1
|
Hu Z, Wu Z, Zhu Q, Ma M, Li Y, Dai X, Han S, Xiang S, Yang S, Luo J, Kong Q, Ding J. Multilayer regulatory landscape and new regulators identification for bud dormancy release and bud break in Populus. PLANT, CELL & ENVIRONMENT 2024; 47:3181-3197. [PMID: 38712996 DOI: 10.1111/pce.14938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/02/2024] [Accepted: 04/26/2024] [Indexed: 05/08/2024]
Abstract
For trees originating from boreal and temperate regions, the dormancy-to-active transition, also known as bud dormancy release and bud break, are crucial processes that allow trees to reactive growth in the spring. The molecular mechanisms underlying these two processes remain poorly understood. Here, through integrative multiomics analysis of the transcriptome, DNA methylome, and proteome, we gained insights into the reprogrammed cellular processes associated with bud dormancy release and bud break. Our findings revealed multilayer regulatory landscapes governing bud dormancy release and bud break regulation, providing a valuable reference framework for future functional studies. Based on the multiomics analysis, we have determined a novel long intergenic noncoding RNA named Phenology Responsive Intergenic lncRNA 1 (PRIR1) plays a role in the activation of bud break. that the molecular mechanism of PRIR1 has been preliminary explored, and it may partially promote bud break by activating its neighbouring gene, EXORDIUM LIKE 5 (PtEXL5), which has also been genetically confirmed as an activator for bud break. This study has revealed a lncRNA-mediated regulatory mechanism for the control of bud break in Populus, operating independently of known regulatory pathways.
Collapse
Affiliation(s)
- Zhenzhu Hu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Centre for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Zhihao Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Centre for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Qiangqiang Zhu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Centre for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Mingru Ma
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Centre for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Yue Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Centre for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Xiaokang Dai
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Centre for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Shaopeng Han
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Centre for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Songzhu Xiang
- Shennongjia Academy of Forestry, Shennongjia Forestry District, Hubei, China
| | - Siting Yang
- Shennongjia Academy of Forestry, Shennongjia Forestry District, Hubei, China
| | - Jie Luo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Centre for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Qiusheng Kong
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Centre for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Jihua Ding
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Centre for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
2
|
Vandepoele K, Thierens S, Van Bel M. Application of orthology and network biology to infer gene functions in non-model plants. PHYSIOLOGIA PLANTARUM 2024; 176:e14441. [PMID: 39019770 DOI: 10.1111/ppl.14441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 07/19/2024]
Abstract
Approximately 60% of the genes and gene products in the model species Arabidopsis thaliana have been functionally characterized. In non-model plant species, the functional annotation of the gene space is largely based on homology, with the assumption that genes with shared common ancestry have conserved functions. However, the wide variety in possible morphological, physiological, and ecological differences between plant species gives rise to many species- and clade-specific genes, for which this transfer of knowledge is not possible. Other complications, such as difficulties with genetic transformation, the absence of large-scale mutagenesis methods, and long generation times, further lead to the slow characterization of genes in non-model species. Here, we discuss different resources that integrate plant gene function information. Different approaches that support the functional annotation of gene products, based on orthology or network biology, are described. While sequence-based tools to characterize the functional landscape in non-model species are maturing and becoming more readily available, easy-to-use network-based methods inferring plant gene functions are not as prevalent and have limited functionality.
Collapse
Affiliation(s)
- Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- VIB Center for AI & Computational Biology, VIB, Ghent, Belgium
| | - Sander Thierens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Michiel Van Bel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| |
Collapse
|
3
|
Florez-Rueda AM, Miguel CM, Figueiredo DD. Comparative transcriptomics of seed nourishing tissues: uncovering conserved and divergent pathways in seed plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1134-1157. [PMID: 38709819 DOI: 10.1111/tpj.16786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 05/08/2024]
Abstract
The evolutionary and ecological success of spermatophytes is intrinsically linked to the seed habit, which provides a protective environment for the initial development of the new generation. This environment includes an ephemeral nourishing tissue that supports embryo growth. In gymnosperms this tissue originates from the asexual proliferation of the maternal megagametophyte, while in angiosperms it is a product of fertilization, and is called the endosperm. The emergence of these nourishing tissues is of profound evolutionary value, and they are also food staples for most of the world's population. Here, using Orthofinder to infer orthologue genes among newly generated and previously published datasets, we provide a comparative transcriptomic analysis of seed nourishing tissues from species of several angiosperm clades, including those of early diverging lineages, as well as of one gymnosperm. Our results show that, although the structure and composition of seed nourishing tissues has seen significant divergence along evolution, there are signatures that are conserved throughout the phylogeny. Conversely, we identified processes that are specific to species within the clades studied, and thus illustrate their functional divergence. With this, we aimed to provide a foundation for future studies on the evolutionary history of seed nourishing structures, as well as a resource for gene discovery in future functional studies.
Collapse
Affiliation(s)
- Ana Marcela Florez-Rueda
- Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Am Mühlenberg 1, 14476, Potsdam, Germany
- University of Potsdam, Karl-Liebknechts-Str. 24-25, Haus 26, 14476, Potsdam, Germany
| | - Célia M Miguel
- Faculty of Sciences, Biosystems and Integrative Sciences Institute (BioISI), University of Lisbon, Lisboa, Portugal
| | - Duarte D Figueiredo
- Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Am Mühlenberg 1, 14476, Potsdam, Germany
| |
Collapse
|
4
|
Chen B, Zhang J, Li J, Qian Y, Huang B, Wu X. Comparative Transcriptome Analysis of T. rubrum, T. mentagrophytes, and M. gypseum Dermatophyte Biofilms in Response to Photodynamic Therapy. Mycopathologia 2024; 189:59. [PMID: 38890181 DOI: 10.1007/s11046-024-00865-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/16/2024] [Indexed: 06/20/2024]
Abstract
Dermatophyte biofilms frequently count for inadequate responses and resistance to standard antifungal treatments, resulting in refractory chronic onychomycosis infection. Although antimicrobial photodynamic therapy (aPDT) has clinically proven to exert significant antifungal effects or even capable of eradicating dermatophyte biofilms, considerably less is known about the molecular mechanisms underlying aPDT and the potential dysregulation of signaling networks that could antagonize its action. The aim of this study is to elucidate the molecular mechanisms underlining aPDT combat against dermatophyte biofilm in recalcitrant onychomycosis and to decipher the potential detoxification processes elicited by aPDT, facilitating the development of more effective photodynamic interventions. We applied genome-wide comparative transcriptome analysis to investigate how aPDT disrupting onychomycosis biofilm formed by three distinct dermatophytes, including Trichophyton rubrum, Trichophyton mentagrophytes, and Microsporum gypseum, the most frequently occurring pathogenic species. In total, 352.13 Gb of clean data were obtained for the transcriptomes of dermatophyte biofilms with or without aPDT treatment, resulting in 2,422.42 million reads with GC content of 51.84%, covering 99.9%, 98.5% and 99.4% of annotated genes of T. rubrum, T. mentagrophytes, and M. gypseum, respectively. The genome-wide orthologous analysis identified 6624 transcribed single-copy orthologous genes in all three species, and 36.5%, 6.8% and 17.9% of which were differentially expressed following aPDT treatment. Integrative orthology analysis demonstrated the upregulation of oxidoreductase activities is a highly conserved detoxification signaling alteration in response to aPDT across all investigated dermatophyte biofilms. This study provided new insights into the molecular mechanisms underneath anti-dermatophyte biofilm effects of aPDT and successfully identified a conserved detoxification regulation upon the aPDT application.
Collapse
Affiliation(s)
- Borui Chen
- Dermatology Institute of Fuzhou, Dermatology Hospital of Fuzhou, Xihong Road 243, Fuzhou, 350025, China
- Department of Dermatology, First Hospital and Research Center for Medical Mycology, Peking University, Beijing, 100034, China
| | - Jinyan Zhang
- Department of Dermatology, First Hospital and Research Center for Medical Mycology, Peking University, Beijing, 100034, China
- Department of Dermatology, Fujian Provincial Geriatric Hospital, Fuzhou, 350025, China
| | - Juanjuan Li
- Dermatology Institute of Fuzhou, Dermatology Hospital of Fuzhou, Xihong Road 243, Fuzhou, 350025, China
| | - Yuwen Qian
- Fujun Genetics Technologies Company Limited, Fuzhou, 350003, China
| | - Binbin Huang
- Dermatology Institute of Fuzhou, Dermatology Hospital of Fuzhou, Xihong Road 243, Fuzhou, 350025, China
| | - Xiaomo Wu
- Dermatology Institute of Fuzhou, Dermatology Hospital of Fuzhou, Xihong Road 243, Fuzhou, 350025, China.
- Department of Biomedicine, University of Basel, Klingelbergstrass 70, 4056, Basel, Switzerland.
| |
Collapse
|
5
|
Li P, He Y, Xiao L, Quan M, Gu M, Jin Z, Zhou J, Li L, Bo W, Qi W, Huang R, Lv C, Wang D, Liu Q, El-Kassaby YA, Du Q, Zhang D. Temporal dynamics of genetic architecture governing leaf development in Populus. THE NEW PHYTOLOGIST 2024; 242:1113-1130. [PMID: 38418427 DOI: 10.1111/nph.19649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 02/13/2024] [Indexed: 03/01/2024]
Abstract
Leaf development is a multifaceted and dynamic process orchestrated by a myriad of genes to shape the proper size and morphology. The dynamic genetic network underlying leaf development remains largely unknown. Utilizing a synergistic genetic approach encompassing dynamic genome-wide association study (GWAS), time-ordered gene co-expression network (TO-GCN) analyses and gene manipulation, we explored the temporal genetic architecture and regulatory network governing leaf development in Populus. We identified 42 time-specific and 18 consecutive genes that displayed different patterns of expression at various time points. We then constructed eight TO-GCNs that covered the cell proliferation, transition, and cell expansion stages of leaf development. Integrating GWAS and TO-GCN, we postulated the functions of 27 causative genes for GWAS and identified PtoGRF9 as a key player in leaf development. Genetic manipulation via overexpression and suppression of PtoGRF9 revealed its primary influence on leaf development by modulating cell proliferation. Furthermore, we elucidated that PtoGRF9 governs leaf development by activating PtoHB21 during the cell proliferation stage and attenuating PtoLD during the transition stage. Our study provides insights into the dynamic genetic underpinnings of leaf development and understanding the regulatory mechanism of PtoGRF9 in this dynamic process.
Collapse
Affiliation(s)
- Peng Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yuling He
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Liang Xiao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Mingyang Quan
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Mingyue Gu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Zhuoying Jin
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Jiaxuan Zhou
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Lianzheng Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Wenhao Bo
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Weina Qi
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Rui Huang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Chenfei Lv
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Dan Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Qing Liu
- CSIRO Agriculture and Food, Black Mountain, Canberra, ACT, 2601, Australia
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, Forest Sciences Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Qingzhang Du
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Deqiang Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
6
|
Peng Y, Wang Z, Li M, Wang T, Su Y. Characterization and analysis of multi-organ full-length transcriptomes in Sphaeropteris brunoniana and Alsophila latebrosa highlight secondary metabolism and chloroplast RNA editing pattern of tree ferns. BMC PLANT BIOLOGY 2024; 24:73. [PMID: 38273309 PMCID: PMC10811885 DOI: 10.1186/s12870-024-04746-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024]
Abstract
BACKGROUND Sphaeropteris brunoniana and Alsophila latebrosa are both old relict and rare tree ferns, which have experienced the constant changes of climate and environment. However, little is known about their high-quality genetic information and related research on environmental adaptation mechanisms of them. In this study, combined with PacBio and Illumina platforms, transcriptomic analysis was conducted on the roots, rachis, and pinna of S. brunoniana and A. latebrosa to identify genes and pathways involved in environmental adaptation. Additionally, based on the transcriptomic data of tree ferns, chloroplast genes were mined to analyze their gene expression levels and RNA editing events. RESULTS In the study, we obtained 11,625, 14,391 and 10,099 unigenes of S. brunoniana root, rachis, and pinna, respectively. Similarly, a total of 13,028, 11,431 and 12,144 unigenes were obtained of A. latebrosa root, rachis, and pinna, respectively. According to the enrichment results of differentially expressed genes, a large number of differentially expressed genes were enriched in photosynthesis and secondary metabolic pathways of S. brunoniana and A. latebrosa. Based on gene annotation results and phenylpropanoid synthesis pathways, two lignin synthesis pathways (H-lignin and G-lignin) were characterized of S. brunoniana. Among secondary metabolic pathways of A. latebrosa, three types of WRKY transcription factors were identified. Additionally, based on transcriptome data obtained in this study, reported transcriptome data, and laboratory available transcriptome data, positive selection sites were identified from 18 chloroplast protein-coding genes of four tree ferns. Among them, RNA editing was found in positive selection sites of four tree ferns. RNA editing affected the protein secondary structure of the rbcL gene. Furthermore, the expression level of chloroplast genes indicated high expression of genes related to the chloroplast photosynthetic system in all four species. CONCLUSIONS Overall, this work provides a comprehensive transcriptome resource of S. brunoniana and A. latebrosa, laying the foundation for future tree fern research.
Collapse
Affiliation(s)
- Yang Peng
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhen Wang
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Minghui Li
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ting Wang
- Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, 518057, China.
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Yingjuan Su
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
- Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, 518057, China.
| |
Collapse
|
7
|
Li S, Nakayama H, Sinha NR. How to utilize comparative transcriptomics to dissect morphological diversity in plants. CURRENT OPINION IN PLANT BIOLOGY 2023; 76:102474. [PMID: 37804608 DOI: 10.1016/j.pbi.2023.102474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 10/09/2023]
Abstract
Comparative transcriptomics has emerged as a powerful approach that allows us to unravel the genetic basis of organ morphogenesis and its diversification processes during evolution. However, the application of comparative transcriptomics in studying plant morphological diversity addresses challenges such as identifying homologous gene pairs, selecting appropriate developmental stages for comparison, and extracting biologically meaningful networks. Methods such as phylostratigraphy, clustering, and gene co-expression networks are explored to identify functionally equivalent genes, align developmental stages, and uncover gene regulatory relationships. In the current review, we highlight the importance of these approaches in overcoming the complexity of plant genomes, the impact of heterochrony on stage alignment, and the integration of gene networks with additional data for a comprehensive understanding of morphological evolution.
Collapse
Affiliation(s)
- Siyu Li
- Department of Plant Biology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Hokuto Nakayama
- Department of Plant Biology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA; Graduate School of Science, Department of Biological Sciences, The University of Tokyo, Science Build. #2, 7-3-1 Hongo Bunkyo-ku Tokyo, 113-0033, Japan
| | - Neelima R Sinha
- Department of Plant Biology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
8
|
Julca I, Tan QW, Mutwil M. Toward kingdom-wide analyses of gene expression. TRENDS IN PLANT SCIENCE 2023; 28:235-249. [PMID: 36344371 DOI: 10.1016/j.tplants.2022.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Gene expression data for Archaeplastida are accumulating exponentially, with more than 300 000 RNA-sequencing (RNA-seq) experiments available for hundreds of species. The gene expression data stem from thousands of experiments that capture gene expression in various organs, tissues, cell types, (a)biotic perturbations, and genotypes. Advances in software tools make it possible to process all these data in a matter of weeks on modern office computers, giving us the possibility to study gene expression in a kingdom-wide manner for the first time. We discuss how the expression data can be accessed and processed and outline analyses that take advantage of cross-species analyses, allowing us to generate powerful and robust hypotheses about gene function and evolution.
Collapse
Affiliation(s)
- Irene Julca
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Qiao Wen Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
9
|
Harbig TA, Fratte J, Krone M, Nieselt K. OmicsTIDE: interactive exploration of trends in multi-omics data. BIOINFORMATICS ADVANCES 2023; 3:vbac093. [PMID: 36698763 PMCID: PMC9869718 DOI: 10.1093/bioadv/vbac093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/18/2022] [Accepted: 12/06/2022] [Indexed: 01/22/2023]
Abstract
Motivation The increasing amount of data produced by omics technologies has enabled researchers to study phenomena across multiple omics layers. Besides data-driven analysis strategies, interactive visualization tools have been developed for a more transparent analysis. However, most state-of-the-art tools do not reconstruct the impact of a single omics layer on the integration result. Results We developed a data classification scheme focusing on different aspects of multi-omics datasets for a systemic understanding. Based on this classification, we developed the Omics Trend-comparing Interactive Data Explorer (OmicsTIDE), an interactive visualization tool for the comparison of gene-based quantitative omics data. The tool consists of a computational part that clusters omics datasets to determine trends and an interactive visualization. The trends are visualized as profile plots and are connected by a Sankey diagram that allows for an interactive pairwise trend comparison to discover concordant and discordant trends. Moreover, large-scale omics datasets are broken down into small subsets that can be analyzed functionally using Gene Ontology enrichment within few analysis steps. We demonstrate the interactive analysis using OmicsTIDE with two case studies focusing on different experimental designs. Availability and implementation OmicsTIDE is a web tool available via http://omicstide-tuevis.cs.uni-tuebingen.de/. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
- Theresa A Harbig
- Institute for Bioinformatics and Medical Informatics, University of Tuebingen, Tuebingen 72076, Germany
| | - Julian Fratte
- Institute for Bioinformatics and Medical Informatics, University of Tuebingen, Tuebingen 72076, Germany
| | - Michael Krone
- Institute for Bioinformatics and Medical Informatics, University of Tuebingen, Tuebingen 72076, Germany
| | - Kay Nieselt
- Institute for Bioinformatics and Medical Informatics, University of Tuebingen, Tuebingen 72076, Germany
| |
Collapse
|
10
|
Kerwin RE, Dubois M. A common language: Cross-species network analysis reveals growth regulators. PLANT PHYSIOLOGY 2022; 190:2069-2071. [PMID: 36086956 PMCID: PMC9706460 DOI: 10.1093/plphys/kiac417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Rachel E Kerwin
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Marieke Dubois
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
11
|
Curci PL, Zhang J, Mähler N, Seyfferth C, Mannapperuma C, Diels T, Van Hautegem T, Jonsen D, Street N, Hvidsten TR, Hertzberg M, Nilsson O, Inzé D, Nelissen H, Vandepoele K. Identification of growth regulators using cross-species network analysis in plants. PLANT PHYSIOLOGY 2022; 190:2350-2365. [PMID: 35984294 PMCID: PMC9706488 DOI: 10.1093/plphys/kiac374] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/05/2022] [Indexed: 05/11/2023]
Abstract
With the need to increase plant productivity, one of the challenges plant scientists are facing is to identify genes that play a role in beneficial plant traits. Moreover, even when such genes are found, it is generally not trivial to transfer this knowledge about gene function across species to identify functional orthologs. Here, we focused on the leaf to study plant growth. First, we built leaf growth transcriptional networks in Arabidopsis (Arabidopsis thaliana), maize (Zea mays), and aspen (Populus tremula). Next, known growth regulators, here defined as genes that when mutated or ectopically expressed alter plant growth, together with cross-species conserved networks, were used as guides to predict novel Arabidopsis growth regulators. Using an in-depth literature screening, 34 out of 100 top predicted growth regulators were confirmed to affect leaf phenotype when mutated or overexpressed and thus represent novel potential growth regulators. Globally, these growth regulators were involved in cell cycle, plant defense responses, gibberellin, auxin, and brassinosteroid signaling. Phenotypic characterization of loss-of-function lines confirmed two predicted growth regulators to be involved in leaf growth (NPF6.4 and LATE MERISTEM IDENTITY2). In conclusion, the presented network approach offers an integrative cross-species strategy to identify genes involved in plant growth and development.
Collapse
Affiliation(s)
- Pasquale Luca Curci
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
- Institute of Biosciences and Bioresources, National Research Council (CNR), Via Amendola 165/A, 70126 Bari, Italy
| | - Jie Zhang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Niklas Mähler
- Department of Plant Physiology, Umea Plant Science Centre (UPSC), Umeå University, 90187 Umeå, Sweden
| | - Carolin Seyfferth
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
- Department of Plant Physiology, Umea Plant Science Centre (UPSC), Umeå University, 90187 Umeå, Sweden
| | - Chanaka Mannapperuma
- Department of Plant Physiology, Umea Plant Science Centre (UPSC), Umeå University, 90187 Umeå, Sweden
| | - Tim Diels
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Tom Van Hautegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - David Jonsen
- SweTree Technologies AB, Skogsmarksgränd 7, SE-907 36 Umeå, Sweden
| | - Nathaniel Street
- Department of Plant Physiology, Umea Plant Science Centre (UPSC), Umeå University, 90187 Umeå, Sweden
| | - Torgeir R Hvidsten
- Department of Plant Physiology, Umea Plant Science Centre (UPSC), Umeå University, 90187 Umeå, Sweden
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Magnus Hertzberg
- SweTree Technologies AB, Skogsmarksgränd 7, SE-907 36 Umeå, Sweden
| | - Ove Nilsson
- Department of Forest Genetics and Plant Physiology, Umea Plant Science Centre (UPSC), Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
| |
Collapse
|
12
|
Jathar V, Saini K, Chauhan A, Rani R, Ichihashi Y, Ranjan A. Spatial control of cell division by GA-OsGRF7/8 module in a leaf explaining the leaf length variation between cultivated and wild rice. THE NEW PHYTOLOGIST 2022; 234:867-883. [PMID: 35152411 DOI: 10.1111/nph.18029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Cellular and genetic understanding of the rice leaf size regulation is limited, despite rice being the staple food of more than half of the global population. We investigated the mechanism controlling the rice leaf length using cultivated and wild rice accessions that remarkably differed for leaf size. Comparative transcriptomics, gibberellic acid (GA) quantification and leaf kinematics of the contrasting accessions suggested the involvement of GA, cell cycle and growth-regulating factors (GRFs) in the rice leaf size regulation. Zone-specific expression analysis and VIGS established the functions of specific GRFs in the process. The leaf length of the selected accessions was strongly correlated with GA levels. Higher GA content in wild rice accessions with longer leaves and GA-induced increase in the leaf length via an increase in cell division confirmed a GA-mediated regulation of division zone in rice. Downstream to GA, OsGRF7 and OsGRF8 function for controlling cell division to determine the rice leaf length. Spatial control of cell division to determine the division zone size mediated by GA and downstream OsGRF7 and OsGRF8 explains the leaf length differences between the cultivated and wild rice. This mechanism to control the rice leaf length might have contributed to optimizing leaf size during domestication.
Collapse
Affiliation(s)
- Vikram Jathar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Kumud Saini
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ashish Chauhan
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ruchi Rani
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Yasunori Ichihashi
- RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Aashish Ranjan
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
13
|
Single-Cell Transcriptome and Network Analyses Unveil Key Transcription Factors Regulating Mesophyll Cell Development in Maize. Genes (Basel) 2022; 13:genes13020374. [PMID: 35205426 PMCID: PMC8872562 DOI: 10.3390/genes13020374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 12/17/2022] Open
Abstract
Background: Maize mesophyll (M) cells play important roles in various biological processes such as photosynthesis II and secondary metabolism. Functional differentiation occurs during M-cell development, but the underlying mechanisms for regulating M-cell development are largely unknown. Results: We conducted single-cell RNA sequencing (scRNA-seq) to profile transcripts in maize leaves. We then identified coregulated modules by analyzing the resulting pseudo-time-series data through gene regulatory network analyses. WRKY, ERF, NAC, MYB and Heat stress transcription factor (HSF) families were highly expressed in the early stage, whereas CONSTANS (CO)-like (COL) and ERF families were highly expressed in the late stage of M-cell development. Construction of regulatory networks revealed that these transcript factor (TF) families, especially HSF and COL, were the major players in the early and later stages of M-cell development, respectively. Integration of scRNA expression matrix with TF ChIP-seq and Hi-C further revealed regulatory interactions between these TFs and their targets. HSF1 and COL8 were primarily expressed in the leaf bases and tips, respectively, and their targets were validated with protoplast-based ChIP-qPCR, with the binding sites of HSF1 being experimentally confirmed. Conclusions: Our study provides evidence that several TF families, with the involvement of epigenetic regulation, play vital roles in the regulation of M-cell development in maize.
Collapse
|
14
|
Blanco E, Curci PL, Manconi A, Sarli A, Zuluaga DL, Sonnante G. R2R3-MYBs in Durum Wheat: Genome-Wide Identification, Poaceae-Specific Clusters, Expression, and Regulatory Dynamics Under Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:896945. [PMID: 35795353 PMCID: PMC9252425 DOI: 10.3389/fpls.2022.896945] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/12/2022] [Indexed: 05/14/2023]
Abstract
MYB transcription factors (TFs) represent one of the biggest TF families in plants, being involved in various specific plant processes, such as responses to biotic and abiotic stresses. The implication of MYB TFs in the tolerance mechanisms to abiotic stress is particularly interesting for crop breeding, since environmental conditions can negatively affect growth and productivity. Wheat is a worldwide-cultivated cereal, and is a major source of plant-based proteins in human food. In particular, durum wheat plays an important role in global food security improvement, since its adaptation to hot and dry conditions constitutes the base for the success of wheat breeding programs in future. In the present study, a genome-wide identification of R2R3-MYB TFs in durum wheat was performed. MYB profile search and phylogenetic analyses based on homology with Arabidopsis and rice MYB TFs led to the identification of 233 R2R3-TdMYB (Triticum durum MYB). Three Poaceae-specific MYB clusters were detected, one of which had never been described before. The expression of eight selected genes under different abiotic stress conditions, revealed that most of them responded especially to salt and drought stress. Finally, gene regulatory network analyses led to the identification of 41 gene targets for three TdR2R3-MYBs that represent novel candidates for functional analyses. This study provides a detailed description of durum wheat R2R3-MYB genes and contributes to a deeper understanding of the molecular response of durum wheat to unfavorable climate conditions.
Collapse
Affiliation(s)
- Emanuela Blanco
- Institute of Biosciences and Bioresources, National Research Council (CNR), Bari, Italy
- *Correspondence: Emanuela Blanco,
| | - Pasquale Luca Curci
- Institute of Biosciences and Bioresources, National Research Council (CNR), Bari, Italy
- Pasquale Luca Curci,
| | - Andrea Manconi
- Institute of Biomedical Technologies, National Research Council (CNR), Milan, Italy
| | - Adele Sarli
- Institute of Biosciences and Bioresources, National Research Council (CNR), Bari, Italy
| | - Diana Lucia Zuluaga
- Institute of Biosciences and Bioresources, National Research Council (CNR), Bari, Italy
| | - Gabriella Sonnante
- Institute of Biosciences and Bioresources, National Research Council (CNR), Bari, Italy
- Gabriella Sonnante,
| |
Collapse
|
15
|
Mauxion JP, Chevalier C, Gonzalez N. Complex cellular and molecular events determining fruit size. TRENDS IN PLANT SCIENCE 2021; 26:1023-1038. [PMID: 34158228 DOI: 10.1016/j.tplants.2021.05.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
The understanding of plant organ-size determination represents an important challenge, especially because of the significant role of plants as food and renewable energy sources and the increasing need for plant-derived products. Most of the knowledge on the regulation of organ growth and the molecular network controlling cell division and cell expansion, the main drivers of growth, is derived from arabidopsis. The increasing use of crops such as tomato for research is now bringing essential information on the mechanisms underlying size control in agronomically important organs. This review describes our current knowledge, still very scarce, of the cellular and molecular mechanisms governing tomato fruit size and proposes future research to better understand the regulation of growth in this important crop.
Collapse
Affiliation(s)
- Jean-Philippe Mauxion
- INRAE, Univ. Bordeaux, UMR1332 Biologie du fruit et Pathologie, F33882 Villenave d'Ornon, France
| | - Christian Chevalier
- INRAE, Univ. Bordeaux, UMR1332 Biologie du fruit et Pathologie, F33882 Villenave d'Ornon, France
| | - Nathalie Gonzalez
- INRAE, Univ. Bordeaux, UMR1332 Biologie du fruit et Pathologie, F33882 Villenave d'Ornon, France. @inrae.fr
| |
Collapse
|
16
|
Wu TY, Goh H, Azodi CB, Krishnamoorthi S, Liu MJ, Urano D. Evolutionarily conserved hierarchical gene regulatory networks for plant salt stress response. NATURE PLANTS 2021; 7:787-799. [PMID: 34045707 DOI: 10.1038/s41477-021-00929-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Plant cells constantly alter their gene expression profiles to respond to environmental fluctuations. These continuous adjustments are regulated by multi-hierarchical networks of transcription factors. To understand how such gene regulatory networks (GRNs) have stabilized evolutionarily while allowing for species-specific responses, we compare the GRNs underlying salt response in the early-diverging and late-diverging plants Marchantia polymorpha and Arabidopsis thaliana. Salt-responsive GRNs, constructed on the basis of the temporal transcriptional patterns in the two species, share common trans-regulators but exhibit an evolutionary divergence in cis-regulatory sequences and in the overall network sizes. In both species, WRKY-family transcription factors and their feedback loops serve as central nodes in salt-responsive GRNs. The divergent cis-regulatory sequences of WRKY-target genes are probably associated with the expansion in network size, linking salt stress to tissue-specific developmental and physiological responses. The WRKY modules and highly linked WRKY feedback loops have been preserved widely in other plants, including rice, while keeping their binding-motif sequences mutable. Together, the conserved trans-regulators and the quickly evolving cis-regulatory sequences allow salt-responsive GRNs to adapt over a long evolutionary timescale while maintaining some consistent regulatory structure. This strategy may benefit plants as they adapt to changing environments.
Collapse
Affiliation(s)
- Ting-Ying Wu
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore.
| | - HonZhen Goh
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Christina B Azodi
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Shalini Krishnamoorthi
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Ming-Jung Liu
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Daisuke Urano
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
- Singapore-MIT Alliance for Research and Technology, Singapore, Singapore.
| |
Collapse
|
17
|
Navale V, Vamkudoth KR, Ajmera S, Dhuri V. Aspergillus derived mycotoxins in food and the environment: Prevalence, detection, and toxicity. Toxicol Rep 2021; 8:1008-1030. [PMID: 34408970 PMCID: PMC8363598 DOI: 10.1016/j.toxrep.2021.04.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/20/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022] Open
Abstract
Aspergillus species are the paramount ubiquitous fungi that contaminate various food substrates and produce biochemicals known as mycotoxins. Aflatoxins (AFTs), ochratoxin A (OTA), patulin (PAT), citrinin (CIT), aflatrem (AT), secalonic acids (SA), cyclopiazonic acid (CPA), terrein (TR), sterigmatocystin (ST) and gliotoxin (GT), and other toxins produced by species of Aspergillus plays a major role in food and human health. Mycotoxins exhibited wide range of toxicity to the humans and animal models even at nanomolar (nM) concentration. Consumption of detrimental mycotoxins adulterated foodstuffs affects human and animal health even trace amounts. Bioaerosols consisting of spores and hyphal fragments are active elicitors of bronchial irritation and allergy, and challenging to the public health. Aspergillus is the furthermost predominant environmental contaminant unswervingly defile lives with a 40-90 % mortality risk in patients with conceded immunity. Genomics, proteomics, transcriptomics, and metabolomics approaches useful for mycotoxins' detection which are expensive. Antibody based detection of toxins chemotypes may result in cross-reactivity and uncertainty. Aptamers (APT) are single stranded DNA (ssDNA/RNA), are specifically binds to the target molecules can be generated by systematic evolution of ligands through exponential enrichment (SELEX). APT are fast, sensitive, simple, in-expensive, and field-deployable rapid point of care (POC) detection of toxins, and a better alternative to antibodies.
Collapse
Affiliation(s)
- Vishwambar Navale
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India
| | - Koteswara Rao Vamkudoth
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India
| | | | - Vaibhavi Dhuri
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, 411008, India
| |
Collapse
|
18
|
Soto-Cerda BJ, Aravena G, Cloutier S. Genetic dissection of flowering time in flax (Linum usitatissimum L.) through single- and multi-locus genome-wide association studies. Mol Genet Genomics 2021; 296:877-891. [PMID: 33903955 DOI: 10.1007/s00438-021-01785-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/09/2021] [Indexed: 01/19/2023]
Abstract
In a rapidly changing climate, flowering time (FL) adaptation is important to maximize seed yield in flax (Linum usitatissimum L.). However, our understanding of the genetic mechanism underlying FL in this multipurpose crop remains limited. With the aim of dissecting the genetic architecture of FL in flax, a genome-wide association study (GWAS) was performed on 200 accessions of the flax core collection evaluated in four environments. Two single-locus and six multi-locus models were applied using 70,935 curated single nucleotide polymorphism (SNP) markers. A total of 40 quantitative trait nucleotides (QTNs) associated with 27 quantitative trait loci (QTL) were identified in at least two environments. The number of QTL with positive-effect alleles in accessions was significantly correlated with FL (r = 0.77 to 0.82), indicating principally additive gene actions. Nine QTL were significant in at least three of the four environments accounting for 3.06-14.71% of FL variation. These stable QTL spanned regions that harbored 27 Arabidopsis thaliana and Oryza sativa FL-related orthologous genes including FLOWERING LOCUS T (Lus10013532), FLOWERING LOCUS D (Lus10028817), transcriptional regulator SUPERMAN (Lus10021215), and gibberellin 2-beta-dioxygenase 2 (Lus10037816). In silico gene expression analysis of the 27 FL candidate gene orthologous suggested that they might play roles in the transition from vegetative to reproductive phase, flower development and fertilization. Our results provide new insights into the QTL architecture of flowering time in flax, identify potential candidate genes for further studies, and demonstrate the effectiveness of combining different GWAS models for the genetic dissection of complex traits.
Collapse
Affiliation(s)
- Braulio J Soto-Cerda
- Agriaquaculture Nutritional Genomic Center (CGNA), Las Heras 350, 4781158, Temuco, Chile.
| | - Gabriela Aravena
- Agriaquaculture Nutritional Genomic Center (CGNA), Las Heras 350, 4781158, Temuco, Chile
| | - Sylvie Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada.
| |
Collapse
|
19
|
Santamaria ME, Garcia A, Arnaiz A, Rosa‐Diaz I, Romero‐Hernandez G, Diaz I, Martinez M. Comparative transcriptomics reveals hidden issues in the plant response to arthropod herbivores. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:312-326. [PMID: 33085192 PMCID: PMC7898633 DOI: 10.1111/jipb.13026] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/18/2020] [Indexed: 05/04/2023]
Abstract
Plants experience different abiotic/biotic stresses, which trigger their molecular machinery to cope with them. Besides general mechanisms prompted by many stresses, specific mechanisms have been introduced to optimize the response to individual threats. However, these key mechanisms are difficult to identify. Here, we introduce an in-depth species-specific transcriptomic analysis and conduct an extensive meta-analysis of the responses to related species to gain more knowledge about plant responses. The spider mite Tetranychus urticae was used as the individual species, several arthropod herbivores as the related species for meta-analysis, and Arabidopsis thaliana plants as the common host. The analysis of the transcriptomic data showed typical common responses to herbivory, such as jasmonate signaling or glucosinolate biosynthesis. Also, a specific set of genes likely involved in the particularities of the Arabidopsis-spider mite interaction was discovered. The new findings have determined a prominent role in this interaction of the jasmonate-induced pathways leading to the biosynthesis of anthocyanins and tocopherols. Therefore, tandem individual/general transcriptomic profiling has been revealed as an effective method to identify novel relevant processes and specificities in the plant response to environmental stresses.
Collapse
Affiliation(s)
- M. Estrella Santamaria
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaUniversidad Politécnica de MadridMadridSpain
| | - Alejandro Garcia
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaUniversidad Politécnica de MadridMadridSpain
| | - Ana Arnaiz
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaUniversidad Politécnica de MadridMadridSpain
| | - Irene Rosa‐Diaz
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaUniversidad Politécnica de MadridMadridSpain
| | - Gara Romero‐Hernandez
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaUniversidad Politécnica de MadridMadridSpain
| | - Isabel Diaz
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaUniversidad Politécnica de MadridMadridSpain
- Departamento de Biotecnología‐Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de BiosistemasUniversidad Politécnica de MadridMadridSpain
| | - Manuel Martinez
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaUniversidad Politécnica de MadridMadridSpain
- Departamento de Biotecnología‐Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de BiosistemasUniversidad Politécnica de MadridMadridSpain
| |
Collapse
|
20
|
Zheng C, Ma JQ, Ma CL, Yao MZ, Chen JD, Chen L. Identifying Conserved Functional Gene Modules Underlying the Dynamic Regulation of Tea Plant Development and Secondary Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11026-11037. [PMID: 32902975 DOI: 10.1021/acs.jafc.0c04744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tea plants adjust development and metabolism by integrating environmental and endogenous signals in complex but poorly defined gene networks. Here, we present an integrative analysis framework for the identification of conserved modules controlling important agronomic traits using a comprehensive collection of RNA-seq datasets in Camellia plants including 189 samples. In total, 212 secondary metabolism-, 182 stress response-, and 182 tissue development-related coexpressed modules were revealed. Functional modules (e.g., drought response, theobromine biosynthesis, and new shoot development-related modules) and potential regulators that were highly conserved across diverse genetic backgrounds and/or environmental conditions were then identified by cross-experiment comparisons and consensus clustering. Moreover, we investigate the preservation of gene networks between Camellia sinensis and other Camellia species. This revealed that the coexpression patterns of several recently evolved modules related to secondary metabolism and environmental adaptation were rewired and showed higher connectivity in tea plants. These conserved modules are excellent candidates for modeling the core mechanism of tea plant development and secondary metabolism and should serve as a great resource for hypothesis generation and tea quality improvement.
Collapse
Affiliation(s)
- Chao Zheng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jian-Qiang Ma
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Chun-Lei Ma
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Ming-Zhe Yao
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jie-Dan Chen
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Liang Chen
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| |
Collapse
|
21
|
Tsers I, Gorshkov V, Gogoleva N, Parfirova O, Petrova O, Gogolev Y. Plant Soft Rot Development and Regulation from the Viewpoint of Transcriptomic Profiling. PLANTS 2020; 9:plants9091176. [PMID: 32927917 PMCID: PMC7570247 DOI: 10.3390/plants9091176] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023]
Abstract
Soft rot caused by Pectobacterium species is a devastating plant disease poorly characterized in terms of host plant responses. In this study, changes in the transcriptome of tobacco plants after infection with Pectobacterium atrosepticum (Pba) were analyzed using RNA-Seq. To draw a comprehensive and nontrivially itemized picture of physiological events in Pba-infected plants and to reveal novel potential molecular "players" in plant-Pba interactions, an original functional gene classification was performed. The classifications present in various databases were merged, enriched by "missed" genes, and divided into subcategories. Particular changes in plant cell wall-related processes, perturbations in hormonal and other regulatory systems, and alterations in primary, secondary, and redox metabolism were elucidated in terms of gene expression. Special attention was paid to the prediction of transcription factors (TFs) involved in the disease's development. Herewith, gene expression was analyzed within the predicted TF regulons assembled at the whole-genome level based on the presence of particular cis-regulatory elements (CREs) in gene promoters. Several TFs, whose regulons were enriched by differentially expressed genes, were considered to be potential master regulators of Pba-induced plant responses. Differential regulation of genes belonging to a particular multigene family and encoding cognate proteins was explained by the presence/absence of the particular CRE in gene promoters.
Collapse
Affiliation(s)
- Ivan Tsers
- Laboratory of plant infectious diseases, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia;
| | - Vladimir Gorshkov
- Laboratory of plant infectious diseases, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia;
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia; (N.G.); (O.P.); (O.P.); (Y.G.)
- Correspondence:
| | - Natalia Gogoleva
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia; (N.G.); (O.P.); (O.P.); (Y.G.)
| | - Olga Parfirova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia; (N.G.); (O.P.); (O.P.); (Y.G.)
| | - Olga Petrova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia; (N.G.); (O.P.); (O.P.); (Y.G.)
| | - Yuri Gogolev
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia; (N.G.); (O.P.); (O.P.); (Y.G.)
| |
Collapse
|