1
|
Khurshaid N, Shabir N, Pala AH, Yadav AK, Singh D, Ashraf N. Transcriptome wide analysis of MADS box genes in Crocus sativus and interplay of CstMADS19-CstMADS26 in orchestrating apocarotenoid biosynthesis. Gene 2025; 932:148893. [PMID: 39197797 DOI: 10.1016/j.gene.2024.148893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/09/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
Flowers of Crocus sativus L. are immensely important not only for arrangement of floral whorls but more because each floral organ is dominated by a different class of specialized compounds. Dried stigmas of C. sativus flowers form commercial saffron, and are known to accumulate unique apocarotenoids like crocin, picrocrocin and safranal. Inspite of being a high value crop, the molecular mechanism regulating flower development in Crocus remains largely unknown. Moreover, it would be very interesting to explore any co-regulatory mechanism which controls floral architecture and secondary metabolic pathways which exist in specific floral organs. Here we report transcriptome wide identification of MADS box genes in Crocus. A total of 39 full length MADS box genes were identified among which three belonged to type I and 36 to type II class. Phylogeny classified them into 11 sub-clusters. Expression pattern revealed some stigma up-regulated genes among which CstMADS19 encoding an AGAMOUS gene showed high expression. Transient over-expression of CstMADS19 in stigmas of Crocus resulted in increased crocin by enhancing expression of pathway genes. Yeast one hybrid assay demonstrated that CstMADS19 binds to promoters of phytoene synthase and carotenoid cleavage dioxygenase 2 genes. Yeast two hybrid and BiFC assays confirmed interaction of CstMADS19 with CstMADS26 which codes for a SEPALATA gene. Co-overexpression of CstMADS19 and CstMADS26 in Crocus stigmas enhanced crocin content more than was observed when genes were expressed individually. Collectively, these findings indicate that CstMADS19 functions as a positive regulator of stigma based apocarotenoid biosynthesis in Crocus.
Collapse
Affiliation(s)
- Nargis Khurshaid
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine (IIIM), Sanat Nagar, Srinagar, Jammu and Kashmir 190005, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, UP, India
| | - Najwa Shabir
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine (IIIM), Sanat Nagar, Srinagar, Jammu and Kashmir 190005, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, UP, India
| | - Aamir Hussain Pala
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine (IIIM), Sanat Nagar, Srinagar, Jammu and Kashmir 190005, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, UP, India
| | - Arvind Kumar Yadav
- Quality Control & Quality Assurance Lab, Quality, Management & Instrumentation Division, CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India
| | - Deepika Singh
- Quality Control & Quality Assurance Lab, Quality, Management & Instrumentation Division, CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India
| | - Nasheeman Ashraf
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine (IIIM), Sanat Nagar, Srinagar, Jammu and Kashmir 190005, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, UP, India.
| |
Collapse
|
2
|
Li P, Quan H, He W, Wu L, Chen Z, Yong B, Liu X, He C. Rice BARENTSZ genes are required to maintain floral developmental stability against temperature fluctuations. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:637-657. [PMID: 39215633 DOI: 10.1111/tpj.17007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
BARENTSZ (BTZ), a core component of the exon junction complex, regulates diverse developmental processes in animals. However, its evolutionary and developmental roles in plants remain elusive. Here, we revealed that three groups of paralogous BTZ genes existed in Poaceae, and Group 2 underwent loss-of-function mutations during evolution. They showed surprisingly low (~33%) sequence identities, implying functional divergence. Two genes retained in rice, OsBTZ1 and OsBTZ3, were edited; however, the resultant osbtz1 and osbtz3 mutants showed similar floral morphological and functional defects at a low frequency. When growing under low-temperature conditions, developmental abnormalities became pronounced, and new floral variations were induced. In particular, stamen and carpel functionality was impaired in these rice btz mutants. The double-gene mutant osbtz1/3 shared these floral defects with an increased frequency, which was further induced under low-temperature conditions. OsBTZs interacted with OsMADS7 and OsMADS8, and the floral expressions of the OsTGA10 and MADS-box genes were correlatively altered in these osbtz mutants and responded to low-temperature treatment. These novel findings demonstrate that two highly diverged OsBTZs are required to maintain floral developmental stability under low-temperature conditions, and play an integral role in male and female fertility, thus providing new insights into the indispensable roles of BTZ genes in plant development and adaptive evolution.
Collapse
Affiliation(s)
- Peigang Li
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Quan
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenchao He
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lanfeng Wu
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhixiong Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Bin Yong
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Chaoying He
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
3
|
Pal AK, Gandhivel VHS, Nambiar AB, Shivaprasad PV. Upstream regulator of genomic imprinting in rice endosperm is a small RNA-associated chromatin remodeler. Nat Commun 2024; 15:7807. [PMID: 39242590 PMCID: PMC11379814 DOI: 10.1038/s41467-024-52239-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 08/29/2024] [Indexed: 09/09/2024] Open
Abstract
Genomic imprinting is observed in endosperm, a placenta-like seed tissue, where transposable elements (TEs) and repeat-derived small RNAs (sRNAs) mediate epigenetic changes in plants. In imprinting, uniparental gene expression arises due to parent-specific epigenetic marks on one allele but not on the other. The importance of sRNAs and their regulation in endosperm development or in imprinting is poorly understood in crops. Here we show that a previously uncharacterized CLASSY (CLSY)-family chromatin remodeler named OsCLSY3 is essential for rice endosperm development and imprinting, acting as an upstream player in the sRNA pathway. Comparative transcriptome and genetic analysis indicated its endosperm-preferred expression and its likely paternal imprinted nature. These important features are modulated by RNA-directed DNA methylation (RdDM) of tandemly arranged TEs in its promoter. Upon perturbation of OsCLSY3 in transgenic lines, we observe defects in endosperm development and a loss of around 70% of all sRNAs. Interestingly, well-conserved endosperm-specific sRNAs (siren) that are vital for reproductive fitness in angiosperms are also dependent on OsCLSY3. We observed that many imprinted genes and seed development-associated genes are under the control of OsCLSY3. These results support an essential role of OsCLSY3 in rice endosperm development and imprinting, and propose similar regulatory strategies involving CLSY3 homologs among other cereals.
Collapse
Affiliation(s)
- Avik Kumar Pal
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
| | - Vivek Hari-Sundar Gandhivel
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
| | - Amruta B Nambiar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
| | - P V Shivaprasad
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India.
| |
Collapse
|
4
|
Jiang M, Zhang H, Song Y, Chen J, Bai J, Tang J, Wang Q, Fotopoulos V, Zhu QH, Yang R, Li R. Transcription factor OsbZIP10 modulates rice grain quality by regulating OsGIF1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2181-2198. [PMID: 38981001 DOI: 10.1111/tpj.16911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/01/2024] [Accepted: 06/17/2024] [Indexed: 07/11/2024]
Abstract
Understanding and optimizing the process of grain filling helps the quest to maximize rice (Oryza sativa L.) seed yield and quality, yet the intricate mechanisms at play remain fragmented. Transcription factors (TFs) are major players in the gene networks underlying the grain filling process. Here, we employed grain incomplete filling (OsGIF1)/cell wall invertase 2, a key gene involved in grain filling, to explore its upstream TFs and identified a bZIP family TF, OsbZIP10, to be a transcriptional activator of OsGIF1. Rice grains of the knockouts of OsbZIP10 showed increased white-core rates but lower amylose content (AC), leading to better eating and cooking qualities in all genetic backgrounds investigated, though the impact of mutations in OsbZIP10 on grain weight depended on genetic background. Multi-omics analyses suggested that, in addition to OsGIF1, multiple genes involved in different biological processes contributing to grain filling were targeted by OsbZIP10, including OsAGPS1, a gene encoding the ADP-Glc pyrophosphorylase (AGPase) small subunit, and genes contributing to homeostasis of reactive oxygen species. Distinct genetic make-up was observed in OsbZIP10 between japonica and indica rice varieties, with the majority varieties of each subspecies belonging to two different haplotypes that were closely associated with AC. Overexpressing the haplotype linked to high-AC in the low-AC genetic background increased AC. Overall, this study sheds crucial light on the significance of the OsbZIP10-OsGIF1 module in the determination of rice grain quality, offering a potential avenue for genetic engineering of rice to produce seeds with tailored attributes.
Collapse
Affiliation(s)
- Meng Jiang
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, People's Republic of China
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya, 572000, People's Republic of China
| | - Huali Zhang
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311400, People's Republic of China
| | - Yue Song
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya, 572000, People's Republic of China
| | - Jiale Chen
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya, 572000, People's Republic of China
| | - Jianjiang Bai
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
| | - Jianhao Tang
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
| | - Qing Wang
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, People's Republic of China
- Wuxi Hupper Bioseed Technology Institute Ltd., Wuxi, 214000, Jiangsu, People's Republic of China
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Lemesos, 3603, Cyprus
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, 2601, Australian Capital Territory, Australia
| | - Ruifang Yang
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
| | - Ruiqing Li
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| |
Collapse
|
5
|
Nie S, Chen L, Zheng M, Dong J, Ma Y, Zhou L, Wang J, Chen J, Hu H, Yang T, Zhao J, Zhang S, Yang W. GWAS and Transcriptomic Analysis Identify OsRING315 as a New Candidate Gene Controlling Amylose Content and Gel Consistency in Rice. RICE (NEW YORK, N.Y.) 2024; 17:38. [PMID: 38849622 PMCID: PMC11161452 DOI: 10.1186/s12284-024-00718-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/26/2024] [Indexed: 06/09/2024]
Abstract
Cooking quality is the main factor determining the market value of rice. Although several major genes and a certain number of QTLs controlling cooking quality have been identified, the genetic complexity and environmental susceptibility limit the further improvement for cooking quality by molecular breeding. This research conducted a genome-wide association study to elucidate the QTLs related to cooking quality including amylose content (AC), gel consistency (GC) and alkali spreading value (ASV) by using 450 rice accessions consisting of 300 indica and 150 japonica accessions in two distinct environments. A total of 54 QTLs were identified, including 25 QTLs for AC, 12 QTLs for GC and 17 QTLs for ASV. Among them, 10 QTLs were consistently observed by the same population in both environments. Six QTLs were co-localized with the reported QTLs or cloned genes. The Wx gene for AC and GC, and the ALK gene for ASV were identified in every population across the two environments. The qAC9-2 for AC and the qGC9-2 for GC were defined to the same interval. The OsRING315 gene, encoding an E3 ubiquitin ligase, was considered as the candidate gene for both qAC9-2 and qGC9-2. The higher expression of OsRING315 corresponded to the lower AC and higher GC. Three haplotypes of OsRING315 were identified. The Hap 1 mainly existed in the japonica accessions and had lower AC. The Hap 2 and Hap 3 were predominantly present in the indica accessions, associated with higher AC. Meanwhile, the GC of accessions harboring Hap 1 was higher than that of accessions harboring Hap 3. In addition, the distribution of the three haplotypes in several rice-growing regions was unbalanced. The three traits of cooking quality are controlled by both major and minor genes and susceptible to environmental factors. The expression level of OsRING315 is related to both AC and GC, and this gene can be a promising target in quality improvement by using the gene editing method. Moreover, the haplotypes of OsRING315 differentiate between indica and japonica, and reveal the differences in GC and AC between indica and japonica rice.
Collapse
Affiliation(s)
- Shuai Nie
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, P.R. China
| | - Luo Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, P.R. China
| | - Minhua Zheng
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, P.R. China
| | - Jingfang Dong
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, P.R. China
| | - Yamei Ma
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, P.R. China
| | - Lian Zhou
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, P.R. China
| | - Jian Wang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, P.R. China
| | - Jiansong Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, P.R. China
| | - Haifei Hu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, P.R. China
| | - Tifeng Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, P.R. China
| | - Junliang Zhao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, P.R. China
| | - Shaohong Zhang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, P.R. China
| | - Wu Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, P.R. China.
| |
Collapse
|
6
|
Wu H, Ren Y, Dong H, Xie C, Zhao L, Wang X, Zhang F, Zhang B, Jiang X, Huang Y, Jing R, Wang J, Miao R, Bao X, Yu M, Nguyen T, Mou C, Wang Y, Wang Y, Lei C, Cheng Z, Jiang L, Wan J. FLOURY ENDOSPERM24, a heat shock protein 101 (HSP101), is required for starch biosynthesis and endosperm development in rice. THE NEW PHYTOLOGIST 2024; 242:2635-2651. [PMID: 38634187 DOI: 10.1111/nph.19761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/15/2024] [Indexed: 04/19/2024]
Abstract
Endosperm is the main storage organ in cereal grain and determines grain yield and quality. The molecular mechanisms of heat shock proteins in regulating starch biosynthesis and endosperm development remain obscure. Here, we report a rice floury endosperm mutant flo24 that develops abnormal starch grains in the central starchy endosperm cells. Map-based cloning and complementation test showed that FLO24 encodes a heat shock protein HSP101, which is localized in plastids. The mutated protein FLO24T296I dramatically lost its ability to hydrolyze ATP and to rescue the thermotolerance defects of the yeast hsp104 mutant. The flo24 mutant develops more severe floury endosperm when grown under high-temperature conditions than normal conditions. And the FLO24 protein was dramatically induced at high temperature. FLO24 physically interacts with several key enzymes required for starch biosynthesis, including AGPL1, AGPL3 and PHO1. Combined biochemical and genetic evidence suggests that FLO24 acts cooperatively with HSP70cp-2 to regulate starch biosynthesis and endosperm development in rice. Our results reveal that FLO24 acts as an important regulator of endosperm development, which might function in maintaining the activities of enzymes involved in starch biosynthesis in rice.
Collapse
Affiliation(s)
- Hongming Wu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yulong Ren
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hui Dong
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
| | - Chen Xie
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lei Zhao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xin Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Fulin Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Binglei Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaokang Jiang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yunshuai Huang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruonan Jing
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Rong Miao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiuhao Bao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingzhou Yu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Thanhliem Nguyen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Changling Mou
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yunlong Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
| | - Yihua Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
| | - Cailin Lei
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhijun Cheng
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ling Jiang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
| | - Jianmin Wan
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
| |
Collapse
|
7
|
Song J, Liu Y, Cai W, Zhou S, Fan X, Hu H, Ren L, Xue Y. Unregulated GmAGL82 due to Phosphorus Deficiency Positively Regulates Root Nodule Growth in Soybean. Int J Mol Sci 2024; 25:1802. [PMID: 38339080 PMCID: PMC10855635 DOI: 10.3390/ijms25031802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Nitrogen fixation, occurring through the symbiotic relationship between legumes and rhizobia in root nodules, is crucial in sustainable agriculture. Nodulation and soybean production are influenced by low levels of phosphorus stress. In this study, we discovered a MADS transcription factor, GmAGL82, which is preferentially expressed in nodules and displays significantly increased expression under conditions of phosphate (Pi) deficiency. The overexpression of GmAGL82 in composite transgenic plants resulted in an increased number of nodules, higher fresh weight, and enhanced soluble Pi concentration, which subsequently increased the nitrogen content, phosphorus content, and overall growth of soybean plants. Additionally, transcriptome analysis revealed that the overexpression of GmAGL82 significantly upregulated the expression of genes associated with nodule growth, such as GmENOD100, GmHSP17.1, GmHSP17.9, GmSPX5, and GmPIN9d. Based on these findings, we concluded that GmAGL82 likely participates in the phosphorus signaling pathway and positively regulates nodulation in soybeans. The findings of this research may lay the theoretical groundwork for further studies and candidate gene resources for the genetic improvement of nutrient-efficient soybean varieties in acidic soils.
Collapse
Affiliation(s)
- Jia Song
- College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang 524088, China; (J.S.); (Y.L.); (H.H.)
| | - Ying Liu
- College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang 524088, China; (J.S.); (Y.L.); (H.H.)
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Wangxiao Cai
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China; (W.C.); (S.Z.); (X.F.)
| | - Silin Zhou
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China; (W.C.); (S.Z.); (X.F.)
| | - Xi Fan
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China; (W.C.); (S.Z.); (X.F.)
| | - Hanqiao Hu
- College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang 524088, China; (J.S.); (Y.L.); (H.H.)
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Lei Ren
- College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang 524088, China; (J.S.); (Y.L.); (H.H.)
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Yingbin Xue
- College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang 524088, China; (J.S.); (Y.L.); (H.H.)
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| |
Collapse
|
8
|
Wang L, Liu L, Zhao J, Li C, Wu H, Zhao H, Wu Q. Granule-bound starch synthase in plants: Towards an understanding of their evolution, regulatory mechanisms, applications, and perspectives. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111843. [PMID: 37648115 DOI: 10.1016/j.plantsci.2023.111843] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
Amylose content (AC) is a significant quality trait in starchy crops, affecting their processing and application by the food and non-food industries. Therefore, fine-tuning AC in these crops has become a focus for breeders. Granule-bound starch synthase (GBSS) is the core enzyme that directly determines the AC levels. Several excellent reviews have summarized key progress in various aspects of GBSS research in recent years, but they mostly focus on cereals. Herein, we provide an in-depth review of GBSS research in monocots and dicots, focusing on the molecular characteristics, evolutionary relationships, expression patterns, molecular regulation mechanisms, and applications. We also discuss future challenges and directions for controlling AC in starchy crops, and found simultaneously increasing both the PTST and GBSS gene expression levels may be an effective strategy to increase amylose content.
Collapse
Affiliation(s)
- Lei Wang
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Linling Liu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Jiali Zhao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Chenglei Li
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Huala Wu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Haixia Zhao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China.
| |
Collapse
|
9
|
Kan Y, Mu XR, Gao J, Lin HX, Lin Y. The molecular basis of heat stress responses in plants. MOLECULAR PLANT 2023; 16:1612-1634. [PMID: 37740489 DOI: 10.1016/j.molp.2023.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/30/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Global warming impacts crop production and threatens food security. Elevated temperatures are sensed by different cell components. Temperature increases are classified as either mild warm temperatures or excessively hot temperatures, which are perceived by distinct signaling pathways in plants. Warm temperatures induce thermomorphogenesis, while high-temperature stress triggers heat acclimation and has destructive effects on plant growth and development. In this review, we systematically summarize the heat-responsive genetic networks in Arabidopsis and crop plants based on recent studies. In addition, we highlight the strategies used to improve grain yield under heat stress from a source-sink perspective. We also discuss the remaining issues regarding the characteristics of thermosensors and the urgency required to explore the basis of acclimation under multifactorial stress combination.
Collapse
Affiliation(s)
- Yi Kan
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiao-Rui Mu
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Gao
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Xuan Lin
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| | - Youshun Lin
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
10
|
He Y, Guan H, Li B, Zhang S, Xu Y, Yao Y, Yang X, Zha Z, Guo Y, Jiao C, Cai H. Transcriptome Analysis Reveals the Dynamic and Rapid Transcriptional Reprogramming Involved in Heat Stress and Identification of Heat Response Genes in Rice. Int J Mol Sci 2023; 24:14802. [PMID: 37834249 PMCID: PMC10572967 DOI: 10.3390/ijms241914802] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
High temperature is one of the most important environmental factors influencing rice growth, development, and yield. Therefore, it is important to understand how rice plants cope with high temperatures. Herein, the heat tolerances of T2 (Jinxibai) and T21 (Taizhongxianxuan2hao) were evaluated at 45 °C, and T21 was found to be sensitive to heat stress at the seedling stage. Analysis of the H2O2 and proline content revealed that the accumulation rate of H2O2 was higher in T21, whereas the accumulation rate of proline was higher in T2 after heat treatment. Meanwhile, transcriptome analysis revealed that several pathways participated in the heat response, including "protein processing in endoplasmic reticulum", "plant hormone signal transduction", and "carbon metabolism". Additionally, our study also revealed that different pathways participate in heat stress responses upon prolonged stress. The pathway of "protein processing in endoplasmic reticulum" plays an important role in stress responses. We found that most genes involved in this pathway were upregulated and peaked at 0.5 or 1 h after heat treatment. Moreover, sixty transcription factors, including the members of the AP2/ERF, NAC, HSF, WRKY, and C2H2 families, were found to participate in the heat stress response. Many of them have also been reported to be involved in biotic or abiotic stresses. In addition, through PPI (protein-protein interactions) analysis, 22 genes were identified as key genes in the response to heat stress. This study improves our understanding of thermotolerance mechanisms in rice, and also lays a foundation for breeding thermotolerant cultivars via molecular breeding.
Collapse
Affiliation(s)
- Yonggang He
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (Y.H.); (H.G.); (B.L.); (S.Z.); (Y.X.); (Y.Y.); (X.Y.); (Z.Z.); (Y.G.)
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan 430070, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Huimin Guan
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (Y.H.); (H.G.); (B.L.); (S.Z.); (Y.X.); (Y.Y.); (X.Y.); (Z.Z.); (Y.G.)
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan 430070, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Bo Li
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (Y.H.); (H.G.); (B.L.); (S.Z.); (Y.X.); (Y.Y.); (X.Y.); (Z.Z.); (Y.G.)
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan 430070, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Shuo Zhang
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (Y.H.); (H.G.); (B.L.); (S.Z.); (Y.X.); (Y.Y.); (X.Y.); (Z.Z.); (Y.G.)
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan 430070, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Yanhao Xu
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (Y.H.); (H.G.); (B.L.); (S.Z.); (Y.X.); (Y.Y.); (X.Y.); (Z.Z.); (Y.G.)
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan 430070, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Yan Yao
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (Y.H.); (H.G.); (B.L.); (S.Z.); (Y.X.); (Y.Y.); (X.Y.); (Z.Z.); (Y.G.)
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan 430070, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Xiaolong Yang
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (Y.H.); (H.G.); (B.L.); (S.Z.); (Y.X.); (Y.Y.); (X.Y.); (Z.Z.); (Y.G.)
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan 430070, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Zhongping Zha
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (Y.H.); (H.G.); (B.L.); (S.Z.); (Y.X.); (Y.Y.); (X.Y.); (Z.Z.); (Y.G.)
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan 430070, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Ying Guo
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (Y.H.); (H.G.); (B.L.); (S.Z.); (Y.X.); (Y.Y.); (X.Y.); (Z.Z.); (Y.G.)
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan 430070, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Chunhai Jiao
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (Y.H.); (H.G.); (B.L.); (S.Z.); (Y.X.); (Y.Y.); (X.Y.); (Z.Z.); (Y.G.)
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan 430070, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Haiya Cai
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (Y.H.); (H.G.); (B.L.); (S.Z.); (Y.X.); (Y.Y.); (X.Y.); (Z.Z.); (Y.G.)
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan 430070, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| |
Collapse
|
11
|
Fu M, Liao J, Liu X, Li M, Zhang S. Artificial warming affects sugar signals and flavonoid accumulation to improve female willows' growth faster than males. TREE PHYSIOLOGY 2023; 43:1584-1602. [PMID: 37384415 DOI: 10.1093/treephys/tpad081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 05/25/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
Increasing global warming is severely affecting tree growth and development. However, research on the sex-specific responses of dioecious trees to warming is scarce. Here, male and female Salix paraplesia were selected for artificial warming (an increase of 4 °C relative to ambient temperature) to investigate the effects on morphological, physiological, biochemical and molecular responses. The results showed that warming significantly promoted the growth of female and male S. paraplesia, but females grew faster than males. Warming affected photosynthesis, chloroplast structures, peroxidase activity, proline, flavonoids, nonstructural carbohydrates (NSCs) and phenolic contents in both sexes. Interestingly, warming increased flavonoid accumulation in female roots and male leaves but inhibited it in female leaves and male roots. The transcriptome and proteome results indicated that differentially expressed genes and proteins were significantly enriched in sucrose and starch metabolism and flavonoid biosynthesis pathways. The integrative analysis of transcriptomic, proteomic, biochemical and physiological data revealed that warming changed the expression of SpAMY, SpBGL, SpEGLC and SpAGPase genes, resulting in the reduction of NSCs and starch and the activation of sugar signaling, particularly SpSnRK1s, in female roots and male leaves. These sugar signals subsequently altered the expression of SpHCTs, SpLAR and SpDFR in the flavonoid biosynthetic pathway, ultimately leading to the differential accumulation of flavonoids in female and male S. paraplesia. Therefore, warming causes sexually differential responses of S. paraplesia, with females performing better than males.
Collapse
Affiliation(s)
- Mingyue Fu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jun Liao
- College of Geography and Tourism, Chongqing Normal University, Chongqing 400047, China
| | - Xuejiao Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Menghan Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Sheng Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
12
|
Ma Z, Lv J, Wu W, Fu D, Lü S, Ke Y, Yang P. Regulatory network of rice in response to heat stress and its potential application in breeding strategy. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:68. [PMID: 37608925 PMCID: PMC10440324 DOI: 10.1007/s11032-023-01415-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/14/2023] [Indexed: 08/24/2023]
Abstract
The rapid development of global industrialization has led to serious environmental problems, among which global warming has become one of the major concerns. The gradual rise in global temperature resulted in the loss of food production, and hence a serious threat to world food security. Rice is the main crop for approximately half of the world's population, and its geographic distribution, yield, and quality are frequently reduced due to elevated temperature stress, and breeding rice varieties with tolerance to heat stress is of immense significance. Therefore, it is critical to study the molecular mechanism of rice in response to heat stress. In the last decades, large amounts of studies have been conducted focusing on rice heat stress response. Valuable information has been obtained, which not only sheds light on the regulatory network underlying this physiological process but also provides some candidate genes for improved heat tolerance breeding in rice. In this review, we summarized the studies in this field. Hopefully, it will provide some new insights into the mechanisms of rice under high temperature stress and clues for future engineering breeding of improved heat tolerance rice.
Collapse
Affiliation(s)
- Zemin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Jun Lv
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000 China
| | - Wenhua Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Dong Fu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Shiyou Lü
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Yinggen Ke
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| |
Collapse
|
13
|
Guo X, Wang L, Zhu G, Xu Y, Meng T, Zhang W, Li G, Zhou G. Impacts of Inherent Components and Nitrogen Fertilizer on Eating and Cooking Quality of Rice: A Review. Foods 2023; 12:2495. [PMID: 37444233 DOI: 10.3390/foods12132495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
With the continuous improvement of living standards, the preferences of consumers are shifting to rice varieties with high eating and cooking quality (ECQ). Milled rice is mainly composed of starch, protein, and oil, which constitute the physicochemical basis of rice taste quality. This review summarizes the relationship between rice ECQ and its intrinsic ingredients, and also briefly introduces the effects of nitrogen fertilizer management on rice ECQ. Rice varieties with higher AC usually have more long branches of amylopectin, which leach less when cooking, leading to higher hardness, lower stickinesss, and less panelist preference. High PC impedes starch pasting, and it may be hard for heat and moisture to enter the rice interior, ultimately resulting in worse rice eating quality. Rice with higher lipid content had a brighter luster and better eating quality, and starch lipids in rice have a greater impact on rice eating quality than non-starch lipids. The application of nitrogen fertilizer can enhance rice yield, but it also decreases the ECQ of rice. CRNF has been widely used in cereal crops such as maize, wheat, and rice as a novel, environmentally friendly, and effective fertilizer, and could increase rice quality to a certain extent compared with conventional urea. This review shows a benefit to finding more reasonable nitrogen fertilizer management that can be used to regulate the physical and chemical indicators of rice grains in production and to improve the taste quality of rice without affecting yield.
Collapse
Affiliation(s)
- Xiaoqian Guo
- Joint International Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225000, China
- China-Sudan Joint Laboratory of Crop Salinity and Drought Stress Physiology, The Ministry of Education of China, Yangzhou 225000, China
| | - Luqi Wang
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Guanglong Zhu
- Joint International Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225000, China
| | - Yunji Xu
- Joint International Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225000, China
| | - Tianyao Meng
- Joint International Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225000, China
| | - Weiyang Zhang
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Yangzhou University, Yangzhou 225000, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225000, China
| | - Guohui Li
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Yangzhou University, Yangzhou 225000, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225000, China
| | - Guisheng Zhou
- Joint International Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225000, China
- China-Sudan Joint Laboratory of Crop Salinity and Drought Stress Physiology, The Ministry of Education of China, Yangzhou 225000, China
- College for Overseas Education, Yangzhou University, Yangzhou 225000, China
| |
Collapse
|
14
|
Liu Z, Li P, Yu L, Hu Y, Du A, Fu X, Wu C, Luo D, Hu B, Dong H, Jiang H, Ma X, Huang W, Yang X, Tu S, Li H. OsMADS1 Regulates Grain Quality, Gene Expressions, and Regulatory Networks of Starch and Storage Protein Metabolisms in Rice. Int J Mol Sci 2023; 24:ijms24098017. [PMID: 37175747 PMCID: PMC10178960 DOI: 10.3390/ijms24098017] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
OsMADS1 plays a vital role in regulating floret development and grain shape, but whether it regulates rice grain quality still remains largely unknown. Therefore, we used comprehensive molecular genetics, plant biotechnology, and functional omics approaches, including phenotyping, mapping-by-sequencing, target gene seed-specific RNAi, transgenic experiments, and transcriptomic profiling to answer this biological and molecular question. Here, we report the characterization of the 'Oat-like rice' mutant, with poor grain quality, including chalky endosperms, abnormal morphology and loose arrangement of starch granules, and lower starch content but higher protein content in grains. The poor grain quality of Oat-like rice was found to be caused by the mutated OsMADS1Olr allele through mapping-by-sequencing analysis and transgenic experiments. OsMADS1 protein is highly expressed in florets and developing seeds. Both OsMADS1-eGFP and OsMADS1Olr-eGFP fusion proteins are localized in the nucleus. Moreover, seed-specific RNAi of OsMADS1 also caused decreased grain quality in transgenic lines, such as the Oat-like rice. Further transcriptomic profiling between Oat-like rice and Nipponbare grains revealed that OsMADS1 regulates gene expressions and regulatory networks of starch and storage protein metabolisms in rice grains, hereafter regulating rice quality. In conclusion, our results not only reveal the crucial role and preliminary mechanism of OsMADS1 in regulating rice grain quality but also highlight the application potentials of OsMADS1 and the target gene seed-specific RNAi system in improving rice grain quality by molecular breeding.
Collapse
Affiliation(s)
- Zhijian Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Penghui Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Lan Yu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Yongzhi Hu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Anping Du
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xingyue Fu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cuili Wu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Dagang Luo
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Binhua Hu
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Hui Dong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Haibo Jiang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xinrong Ma
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Weizao Huang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiaocheng Yang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Shengbin Tu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
15
|
Xu Y, Chen S, Xue M, Chen X, Liu Z, Wei X, Gao JP, Chen C. Mapping and validation of quantitative trait loci associated with dorsal aleurone thickness in rice (Oryza sativa). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:117. [PMID: 37093272 DOI: 10.1007/s00122-023-04368-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
KEY MESSAGE Mapping of QTLs for dorsal aleurone thickness (DAT) was performed using chromosome segment substitution lines in rice. Three QTLs, qDAT3.1, qDAT3.2, and qDAT7.1, were detected in multiple environments. As a specified endosperm cell type, the aleurone has an abundance of various nutrients. Increasing the number of aleurone layers is a practicable way of developing highly nutritious cereals. Identifying genes that can increase aleurone thickness is useful for the breeding of aleurone traits to improve the nutritional and health values of rice. Here, we found that iodine staining could efficiently distinguish the aleurone layers, which revealed great variation of the aleurone thickness in rice, especially at the dorsal side of the seed. Therefore, we used a population of chromosome segmental substitution lines (CSSLs) derived from Koshihikari and Nona Bokra for quantitative trait locus (QTL) analysis of the dorsal aleurone thickness (DAT). Three QTLs, qDAT3.1, qDAT3.2, and qDAT7.1, were detected in multiple seasons. Among these, qDAT3.2 colocalizes with Hd6 and Hd16, two QTLs previously identified to regulate the heading date of Koshihikari, explaining the negative correlation between the DAT and days to heading (DTH) in rice. We also provide evidence that early-heading ensures the filling of rice seed under a relatively high temperature to promote aleurone thickening. qDAT7.1, the most stable QTL expressed in different environments, functions independently from heading date. Although Nona Bokra has a lower DAT, its qDAT7.1 allele significantly increased DAT in rice, which was further validated using two near-isogenic lines (NILs). These findings pave the way for further gene cloning of aleurone-related QTLs and may aid the development of highly nutritious rice.
Collapse
Affiliation(s)
- Yiwen Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
| | - Siming Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
| | - Mingming Xue
- Jiangsu Key Laboratory of Crop Genetics and Physiology / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
| | - Xingyu Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
| | - Zhibo Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
| | - Xuefeng Wei
- Jiangsu Key Laboratory of Crop Genetics and Physiology / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Ji-Ping Gao
- Jiangsu Key Laboratory of Crop Genetics and Physiology / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, China.
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China.
| | - Chen Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, China.
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China.
| |
Collapse
|
16
|
Li JY, Yang C, Xu J, Lu HP, Liu JX. The hot science in rice research: How rice plants cope with heat stress. PLANT, CELL & ENVIRONMENT 2023; 46:1087-1103. [PMID: 36478590 DOI: 10.1111/pce.14509] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/13/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Global climate change has great impacts on plant growth and development, reducing crop productivity worldwide. Rice (Oryza sativa L.), one of the world's most important food crops, is susceptible to high-temperature stress from seedling stage to reproductive stage. In this review, we summarize recent advances in understanding the molecular mechanisms underlying heat stress responses in rice, including heat sensing and signalling, transcriptional regulation, transcript processing, protein translation, and post-translational regulation. We also highlight the irreversible effects of high temperature on reproduction and grain quality in rice. Finally, we discuss challenges and opportunities for future research on heat stress responses in rice.
Collapse
Affiliation(s)
- Jin-Yu Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Chuang Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jiming Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Hai-Ping Lu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jian-Xiang Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
17
|
Kumar A, Thomas J, Gill N, Dwiningsih Y, Ruiz C, Famoso A, Pereira A. Molecular mapping and characterization of QTLs for grain quality traits in a RIL population of US rice under high nighttime temperature stress. Sci Rep 2023; 13:4880. [PMID: 36966148 PMCID: PMC10039871 DOI: 10.1038/s41598-023-31399-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 03/10/2023] [Indexed: 03/27/2023] Open
Abstract
Elevated nighttime temperatures resulting from climate change significantly impact the rice crop worldwide. The rice (Oryza sativa L.) plant is highly sensitive to high nighttime temperature (HNT) during grain-filling (reproductive stage). HNT stress negatively affects grain quality traits and has a major impact on the value of the harvested rice crop. In addition, along with grain dimensions determining rice grain market classes, the grain appearance and quality traits determine the rice grain market value. During the last few years, there has been a major concern for rice growers and the rice industry over the prevalence of rice grains opacity and the reduction of grain dimensions affected by HNT stress. Hence, the improvement of heat-stress tolerance to maintain grain quality of the rice crop under HNT stress will bolster future rice value in the market. In this study, 185 F12-recombinant inbred lines (RILs) derived from two US rice cultivars, Cypress (HNT-tolerant) and LaGrue (HNT-sensitive) were screened for the grain quality traits grain length (GL), grain width (GW), and percent chalkiness (%chalk) under control and HNT stress conditions and evaluated to identify the genomic regions associated with the grain quality traits. In total, there were 15 QTLs identified; 6 QTLs represented under control condition explaining 3.33% to 8.27% of the phenotypic variation, with additive effects ranging from - 0.99 to 0.0267 on six chromosomes and 9 QTLs represented under HNT stress elucidating 6.39 to 51.53% of the phenotypic variation, with additive effects ranging from - 8.8 to 0.028 on nine chromosomes for GL, GW, and % chalk. These 15 QTLs were further characterized and scanned for natural genetic variation in a japonica diversity panel (JDP) to identify candidate genes for GL, GW, and %chalk. We found 6160 high impact single nucleotide polymorphisms (SNPs) characterized as such depending on their type, region, functional class, position, and proximity to the gene and/or gene features, and 149 differentially expressed genes (DEGs) in the 51 Mbp genomic region comprising of the 15 QTLs. Out of which, 11 potential candidate genes showed high impact SNP associations. Therefore, the analysis of the mapped QTLs and their genetic dissection in the US grown Japonica rice genotypes at genomic and transcriptomic levels provide deep insights into genetic variation beneficial to rice breeders and geneticists for understanding the mechanisms related to grain quality under heat stress in rice.
Collapse
Affiliation(s)
- Anuj Kumar
- Departemnt of Crop, Soil, & Environmental Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Julie Thomas
- Departemnt of Crop, Soil, & Environmental Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Navdeep Gill
- Department of Biological Sciences, Nova Southeastern University, Fort Lauderdale, FL, 33314, USA
| | - Yheni Dwiningsih
- Departemnt of Crop, Soil, & Environmental Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Charles Ruiz
- Departemnt of Crop, Soil, & Environmental Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Adam Famoso
- H. Rouse Caffey Rice Research Station, Louisiana State University Agricultural Center, Rayne, LA, 70578, USA
| | - Andy Pereira
- Departemnt of Crop, Soil, & Environmental Sciences, University of Arkansas, Fayetteville, AR, 72701, USA.
| |
Collapse
|
18
|
Li J, Zhang C, Luo X, Zhang T, Zhang X, Liu P, Yang W, Lei Y, Tang S, Kang L, Huang L, Li T, Wang Y, Chen W, Yuan H, Qin P, Li S, Ma B, Tu B. Fine mapping of the grain chalkiness quantitative trait locus qCGP6 reveals the involvement of Wx in grain chalkiness formation. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad112. [PMID: 36964899 DOI: 10.1093/jxb/erad112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Indexed: 06/18/2023]
Abstract
Grain chalkiness is an important index of rice appearance quality and is negatively associated with rice processing and eating qualities. However, the genetic mechanism underlying chalkiness formation is largely unknown. To identify the genetic basis of chalkiness, 410 recombinant inbred lines (RILs) derived from two representative indica rice varieties, Shuhui498 (R498) and Yihui3551 (R3551), were used to discover quantitative trait loci (QTL). The two parental lines and RILs were grown in three locations in China under three controlled fertilizer application level. Analyses indicated that chalkiness was significantly affected by genotype, the environment, and the interaction between the two, and that heritability was high. Several QTLs were isolated, including the two stable QTLs, i.e., qCGP6 and qCGP8. Fine mapping and candidate gene verification of qCGP6 showed that Wx may play a key role in chalkiness formation. Chromosomal segment substitution lines (CSSLs) and near-isogenic lines (NILs) carrying the Wxa or Wxin allele produced more chalky grain than the R498 parent. A similar result was also observed in the 3611 background. Notably, the effect of the Wx genotype on rice chalkiness was shown to be dependent on environmental conditions and Wx alleles exhibited different sensitivities to shading treatment. Using CRISPR/Cas9, the Wxa promoter region was successfully edited, down-regulating Wx alleviates chalkiness formation in NILR498-Wxa. This study developed a new strategy for synergistic improvement of eating and appearance qualities in rice, and created a novel Wx allele with great potential in breeding applications.
Collapse
Affiliation(s)
- Jialian Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, China
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Cheng Zhang
- Liaoning Rice Research Institute, Shenyang, Liaoning 110101, China
| | - Xia Luo
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Tao Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, China
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoyu Zhang
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Pin Liu
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Wen Yang
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Yuekun Lei
- Chengdu Juannong Intelligent Agriculture Technology Development Co., Ltd
| | - Siwen Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, China
| | - Liangzhu Kang
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, China
| | - Ting Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, China
| | - Yuping Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, China
| | - Weilan Chen
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Hua Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, China
| | - Peng Qin
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Shigui Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, China
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Bingtian Ma
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Bin Tu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, China
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
19
|
Integrated ATAC-Seq and RNA-Seq Data Analysis to Reveal OsbZIP14 Function in Rice in Response to Heat Stress. Int J Mol Sci 2023; 24:ijms24065619. [PMID: 36982696 PMCID: PMC10057503 DOI: 10.3390/ijms24065619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023] Open
Abstract
Transcription factors (TFs) play critical roles in mediating the plant response to various abiotic stresses, particularly heat stress. Plants respond to elevated temperatures by modulating the expression of genes involved in diverse metabolic pathways, a regulatory process primarily governed by multiple TFs in a networked configuration. Many TFs, such as WRKY, MYB, NAC, bZIP, zinc finger protein, AP2/ERF, DREB, ERF, bHLH, and brassinosteroids, are associated with heat shock factor (Hsf) families, and are involved in heat stress tolerance. These TFs hold the potential to control multiple genes, which makes them ideal targets for enhancing the heat stress tolerance of crop plants. Despite their immense importance, only a small number of heat-stress-responsive TFs have been identified in rice. The molecular mechanisms underpinning the role of TFs in rice adaptation to heat stress still need to be researched. This study identified three TF genes, including OsbZIP14, OsMYB2, and OsHSF7, by integrating transcriptomic and epigenetic sequencing data analysis of rice in response to heat stress. Through comprehensive bioinformatics analysis, we demonstrated that OsbZIP14, one of the key heat-responsive TF genes, contained a basic-leucine zipper domain and primarily functioned as a nuclear TF with transcriptional activation capability. By knocking out the OsbZIP14 gene in the rice cultivar Zhonghua 11, we observed that the knockout mutant OsbZIP14 exhibited dwarfism with reduced tiller during the grain-filling stage. Under high-temperature treatment, it was also demonstrated that in the OsbZIP14 mutant, the expression of the OsbZIP58 gene, a key regulator of rice seed storage protein (SSP) accumulation, was upregulated. Furthermore, bimolecular fluorescence complementation (BiFC) experiments uncovered a direct interaction between OsbZIP14 and OsbZIP58. Our results suggested that OsbZIP14 acts as a key TF gene through the concerted action of OsbZIP58 and OsbZIP14 during rice filling under heat stress. These findings provide good candidate genes for genetic improvement of rice but also offer valuable scientific insights into the mechanism of heat tolerance stress in rice.
Collapse
|
20
|
Molecular bases of rice grain size and quality for optimized productivity. Sci Bull (Beijing) 2023; 68:314-350. [PMID: 36710151 DOI: 10.1016/j.scib.2023.01.026] [Citation(s) in RCA: 60] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/30/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
The accomplishment of further optimization of crop productivity in grain yield and quality is a great challenge. Grain size is one of the crucial determinants of rice yield and quality; all of these traits are typical quantitative traits controlled by multiple genes. Research advances have revealed several molecular and developmental pathways that govern these traits of agronomical importance. This review provides a comprehensive summary of these pathways, including those mediated by G-protein, the ubiquitin-proteasome system, mitogen-activated protein kinase, phytohormone, transcriptional regulators, and storage product biosynthesis and accumulation. We also generalize the excellent precedents for rice variety improvement of grain size and quality, which utilize newly developed gene editing and conventional gene pyramiding capabilities. In addition, we discuss the rational and accurate breeding strategies, with the aim of better applying molecular design to breed high-yield and superior-quality varieties.
Collapse
|
21
|
Yan Y, Li C, Liu Z, Zhuang JJ, Kong JR, Yang ZK, Yu J, Shah Alam M, Ruan CC, Zhang HM, Xu JH. A new demethylase gene, OsDML4, is involved in high temperature-increased grain chalkiness in rice. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7273-7284. [PMID: 36073837 DOI: 10.1093/jxb/erac367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
High temperature (HT) can affect the accumulation of seed storage materials and cause adverse effects on the yield and quality of rice. DNA methylation plays an important role in plant growth and development. Here, we identified a new demethylase gene OsDML4 and discovered its function in cytosine demethylation to affect endosperm formation. Loss of function of OsDML4 induced chalky endosperm only under HT and dramatically reduced the transcription and accumulation of glutelins and 16 kDa prolamin. The expression of two transcription factor genes RISBZ1 and RPBF was significantly decreased in the osdml4 mutants, which caused adverse effects on the formation of protein bodies (PBs) with greatly decreased PB-II number, and incomplete and abnormally shaped PB-IIs. Whole-genome bisulfite sequencing analysis of seeds at 15 d after pollination revealed much higher global methylation levels of CG, CHG, and CHH contexts in the osdml4 mutants compared with the wild type. Moreover, the RISBZ1 promoter was hypermethylated but the RPBF promoter was almost unchanged under HT. No significant difference was detected between the wild type and osdml4 mutants under normal temperature. Our study demonstrated a novel OsDML4-mediated DNA methylation involved in the formation of chalky endosperm only under HT and provided a new perspective in regulating endosperm development and the accumulation of seed storage proteins in rice.
Collapse
Affiliation(s)
- Yan Yan
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Chao Li
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Shandong 276034, China
| | - Zhen Liu
- Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China
| | - Jun-Jie Zhuang
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Jia-Rui Kong
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Zhen-Kun Yang
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Jie Yu
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China
| | - Mohammad Shah Alam
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Cheng-Cheng Ruan
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Heng-Mu Zhang
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jian-Hong Xu
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Shandong 276034, China
- Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China
| |
Collapse
|
22
|
Chandran AKN, Sandhu J, Irvin L, Paul P, Dhatt BK, Hussain W, Gao T, Staswick P, Yu H, Morota G, Walia H. Rice Chalky Grain 5 regulates natural variation for grain quality under heat stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1026472. [PMID: 36304400 PMCID: PMC9593041 DOI: 10.3389/fpls.2022.1026472] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Heat stress occurring during rice (Oryza sativa) grain development reduces grain quality, which often manifests as increased grain chalkiness. Although the impact of heat stress on grain yield is well-studied, the genetic basis of rice grain quality under heat stress is less explored as quantifying grain quality is less tractable than grain yield. To address this, we used an image-based colorimetric assay (Red, R; and Green, G) for genome-wide association analysis to identify genetic loci underlying the phenotypic variation in rice grains exposed to heat stress. We found the R to G pixel ratio (RG) derived from mature grain images to be effective in distinguishing chalky grains from translucent grains derived from control (28/24°C) and heat stressed (36/32°C) plants. Our analysis yielded a novel gene, rice Chalky Grain 5 (OsCG5) that regulates natural variation for grain chalkiness under heat stress. OsCG5 encodes a grain-specific, expressed protein of unknown function. Accessions with lower transcript abundance of OsCG5 exhibit higher chalkiness, which correlates with higher RG values under stress. These findings are supported by increased chalkiness of OsCG5 knock-out (KO) mutants relative to wildtype (WT) under heat stress. Grains from plants overexpressing OsCG5 are less chalky than KOs but comparable to WT under heat stress. Compared to WT and OE, KO mutants exhibit greater heat sensitivity for grain size and weight relative to controls. Collectively, these results show that the natural variation at OsCG5 may contribute towards rice grain quality under heat stress.
Collapse
Affiliation(s)
| | - Jaspreet Sandhu
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Larissa Irvin
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Puneet Paul
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Balpreet K. Dhatt
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Waseem Hussain
- Rice Breeding Innovation Platform, International Rice Research Institute (IRRI), Los Banos, Philippines
| | - Tian Gao
- Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Paul Staswick
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Hongfeng Yu
- Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Gota Morota
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Harkamal Walia
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
23
|
Sreenivasulu N, Zhang C, Tiozon RN, Liu Q. Post-genomics revolution in the design of premium quality rice in a high-yielding background to meet consumer demands in the 21st century. PLANT COMMUNICATIONS 2022; 3:100271. [PMID: 35576153 PMCID: PMC9251384 DOI: 10.1016/j.xplc.2021.100271] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 05/14/2023]
Abstract
The eating and cooking quality (ECQ) of rice is critical for determining its economic value in the marketplace and promoting consumer acceptance. It has therefore been of paramount importance in rice breeding programs. Here, we highlight advances in genetic studies of ECQ and discuss prospects for further enhancement of ECQ in rice. Innovations in gene- and genome-editing techniques have enabled improvements in rice ECQ. Significant genes and quantitative trait loci (QTLs) have been shown to regulate starch composition, thereby affecting amylose content and thermal and pasting properties. A limited number of genes/QTLs have been identified for other ECQ properties such as protein content and aroma. Marker-assisted breeding has identified rare alleles in diverse genetic resources that are associated with superior ECQ properties. The post-genomics-driven information summarized in this review is relevant for augmenting current breeding strategies to meet consumer preferences and growing population demands.
Collapse
Affiliation(s)
- Nese Sreenivasulu
- Consumer Driven Grain Quality and Nutrition Unit, Rice Breeding and Innovation Platform, International Rice Research Institute, Los Baños 4030, Philippines.
| | - Changquan Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Rhowell N Tiozon
- Consumer Driven Grain Quality and Nutrition Unit, Rice Breeding and Innovation Platform, International Rice Research Institute, Los Baños 4030, Philippines; Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Qiaoquan Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
24
|
Feng T, Wang L, Li L, Liu Y, Chong K, Theißen G, Meng Z. OsMADS14 and NF-YB1 cooperate in the direct activation of OsAGPL2 and Waxy during starch synthesis in rice endosperm. THE NEW PHYTOLOGIST 2022; 234:77-92. [PMID: 35067957 DOI: 10.1111/nph.17990] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/03/2022] [Indexed: 05/02/2023]
Abstract
Starch synthesis makes a dramatic contribution to the yield and nutritional value of cereal crops. Although several starch synthesis enzymes and related regulators have been reported, the underlying regulatory mechanisms of starch synthesis remain largely unknown. OsMADS14 is a FRUITFULL (FUL)-like MADS-box gene in rice (Oryza sativa). Here we show that two null mutations of OsMADS14 result in a shrunken and chalky grain phenotype. It is caused by obviously defective compound starch granules and a significantly reduced content of both total starch and amylose in the endosperm. Transcriptomic profiling analyses revealed that the loss-of-function of OsMADS14 leads to significantly downregulated expression of many core starch synthesis genes, including OsAGPL2 and Waxy. Both in vitro and in vivo assays demonstrate that the OsMADS14 protein directly binds to stretches of DNA with a CArG-box consensus in the putative regulatory regions of OsAGPL2 and Waxy. Protein-protein interaction experiments also suggest that OsMADS14 interacts with nuclear factor NF-YB1 to promote the transcription of OsAGPL2 and Waxy. Our study thus demonstrates that OsMADS14 plays an essential role in the synthesis of storage starch and provides novel insights into the underlying molecular mechanism that may be used to improve rice cultivars by molecular breeding.
Collapse
Affiliation(s)
- Tingting Feng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lili Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Laiyun Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Günter Theißen
- Matthias Schleiden Institute/Genetics, Friedrich Schiller University Jena, Jena, D-07743, Germany
| | - Zheng Meng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
25
|
Li P, Chen YH, Lu J, Zhang CQ, Liu QQ, Li QF. Genes and Their Molecular Functions Determining Seed Structure, Components, and Quality of Rice. RICE (NEW YORK, N.Y.) 2022; 15:18. [PMID: 35303197 PMCID: PMC8933604 DOI: 10.1186/s12284-022-00562-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/01/2022] [Indexed: 05/14/2023]
Abstract
With the improvement of people's living standards and rice trade worldwide, the demand for high-quality rice is increasing. Therefore, breeding high quality rice is critical to meet the market demand. However, progress in improving rice grain quality lags far behind that of rice yield. This might be because of the complexity of rice grain quality research, and the lack of consensus definition and evaluation standards for high quality rice. In general, the main components of rice grain quality are milling quality (MQ), appearance quality (AQ), eating and cooking quality (ECQ), and nutritional quality (NQ). Importantly, all these quality traits are determined directly or indirectly by the structure and composition of the rice seeds. Structurally, rice seeds mainly comprise the spikelet hull, seed coat, aleurone layer, embryo, and endosperm. Among them, the size of spikelet hull is the key determinant of rice grain size, which usually affects rice AQ, MQ, and ECQ. The endosperm, mainly composed of starch and protein, is the major edible part of the rice seed. Therefore, the content, constitution, and physicochemical properties of starch and protein are crucial for multiple rice grain quality traits. Moreover, the other substances, such as lipids, minerals, vitamins, and phytochemicals, included in different parts of the rice seed, also contribute significantly to rice grain quality, especially the NQ. Rice seed growth and development are precisely controlled by many genes; therefore, cloning and dissecting these quality-related genes will enhance our knowledge of rice grain quality and will assist with the breeding of high quality rice. This review focuses on summarizing the recent progress on cloning key genes and their functions in regulating rice seed structure and composition, and their corresponding contributions to rice grain quality. This information will facilitate and advance future high quality rice breeding programs.
Collapse
Affiliation(s)
- Pei Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yu-Hao Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jun Lu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Chang-Quan Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Qiao-Quan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Qian-Feng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
26
|
Ishimaru T, Parween S, Saito Y, Masumura T, Kondo M, Sreenivasulu N. Laser microdissection transcriptome data derived gene regulatory networks of developing rice endosperm revealed tissue- and stage-specific regulators modulating starch metabolism. PLANT MOLECULAR BIOLOGY 2022; 108:443-467. [PMID: 35098404 PMCID: PMC8894313 DOI: 10.1007/s11103-021-01225-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
Laser microdissection applied on the developing rice endosperm revealed tissue- and stage-specific regulators modulating programmed cell death and desiccation tolerance mechanisms in the central starchy endosperm following starch metabolism. Rice (Oryza sativa L.) filial seed tissues are heterozygous in its function, which accumulate distinct storage compounds spatially in starchy endosperm and aleurone. In this study, we identified the 18 tissue- and stage-specific gene co-regulons in the developing endosperm by isolating four fine tissues dorsal aleurone layer (AL), central starchy endosperm (CSE), dorsal starchy endosperm (DSE), and lateral starchy endosperm (LSE) at two developmental stages (7 days after flowering, DAF and 12DAF) using laser microdissection (LM) coupled with gene expression analysis of a 44 K microarray. The derived co-expression regulatory networks depict that distinct set of starch biosynthesis genes expressed preferentially at first in CSE at 7 DAF and extend its spatial expression to LSE and DSE by 12 DAF. Interestingly, along with the peak of starch metabolism we noticed accumulation of transcripts related to phospholipid and glycolipid metabolism in CSE during 12 DAF. The spatial distribution of starch accumulation in distinct zones of starchy endosperm contains specific transcriptional factors and hormonal-regulated genes. Genes related to programmed cell death (PCD) were specifically expressed in CSE at 12DAF, when starch accumulation was already completed in that tissue. The aleurone layer present in the outermost endosperm accumulates transcripts of lipid, tricarboxylic acid metabolism, several transporters, while starch metabolism and PCD is not pronounced. These regulatory cascades are likely to play a critical role in determining the positional fate of cells and offer novel insights into the molecular physiological mechanisms of endosperm development from early to middle storage phase.
Collapse
Affiliation(s)
- Tsutomu Ishimaru
- NARO Institute of Crop Science, NARO, 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518 Japan
- Hokuriku Research Station, Central Region Agricultural Research Center, National Agriculture and Food Research Organization (CARC/NARO), 1-2-1 Inada, Joetsu, Niigata 941-0193 Japan
| | - Sabiha Parween
- International Rice Research Institute (IRRI), DAPO Box 7777, Metro Manila, The Philippines
| | - Yuhi Saito
- Graduate School of Life and Environmental Science, Kyoto Prefectural University, Shimogamo, Sakyo-ku, Kyoto, 606-8522 Japan
| | - Takehiro Masumura
- Graduate School of Life and Environmental Science, Kyoto Prefectural University, Shimogamo, Sakyo-ku, Kyoto, 606-8522 Japan
| | - Motohiko Kondo
- NARO Institute of Crop Science, NARO, 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518 Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo, Chikusa, Nagoya, 464-8601 Japan
| | - Nese Sreenivasulu
- International Rice Research Institute (IRRI), DAPO Box 7777, Metro Manila, The Philippines
| |
Collapse
|
27
|
Tappiban P, Hu Y, Deng J, Zhao J, Ying Y, Zhang Z, Xu F, Bao J. Relative importance of branching enzyme isoforms in determining starch fine structure and physicochemical properties of indica rice. PLANT MOLECULAR BIOLOGY 2022; 108:399-412. [PMID: 34750721 DOI: 10.1007/s11103-021-01207-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/05/2021] [Indexed: 05/24/2023]
Abstract
Down-regulation of starch branching enzymes alters fine structure and starch properties, especially the B-type crystalline pattern and extremely high amylose content identified in the BEIIb-deficiency mutant in the indica rice. The relative importance of the starch branching enzymes in determining the molecular fine structure and starch functional properties were uncovered in this study. An indica rice, Guangluai 4 with high amylose content (AC) and high gelatinization temperature (GT) was used to generate the clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein-9 (Cas9) knockout lines. Five mutant lines were identified including be1-1, be1-2, be2a-1, be2a-2 and be2b-1, and analysis of western blot showed the CRISPR/Cas9 system was successful in inducing mutations in the targeted genes. AC of be2b-1 (34.1%) was greater than that of wild type (WT) (27.4%) and other mutants. Mutations of either BEI or BEIIa did not alter the starch crystallite pattern (A-type). The BEIIb deficiency caused an opaque endosperm phenotype, changed the crystallite pattern from A- to B-type, and dramatically increased the degree of ordered structure, the relative proportion of amylose chains and intermediate to long amylopectin chains, average chain length of amylopectin molecules as well as GT. The BEIIa deficiency had no effect on the proportion of amylose chains, the length of amylopectin intermediate-long chains, conclusion temperature and enthalpy of gelatinization. Down-regulation of BEI increased the proportion of shortest amylopectin chains (fa) but decreased the proportion of long amylopectin chains (fb2 and fb3), leading to a lower GT. It is concluded that the relative importance in determining starch fine structures and functionality was in the order of BEIIb > BEI > BEIIa. Our results provide new information for utilizations of BE-deficient mutants in rice quality breeding.
Collapse
Affiliation(s)
- Piengtawan Tappiban
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Yaqi Hu
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Jiaming Deng
- Department of Applied Bioscience, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Jiajia Zhao
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Yining Ying
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Zhongwei Zhang
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Feifei Xu
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China.
| | - Jinsong Bao
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China.
- Hainan Institute of Zhejiang University, Yazhou District, Sanya, 572025, China.
| |
Collapse
|
28
|
Zhang H, Xu H, Jiang Y, Zhang H, Wang S, Wang F, Zhu Y. Genetic Control and High Temperature Effects on Starch Biosynthesis and Grain Quality in Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:757997. [PMID: 34975940 PMCID: PMC8718882 DOI: 10.3389/fpls.2021.757997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/23/2021] [Indexed: 05/29/2023]
Abstract
Grain quality is one of the key targets to be improved for rice breeders and covers cooking, eating, nutritional, appearance, milling, and sensory properties. Cooking and eating quality are mostly of concern to consumers and mainly determined by starch structure and composition. Although many starch synthesis enzymes have been identified and starch synthesis system has been established for a long time, novel functions of some starch synthesis genes have continually been found, and many important regulatory factors for seed development and grain quality control have recently been identified. Here, we summarize the progress in this field as comprehensively as possible and hopefully reveal some underlying molecular mechanisms controlling eating quality in rice. The regulatory network of amylose content (AC) determination is emphasized, as AC is the most important index for rice eating quality (REQ). Moreover, the regulatory mechanism of REQ, especially AC influenced by high temperature which is concerned as a most harmful environmental factor during grain filling is highlighted in this review.
Collapse
Affiliation(s)
- Hua Zhang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Heng Xu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Yingying Jiang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Heng Zhang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Shiyu Wang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Fulin Wang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Ying Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
| |
Collapse
|
29
|
Huang L, Tan H, Zhang C, Li Q, Liu Q. Starch biosynthesis in cereal endosperms: An updated review over the last decade. PLANT COMMUNICATIONS 2021; 2:100237. [PMID: 34746765 PMCID: PMC8554040 DOI: 10.1016/j.xplc.2021.100237] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/08/2021] [Accepted: 08/27/2021] [Indexed: 05/13/2023]
Abstract
Starch is a vital energy source for living organisms and is a key raw material and additive in the food and non-food industries. Starch has received continuous attention in multiple research fields. The endosperm of cereals (e.g., rice, corn, wheat, and barley) is the most important site for the synthesis of storage starch. Around 2010, several excellent reviews summarized key progress in various fields of starch research, serving as important references for subsequent research. In the past 10 years, many achievements have been made in the study of starch synthesis and regulation in cereals. The present review provides an update on research progress in starch synthesis of cereal endosperms over the past decade, focusing on new enzymes and non-enzymatic proteins involved in starch synthesis, regulatory networks of starch synthesis, and the use of elite alleles of starch synthesis-related genes in cereal breeding programs. We also provide perspectives on future research directions that will further our understanding of cereal starch biosynthesis and regulation to support the rational design of ideal quality grain.
Collapse
Affiliation(s)
- Lichun Huang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Hongyan Tan
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Changquan Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Qianfeng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Qiaoquan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
30
|
Huang L, Gu Z, Chen Z, Yu J, Chu R, Tan H, Zhao D, Fan X, Zhang C, Li Q, Liu Q. Improving rice eating and cooking quality by coordinated expression of the major starch synthesis-related genes, SSII and Wx, in endosperm. PLANT MOLECULAR BIOLOGY 2021; 106:419-432. [PMID: 34129189 DOI: 10.1007/s11103-021-01162-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 06/07/2021] [Indexed: 05/18/2023]
Abstract
Coordinated regulation of amylose and amylopectin synthesis via manipulation of SSII-2, SSII-3 and Wx expression in endosperm can improve rice eating and cooking quality. With increasing rice consumption worldwide, many researchers are working to increase the yield and improve grain quality, especially eating and cooking quality (ECQ). The rice ECQ is mainly controlled by the expression of starch synthesis-related genes (SSRGs) in endosperm. Although the Wx and SSII-3/SSIIa/ALK genes, two major SSRGs, have been manipulated to improve rice ECQ via various breeding approaches, new methods to further improve ECQ are desired. In our previous study, we enhanced rice ECQ by knocking down SSII-2 expression in the japonica Nipponbare cultivar (carrying the Wxb allele) via RNA interference. Herein, the SSII-2 RNAi was introduced into two Nipponbare-derived near-isogenic lines (NILs), Nip(Wxa) and Nip(wx), carrying Wxa and wx alleles respond for high and no amylose levels, respectively. Analysis of physicochemical properties revealed that the improved grain quality of SSII-2 RNAi transgenic lines was achieved by coordinated downregulating the expression of SSII-2, SSII-3 and Wx. To further confirm this conclusion, we generated ssii-2, ssii-3 and ssii-2ssii-3 mutants via CRISPR/Cas9 technique. The amylopectin structure of the resulting ssii-2sii-3 mutants was similar to that in SSII-2 RNAi transgenic lines, and the absence of SSII-2 decreased the amylose content, gelatinisation temperature and rapid visco-analyser profile, indicating essential roles for SSII-2 in the regulation of amylopectin biosynthesis and amylose content in rice endosperm. The effect of SSII-2 was seen only when the activity of SSII-3 was very low or lacking. Our study provides novel approaches and valuable germplasm resources for improving ECQ via plant breeding.
Collapse
Affiliation(s)
- Lichun Huang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou, 225009, China
| | - Zhengwen Gu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Zhuanzhuan Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Jiawen Yu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Rui Chu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Hongyan Tan
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Dongsheng Zhao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou, 225009, China
| | - Xiaolei Fan
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou, 225009, China
| | - Changquan Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou, 225009, China
| | - Qianfeng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, China.
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou, 225009, China.
| | - Qiaoquan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, China.
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
31
|
Jing L, Chen C, Lu Q, Wang Y, Zhu J, Lai S, Wang Y, Yang L. How do elevated atmosphere CO 2 and temperature alter the physiochemical properties of starch granules and rice taste? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:142592. [PMID: 33071134 DOI: 10.1016/j.scitotenv.2020.142592] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/12/2020] [Accepted: 09/23/2020] [Indexed: 05/12/2023]
Abstract
Elevated atmospheric CO2 (EC) and temperature (ET) strongly affect agricultural production, but the mechanism through which EC and/or ET influence starch granules and their relationship to cooked rice taste remain largely unknown. Therefore, a field experiment using a popular japonica cultivar grown in a temperature/free-air CO2 enrichment environment was conducted to investigate the responses of volume and fine structure of starch granules and their formation physiology to EC (+200 ppm) and/or ET (+1 °C) in 2015-2016. EC markedly enhanced the activity of soluble-starch synthase and granule-bound starch synthase by 28.0% and 27.9% respectively, thereby increasing the long chains and the volume of starch granules. However, EC decreased the activity of starch-branch enzyme by 7.5% possibly via the pathway of ethylene signalling (EC prominently decreased the ethylene evolution rate of rice grains by 28.8%), resulting in a remarkable decrease in α-1'6 glucosidic bonds and significant increase in the iodine-binding capacity and double helix in starch molecules. These EC-induced changes in morphology and fine structure of starch granules synergistically altered the thermal properties of rice flour and eventually improved the cohesiveness and taste of cooked rice, as suggested by the significant relationships between them. ET partially offset the beneficial EC effects in most cases. However, few remarkable CO2 × temperature or CO2 × year effects were detected, indicating that the effects of EC on starch granules and rice taste less varied with meteorological conditions. These findings have important implications on rice palatability and for the development of adaptive strategies in the starch industry in future environment.
Collapse
Affiliation(s)
- Liquan Jing
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Chen Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Qi Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Yunxia Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Jianguo Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu, China
| | - Shangkun Lai
- Suqian Institute, Jiangsu Academy of Agricultural Sciences, Suqian 223800, Jiangsu, China
| | - Yulong Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Lianxin Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, Jiangsu, China.
| |
Collapse
|
32
|
Xu Y, Zhang L, Ou S, Wang R, Wang Y, Chu C, Yao S. Natural variations of SLG1 confer high-temperature tolerance in indica rice. Nat Commun 2020; 11:5441. [PMID: 33116138 PMCID: PMC7595236 DOI: 10.1038/s41467-020-19320-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 10/06/2020] [Indexed: 01/28/2023] Open
Abstract
With global warming and climate change, breeding crop plants tolerant to high-temperature stress is of immense significance. tRNA 2-thiolation is a highly conserved form of tRNA modification among living organisms. Here, we report the identification of SLG1 (Slender Guy 1), which encodes the cytosolic tRNA 2-thiolation protein 2 (RCTU2) in rice. SLG1 plays a key role in the response of rice plants to high-temperature stress at both seedling and reproductive stages. Dysfunction of SLG1 results in plants with thermosensitive phenotype, while overexpression of SLG1 enhances the tolerance of plants to high temperature. SLG1 is differentiated between the two Asian cultivated rice subspecies, indica and japonica, and the variations at both promoter and coding regions lead to an increased level of thiolated tRNA and enhanced thermotolerance of indica rice varieties. Our results demonstrate that the allelic differentiation of SLG1 confers indica rice to high-temperature tolerance, and tRNA thiolation pathway might be a potential target in the next generation rice breeding for the warming globe. Understanding the mechanism of high-temperature tolerance will help to breed crops adaptive to warming climate. Here, the authors show SLG1, a cytosolic tRNA 2-thiolation protein 2 encoding gene, is differentiated between the two Asian cultivated rice subspecies and confers high temperature tolerance of indica rice.
Collapse
Affiliation(s)
- Yufang Xu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Li Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Shujun Ou
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Ruci Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yueming Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China. .,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China.
| | - Shanguo Yao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
33
|
Li P, Li H, Liu Z, Zhuang Y, Wei M, Gu Y, Liu Y, Sun X, Tang Y, Yue L, Lu L, Luo D, Huang W, Tu S, Wang S. Characterization of the 'Oat-Like Rice' Caused by a Novel Allele OsMADS1 Olr Reveals Vital Importance of OsMADS1 in Regulating Grain Shape in Oryza sativa L. RICE (NEW YORK, N.Y.) 2020; 13:73. [PMID: 33063229 PMCID: PMC7561663 DOI: 10.1186/s12284-020-00428-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/09/2020] [Indexed: 05/15/2023]
Abstract
BACKGROUND Grain shape is a critical agronomic trait affecting grain yield and quality. Exploration and functional characterization of grain shape-related genes will facilitate rice breeding for higher quality and yield. RESULTS Here, we characterized a recessive mutant named Oat-like rice for its unique grain shape which highly resembles oat grains. The Oat-like rice displayed abnormal floral organs, an open hull formed by remarkably elongated leafy lemmas and paleae, occasionally formed conjugated twin brown rice, an aberrant grain shape and a low seed setting rate. By map-based cloning, we discovered that Oat-like rice harbors a novel allele of OsMADS1 gene (OsMADS1Olr), which has a spontaneous point mutation that causes the substitution of an amino acid that is highly conserved in the MADS-box domain of the MADS-box family. Further linkage analysis indicated that the point mutation in the OsMADS1Olr is associated with Oat-like rice phenotype, and expression analysis of the OsMADS1 by qRT-PCR and GUS staining also indicated that it is highly expressed in flower organs as well as in the early stages of grain development. Furthermore, OsMADS1Olr-overexpressing plants showed similar phenotypes of Oat-like rice in grain shape, possibly due to the dominant negative effect. And OsMADS1-RNAi plants also displayed grain phenotypes like Oat-like rice. These results suggested that OsMADS1Olr is responsible for the Oat-like rice phenotype including aberrant grain shape. Moreover, the expression levels of representative genes related to grain shape regulation were apparently altered in Oat-like rice, OsMADS1Olr-overexpressing and OsMADS1-RNAi transgenic plants. Finally, compared with Oat-like rice, OsMADS1Olr-overexpressing and OsMADS1-RNAi plants, mild phenotype of seed-specific OsMADS1-RNAi transgenic plants indicated that OsMADS1 may has has a direct regulation role in grain development and the grain phenotypes of Oat-like rice, OsMADS1Olr-overexpressing and OsMADS1-RNAi plants are majorly caused by the abnormal lemma and palea development. CONCLUSIONS Altogether, our results showed that grain shape and a low seed setting rate of the notable 'Oat-like rice' are caused by a spontaneous point mutation in the novel allele OsMADS1Olr. Furthermore, our findings suggested that OsMADS1 mediates grain shape possibly by affecting the expression of representative genes related to grain shape regulation. Thus, this study not only revealed that OsMADS1 plays a vital role in regulating grain shape of rice but also highlighted the importance and value of OsMADS1 to improve the quality and yield of rice by molecular breeding.
Collapse
Affiliation(s)
- Penghui Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, 05282, Myanmar.
| | - Zhijian Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Zhuang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Wei
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanyang Gu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yangxuan Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiuqiang Sun
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuying Tang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lu Yue
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Longxiang Lu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dagang Luo
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Weizao Huang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, 05282, Myanmar
| | - Shengbin Tu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, 05282, Myanmar
| | - Songhu Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, 05282, Myanmar.
| |
Collapse
|
34
|
Xu H, Li X, Zhang H, Wang L, Zhu Z, Gao J, Li C, Zhu Y. High temperature inhibits the accumulation of storage materials by inducing alternative splicing of OsbZIP58 during filling stage in rice. PLANT, CELL & ENVIRONMENT 2020; 43:1879-1896. [PMID: 32335936 DOI: 10.1111/pce.13779] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 05/22/2023]
Abstract
High temperature (HT) has an adverse effect on rice grain filling by inhibiting the accumulation of storage materials. However, the regulatory mechanism of this inhibition remains unknown. Here, we report that Opaque2 like transcription factor OsbZIP58 is a key factor regulating storage material accumulation under HT. The OsbZIP58 gene promotes expression of many seed storage protein genes and starch synthesis genes while inhibits expression of some starch hydrolyzing α-amylase genes under HT. The loss of OsbZIP58 function leads to floury and shrunken endosperms and dramatically reduced storage materials in the seeds under HT. HT is found to affect alternative splicing of OsbZIP58, promoting the formation of the truncated OsbZIP58β protein form over the full-length OsbZIP58α protein form. The OsbZIP58β form has a lower transcriptional activity than the OsbZIP58α form, especially under HT condition. Interestingly, rice varieties with less heat sensitivity have reduced alternative splicing of OsbZIP58. Therefore, OsbZIP58 is a crucial gene in regulating storage material accumulation under HT and lower alternative splicing of OsbZIP58 may contribute to heat tolerance during grain filling.
Collapse
Affiliation(s)
- Heng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaofang Li
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Hua Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Liangchao Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhengge Zhu
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Jiping Gao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chunshou Li
- Institute of Crops and Utilization of Nuclear Technology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ying Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
35
|
Jin J, Gui S, Li Q, Wang Y, Zhang H, Zhu Z, Chen H, Sun Y, Zou Y, Huang X, Ding Y. The transcription factor GATA10 regulates fertility conversion of a two-line hybrid tms5 mutant rice via the modulation of Ub L40 expression. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1034-1056. [PMID: 31486580 PMCID: PMC7383616 DOI: 10.1111/jipb.12871] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/30/2019] [Indexed: 05/03/2023]
Abstract
The thermosensitive genic male sterile 5 (tms5) mutation causes thermosensitive genic male sterility in rice (Oryza sativa) through loss of RNase ZS1 function, which influences ubiquitin fusion ribosomal protein L40 (UbL40 ) messenger RNA levels during male development. Here, we used ATAC-seq, combined with analysis of H3K9ac and H3K4me2, to identify changes in accessible chromatin during fertility conversion of the two-line hybrid rice Wuxiang S (WXS) derived from a mutant tms5 allele. Furthermore, RNA-seq and bioinformatic analyses identified specific transcription factors (TFs) in differentially accessible chromatin regions. Among these TFs, only GATA10 targeted UbL40 . Osgata10 knockout mutations, which resulted in low expression of UbL40 and a tendency toward male fertility, confirmed that GATA10 regulated fertility conversion via the modulation of UbL40 . Meanwhile, GATA10 acted as a mediator for interactions with ERF65, which revealed that transcriptional regulation is a complex process involving multiple complexes of TFs, namely TF modules. It appears that the ERF141/MADS7/MADS50/MYB modules affect metabolic processes that control anther and pollen development, especially cell wall formation. Our analysis revealed that these modules directly or indirectly affect metabolic pathway-related genes to coordinate plant growth with proper anther development, and furthermore, that GATA10 regulates fertility conversion via the modulation of UbL40 expression.
Collapse
Affiliation(s)
- Jing Jin
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life SciencesWuhan UniversityWuhan430072China
| | - Songtao Gui
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life SciencesWuhan UniversityWuhan430072China
| | - Qian Li
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life SciencesWuhan UniversityWuhan430072China
| | - Ying Wang
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life SciencesWuhan UniversityWuhan430072China
| | - Hongyuan Zhang
- Institute of VegetableWuhan Academy of Agricultural SciencesWuhan430072China
| | - Zhixuan Zhu
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life SciencesWuhan UniversityWuhan430072China
| | - Hao Chen
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life SciencesWuhan UniversityWuhan430072China
| | - Yueyang Sun
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life SciencesWuhan UniversityWuhan430072China
| | - Yu Zou
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life SciencesWuhan UniversityWuhan430072China
| | - Xingguo Huang
- Wuhan Wuda Tianyuau Bio‐Tech Co., Ltd.Wuhan430070China
| | - Yi Ding
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life SciencesWuhan UniversityWuhan430072China
| |
Collapse
|
36
|
Zhang H, Zhou L, Xu H, Wang L, Liu H, Zhang C, Li Q, Gu M, Wang C, Liu Q, Zhu Y. The qSAC3 locus from indica rice effectively increases amylose content under a variety of conditions. BMC PLANT BIOLOGY 2019; 19:275. [PMID: 31234778 PMCID: PMC6591921 DOI: 10.1186/s12870-019-1860-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 05/31/2019] [Indexed: 05/26/2023]
Abstract
BACKGROUND Amylose content (AC) is a critical factor for the quality of rice. It is determined by the biosynthesis gene Waxy (Wx) and a variety of quantitative trait loci (QTLs). Although many QTLs have been reported to affect rice AC, few of them have been investigated under varying growth conditions, especially various temperatures, which are known to greatly influence the AC. RESULTS We analyzed the AC at different temperatures and planting seasons in a set of chromosome segment substitution lines (CSSLs) which were derived from a cross between the indica variety 9311 and the japonica variety Nipponbare carrying the same Wxb allele. A joint analysis detected a single locus, qSAC3, with a high logarithm of odds (LOD) score in four different conditions. The qSAC3 from indica 9311 (qSAC3ind) substantially increased the AC in japonica Nipponbare under all tested growth conditions. Furthermore, introducing the qSAC3ind into the soft rice variety Nangeng9108 with Wxmq, a mutant allele of Wxb, also moderately increased its AC and improved its appearance quality significantly by reducing the chalkiness of the polished rice. CONCLUSIONS Our results indicate that the qSAC3ind could increase the AC of japonica rice in different environments as well as in the background of different Wx alleles and that qSAC3 is a valuable locus for fine-tuning the rice AC and ameliorating the dull endosperm in rice varieties with the Wxmq allele.
Collapse
Affiliation(s)
- Hua Zhang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory of Creative Agriculture, Ministry of Agriculture, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Zhejiang, 310021 Hangzhou China
| | - Lihui Zhou
- Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, Provincial Key Laboratory of Agrobiology, Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 Jiangsu China
| | - Heng Xu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory of Creative Agriculture, Ministry of Agriculture, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Zhejiang, 310021 Hangzhou China
| | - Liangchao Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory of Creative Agriculture, Ministry of Agriculture, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Zhejiang, 310021 Hangzhou China
| | - Huijie Liu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory of Creative Agriculture, Ministry of Agriculture, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Zhejiang, 310021 Hangzhou China
| | - Changquan Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Qianfeng Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Minghong Gu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Cailin Wang
- Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, Provincial Key Laboratory of Agrobiology, Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 Jiangsu China
| | - Qiaoquan Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Ying Zhu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory of Creative Agriculture, Ministry of Agriculture, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Zhejiang, 310021 Hangzhou China
| |
Collapse
|
37
|
Li QF, Yu JW, Lu J, Fei HY, Luo M, Cao BW, Huang LC, Zhang CQ, Liu QQ. Seed-Specific Expression of OsDWF4, a Rate-Limiting Gene Involved in Brassinosteroids Biosynthesis, Improves Both Grain Yield and Quality in Rice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3759-3772. [PMID: 29613784 DOI: 10.1021/acs.jafc.8b00077] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Brassinosteroids (BRs) are essential plant-specific steroidal hormones that regulate diverse growth and developmental processes in plants. We evaluated the effects of OsDWF4, a gene that encodes a rate-limiting enzyme in BR biosynthesis, on both rice yield and quality when driven by the Gt1 or Ubi promoter, which correspond to seed-specific or constitutive expression, respectively. Generally, transgenic plants expressing OsDWF4 showed increased grain yield with more tillers and longer and heavier seeds. Moreover, the starch physicochemical properties of the transgenic rice were also improved. Interestingly, OsDWF4 was found to exert different effects on either rice yield or quality when driven by the different promoters. The overall performance of the pGt1::OsDWF4 lines was better than that of the pUbi::OsDWF4 lines. Our data not only demonstrate the effects of OsDWF4 overexpression on both rice yield and quality but also suggest that a seed-specific promoter is a good choice in BR-mediated rice breeding programs.
Collapse
Affiliation(s)
- Qian-Feng Li
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture , Yangzhou University , Yangzhou 225009 , China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education , Yangzhou University , Yangzhou 225009 , China
| | - Jia-Wen Yu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture , Yangzhou University , Yangzhou 225009 , China
| | - Jun Lu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture , Yangzhou University , Yangzhou 225009 , China
| | - Hong-Yuan Fei
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture , Yangzhou University , Yangzhou 225009 , China
| | - Ming Luo
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden , Chinese Academy of Sciences , Guangzhou 510650 , China
| | - Bu-Wei Cao
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture , Yangzhou University , Yangzhou 225009 , China
| | - Li-Chun Huang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture , Yangzhou University , Yangzhou 225009 , China
| | - Chang-Quan Zhang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture , Yangzhou University , Yangzhou 225009 , China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education , Yangzhou University , Yangzhou 225009 , China
| | - Qiao-Quan Liu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture , Yangzhou University , Yangzhou 225009 , China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education , Yangzhou University , Yangzhou 225009 , China
| |
Collapse
|