxidative reaction to P. triticina infection. The susceptible Thatcher cultivar and isogenic lines with defined resistance genes were inoculated with P. triticina spores. Using diamine oxidase (DAO) and polyamine oxidase (PAO) inhibitors, accumulation of H2O2 was analyzed in the infection sites. Both enzymes participated in the oxidative burst during compatible and incompatible interactions. Accumulation of H2O2 in guard cells, i.e., the first phase of the response, depended on DAO and the role of PAO was negligible. During the second phase, the patterns of H2O2 accumulation in the infection sites were more complex. Accumulation of H2O2 during compatible interaction (Thatcher and TcLr34 line) moderately depended on DAO and the reaction of TcLr34 was stronger than that of Thatcher. Accumulation of H2O2 during incompatible interaction of moderately resistant plants (TcLr24, TcLr25 and TcLr29) was DAO-dependent in TcLr29, while the changes in the remaining lines were not statistically significant. A strong oxidative burst in resistant plants (TcLr9, TcLr19, TcLr26) was associated with both enzymes’ activities in TcLr9 and only with DAO in TcLr19 and TcLr26. The results are discussed in relation to other host oxidative systems, necrosis, and resistance level.
Collapse
|
17
|
Do THT, Martinoia E, Lee Y, Hwang JU. 2021 update on ATP-binding cassette (ABC) transporters: how they meet the needs of plants. PLANT PHYSIOLOGY 2021; 187:1876-1892. [PMID: 35235666 PMCID: PMC8890498 DOI: 10.1093/plphys/kiab193] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/10/2021] [Indexed: 05/02/2023]
Abstract
Recent developments in the field of ABC proteins including newly identified functions and regulatory mechanisms expand the understanding of how they function in the development and physiology of plants.
Collapse
Affiliation(s)
- Thanh Ha Thi Do
- Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, 37673, South Korea
| | - Enrico Martinoia
- Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, 37673, South Korea
- Department of Plant and Microbial Biology, University Zurich, Zurich 8008, Switzerland
| | - Youngsook Lee
- Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, 37673, South Korea
- Department of Life Sciences, POSTECH, Pohang 37673, South Korea
| | - Jae-Ung Hwang
- Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, 37673, South Korea
- Author for communication:
| |
Collapse
|
18
|
Bräunlich S, Koller T, Glauser G, Krattinger SG, Keller B. Expression of the wheat disease resistance gene Lr34 in transgenic barley leads to accumulation of abscisic acid at the leaf tip. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:950-957. [PMID: 34247109 DOI: 10.1016/j.plaphy.2021.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Durable disease resistance genes such as the wheat gene Lr34 are valuable sources of resistance for agricultural breeding programs. Lr34 encodes an ATP-binding cassette transporter protein involved in the transport of the phytohormone abscisic acid. Lr34 from wheat is functionally transferable to barley, maize, rice and sorghum. A pleiotropic effect of Lr34 induces the development of a senescence-like phenotype, referred to as leaf tip necrosis. We used Lr34-expressing wheat and transgenic barley plants to elucidate the role of abscisic acid in the development of leaf tip necrosis. Leaf tips in Lr34-expressing wheat and barley showed an accumulation of abscisic acid. No increase of Lr34 expression was detected in the leaf tip. Instead, the development of ectopic, Lr34-induced leaf tip necrosis after removing the leaf tip suggests an increased flux of abscisic acid towards the tip, where it accumulates and mediates the development of leaf tip necrosis. This redistribution of abscisic acid was also observed in adult transgenic barley plants with a high Lr34 expression level growing in the field and coincided with leaf tip necrosis as well as complete field resistance against Puccinia hordei and Blumeria graminis f. sp. hordei. In a barley transgenic line with a lower Lr34 expression level, a quantitative resistance against Puccinia hordei was still observed, but without a significant redistribution of abscisic acid or apparent leaf tip necrosis. Thus, our results imply that fine-tuning the Lr34 expression level is essential to balance disease resistance versus leaf tip necrosis to deploy transgenic Lr34 in breeding programs.
Collapse
Affiliation(s)
- Stephanie Bräunlich
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zurich, 8008, Switzerland
| | - Teresa Koller
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zurich, 8008, Switzerland
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Avenue de Bellevaux 51, Neuchâtel, 2000, Switzerland
| | - Simon G Krattinger
- Center for Desert Agriculture, Biological and Environmental Science & Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Beat Keller
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zurich, 8008, Switzerland.
| |
Collapse
|
19
|
Biotechnological Resources to Increase Disease-Resistance by Improving Plant Immunity: A Sustainable Approach to Save Cereal Crop Production. PLANTS 2021; 10:plants10061146. [PMID: 34199861 PMCID: PMC8229257 DOI: 10.3390/plants10061146] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/17/2021] [Accepted: 05/29/2021] [Indexed: 12/16/2022]
Abstract
Plant diseases are globally causing substantial losses in staple crop production, undermining the urgent goal of a 60% increase needed to meet the food demand, a task made more challenging by the climate changes. Main consequences concern the reduction of food amount and quality. Crop diseases also compromise food safety due to the presence of pesticides and/or toxins. Nowadays, biotechnology represents our best resource both for protecting crop yield and for a science-based increased sustainability in agriculture. Over the last decades, agricultural biotechnologies have made important progress based on the diffusion of new, fast and efficient technologies, offering a broad spectrum of options for understanding plant molecular mechanisms and breeding. This knowledge is accelerating the identification of key resistance traits to be rapidly and efficiently transferred and applied in crop breeding programs. This review gathers examples of how disease resistance may be implemented in cereals by exploiting a combination of basic research derived knowledge with fast and precise genetic engineering techniques. Priming and/or boosting the immune system in crops represent a sustainable, rapid and effective way to save part of the global harvest currently lost to diseases and to prevent food contamination.
Collapse
|
20
|
Liu X, Ao K, Yao J, Zhang Y, Li X. Engineering plant disease resistance against biotrophic pathogens. CURRENT OPINION IN PLANT BIOLOGY 2021; 60:101987. [PMID: 33434797 DOI: 10.1016/j.pbi.2020.101987] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/29/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Breeding for disease resistance against microbial pathogens is essential for food security in modern agriculture. Conventional breeding, although widely accepted, is time consuming. An alternative approach is generating crop plants with desirable traits through genetic engineering. The collective efforts of many labs in the past 30 years have led to a comprehensive understanding of how plant immunity is achieved, enabling the application of genetic engineering to enhance disease resistance in crop plants. Here, we briefly review the engineering of disease resistance against biotrophic pathogens using various components of the plant immune system. Recent breakthroughs in immune receptors signaling and systemic acquired resistance (SAR), along with innovations in precise gene editing methods, provide exciting new opportunities for the development of improved environmentally friendly crop varieties that are disease resistant and high-yield.
Collapse
Affiliation(s)
- Xueru Liu
- Michael Smith Laboratories, University of British Columbia, Rm 301, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada; Department of Botany, University of British Columbia, Rm 3156, 6270 University Blvd, Vancouver, BC V6T 1Z4, Canada
| | - Kevin Ao
- Michael Smith Laboratories, University of British Columbia, Rm 301, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada; Department of Botany, University of British Columbia, Rm 3156, 6270 University Blvd, Vancouver, BC V6T 1Z4, Canada
| | - Jia Yao
- College of Life Science, Chongqing University, 55 University Town South Road, Shapingba District, Chongqing, China
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Rm 3156, 6270 University Blvd, Vancouver, BC V6T 1Z4, Canada
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Rm 301, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada; Department of Botany, University of British Columbia, Rm 3156, 6270 University Blvd, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
21
|
Metabolomics Intervention Towards Better Understanding of Plant Traits. Cells 2021; 10:cells10020346. [PMID: 33562333 PMCID: PMC7915772 DOI: 10.3390/cells10020346] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023] Open
Abstract
The majority of the most economically important plant and crop species are enriched with the availability of high-quality reference genome sequences forming the basis of gene discovery which control the important biochemical pathways. The transcriptomics and proteomics resources have also been made available for many of these plant species that intensify the understanding at expression levels. However, still we lack integrated studies spanning genomics–transcriptomics–proteomics, connected to metabolomics, the most complicated phase in phenotype expression. Nevertheless, for the past few decades, emphasis has been more on metabolome which plays a crucial role in defining the phenotype (trait) during crop improvement. The emergence of modern high throughput metabolome analyzing platforms have accelerated the discovery of a wide variety of biochemical types of metabolites and new pathways, also helped in improving the understanding of known existing pathways. Pinpointing the causal gene(s) and elucidation of metabolic pathways are very important for development of improved lines with high precision in crop breeding. Along with other-omics sciences, metabolomics studies have helped in characterization and annotation of a new gene(s) function. Hereby, we summarize several areas in the field of crop development where metabolomics studies have made its remarkable impact. We also assess the recent research on metabolomics, together with other omics, contributing toward genetic engineering to target traits and key pathway(s).
Collapse
|
22
|
Hatta MAM, Arora S, Ghosh S, Matny O, Smedley MA, Yu G, Chakraborty S, Bhatt D, Xia X, Steuernagel B, Richardson T, Mago R, Lagudah ES, Patron NJ, Ayliffe M, Rouse MN, Harwood WA, Periyannan S, Steffenson BJ, Wulff BB. The wheat Sr22, Sr33, Sr35 and Sr45 genes confer resistance against stem rust in barley. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:273-284. [PMID: 32744350 PMCID: PMC7868974 DOI: 10.1111/pbi.13460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 06/17/2020] [Indexed: 05/16/2023]
Abstract
In the last 20 years, stem rust caused by the fungus Puccinia graminis f. sp. tritici (Pgt), has re-emerged as a major threat to wheat and barley production in Africa and Europe. In contrast to wheat with 60 designated stem rust (Sr) resistance genes, barley's genetic variation for stem rust resistance is very narrow with only ten resistance genes genetically identified. Of these, only one complex locus consisting of three genes is effective against TTKSK, a widely virulent Pgt race of the Ug99 tribe which emerged in Uganda in 1999 and has since spread to much of East Africa and parts of the Middle East. The objective of this study was to assess the functionality, in barley, of cloned wheat Sr genes effective against race TTKSK. Sr22, Sr33, Sr35 and Sr45 were transformed into barley cv. Golden Promise using Agrobacterium-mediated transformation. All four genes were found to confer effective stem rust resistance. The barley transgenics remained susceptible to the barley leaf rust pathogen Puccinia hordei, indicating that the resistance conferred by these wheat Sr genes was specific for Pgt. Furthermore, these transgenic plants did not display significant adverse agronomic effects in the absence of disease. Cloned Sr genes from wheat are therefore a potential source of resistance against wheat stem rust in barley.
Collapse
Affiliation(s)
- M. Asyraf Md Hatta
- John Innes CentreNorwich Research ParkNorwichUK
- Department of Agriculture TechnologyFaculty of AgricultureUniversiti Putra MalaysiaSerdangMalaysia
| | - Sanu Arora
- John Innes CentreNorwich Research ParkNorwichUK
| | - Sreya Ghosh
- John Innes CentreNorwich Research ParkNorwichUK
| | - Oadi Matny
- Department of Plant PathologyStakman Borlaug Center for Sustainable Plant HealthUniversity of MinnesotaSt. PaulMNUSA
| | | | - Guotai Yu
- John Innes CentreNorwich Research ParkNorwichUK
| | - Soma Chakraborty
- Commonwealth Scientific and Industrial Research Organization (CSIRO)Agriculture and FoodCanberraACTAustralia
| | - Dhara Bhatt
- Commonwealth Scientific and Industrial Research Organization (CSIRO)Agriculture and FoodCanberraACTAustralia
| | - Xiaodi Xia
- Commonwealth Scientific and Industrial Research Organization (CSIRO)Agriculture and FoodCanberraACTAustralia
| | | | - Terese Richardson
- Commonwealth Scientific and Industrial Research Organization (CSIRO)Agriculture and FoodCanberraACTAustralia
| | - Rohit Mago
- Commonwealth Scientific and Industrial Research Organization (CSIRO)Agriculture and FoodCanberraACTAustralia
| | - Evans S. Lagudah
- Commonwealth Scientific and Industrial Research Organization (CSIRO)Agriculture and FoodCanberraACTAustralia
| | | | - Michael Ayliffe
- Commonwealth Scientific and Industrial Research Organization (CSIRO)Agriculture and FoodCanberraACTAustralia
| | - Matthew N. Rouse
- Department of Plant PathologyStakman Borlaug Center for Sustainable Plant HealthUniversity of MinnesotaSt. PaulMNUSA
- USDA‐ARS Cereal Disease LaboratorySt. PaulMNUSA
| | | | - Sambasivam Periyannan
- Commonwealth Scientific and Industrial Research Organization (CSIRO)Agriculture and FoodCanberraACTAustralia
| | - Brian J. Steffenson
- Department of Plant PathologyStakman Borlaug Center for Sustainable Plant HealthUniversity of MinnesotaSt. PaulMNUSA
| | | |
Collapse
|
23
|
Su P, Zhao L, Li W, Zhao J, Yan J, Ma X, Li A, Wang H, Kong L. Integrated metabolo-transcriptomics and functional characterization reveals that the wheat auxin receptor TIR1 negatively regulates defense against Fusarium graminearum. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:340-352. [PMID: 32678930 DOI: 10.1111/jipb.12992] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/16/2020] [Indexed: 05/20/2023]
Abstract
Fusarium head blight (FHB) caused by Fusarium graminearum Schwabe (teleomorph Gibberella zeae (Schw.) Perch) results in large yield losses in annual global wheat production. Although studies have identified a number of wheat FHB resistance genes, a deeper understanding of the mechanisms underlying host plant resistance to F. graminearum is required for the control of FHB. Here, an integrated metabolomics and transcriptomics analysis of infected wheat plants (Triticum aestivum L.) enabled identification of 789 differentially accumulated metabolites, including flavonoids, phenolamides, tryptamine derivatives, and phytohormones, and revealed altered expression of more than 100 genes that function in the biosynthesis or regulation of these pathways. Our data regarding the effects of F. graminearum infection on flavonoids and auxin signaling led to follow-up experiments that showed that exogenous kaempferide and apigenin application on spikes increased wheat resistance to FHB, while exogenous auxin treatment increased FHB susceptibility. RNAi-mediated knockdown of the gene encoding the auxin receptor, TaTIR1, increased FHB resistance. Our data supported the use of TaTIR1 knockdown in controlling FHB. Our study provides insights on the wheat response to F. graminearum infection and its FHB resistance mechanisms while illustrating the potential of TaTIR1 knockdown in increasing FHB resistance during crop improvement programs.
Collapse
Affiliation(s)
- Peisen Su
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Lanfei Zhao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Wen Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Jinxiao Zhao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Jun Yan
- College of Information Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Xin Ma
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Anfei Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Hongwei Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Lingrang Kong
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| |
Collapse
|
24
|
Wang L, Lui AC, Lam PY, Liu G, Godwin ID, Lo C. Transgenic expression of flavanone 3-hydroxylase redirects flavonoid biosynthesis and alleviates anthracnose susceptibility in sorghum. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2170-2172. [PMID: 32372447 PMCID: PMC7589329 DOI: 10.1111/pbi.13397] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 02/26/2020] [Accepted: 04/06/2020] [Indexed: 05/23/2023]
Affiliation(s)
- Lanxiang Wang
- School of Biological SciencesThe University of Hong KongHong KongChina
| | - Andy C.W. Lui
- School of Biological SciencesThe University of Hong KongHong KongChina
| | - Pui Ying Lam
- School of Biological SciencesThe University of Hong KongHong KongChina
- Research Institute for Sustainable HumanosphereKyoto UniversityKyotoJapan
| | - Guoquan Liu
- Centre for Crop ScienceQueensland Alliance for Agriculture and Food InnovationThe University of QueenslandBrisbaneQLDAustralia
| | - Ian D. Godwin
- Centre for Crop ScienceQueensland Alliance for Agriculture and Food InnovationThe University of QueenslandBrisbaneQLDAustralia
| | - Clive Lo
- School of Biological SciencesThe University of Hong KongHong KongChina
| |
Collapse
|
25
|
Babu P, Baranwal DK, Harikrishna, Pal D, Bharti H, Joshi P, Thiyagarajan B, Gaikwad KB, Bhardwaj SC, Singh GP, Singh A. Application of Genomics Tools in Wheat Breeding to Attain Durable Rust Resistance. FRONTIERS IN PLANT SCIENCE 2020; 11:567147. [PMID: 33013989 PMCID: PMC7516254 DOI: 10.3389/fpls.2020.567147] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/12/2020] [Indexed: 11/13/2023]
Abstract
Wheat is an important source of dietary protein and calories for the majority of the world's population. It is one of the largest grown cereal in the world occupying over 215 M ha. Wheat production globally is challenged by biotic stresses such as pests and diseases. Of the 50 diseases of wheat that are of economic importance, the three rust diseases are the most ubiquitous causing significant yield losses in the majority of wheat production environments. Under severe epidemics they can lead to food insecurity threats amid the continuous evolution of new races of the pathogens, shifts in population dynamics and their virulence patterns, thereby rendering several effective resistance genes deployed in wheat breeding programs vulnerable. This emphasizes the need to identify, characterize, and deploy effective rust-resistant genes from diverse sources into pre-breeding lines and future wheat varieties. The use of genetic resistance has been marked as eco-friendly and to curb the further evolution of rust pathogens. Deployment of multiple rust resistance genes including major and minor genes in wheat lines could enhance the durability of resistance thereby reducing pathogen evolution. Advances in next-generation sequencing (NGS) platforms and associated bioinformatics tools have revolutionized wheat genomics. The sequence alignment of the wheat genome is the most important landmark which will enable genomics to identify marker-trait associations, candidate genes and enhanced breeding values in genomic selection (GS) studies. High throughput genotyping platforms have demonstrated their role in the estimation of genetic diversity, construction of the high-density genetic maps, dissecting polygenic traits, and better understanding their interactions through GWAS (genome-wide association studies) and QTL mapping, and isolation of R genes. Application of breeder's friendly KASP assays in the wheat breeding program has expedited the identification and pyramiding of rust resistance alleles/genes in elite lines. The present review covers the evolutionary trends of the rust pathogen and contemporary wheat varieties, and how these research strategies galvanized to control the wheat killer genus Puccinia. It will also highlight the outcome and research impact of cost-effective NGS technologies and cloning of rust resistance genes amid the public availability of common and tetraploid wheat reference genomes.
Collapse
Affiliation(s)
- Prashanth Babu
- Indian Agricultural Research Institute (ICAR), New Delhi, India
| | | | - Harikrishna
- Indian Agricultural Research Institute (ICAR), New Delhi, India
| | - Dharam Pal
- Indian Agricultural Research Institute (ICAR), New Delhi, India
| | - Hemlata Bharti
- Directorate of Medicinal and Aromatic Plants Research (ICAR), Anand, India
| | - Priyanka Joshi
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | | | | | | | | | - Anupam Singh
- DCM SHRIRAM-Bioseed Research India, ICRISAT, Hyderabad, India
| |
Collapse
|
26
|
Fang T, Lei L, Li G, Powers C, Hunger RM, Carver BF, Yan L. Development and deployment of KASP markers for multiple alleles of Lr34 in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2183-2195. [PMID: 32281004 PMCID: PMC7311377 DOI: 10.1007/s00122-020-03589-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/31/2020] [Indexed: 05/03/2023]
Abstract
Heterogeneous Lr34 genes for leaf rust in winter wheat cultivar 'Duster' and KASP markers for allelic variation in exon 11 and exon 22 of Lr34. Wheat, Triticum aestivum (2n = 6x = 42, AABBDD), is a hexaploid species, and each of three homoeologous genomes A, B, and D should have one copy for a gene in its ancestral form if the gene has no duplication. Previously reported leaf rust resistance gene Lr34 has one copy on the short arm of chromosome 7D in hexaploid wheat, and allelic variation in Lr34 is in intron 4, exon 11, exon 12, or exon 22. In this study, we discovered that Oklahoma hard red winter wheat cultivar 'Duster' (PI 644,016) has two copies of the Lr34 gene, the resistance allele Lr34a and the susceptibility allele Lr34b. Both Lr34a and Lr34b were mapped in the same linkage group on chromosome 7D in a doubled-haploid population generated from a cross between Duster and a winter wheat cultivar 'Billings' which carries the susceptibility allele Lr34c. A chromosomal fragment including Lr34 and at least two neighboring genes on its proximal side but excluding genes on its distal side was duplicated in Duster. The Duster Lr34ab allele was associated with tip necrosis and increased resistance against leaf rust at adult plants in the Duster × Billings DH population tested in the field, demonstrating the function of the Duster Lr34ab allele in wheat. We have developed KASP markers for allelic variation in exon 11 and exon 22 of Lr34 in wheat. These markers can be utilized to accelerate the selection of Lr34 in wheat.
Collapse
Affiliation(s)
- Tilin Fang
- Department of Plant and Soil Sciences Department, Oklahoma State University, 368 AG Hall, Stillwater, OK, 74078, USA
| | - Lei Lei
- Department of Plant and Soil Sciences Department, Oklahoma State University, 368 AG Hall, Stillwater, OK, 74078, USA
| | - Genqiao Li
- Department of Plant and Soil Sciences Department, Oklahoma State University, 368 AG Hall, Stillwater, OK, 74078, USA
| | - Carol Powers
- Department of Plant and Soil Sciences Department, Oklahoma State University, 368 AG Hall, Stillwater, OK, 74078, USA
| | - Robert M Hunger
- Entomology and Plant Pathology Department, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Brett F Carver
- Department of Plant and Soil Sciences Department, Oklahoma State University, 368 AG Hall, Stillwater, OK, 74078, USA
| | - Liuling Yan
- Department of Plant and Soil Sciences Department, Oklahoma State University, 368 AG Hall, Stillwater, OK, 74078, USA.
| |
Collapse
|
27
|
Zhang J, Zhang P, Dodds P, Lagudah E. How Target-Sequence Enrichment and Sequencing (TEnSeq) Pipelines Have Catalyzed Resistance Gene Cloning in the Wheat-Rust Pathosystem. FRONTIERS IN PLANT SCIENCE 2020; 11:678. [PMID: 32528511 PMCID: PMC7264398 DOI: 10.3389/fpls.2020.00678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/30/2020] [Indexed: 05/02/2023]
Abstract
The wheat-rust pathosystem has been well-studied among host-pathogen interactions since last century due to its economic importance. Intensified efforts toward cloning of wheat rust resistance genes commenced in the late 1990s with the first successful isolation published in 2003. Currently, a total of 24 genes have been cloned from wheat that provides resistance to stem rust, leaf rust, and stripe rust. Among them, more than half (15) were cloned over the last 4 years. This rapid cloning of resistance genes from wheat can be largely credited to the development of approaches for reducing the genome complexity as 10 out of the 15 genes cloned recently were achieved by approaches that are summarized as TEnSeq (Target-sequence Enrichment and Sequencing) pipelines in this review. The growing repertoire of cloned rust resistance genes provides new tools to support deployment strategies aimed at achieving durable resistance. This will be supported by the identification of genetic variation in corresponding Avr genes from rust pathogens, which has recently begun. Although developed with wheat resistance genes as the primary targets, TEnSeq approaches are also applicable to other classes of genes as well as for other crops with complex genomes.
Collapse
Affiliation(s)
| | - Peng Zhang
- Plant Breeding Institute Cobbitty, The University of Sydney, Sydney, NSW, Australia
| | - Peter Dodds
- CSIRO Agriculture & Food, Canberra, ACT, Australia
| | - Evans Lagudah
- CSIRO Agriculture & Food, Canberra, ACT, Australia
- Plant Breeding Institute Cobbitty, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
28
|
|
29
|
Song Y, Li J, Sui Y, Han G, Zhang Y, Guo S, Sui N. The sweet sorghum SbWRKY50 is negatively involved in salt response by regulating ion homeostasis. PLANT MOLECULAR BIOLOGY 2020; 102:603-614. [PMID: 32052233 DOI: 10.1007/s11103-020-00966-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 01/10/2020] [Indexed: 05/18/2023]
Abstract
The WRKY transcription factor family is involved in responding to biotic and abiotic stresses. Its members contain a typical WRKY domain and can regulate plant physiological responses by binding to W-boxes in the promoter regions of downstream target genes. We identified the sweet sorghum SbWRKY50 (Sb09g005700) gene, which encodes a typical class II of the WRKY family protein that localizes to the nucleus and has transcriptional activation activity. The expression of SbWRKY50 in sweet sorghum was reduced by salt stress, and its ectopic expression reduced the salt tolerance of Arabidopsis thaliana plants. Compared with the wild type, the germination rate, root length, biomass and potassium ion content of SbWRKY50 over-expression plants decreased significantly under salt-stress conditions, while the hydrogen peroxide, superoxide anion and sodium ion contents increased. Real-time PCR results showed that the expression levels of AtSOS1, AtHKT1 and genes related to osmotic and oxidative stresses in over-expression strains decreased under salt-stress conditions. Luciferase complementation imaging and yeast one-hybrid assays confirmed that SbWRKY50 could directly bind to the upstream promoter of the SOS1 gene in A. thaliana. However, in sweet sorghum, SbWRKY50 could directly bind to the upstream promoters of SOS1 and HKT1. These results suggest that the new WRKY transcription factor SbWRKY50 participates in plant salt response by controlling ion homeostasis. However, the regulatory mechanisms are different in sweet sorghum and Arabidopsis, which may explain their different salt tolerance levels. The data provide information that can be applied to genetically modifying salt tolerance in different crop varieties.
Collapse
Affiliation(s)
- Yushuang Song
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Jinlu Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Yi Sui
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Yi Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Shangjing Guo
- College of Agronomy, Liaocheng University, Liaocheng, 252000, Shandong, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
30
|
Zhang X, Fernandes SB, Kaiser C, Adhikari P, Brown PJ, Mideros SX, Jamann TM. Conserved defense responses between maize and sorghum to Exserohilum turcicum. BMC PLANT BIOLOGY 2020; 20:67. [PMID: 32041528 PMCID: PMC7011368 DOI: 10.1186/s12870-020-2275-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/03/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND Exserohilum turcicum is an important pathogen of both sorghum and maize, causing sorghum leaf blight and northern corn leaf blight. Because the same pathogen can infect and cause major losses for two of the most important grain crops, it is an ideal pathosystem to study plant-pathogen evolution and investigate shared resistance mechanisms between the two plant species. To identify sorghum genes involved in the E. turcicum response, we conducted a genome-wide association study (GWAS). RESULTS Using the sorghum conversion panel evaluated across three environments, we identified a total of 216 significant markers. Based on physical linkage with the significant markers, we detected a total of 113 unique candidate genes, some with known roles in plant defense. Also, we compared maize genes known to play a role in resistance to E. turcicum with the association mapping results and found evidence of genes conferring resistance in both crops, providing evidence of shared resistance between maize and sorghum. CONCLUSIONS Using a genetics approach, we identified shared genetic regions conferring resistance to E. turcicum in both maize and sorghum. We identified several promising candidate genes for resistance to leaf blight in sorghum, including genes related to R-gene mediated resistance. We present significant advancements in the understanding of host resistance to E. turcicum, which is crucial to reduce losses due to this important pathogen.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Samuel B Fernandes
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Christopher Kaiser
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Pragya Adhikari
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Patrick J Brown
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Santiago X Mideros
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Tiffany M Jamann
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
31
|
van Esse HP, Reuber TL, van der Does D. Genetic modification to improve disease resistance in crops. THE NEW PHYTOLOGIST 2020; 225:70-86. [PMID: 31135961 PMCID: PMC6916320 DOI: 10.1111/nph.15967] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/08/2019] [Indexed: 05/19/2023]
Abstract
Plant pathogens are a significant challenge in agriculture despite our best efforts to combat them. One of the most effective and sustainable ways to manage plant pathogens is to use genetic modification (GM) and genome editing, expanding the breeder's toolkit. For use in the field, these solutions must be efficacious, with no negative effect on plant agronomy, and deployed thoughtfully. They must also not introduce a potential allergen or toxin. Expensive regulation of biotech crops is prohibitive for local solutions. With 11-30% average global yield losses and greater local impacts, tackling plant pathogens is an ethical imperative. We need to increase world food production by at least 60% using the same amount of land, by 2050. The time to act is now and we cannot afford to ignore the new solutions that GM provides to manage plant pathogens.
Collapse
Affiliation(s)
- H. Peter van Esse
- 2Blades Foundation1630 Chicago AvenueEvanstonIL 60201USA
- The Sainsbury LaboratoryUniversity of East AngliaNorwich Research ParkNR4 7UHUK
| | | | | |
Collapse
|
32
|
Wang L, Chen M, Zhu F, Fan T, Zhang J, Lo C. Alternative splicing is a Sorghum bicolor defense response to fungal infection. PLANTA 2019; 251:14. [PMID: 31776670 DOI: 10.1007/s00425-019-03309-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/29/2019] [Indexed: 05/24/2023]
Abstract
This study provides new insights that alternative splicing participates with transcriptional control in defense responses to Colletotrichum sublineola in sorghum In eukaryotic organisms, alternative splicing (AS) is an important post-transcriptional mechanism to generate multiple transcript isoforms from a single gene. Protein variants translated from splicing isoforms may have altered molecular characteristics in signal transduction and metabolic activities. However, which transcript isoforms will be translated into proteins and the biological functions of the resulting proteoforms are yet to be identified. Sorghum is one of the five major cereal crops, but its production is severely affected by fungal diseases. For example, sorghum anthracnose caused by Colletotrichum sublineola greatly reduces grain yield and biomass production. In this study, next-generation sequencing technology was used to analyze C. sublineola-inoculated sorghum seedlings compared with mock-inoculated control. It was identified that AS regulation may be as important as traditional transcriptional control during defense responses to fungal infection. Moreover, several genes involved in flavonoid and phenylpropanoid biosynthetic pathways were found to undergo multiple AS modifications. Further analysis demonstrated that non-conventional targets of both 5'- and 3'-splice sites were alternatively used in response to C. sublineola infection. Splicing factors were also affected at both transcriptional and post-transcriptional levels. As the first transcriptome report on C. sublineola infected sorghum, our work also suggested that AS plays crucial functions in defense responses to fungal invasion.
Collapse
Affiliation(s)
- Lanxiang Wang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Moxian Chen
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Fuyuan Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Tao Fan
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Clive Lo
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
33
|
Abstract
Approaches to manipulating disease resistance in plants is expanding exponentially due to advances in our understanding of plant defense mechanisms and new tools for manipulating the plant genome. The application of effective strategies is only limited now by adoption of rapid classical genetic techniques and the acceptance of genetically engineered traits for some problems. The use of genome editing and cis-genetics, where possible, may facilitate applications that otherwise require considerable time or genetic engineering, depending on settling legal definitions of the products. Nonetheless, the variety of approaches to developing disease resistance has never been greater.
Collapse
Affiliation(s)
- Anuj Sharma
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | - Jeffrey B. Jones
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | - Frank F. White
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
34
|
Krattinger SG, Kang J, Bräunlich S, Boni R, Chauhan H, Selter LL, Robinson MD, Schmid MW, Wiederhold E, Hensel G, Kumlehn J, Sucher J, Martinoia E, Keller B. Abscisic acid is a substrate of the ABC transporter encoded by the durable wheat disease resistance gene Lr34. THE NEW PHYTOLOGIST 2019; 223:853-866. [PMID: 30913300 PMCID: PMC6618152 DOI: 10.1111/nph.15815] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 03/20/2019] [Indexed: 05/10/2023]
Abstract
The wheat Lr34res allele, coding for an ATP-binding cassette transporter, confers durable resistance against multiple fungal pathogens. The Lr34sus allele, differing from Lr34res by two critical nucleotide polymorphisms, is found in susceptible wheat cultivars. Lr34res is functionally transferrable as a transgene into all major cereals, including rice, barley, maize, and sorghum. Here, we used transcriptomics, physiology, genetics, and in vitro and in vivo transport assays to study the molecular function of Lr34. We report that Lr34res results in a constitutive induction of transcripts reminiscent of an abscisic acid (ABA)-regulated response in transgenic rice. Lr34-expressing rice was altered in biological processes that are controlled by this phytohormone, including dehydration tolerance, transpiration and seedling growth. In planta seedling and in vitro yeast accumulation assays revealed that both LR34res and LR34sus act as ABA transporters. However, whereas the LR34res protein was detected in planta the LR34sus version was not, suggesting a post-transcriptional regulatory mechanism. Our results identify ABA as a substrate of the LR34 ABC transporter. We conclude that LR34res-mediated ABA redistribution has a major effect on the transcriptional response and physiology of Lr34res-expressing plants and that ABA is a candidate molecule that contributes to Lr34res-mediated disease resistance.
Collapse
Affiliation(s)
- Simon G. Krattinger
- Department of Plant and Microbial BiologyUniversity of ZurichZurichSwitzerland
- Biological and Environmental Science & Engineering DivisionKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | - Joohyun Kang
- Department of Plant and Microbial BiologyUniversity of ZurichZurichSwitzerland
| | - Stephanie Bräunlich
- Department of Plant and Microbial BiologyUniversity of ZurichZurichSwitzerland
| | - Rainer Boni
- Department of Plant and Microbial BiologyUniversity of ZurichZurichSwitzerland
| | - Harsh Chauhan
- Department of Plant and Microbial BiologyUniversity of ZurichZurichSwitzerland
| | - Liselotte L. Selter
- Department of Plant and Microbial BiologyUniversity of ZurichZurichSwitzerland
| | - Mark D. Robinson
- Institute of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
- SIB Swiss Institute of BioinformaticsUniversity of ZurichZurichSwitzerland
| | - Marc W. Schmid
- Department of Plant and Microbial BiologyUniversity of ZurichZurichSwitzerland
| | - Elena Wiederhold
- Department of Plant and Microbial BiologyUniversity of ZurichZurichSwitzerland
| | - Goetz Hensel
- Plant Reproductive BiologyLeibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenSeeland/OT, GaterslebenGermany
| | - Jochen Kumlehn
- Plant Reproductive BiologyLeibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenSeeland/OT, GaterslebenGermany
| | - Justine Sucher
- Department of Plant and Microbial BiologyUniversity of ZurichZurichSwitzerland
| | - Enrico Martinoia
- Department of Plant and Microbial BiologyUniversity of ZurichZurichSwitzerland
| | - Beat Keller
- Department of Plant and Microbial BiologyUniversity of ZurichZurichSwitzerland
| |
Collapse
|
35
|
Milne RJ, Dibley KE, Schnippenkoetter W, Mascher M, Lui ACW, Wang L, Lo C, Ashton AR, Ryan PR, Lagudah ES. The Wheat Lr67 Gene from the Sugar Transport Protein 13 Family Confers Multipathogen Resistance in Barley. PLANT PHYSIOLOGY 2019; 179:1285-1297. [PMID: 30305371 PMCID: PMC6446772 DOI: 10.1104/pp.18.00945] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/25/2018] [Indexed: 05/20/2023]
Abstract
Fungal pathogens are a major constraint to global crop production; hence, plant genes encoding pathogen resistance are important tools for combating disease. A few resistance genes identified to date provide partial, durable resistance to multiple pathogens and the wheat (Triticum aestivum) Lr67 hexose transporter variant (Lr67res) fits into this category. Two amino acids differ between the wild-type and resistant alleles - G144R and V387L. Exome sequence data from 267 barley (Hordeum vulgare) landraces and wild accessions was screened and neither of the Lr67res mutations was detected. The barley ortholog of Lr67, HvSTP13, was functionally characterized in yeast as a high affinity hexose transporter. The G144R mutation was introduced into HvSTP13 and abolished Glc uptake, whereas the V387L mutation reduced Glc uptake by ∼ 50%. Glc transport by HvSTP13 heterologously expressed in yeast was reduced when coexpressed with Lr67res Stable transgenic Lr67res barley lines exhibited seedling resistance to the barley-specific pathogens Puccinia hordei and Blumeria graminis f. sp. hordei, which cause leaf rust and powdery mildew, respectively. Barley plants expressing Lr67res exhibited early senescence and higher pathogenesis-related (PR) gene expression. Unlike previous observations implicating flavonoids in the resistance of transgenic sorghum (Sorghum bicolor) expressing Lr34res, another wheat multipathogen resistance gene, barley flavonoids are unlikely to have a role in Lr67res-mediated resistance. Similar to observations made in yeast, Lr67res reduced Glc uptake in planta These results confirm that the pathway by which Lr67res confers resistance to fungal pathogens is conserved between wheat and barley.
Collapse
Affiliation(s)
- Ricky J Milne
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | | | | | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| | - Andy C W Lui
- School of Biological Sciences, The University of Hong Kong, Hong Kong
| | - Lanxiang Wang
- School of Biological Sciences, The University of Hong Kong, Hong Kong
| | - Clive Lo
- School of Biological Sciences, The University of Hong Kong, Hong Kong
| | | | - Peter R Ryan
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | | |
Collapse
|
36
|
Fonseca JP, Mysore KS. Genes involved in nonhost disease resistance as a key to engineer durable resistance in crops. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 279:108-116. [PMID: 30709487 DOI: 10.1016/j.plantsci.2018.07.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 06/28/2018] [Accepted: 07/06/2018] [Indexed: 05/25/2023]
Abstract
Most potential pathogens fail to establish virulence for a plethora of plants found in nature. This intrinsic property to resist pathogen virulence displayed by organisms without triggering canonical resistance (R) genes has been termed nonhost resistance (NHR). While host resistance involves recognition of pathogen elicitors such as avirulence factors by bona fide R proteins, mechanism of NHR seems less obvious, often involving more than one gene. We can generally describe NHR in two steps: 1) pre-invasive resistance, either passive or active, which can restrict the pathogen from entering the host, and 2) post-invasive resistance, an active defense response that often results in hypersensitive response like programmed cell death and reactive oxygen species accumulation. While PAMP-triggered-immunity (PTI) is generally effective against nonhost pathogens, effector-triggered-immunity (ETI) can be effective against both host and nonhost pathogens. Prolonged interactions between adapted pathogens and their resistant host plants results in co-evolution, which can lead to new pathogen strains that can be virulent and cause disease on supposedly resistant host. In this context, engineering durable resistance by manipulating genes involved in NHR is an attractive approach for sustainable agriculture. Several genes involved in NHR have been characterized for their role in plant defense. In this review, we report genes involved in NHR identified to date and highlight a few examples where genes involved in NHR have been used to confer resistance in crop plants against economically important diseases.
Collapse
|
37
|
Wang Y, Tan J, Wu Z, VandenLangenberg K, Wehner TC, Wen C, Zheng X, Owens K, Thornton A, Bang HH, Hoeft E, Kraan PAG, Suelmann J, Pan J, Weng Y. STAYGREEN, STAY HEALTHY: a loss-of-susceptibility mutation in the STAYGREEN gene provides durable, broad-spectrum disease resistances for over 50 years of US cucumber production. THE NEW PHYTOLOGIST 2019; 221:415-430. [PMID: 30022503 DOI: 10.1111/nph.15353] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/13/2018] [Indexed: 05/22/2023]
Abstract
The Gy14 cucumber (Cucumis sativus) is resistant to oomyceteous downy mildew (DM), bacterial angular leaf spot (ALS) and fungal anthracnose (AR) pathogens, but the underlying molecular mechanisms are unknown. Quantitative trait locus (QTL) mapping for the disease resistances in Gy14 and further map-based cloning identified a candidate gene for the resistant loci, which was validated and functionally characterized by spatial-temporal gene expression profiling, allelic diversity and phylogenetic analysis, as well as local association studies. We showed that the triple-disease resistances in Gy14 were controlled by the cucumber STAYGREEN (CsSGR) gene. A single nucleotide polymorphism (SNP) in the coding region resulted in a nonsynonymous amino acid substitution in the CsSGR protein, and thus disease resistance. Genes in the chlorophyll degradation pathway showed differential expression between resistant and susceptible lines in response to pathogen inoculation. The causal SNP was significantly associated with disease resistances in natural and breeding populations. The resistance allele has undergone selection in cucumber breeding. The durable, broad-spectrum disease resistance is caused by a loss-of-susceptibility mutation of CsSGR. Probably, this is achieved through the inhibition of reactive oxygen species over-accumulation and phytotoxic catabolite over-buildup in the chlorophyll degradation pathway. The CsSGR-mediated host resistance represents a novel function of this highly conserved gene in plants.
Collapse
Affiliation(s)
- Yuhui Wang
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
| | - Junyi Tan
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
| | - Zhiming Wu
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
- Institute of Cash Crops, Hebei Academy of Agriculture & Forestry Sciences, Shijiazhuang, Hebei, 050051, China
| | - Kyle VandenLangenberg
- Horticultural Science Department, North Carolina State University, Raleigh, NC, 27695, USA
| | - Todd C Wehner
- Horticultural Science Department, North Carolina State University, Raleigh, NC, 27695, USA
| | - Changlong Wen
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | | | - Ken Owens
- Magnum Seeds Inc., Dixon, CA, 95620, USA
| | | | | | - Eric Hoeft
- HM Clause Seed Company, Davis, CA, 95618, USA
| | | | - Jos Suelmann
- Bayer Vegetable Seeds, 6083 AB, Nunhem, the Netherlands
| | - Junsong Pan
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200241, China
| | - Yiqun Weng
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
- USDA-ARS Vegetable Crops Research Unit, Madison, WI, 53705, USA
| |
Collapse
|
38
|
Abstract
Durable disease resistance is a key component of global food security, and combining resistance genes into "pyramids" is an important way to increase durability of resistance. The mechanisms by which pyramids impart durability are not well known. The traditional view of resistance pyramids considers the use of major resistance gene (R-gene) combinations deployed against pathogens that are primarily asexual. Interestingly, published examples of the successful use of pyramids in the traditional sense are rare. In contrast, most published descriptions of durable pyramids in practice are for cereal rusts, and tend to indicate an association between durability and cultivars combining major R-genes with incompletely expressed, adult plant resistance genes. Pyramids have been investigated experimentally for a diversity of pathogens, and many reduce disease levels below that of the single best gene. Resistance gene combinations have been identified through phenotypic reactions, molecular markers, and challenge against effector genes. As resistance genes do not express equally in all genetic backgrounds, however, a combination of genetic information and phenotypic analyses provide the ideal scenario for testing of putative pyramids. Not all resistance genes contribute equally to pyramids, and approaches have been suggested to identify the best genes and combinations of genes for inclusion. Combining multiple resistance genes into a single plant genotype quickly is a challenge that is being addressed through alternative breeding approaches, as well as through genomics tools such as resistance gene cassettes and gene editing. Experimental and modeling tests of pyramid durability are in their infancy, but have promise to help direct future studies of pyramids. Several areas for further work on resistance gene pyramids are suggested.
Collapse
Affiliation(s)
- Christopher C Mundt
- Department of Botany and Plant Pathology, 2082 Cordley Hall, Oregon State University, Corvallis 97331-2902
| |
Collapse
|
39
|
|