1
|
Zhu R, Peng L, Xu Y, Liu C, Shao L, Liu T, Shou M, Lin Q, Wang B, Shi M, Kai G. Abscisic acid enhances SmAPK1-mediated phosphorylation of SmbZIP4 to positively regulate tanshinone biosynthesis in Salvia miltiorrhiza. THE NEW PHYTOLOGIST 2025; 245:1124-1144. [PMID: 39562534 DOI: 10.1111/nph.20274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/24/2024] [Indexed: 11/21/2024]
Abstract
Tanshinones, isolated from Salvia miltiorrhiza, is efficient to treat cardiovascular and cerebrovascular diseases. Abscisic acid (ABA) treatment is found to promote tanshinone biosynthesis; however, the underlying mechanism has not been fully elucidated. A protein kinase namely SmAPK1 was identified as an important positive regulator of ABA-induced tanshinone accumulation in S. miltiorrhiza. Using SmAPK1 as bait, a basic region leucine zipper (bZIP) family transcription factor SmbZIP4 was screened from the cDNA library. Functional identification reveals that SmbZIP4 negatively regulates tanshinone biosynthesis in hairy roots and transgenic plants through directly targeting SmGGPPS and SmCYP76AK1. SmAPK1 phosphorylates the Ser97 and Thr99 site of SmbZIP4, leading to its degradation via the 26S proteasome pathway, which is promoted by ABA-induced enhancement of SmAPK1 kinase activity. Degradation of SmbZIP4 upregulates the expression levels of SmGGPPS and SmCYP76AK1, resulting in increased tanshinone content. Taken together, our results reveal new molecular mechanism by which SmAPK1-SmbZIP4 module plays a crucial role in ABA-induced tanshinone accumulation. This study sheds new insights in the biosynthesis of bioactive compounds in medicinal plants.
Collapse
Affiliation(s)
- Ruiyan Zhu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lulu Peng
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Ying Xu
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Changle Liu
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lili Shao
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Tingyao Liu
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Minyu Shou
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qinzhe Lin
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Biao Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Min Shi
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Guoyin Kai
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| |
Collapse
|
2
|
Li S, Ou C, Liu X, Wang F, Zhang Y, Qi L, Jiang S, Li H. Plant U-box E3 ligase PpPUB59 regulates anthocyanin accumulation by ubiquitinating PpBBX24 in 'Zaosu' pear and its red bud mutation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109354. [PMID: 39615190 DOI: 10.1016/j.plaphy.2024.109354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 02/05/2025]
Abstract
Ubiquitination is the specific modification of target proteins in cells by ubiquitin molecules, which is under the action of a series of special enzymes such as ubiquitin-activating enzymes, binding, and ligase enzymes. Ubiquitination plays an essential role in anthocyanin accumulation in plants. There are few studies on the coloring of pear peel by ubiquitin ligase E3. In this study, an E3 ubiquitin ligase protein PpPUB59 with seven WD40 repeats was cloned. And the function of PpPUB59 on the ubiquitination and protein stability of PpBBX24 and Ppbbx24-del, and the possible action mechanism in the anthocyanin accumulation of 'Red Zaosu' was studied. Our results showed that the WD40 repeats were verified to be the key domain interacting with the VP domain of BBX protein. PpPUB59 could degrade PpBBX24 in vitro by interacting with the VP domain but could not degrade the mutant PpBBX24-del without the VP domain. Dual luciferase assay showed that Ppbbx24-del could activate the PpCHS promoter, while PpPUB59 did not interfere with this activation; PpBBX24 could not activate the promotor of PpCHS but could suppress the activation of PpHY5; when the PpPUB59 was co-expressed with PpBBX24 and PpHY5, the activation roles of PpHY5 in the promotor of PpCHS was not recovered. BiFC and yeast two-hybrid experiments showed that PpPUB59 could also interact with PpHY5, which may make it ubiquitinated and degraded by 26S proteasome. In conclusion, PpPUB59 played an essential role in pear anthocyanin accumulation by ubiquitinating the associated transcription factors. These findings clarified the mutant mechanism of the 'Red Zaosu' pear at the post-translational modification level and enriched the regulation theory of the pear anthocyanin accumulation.
Collapse
Affiliation(s)
- Shuran Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Germplasm Resources Utilization, Ministry of Agriculture and Rural Affair, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, 125100, China
| | - Chunqing Ou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Germplasm Resources Utilization, Ministry of Agriculture and Rural Affair, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, 125100, China
| | - Xiaofeng Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Germplasm Resources Utilization, Ministry of Agriculture and Rural Affair, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, 125100, China
| | - Fei Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Germplasm Resources Utilization, Ministry of Agriculture and Rural Affair, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, 125100, China
| | - Yanjie Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Germplasm Resources Utilization, Ministry of Agriculture and Rural Affair, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, 125100, China
| | - Liyong Qi
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Germplasm Resources Utilization, Ministry of Agriculture and Rural Affair, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, 125100, China
| | - Shuling Jiang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Germplasm Resources Utilization, Ministry of Agriculture and Rural Affair, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, 125100, China.
| | - He Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
3
|
Sun Y, Zheng Y, Wang W, Yao H, Ali Z, Xiao M, Ma Z, Li J, Zhou W, Cui J, Yu K, Liu Y. VvFHY3 links auxin and endoplasmic reticulum stress to regulate grape anthocyanin biosynthesis at high temperatures. THE PLANT CELL 2024; 37:koae303. [PMID: 39539042 DOI: 10.1093/plcell/koae303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/25/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Anthocyanins affect quality in fruits such as grape (Vitis vinifera). High temperatures reduce anthocyanin levels by suppressing the expression of anthocyanin biosynthesis genes and decreasing the biosynthetic rate. However, the regulatory mechanisms that coordinate these 2 processes remain largely unknown. In this study, we demonstrate that high-temperature-mediated inhibition of anthocyanin biosynthesis in grape berries depends on the auxin and endoplasmic reticulum (ER) stress pathways. Inactivation of these pathways restores anthocyanin accumulation under high temperatures. We identified and characterized FAR-RED ELONGATED HYPOCOTYL3 (FHY3), a high-temperature-modulated transcription factor that activates multiple anthocyanin biosynthesis genes by binding to their promoters. The auxin response factor VvARF3 interacts with VvFHY3 and represses its transactivation activity, antagonizing VvFHY3-induced anthocyanin biosynthesis. Additionally, we found that the ER stress sensor VvbZIP17 represses anthocyanin biosynthesis. VvFHY3 suppresses VvbZIP17 activity by directly binding to the VvbZIP17 promoter to repress its transcription and by physically interacting with VvbZIP17 to block its DNA binding ability. Furthermore, AUXIN RESPONSE FACTOR 3 (ARF3) interferes with the VvFHY3-VvbZIP17 interaction, releasing VvbZIP17 to activate the unfolded protein response and further suppress anthocyanin production. Our results unravel the VvARF3-VvFHY3-VvbZIP17 regulatory module, which links the auxin and ER stress pathways to coordinately repress anthocyanin structural gene expression and biosynthesis under high-temperature stress.
Collapse
Affiliation(s)
- Yanzhao Sun
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yanyan Zheng
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Wenyuan Wang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Heng Yao
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zain Ali
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Mengwei Xiao
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zhaodong Ma
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jingjing Li
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Wenfei Zhou
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jing Cui
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Kun Yu
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yang Liu
- College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Liu Q, Wu Z, Qi X, Fang H, Yu X, Li L, Chen Z, Wu J, Gao Y, Kai G, Liang C. TmCOP1-TmHY5 module-mediated blue light signal promotes chicoric acid biosynthesis in Taraxacum mongolicum. PLANT BIOTECHNOLOGY JOURNAL 2024. [PMID: 39670431 DOI: 10.1111/pbi.14542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/13/2024] [Accepted: 11/21/2024] [Indexed: 12/14/2024]
Abstract
Chicoric acid, a phenolic compound derived from plants, exhibits a range of pharmacological activities. Light significantly influences the chicoric acid biosynthesis in Taraxacum mongolicum; however, the transcriptional regulatory network governing this process remains unclear. A combined analysis of the metabolome and transcriptome revealed that blue light markedly enhances chicoric acid accumulation compared to red light. The blue light-sensitive transcription factor ELONGATED HYPOCOTYL5 (HY5) is closely associated with multiple core proteins, transcription factors and chicoric acid synthase genes involved in light signalling. Both in vivo and in vitro experiments demonstrated that TmHY5 directly regulates several chicoric acid biosynthetic genes, including TmPAL3, Tm4CL1 and TmHQT2. Additionally, TmHY5 promotes the accumulation of luteolin and anthocyanins by increasing the expression of TmCHS2 and TmANS2. The E3 ubiquitin ligase CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) forms a protein complex with TmHY5, significantly inhibiting chicoric acid biosynthesis. Blue light inhibits TmCOP1-TmHY5 complex protein formation while enhancing the expression levels of TmCOP1 through TmHY5. Furthermore, TmHY5 elevates the expression levels of TmbZIP1, which indirectly activates Tm4CL1 expression. In vivo, TmCOP1 directly inhibits the expression of the TmHY5-Tm4CL1 complex. Therefore, we speculate that TmCOP1-TmHY5-mediated blue light signalling effectively activates chicoric acid biosynthesis, providing a foundation for the application of blue light supplementation technology in industrial production.
Collapse
Affiliation(s)
- Qun Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Gem, Sun Yat-Sen), Nanjing, China
| | - Zhiqing Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Gem, Sun Yat-Sen), Nanjing, China
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, China
| | - Xiwu Qi
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Gem, Sun Yat-Sen), Nanjing, China
| | - Hailing Fang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Gem, Sun Yat-Sen), Nanjing, China
| | - Xu Yu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Gem, Sun Yat-Sen), Nanjing, China
| | - Li Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Gem, Sun Yat-Sen), Nanjing, China
| | - Zequn Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Gem, Sun Yat-Sen), Nanjing, China
| | - Jie Wu
- Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, College of Pharmacy, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yugang Gao
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, China
| | - Guoyin Kai
- School of Public Health, Shenyang Medical College, Liaoning Medical Functional Food Professional Technology Innovation Center, Shenyang Medical College, Shenyang, Liaoning, China
| | - Chengyuan Liang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Gem, Sun Yat-Sen), Nanjing, China
| |
Collapse
|
5
|
Xing M, Xin P, Wang Y, Han C, Lei C, Huang W, Zhang Y, Zhang X, Cheng K, Zhang X. A negative feedback regulatory module comprising R3-MYB repressor MYBL2 and R2R3-MYB activator PAP1 fine-tunes high light-induced anthocyanin biosynthesis in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:7381-7400. [PMID: 39303008 DOI: 10.1093/jxb/erae399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024]
Abstract
Anthocyanins, a group of flavonoids, play diverse roles in plant growth and environmental adaptation. The biosynthesis and accumulation of anthocyanin are regulated by environmental cues, such as high light. However, the precise mechanism underlying anthocyanin biosynthesis under high light conditions remains largely unclear. Here, we report that the R3-MYB repressor MYB-LIKE 2 (MYBL2) negatively regulates high light-induced anthocyanin biosynthesis in Arabidopsis by repressing two R2R3-MYB activators, PRODUCTION OF ANTHOCYANIN PIGMENT 1 (PAP1) and PAP2, which are core components of the MYB-bHLH-WD40 (MBW) complex. We found that MYBL2 interacts with PAP1/2 and reduces their transcriptional activation activities, thus disrupting the expression of key genes involved in anthocyanin biosynthesis, such as DIHYDROFLAVONOL 4-REDUCTASE (DFR) and TRANSPARENT TESTA 19 (TT19). Additionally, MYBL2 attenuates the transcriptional activation of PAP1 and its own expression, but not that of PAP2. Conversely, PAP1 collaborates with TRANSPARENT TESTA 8 (TT8), a bHLH member of the MBW complex, to activate MYBL2 transcription when excessive anthocyanins are accumulated. Taken together, our findings reveal a negative feedback regulatory module composed of MYBL2 and PAP1 that fine-tunes high light-induced anthocyanin biosynthesis through modulating MBW complex assembly.
Collapse
Affiliation(s)
- Minghui Xing
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Puman Xin
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Yuetian Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Chunyan Han
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Cangbao Lei
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Weiyi Huang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Youpeng Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Xiangyu Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Kai Cheng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Xiao Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475001, China
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| |
Collapse
|
6
|
Feng L, Luo X, Huang L, Zhang Y, Li F, Li S, Zhang Z, Yang X, Wang X, OuYang X, Shi X, Zhang D, Tao X, Chen J, Yang J, Zhang S, Liu Y. A viral protein activates the MAPK pathway to promote viral infection by downregulating callose deposition in plants. Nat Commun 2024; 15:10548. [PMID: 39632828 PMCID: PMC11618657 DOI: 10.1038/s41467-024-54467-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades are evolutionarily conserved in both plants and animals and play critical roles in activating innate immunity to defend against various pathogens. However, the role of MAPK cascades in positively regulating or enhancing viral infections in plants is unclear. In this study, we investigate the involvement of MAPK cascades in infection by the positive-strand RNA virus tomato chlorosis virus (ToCV). Our findings reveal that ToCV infection activates MAPK cascades, promoting virus spread within plants. Specifically, ToCV P7, a pathogenicity determinant protein, localizes to the plasma membrane and recruits NbMPK3/6 from the nucleus. Subsequently, P7 is directly phosphorylated on serine 59 by NbMPK3/6. Phosphorylated P7 interacts with NbREM1.1 and inhibits its ability to induce callose deposition at plasmodesmata. These results demonstrate that NbMPK3/6 directly phosphorylate ToCV P7, modulating antiviral defence mechanisms by downregulating callose deposition at plasmodesmata and thereby enhancing ToCV transmission in N. benthamiana. This study sheds light on the intricate arms race between host defence and viral counter-defence strategies.
Collapse
Affiliation(s)
- Lixiao Feng
- Longping Branch, Biology College of Hunan University, Changsha, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Xiangwen Luo
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Institute of Plant Protection of Hunan Academy of Agricultural Science, Changsha, China
| | - Liping Huang
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Institute of Plant Protection of Hunan Academy of Agricultural Science, Changsha, China
| | - Yu Zhang
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Institute of Plant Protection of Hunan Academy of Agricultural Science, Changsha, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shijun Li
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Zhanhong Zhang
- Longping Branch, Biology College of Hunan University, Changsha, China
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Institute of Plant Protection of Hunan Academy of Agricultural Science, Changsha, China
| | - Xiao Yang
- Longping Branch, Biology College of Hunan University, Changsha, China
| | - Xin Wang
- Longping Branch, Biology College of Hunan University, Changsha, China
| | - Xian OuYang
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Institute of Plant Protection of Hunan Academy of Agricultural Science, Changsha, China
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Xiaobin Shi
- Longping Branch, Biology College of Hunan University, Changsha, China
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Institute of Plant Protection of Hunan Academy of Agricultural Science, Changsha, China
| | - Deyong Zhang
- Longping Branch, Biology College of Hunan University, Changsha, China
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Institute of Plant Protection of Hunan Academy of Agricultural Science, Changsha, China
| | - Xiaorong Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jian Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China.
- Yuelushan Laboratory, Changsha, China.
| | - Songbai Zhang
- Longping Branch, Biology College of Hunan University, Changsha, China.
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Institute of Plant Protection of Hunan Academy of Agricultural Science, Changsha, China.
- Yuelushan Laboratory, Changsha, China.
| | - Yong Liu
- Longping Branch, Biology College of Hunan University, Changsha, China.
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Institute of Plant Protection of Hunan Academy of Agricultural Science, Changsha, China.
- Yuelushan Laboratory, Changsha, China.
| |
Collapse
|
7
|
Wang NN, Xiu KY, Deng M, Liu QY, Jin DD, Zhao QM, Su HQ, Qiu TT, Wang HY, Liu YJ, Jiang XL, Xia T, Gao LP. Effects of phosphorylation on CsTT12 transport function: A comparative phosphoproteomic analysis of flavonoid biosynthesis in tea plants (Camellia sinensis). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2420-2436. [PMID: 39488740 DOI: 10.1111/tpj.17120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/12/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
Monomeric flavan-3-ols and their oligomeric forms, proanthocyanidins (PAs), are closely related to the bitterness of tea beverages. Monomeric flavan-3-ols are characteristic flavor compounds in tea. Increasing the content of PAs and anthocyanins enhances the resistance of tea plants to pathogen invasion but decreases the quality of tea beverages. MATE family transporters play a critical role in transferring monomeric flavan-3-ols and anthocyanins into vacuoles for storage or subsequent condensation into PAs. Their activities modulate the ratio of monomeric flavan-3-ols to PAs and increase anthocyanin content in tea plants. In this study, it was observed that the gene expression and protein phosphorylation level of the MATE transporter CsTT12, a vacuole-localized flavonoid transporter, were notably upregulated following exogenous sucrose treatment, promoting PA synthesis in tea plants. Further analysis revealed that overexpression of CsTT12 and CsTT12S17D significantly increased the content of anthocyanins and PAs in plants, whereas CsTT12S17A did not. In CsTT12 knockdown plants, PA's accumulation decreased significantly, while monomeric catechin content increased. Moreover, phosphorylation modification enhanced the vacuolar membrane localization of CsTT12, whereas dephosphorylation weakened its vacuolar membrane localization. This study uncovers the crucial role of phosphorylation in flavonoid biosynthesis and provides insights into balancing quality improvements and resistance enhancement.
Collapse
Affiliation(s)
- Na-Na Wang
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Ke-Yan Xiu
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Min Deng
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Qi-Yun Liu
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Di-Di Jin
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Qiao-Mei Zhao
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Huang-Qiang Su
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Ting-Ting Qiu
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Hai-Yan Wang
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Ya-Jun Liu
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Xiao-Lan Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Li-Ping Gao
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| |
Collapse
|
8
|
Lu Z, Wang X, Lin X, Mostafa S, Zou H, Wang L, Jin B. Plant anthocyanins: Classification, biosynthesis, regulation, bioactivity, and health benefits. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109268. [PMID: 39520908 DOI: 10.1016/j.plaphy.2024.109268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/27/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Anthocyanins are naturally water-soluble pigments of plants, which can be pink, orange, red, purple, or blue. Anthocyanins belong to a subcategory of flavonoids known as polyphenols and are consumed in plant-based foods. The antioxidant properties of anthocyanins benefit human health. However, there has been no comprehensive review of the classification, distribution, and biosynthesis of anthocyanins and their regulation in plants, along with their potential health benefits. In this review, we provide a systematic synthesis of recent progress in anthocyanin research, specifically focusing on the classification, biosynthetic pathways, regulatory mechanisms, bioactivity, and health benefits. We bridge the gaps in understanding anthocyanin biological significance and potential applications. Furthermore, we discuss future directions for anthocyanin research, such as biotechnology, bioavailability, and the integration of artificial intelligence. We highlight pivotal research questions that warrant further exploration in the field of anthocyanin research.
Collapse
Affiliation(s)
- Zhaogeng Lu
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, 225009, China
| | - Xinwen Wang
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, 225009, China
| | - Xinyi Lin
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, 225009, China
| | - Salma Mostafa
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, 225009, China
| | - Helin Zou
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, 225009, China
| | - Li Wang
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, 225009, China
| | - Biao Jin
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, 225009, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
9
|
Song Y, Sun X, Guo X, Ding X, Chen J, Tang H, Zhang Z, Dong W. Shading increases the susceptibility of alfalfa (Medicago sativa) to Pst. DC3000 by inhibiting the expression of MsIFS1. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109191. [PMID: 39406004 DOI: 10.1016/j.plaphy.2024.109191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/06/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024]
Abstract
Shade is a stressful factor for most plants, leading to both morphological and physiological changes, and often resulting in increased susceptibility to diseases and pathogen attacks. Our study revealed that the isoflavonoid synthesis pathway was inhibited in alfalfa under shade, resulting in a significant reduction in disease resistance. Overexpression of MsIFS1, a switch regulator in isoflavonoid synthesis, led to a notable increase in endogenous isoflavonoids and enhanced resistance to Pseudomonas syringae pv. tomato DC3000 (Pst. DC3000). Conversely, MsIFS1-RNAi had the opposite effect. Yeast one-hybrid (Y1H) assays revealed that the shade-responsive transcription factor MsWRKY41 could directly bind to the MsIFS1 promoter. This interaction was confirmed through Dual-Luciferase Reporter (Dual-LUC) and Chromatin Immunoprecipitation coupled with quantitative PCR (ChIP-qPCR) assays, both in vitro and in vivo. Overexpression of MsWRKY41 not only enhanced alfalfa's resistance to Pst. DC3000 but also promoted the accumulation of isoflavonoids. Additionally, yeast two-hybrid (Y2H) assays showed that neither MsWRKY41 nor MsIFS1 physically interacted with the Type III effector (T3SE) HopZ1 secreted by Pst. DC3000, suggesting that the MsWRKY41-MsIFS1 module is not a direct target of HopZ1. These findings provide valuable theoretical insights and genetic resources for the development of shade-tolerant alfalfa with enhanced disease resistance.
Collapse
Affiliation(s)
- Yuguang Song
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, PR China
| | - Xueying Sun
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, PR China
| | - Xinying Guo
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, PR China
| | - Xinru Ding
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, PR China
| | - Jifeng Chen
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, PR China
| | - Haoyan Tang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, PR China
| | - Zhaoran Zhang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, PR China
| | - Wei Dong
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, PR China.
| |
Collapse
|
10
|
Hu Y, Gong Z, Yan Y, Zhang J, Shao A, Li H, Wang P, Zhang S, Cheng C, Zhang J. ChBBX6 and ChBBX18 are positive regulators of anthocyanins biosynthesis and carotenoids degradation in Cerasus humilis. Int J Biol Macromol 2024; 282:137195. [PMID: 39489264 DOI: 10.1016/j.ijbiomac.2024.137195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/13/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
B-box zinc-finger transcription factor (BBX) plays important regulatory roles in plant secondary metabolism. Here, we identified 21 BBXs that could be further categorized into five subfamilies from Cerasus humilis. Two segmentally duplicated Subfamily IV members, ChBBX6 and ChBBX18, were found to share high homology with reported anthocyanin-related BBXs and express highly in fruits with high anthocyanins but low carotenoids contents. Their transient overexpression in apple and C. humilis fruits both led to significantly increased anthocyanins accumulation and significantly upregulated expression of anthocyanins-related genes. However, their overexpression resulted in decreased carotenoids accumulation and greatly upregulated the expression of carotenoids-related genes especially degradation-related genes. Additionally, their overexpression both greatly improved the ABA content in C. humilis fruits. Through yeast one-hybrid and dual-luciferase reporter assays, we found that both ChBBX6 and ChBBX18 could bind to and activate the promoters of chalcone synthase (ChCHS), flavanone 3-hydroxylase (ChF3H), and 9-cis-epoxycarotenoid dioxygenase 5 (ChNCED5). Our study demonstrates that ChBBX6 and ChBBX18 are positive regulators of anthocyanins biosynthesis and carotenoids degradation and can provide basis for understanding the roles of BBX genes in C. humilis.
Collapse
Affiliation(s)
- Yang Hu
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Zhiqian Gong
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Yiming Yan
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Jiating Zhang
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Anping Shao
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Hao Li
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Pengfei Wang
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Shuai Zhang
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Chunzhen Cheng
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China.
| | - Jiancheng Zhang
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China.
| |
Collapse
|
11
|
Wang C, Liu Y, Li Y, Guo L, Li C. Analysis of bZIP transcription factors in Rhododendron simsii and functional study of RsbZIP6 in regulating anthocyanin biosynthesis. Int J Biol Macromol 2024; 280:135889. [PMID: 39307497 DOI: 10.1016/j.ijbiomac.2024.135889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
The basic leucine zipper (bZIP) transcription factors play a critical role in various plant biological processes, including anthocyanin biosynthesis. This study focuses on Rhododendron simsii, a notable ornamental species with insufficiently explored bZIP transcription factors. We identified 66 bZIP transcription factors in the R. simsii genome and conducted comprehensive bioinformatics analyses to determine their gene localization, phylogenetic relationships, grouping, gene/protein structure, duplication events, synteny, and expression profiles. Our analysis identified RsbZIP6, a homolog of HY5 known to influence anthocyanin biosynthesis in many plants, as a potential regulator of this pathway. We cloned the complete coding sequence of RsbZIP6, which encodes a 170-amino acid protein spanning 510 bp. Subcellular localization analysis verified the nuclear presence of the RsbZIP6 protein. RT-qPCR analysis revealed the highest expression of RsbZIP6 in petals, which correlated with anthocyanin accumulation. Transgenic experiments indicated that overexpressing RsbZIP6 in Arabidopsis enhanced anthocyanin accumulation by upregulating genes involved in anthocyanin biosynthesis (4CL, CHS, CHI, DFR, F3H, F3'H, ANS and UF3GT). Our findings enhance understanding of the bZIP transcription factor family in R. simsii and underscore the vital role of RsbZIP6 in anthocyanin biosynthesis, providing insights for future genetic enhancement strategies.
Collapse
Affiliation(s)
- Cheng Wang
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China; Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Xiaogan 432000, China
| | - Yilin Liu
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Yan Li
- Department of Biology and Chemical Engineering, Weihai Vocational College, Weihai 264200, China
| | - Lifan Guo
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Changchun Li
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China; Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Xiaogan 432000, China.
| |
Collapse
|
12
|
Gao Z, Sun Y, Zhu Z, Ni N, Sun S, Nie M, Du W, Irfan M, Chen L, Zhang L. Transcription factors LvBBX24 and LvbZIP44 coordinated anthocyanin accumulation in response to light in lily petals. HORTICULTURE RESEARCH 2024; 11:uhae211. [PMID: 39372289 PMCID: PMC11450212 DOI: 10.1093/hr/uhae211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/23/2024] [Indexed: 10/08/2024]
Abstract
Lily (Lilium spp.), a horticultural crop serving both ornamental and edible functions, derives its coloration primarily from anthocyanins. However, limited studies have been conducted on the accumulation of anthocyanins within lilies. In this study, we cloned a light-induced transcription factor named as LvBBX24 in lilies. Through genetic and biochemical analysis, we determined that LvBBX24 could upregulate the transcription of LvMYB5 and facilitate anthocyanin synthesis. Moreover, we identified that darkness promoted the degradation of LvBBX24 protein. Through screening a yeast library, we identified LvbZIP44 acts as its interacting partner. Genetic testing confirmed that LvbZIP44 also plays a role in promoting lily anthocyanin synthesis. This indicates a potential synergistic regulatory effect between LvBBX24 and LvbZIP44. Our study indicates that LvBBX24 and LvbZIP44 cooperate to regulate anthocyanin accumulation in lily petals. These findings provide compelling evidence supporting the idea that LvBBX24 and LvbZIP44 may form a looped helix surrounding the LvMYB5 promoter region to regulate anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Zhenhua Gao
- Key Laboratory of Agriculture Biotechnology, Key Laboratory of Protected Horticulture (Ministry of Education), College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110161, China
| | - Yibo Sun
- Key Laboratory of Agriculture Biotechnology, Key Laboratory of Protected Horticulture (Ministry of Education), College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110161, China
| | - Ziman Zhu
- Key Laboratory of Agriculture Biotechnology, Key Laboratory of Protected Horticulture (Ministry of Education), College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110161, China
| | - Na Ni
- Key Laboratory of Agriculture Biotechnology, Key Laboratory of Protected Horticulture (Ministry of Education), College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110161, China
| | - Shaokun Sun
- Institute of Vegetable Research, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning 110161, China
| | - Mengyao Nie
- Key Laboratory of Agriculture Biotechnology, Key Laboratory of Protected Horticulture (Ministry of Education), College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110161, China
| | - Weifeng Du
- Key Laboratory of Agriculture Biotechnology, Key Laboratory of Protected Horticulture (Ministry of Education), College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110161, China
| | - Muhammad Irfan
- Department of Biotechnology, University of Sargodha, Sargodha Pakistan
| | - Lijing Chen
- Key Laboratory of Agriculture Biotechnology, Key Laboratory of Protected Horticulture (Ministry of Education), College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110161, China
| | - Li Zhang
- Key Laboratory of Agriculture Biotechnology, Key Laboratory of Protected Horticulture (Ministry of Education), College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110161, China
| |
Collapse
|
13
|
Liu L, Kong J, Fan P, Wang Y, Duan W, Liang Z, Matus JT, Dai Z. Supplementing with monochromatic blue LED light during the day, rather than at night, increases anthocyanins in the berry skin of grapevine (Vitis vinifera L.). PLANTA 2024; 260:69. [PMID: 39127837 DOI: 10.1007/s00425-024-04500-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
MAIN CONCLUSION Supplying monochromatic blue LED light during the day, but not at night, promotes early coloration and improves anthocyanin accumulation in the skin of grape berries. Specific light spectra, such as blue light, are known to promote the biosynthesis and accumulation of anthocyanins in fruit skins. However, research is scarce on whether supplement of blue light during different periods of one day can differ in their effect. Here, we compared the consequences of supplying blue light during the day and night on the accumulation of anthocyanins in pigmented grapevine (Vitis vinifera) berries. Two treatments of supplemented monochromatic blue light were tested, with light emitting diodes (LED) disposed close to the fruit zone, irradiating between 8:00 and 18:00 (Dayblue) or between 20:00 and 6:00 (Nightblue). Under the Dayblue treatment, berry coloration was accelerated and total anthocyanins in berry skins increased faster than the control (CK) and also when compared to the Nightblue condition. In fact, total anthocyanin content was similar between CK and Nightblue. qRT-PCR analysis indicated that Dayblue slightly improved the relative expression of the anthocyanin-structural gene UFGT and its regulator MYBA1. Instead, the expression of the light-reception and -signaling related genes CRY, HY5, HYH, and COP1 rapidly increased under Dayblue. This study provides insights into the effect of supplementing monochromatic LED blue light during the different periods of one day, on anthocyanins accumulation in the berry skin.
Collapse
Affiliation(s)
- Li Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Science and Enology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junhua Kong
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Science and Enology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Peige Fan
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Science and Enology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongjian Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Science and Enology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Wei Duan
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Science and Enology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Zhenchang Liang
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Science and Enology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - José Tomás Matus
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, 46980, Paterna, Valencia, Spain
| | - Zhanwu Dai
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Science and Enology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
14
|
Lu Z, He J, Fu J, Huang Y, Wang X. WRKY75 regulates anthocyanin accumulation in juvenile citrus tissues. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:52. [PMID: 39130615 PMCID: PMC11315850 DOI: 10.1007/s11032-024-01490-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/24/2024] [Indexed: 08/13/2024]
Abstract
The anthocyanin accumulation in juvenile tissues can enhance the ornamental value, attract pollinators, and help improve abiotic stress. Although transcriptional regulation studies of anthocyanin have been relatively extensive, there are few reports on the mechanism of anthocyanin accumulation in young tissues. This study reveals that many juvenile citrus tissues (flowers, leaves, and pericarp) undergo transient accumulation of anthocyanins, exhibiting a red coloration. Using weighted gene co-expression network analysis (WGCNA) identified CitWRKY75 as a candidate gene. After detecting the expression levels of CitWRKY75 in various citrus juvenile tissues, the expression trend of CitWRKY75 was highly consistent with the red exhibiting and fading. Overexpression of CitWRKY75 in tobacco significantly increased the anthocyanin content. LUC and yeast one-hybrid assay demonstrated that CitWRKY75 could bind to the promoter of CitRuby1(encoding the key transcription factor promoting anthocyanin accumulation) and promote its expression. Finally, comparing the expression levels of CitWRKY75 and CitRuby1 in the late development stage of blood orange found that CitWRKY75 was not the main regulatory factor for anthocyanin accumulation in the later stage. This study used reverse genetics to identify a transcription factor, CitWRKY75, upstream of CitRuby1, which promotes anthocyanin accumulation in citrus juvenile tissues. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01490-9.
Collapse
Affiliation(s)
- Zhihao Lu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
| | - Jiaxian He
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130 Sichuan Province China
| | - Jialing Fu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
| | - Yuping Huang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
| | - Xia Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| |
Collapse
|
15
|
Zhang N, Wei CQ, Xu DJ, Deng ZP, Zhao YC, Ai LF, Sun Y, Wang ZY, Zhang SW. Photoregulatory protein kinases fine-tune plant photomorphogenesis by directing a bifunctional phospho-code on HY5 in Arabidopsis. Dev Cell 2024; 59:1737-1749.e7. [PMID: 38677285 DOI: 10.1016/j.devcel.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/28/2023] [Accepted: 04/04/2024] [Indexed: 04/29/2024]
Abstract
Photomorphogenesis is a light-dependent plant growth and development program. As the core regulator of photomorphogenesis, ELONGATED HYPOCOTYL 5 (HY5) is affected by dynamic changes in its transcriptional activity and protein stability; however, little is known about the mediators of these processes. Here, we identified PHOTOREGULATORY PROTEIN KINASE 1 (PPK1), which interacts with and phosphorylates HY5 in Arabidopsis, as one such mediator. The phosphorylation of HY5 by PPK1 is essential to establish high-affinity binding with B-BOX PROTEIN 24 (BBX24) and CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), which inhibit the transcriptional activity and promote the degradation of HY5, respectively. As such, PPKs regulate not only the binding of HY5 to its target genes under light conditions but also HY5 degradation when plants are transferred from light to dark. Our data identify a PPK-mediated phospho-code on HY5 that integrates the molecular mechanisms underlying the regulation of HY5 to precisely control plant photomorphogenesis.
Collapse
Affiliation(s)
- Nan Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Chuang-Qi Wei
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA; Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Da-Jin Xu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Zhi-Ping Deng
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ya-Chao Zhao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Lian-Feng Ai
- Technology Center of Shijiazhuang Customs, Shijiazhuang 050051, China
| | - Ying Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA.
| | - Sheng-Wei Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China.
| |
Collapse
|
16
|
Wang W, Ouyang J, Li Y, Zhai C, He B, Si H, Chen K, Rose JKC, Jia W. A signaling cascade mediating fruit trait development via phosphorylation-modulated nuclear accumulation of JAZ repressor. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1106-1125. [PMID: 38558522 DOI: 10.1111/jipb.13654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
It is generally accepted that jasmonate-ZIM domain (JAZ) repressors act to mediate jasmonate (JA) signaling via CORONATINE-INSENSITIVE1 (COI1)-mediated degradation. Here, we report a cryptic signaling cascade where a JAZ repressor, FvJAZ12, mediates multiple signaling inputs via phosphorylation-modulated subcellular translocation rather than the COI1-mediated degradation mechanism in strawberry (Fragaria vesca). FvJAZ12 acts to regulate flavor metabolism and defense response, and was found to be the target of FvMPK6, a mitogen-activated protein kinase that is capable of responding to multiple signal stimuli. FvMPK6 phosphorylates FvJAZ12 at the amino acid residues S179 and T183 adjacent to the PY residues, thereby attenuating its nuclear accumulation and relieving its repression for FvMYC2, which acts to control the expression of lipoxygenase 3 (FvLOX3), an important gene involved in JA biosynthesis and a diverse array of cellular metabolisms. Our data reveal a previously unreported mechanism for JA signaling and decipher a signaling cascade that links multiple signaling inputs with fruit trait development.
Collapse
Affiliation(s)
- Wei Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jinyao Ouyang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yating Li
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Changsheng Zhai
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Bing He
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Huahan Si
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Kunsong Chen
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Jocelyn K C Rose
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, 14853, NY, USA
| | - Wensuo Jia
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830000, China
| |
Collapse
|
17
|
Pei Z, Huang Y, Ni J, Liu Y, Yang Q. For a Colorful Life: Recent Advances in Anthocyanin Biosynthesis during Leaf Senescence. BIOLOGY 2024; 13:329. [PMID: 38785811 PMCID: PMC11117936 DOI: 10.3390/biology13050329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Leaf senescence is the last stage of leaf development, and it is accompanied by a leaf color change. In some species, anthocyanins are accumulated during leaf senescence, which are vital indicators for both ornamental and commercial value. Therefore, it is essential to understand the molecular mechanism of anthocyanin accumulation during leaf senescence, which would provide new insight into autumn coloration and molecular breeding for more colorful plants. Anthocyanin accumulation is a surprisingly complex process, and significant advances have been made in the past decades. In this review, we focused on leaf coloration during senescence. We emphatically discussed several networks linked to genetic, hormonal, environmental, and nutritional factors in regulating anthocyanin accumulation during leaf senescence. This paper aims to provide a regulatory model for leaf coloration and to put forward some prospects for future development.
Collapse
Affiliation(s)
- Ziqi Pei
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; (Z.P.); (Y.H.); (Y.L.)
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing 100083, China
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Yifei Huang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; (Z.P.); (Y.H.); (Y.L.)
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing 100083, China
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Junbei Ni
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Yong Liu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; (Z.P.); (Y.H.); (Y.L.)
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing 100083, China
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Qinsong Yang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; (Z.P.); (Y.H.); (Y.L.)
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing 100083, China
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
18
|
Jin J, Wang W, Fan D, Hao Q, Jia W. Emerging Roles of Mitogen-Activated Protein Kinase Signaling Pathways in the Regulation of Fruit Ripening and Postharvest Quality. Int J Mol Sci 2024; 25:2831. [PMID: 38474080 DOI: 10.3390/ijms25052831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/15/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Fleshy fruit ripening is a unique biological process that involves dramatic changes in a diverse array of cellular metabolisms. The regulation of these metabolisms is essentially mediated by cellular signal transduction of internal (e.g., hormones) and external cues (i.e., environmental stimuli). Mitogen-activated protein kinase (MAPK) signaling pathways play crucial roles in a diverse array of biological processes, such as plant growth, development and biotic/abiotic responses. Accumulating evidence suggests that MAPK signaling pathways are also implicated in fruit ripening and quality formation. However, while MAPK signaling has been extensively reviewed in Arabidopsis and some crop plants, the comprehensive picture of how MAPK signaling regulates fruit ripening and quality formation remains unclear. In this review, we summarize and discuss research in this area. We first summarize recent studies on the expression patterns of related kinase members in relation to fruit development and ripening and then summarize and discuss the crucial evidence of the involvement of MAPK signaling in fruit ripening and quality formation. Finally, we propose several perspectives, highlighting the research matters and questions that should be afforded particular attention in future studies.
Collapse
Affiliation(s)
- Juan Jin
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China
| | - Wei Wang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Dingyu Fan
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China
| | - Qing Hao
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China
| | - Wensuo Jia
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China
- College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
19
|
Song Z, Zhao F, Chu L, Lin H, Xiao Y, Fang Z, Wang X, Dong J, Lyu X, Yu D, Liu B, Gai J, Xu D. The GmSTF1/2-GmBBX4 negative feedback loop acts downstream of blue-light photoreceptors to regulate isoflavonoid biosynthesis in soybean. PLANT COMMUNICATIONS 2024; 5:100730. [PMID: 37817409 PMCID: PMC10873893 DOI: 10.1016/j.xplc.2023.100730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/18/2023] [Accepted: 10/05/2023] [Indexed: 10/12/2023]
Abstract
Isoflavonoids, secondary metabolites derived from the phenylalanine pathway, are predominantly biosynthesized in legumes, especially soybean (Glycine max). They are not only essential for plant responses to biotic and abiotic stresses but also beneficial to human health. In this study, we report that light signaling controls isoflavonoid biosynthesis in soybean. Blue-light photoreceptors (GmCRY1s, GmCRY2s, GmPHOT1s, and GmPHOT2s) and the transcription factors GmSTF1 and GmSTF2 promote isoflavonoid accumulation, whereas the E3 ubiquitin ligase GmCOP1b negatively regulates isoflavonoid biosynthesis. GmPHOT1s and GmPHOT2s stabilize GmSTF1/2, whereas GmCOP1b promotes the degradation of these two proteins in soybean. GmSTF1/2 regulate the expression of approximately 27.9% of the genes involved in soybean isoflavonoid biosynthesis, including GmPAL2.1, GmPAL2.3, and GmUGT2. They also repress the expression of GmBBX4, a negative regulator of isoflavonoid biosynthesis in soybean. In addition, GmBBX4 physically interacts with GmSTF1 and GmSTF2 to inhibit their transcriptional activation activity toward target genes related to isoflavonoid biosynthesis. Thus, GmSTF1/2 and GmBBX4 form a negative feedback loop that acts downstream of photoreceptors in the regulation of isoflavonoid biosynthesis. Our study provides novel insights into the control of isoflavonoid biosynthesis by light signaling in soybean and will contribute to the breeding of soybean cultivars with high isoflavonoid content through genetic and metabolic engineering.
Collapse
Affiliation(s)
- Zhaoqing Song
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fengyue Zhao
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Li Chu
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Huan Lin
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuntao Xiao
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zheng Fang
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuncheng Wang
- Beijing Key Laboratory of Environmentally Friendly Management of Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jie Dong
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xiangguang Lyu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Deyue Yu
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Bin Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Junyi Gai
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Dongqing Xu
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
20
|
Ghorbel M, Zribi I, Haddaji N, Siddiqui AJ, Bouali N, Brini F. Genome-Wide Identification and Expression Analysis of Catalase Gene Families in Triticeae. PLANTS (BASEL, SWITZERLAND) 2023; 13:11. [PMID: 38202319 PMCID: PMC10781083 DOI: 10.3390/plants13010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/03/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024]
Abstract
Aerobic metabolism in plants results in the production of hydrogen peroxide (H2O2), a significant and comparatively stable non-radical reactive oxygen species (ROS). H2O2 is a signaling molecule that regulates particular physiological and biological processes (the cell cycle, photosynthesis, plant growth and development, and plant responses to environmental challenges) at low concentrations. Plants may experience oxidative stress and ultimately die from cell death if excess H2O2 builds up. Triticum dicoccoides, Triticum urartu, and Triticum spelta are different ancient wheat species that present different interesting characteristics, and their importance is becoming more and more clear. In fact, due to their interesting nutritive health, flavor, and nutritional values, as well as their resistance to different parasites, the cultivation of these species is increasingly important. Thus, it is important to understand the mechanisms of plant tolerance to different biotic and abiotic stresses by studying different stress-induced gene families such as catalases (CAT), which are important H2O2-metabolizing enzymes found in plants. Here, we identified seven CAT-encoding genes (TdCATs) in Triticum dicoccoides, four genes in Triticum urartu (TuCATs), and eight genes in Triticum spelta (TsCATs). The accuracy of the newly identified wheat CAT gene members in different wheat genomes is confirmed by the gene structures, phylogenetic relationships, protein domains, and subcellular location analyses discussed in this article. In fact, our analysis showed that the identified genes harbor the following two conserved domains: a catalase domain (pfam00199) and a catalase-related domain (pfam06628). Phylogenetic analyses showed that the identified wheat CAT proteins were present in an analogous form in durum wheat and bread wheat. Moreover, the identified CAT proteins were located essentially in the peroxisome, as revealed by in silico analyses. Interestingly, analyses of CAT promoters in those species revealed the presence of different cis elements related to plant development, maturation, and plant responses to different environmental stresses. According to RT-qPCR, Triticum CAT genes showed distinctive expression designs in the studied organs and in response to different treatments (salt, heat, cold, mannitol, and ABA). This study completed a thorough analysis of the CAT genes in Triticeae, which advances our knowledge of CAT genes and establishes a framework for further functional analyses of the wheat gene family.
Collapse
Affiliation(s)
- Mouna Ghorbel
- Department of Biology, College of Sciences, University of Hail, P.O. Box 2440, Ha’il City 81451, Saudi Arabia; (M.G.); (N.H.); (A.J.S.); (N.B.)
| | - Ikram Zribi
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, P.O. Box 1177, Sfax 3018, Tunisia;
| | - Najla Haddaji
- Department of Biology, College of Sciences, University of Hail, P.O. Box 2440, Ha’il City 81451, Saudi Arabia; (M.G.); (N.H.); (A.J.S.); (N.B.)
| | - Arif Jamal Siddiqui
- Department of Biology, College of Sciences, University of Hail, P.O. Box 2440, Ha’il City 81451, Saudi Arabia; (M.G.); (N.H.); (A.J.S.); (N.B.)
| | - Nouha Bouali
- Department of Biology, College of Sciences, University of Hail, P.O. Box 2440, Ha’il City 81451, Saudi Arabia; (M.G.); (N.H.); (A.J.S.); (N.B.)
| | - Faiçal Brini
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, P.O. Box 1177, Sfax 3018, Tunisia;
| |
Collapse
|
21
|
Zhang X, Xu S, Pan X, Wu Z, Ding L, Teng N. Low LdMYB12 expression contributes to petal spot deficiency in Lilium davidii var. unicolor. Mol Genet Genomics 2023; 298:1545-1557. [PMID: 37910265 DOI: 10.1007/s00438-023-02080-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/11/2023] [Indexed: 11/03/2023]
Abstract
Petal spots are widespread in plants, they are important for attracting pollinators and as economic traits in crop breeding. However, the genetic and developmental control of petal spots has seldom been investigated. To further clarify the development of petal spots formation, we performed comparative transcriptome analysis of Lilium davidii var. unicolor and Lilium davidii petals at the full-bloom stage. In comparison with the parental species L. davidii, petals of the lily variety L. davidii var. unicolor do not have the distinct anthocyanin spots. We show that among 7846 differentially expressed genes detected, LdMYB12 was identified as a candidate gene contributing to spot formation in lily petals. The expression level of LdMYB12 in the petals of L. davidii was higher than that in L. davidii var. unicolor petals. Moreover, overexpression of LdMYB12 led to the appearance of spots on the petals of L. davidii var. unicolor, accompanied by increased expression of anthocyanin synthesis-related genes. Taken together, these results indicate that abnormal expression of LdMYB12 contributes to petal spot deficiency in L. davidii var. unicolor.
Collapse
Affiliation(s)
- Xinqi Zhang
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Nanjing Agricultural University-Nanjing Oriole Island Modern Agricultural Development Co., Ltd. Jiangsu Graduate Workstation/Nanjing Agricultural University Baguazhou Modern Horticultural Industry Science and Technology Innovation Center, Nanjing, 210043, China
| | - Sujuan Xu
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Nanjing Agricultural University-Nanjing Oriole Island Modern Agricultural Development Co., Ltd. Jiangsu Graduate Workstation/Nanjing Agricultural University Baguazhou Modern Horticultural Industry Science and Technology Innovation Center, Nanjing, 210043, China
| | - Xue Pan
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Nanjing Agricultural University-Nanjing Oriole Island Modern Agricultural Development Co., Ltd. Jiangsu Graduate Workstation/Nanjing Agricultural University Baguazhou Modern Horticultural Industry Science and Technology Innovation Center, Nanjing, 210043, China
| | - Ze Wu
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Nanjing Agricultural University-Nanjing Oriole Island Modern Agricultural Development Co., Ltd. Jiangsu Graduate Workstation/Nanjing Agricultural University Baguazhou Modern Horticultural Industry Science and Technology Innovation Center, Nanjing, 210043, China
| | - Liping Ding
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Nanjing Agricultural University-Nanjing Oriole Island Modern Agricultural Development Co., Ltd. Jiangsu Graduate Workstation/Nanjing Agricultural University Baguazhou Modern Horticultural Industry Science and Technology Innovation Center, Nanjing, 210043, China
| | - Nianjun Teng
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
- Nanjing Agricultural University-Nanjing Oriole Island Modern Agricultural Development Co., Ltd. Jiangsu Graduate Workstation/Nanjing Agricultural University Baguazhou Modern Horticultural Industry Science and Technology Innovation Center, Nanjing, 210043, China.
| |
Collapse
|
22
|
Ghorbel M, Zribi I, Chihaoui M, Alghamidi A, Mseddi K, Brini F. Genome-Wide Investigation and Expression Analysis of the Catalase Gene Family in Oat Plants ( Avena sativa L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:3694. [PMID: 37960051 PMCID: PMC10650400 DOI: 10.3390/plants12213694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/25/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
Through the degradation of reactive oxygen species (ROS), different antioxidant enzymes, such as catalase (CAT), defend organisms against oxidative stress. These enzymes are crucial to numerous biological functions, like plant development and defense against several biotic and abiotic stresses. However, despite the major economic importance of Avena sativa around the globe, little is known about the CAT gene's structure and organization in this crop. Thus, a genome-wide investigation of the CAT gene family in oat plants has been carried out to characterize the potential roles of those genes under different stressors. Bioinformatic approaches were used in this study to predict the AvCAT gene's structure, secondary and tertiary protein structures, physicochemical properties, phylogenetic tree, and expression profiling under diverse developmental and biological conditions. A local Saudi oat variety (AlShinen) was used in this work. Here, ten AvCAT genes that belong to three groups (Groups I-III) were identified. All identified CATs harbor the two conserved domains (pfam00199 and pfam06628), a heme-binding domain, and a catalase activity motif. Moreover, identified AvCAT proteins were located in different compartments in the cell, such as the peroxisome, mitochondrion, and cytoplasm. By analyzing their promoters, different cis-elements were identified as being related to plant development, maturation, and response to different environmental stresses. Gene expression analysis revealed that three different AvCAT genes belonging to three different subgroups showed noticeable modifications in response to various stresses, such as mannitol, salt, and ABA. As far as we know, this is the first report describing the genome-wide analysis of the oat catalase gene family, and these data will help further study the roles of catalase genes during stress responses, leading to crop improvement.
Collapse
Affiliation(s)
- Mouna Ghorbel
- Department of Biology, College of Sciences, University of Hail, Ha’il City 81451, Saudi Arabia;
| | - Ikram Zribi
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, Sfax 3018, Tunisia;
| | - Mejda Chihaoui
- Computer Science Departement, Applied College, University of Ha’il, Ha’il City 81451, Saudi Arabia;
| | - Ahmad Alghamidi
- Department of Biology, College of Sciences, University of Hail, Ha’il City 81451, Saudi Arabia;
- National Center for Vegetation Cover & Combating Desertification, Riyadh 13312, Saudi Arabia
| | - Khalil Mseddi
- Department of Biology, Faculty of Science of Sfax, University of Sfax, Sfax 3000, Tunisia;
| | - Faiçal Brini
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, Sfax 3018, Tunisia;
| |
Collapse
|
23
|
Liu Y, Singh SK, Pattanaik S, Wang H, Yuan L. Light regulation of the biosynthesis of phenolics, terpenoids, and alkaloids in plants. Commun Biol 2023; 6:1055. [PMID: 37853112 PMCID: PMC10584869 DOI: 10.1038/s42003-023-05435-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/09/2023] [Indexed: 10/20/2023] Open
Abstract
Biosynthesis of specialized metabolites (SM), including phenolics, terpenoids, and alkaloids, is stimulated by many environmental factors including light. In recent years, significant progress has been made in understanding the regulatory mechanisms involved in light-stimulated SM biosynthesis at the transcriptional, posttranscriptional, and posttranslational levels of regulation. While several excellent recent reviews have primarily focused on the impacts of general environmental factors, including light, on biosynthesis of an individual class of SM, here we highlight the regulation of three major SM biosynthesis pathways by light-responsive gene expression, microRNA regulation, and posttranslational modification of regulatory proteins. In addition, we present our future perspectives on this topic.
Collapse
Affiliation(s)
- Yongliang Liu
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA
| | - Sanjay K Singh
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA
| | - Sitakanta Pattanaik
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA.
| | - Hongxia Wang
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences Chenshan Botanical Garden, 3888 Chenhua Road, 201602, Songjiang, Shanghai, China.
| | - Ling Yuan
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
24
|
Banerjee G, Singh D, Pandey C, Jonwal S, Basu U, Parida SK, Pandey A, Sinha AK. Rice Mitogen-Activated Protein Kinase regulates serotonin accumulation and interacts with cell cycle regulators under prolonged UV-B exposure. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108078. [PMID: 37832368 DOI: 10.1016/j.plaphy.2023.108078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/12/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023]
Abstract
Stress conditions such as UV-B exposure activates MAPKs in Arabidopsis and rice. UV-B radiation is hazardous to plant as it causes photosystem disruption, DNA damage and ROS generation. Here we report its effect on biological pathways by studying the global changes in transcript profile in rice seedling exposed to UV-B radiation for 1 h and 16 h. Short UV-B exposure (1 h) led to moderate changes, while a drastic change in transcript landscape was observed after long term UV-B exposure (16 h) in rice seedlings. Prolonged UV-B exposure negatively impacts the expression of cell cycle regulating genes and several other metabolic pathways in developing seedlings. MAP kinase signaling cascade gets activated upon UV-B exposure similar to reports in Arabidopsis indicating conservation of its function in both dicot and monocot. Expression analysis in inducible overexpression transgenic lines of MPK3 and MPK6 shows higher transcript abundance of phytoalexin biosynthesis gene like Oryzalexin D synthase and Momilactone A synthase, along with serotonin biosynthesis genes. An accumulation of serotonin was observed upon UV-B exposure and its abundance positively correlates with the MPK3 and MPK6 transcript level in the respective over-expression lines. Interestingly, multiple cell cycle inhibitor proteins including WEE1 and SMR1 interact with MPK3 and MPK6 thus, implying a major role of this pathway in cell cycle regulation under stress condition. Overall overexpression of MPK3 and MPK6 found to be detrimental for rice as overexpression lines shows higher cell death and compromised tolerance to UV-B.
Collapse
Affiliation(s)
- Gopal Banerjee
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Dhanraj Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Chandana Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Sarvesh Jonwal
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Udita Basu
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Swarup K Parida
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Ashutosh Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Alok Krishna Sinha
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India.
| |
Collapse
|
25
|
Zhou P, Li J, Jiang H, Jin Q, Wang Y, Xu Y. Analysis of bZIP gene family in lotus (Nelumbo) and functional study of NnbZIP36 in regulating anthocyanin synthesis. BMC PLANT BIOLOGY 2023; 23:429. [PMID: 37710161 PMCID: PMC10503039 DOI: 10.1186/s12870-023-04425-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND The basic leucine zipper (bZIP) family is a predominant group of transcription factors in plants, involved in regulating plant growth, development, and response to stressors. Additionally, the bZIP gene family has a key role in anthocyanin production. Despite the significant role of bZIP genes in plants, their potential contribution in lotus remains understudied. RESULTS A total of 124 bZIP genes (59 NnbZIPs and 65 NlbZIPs) were identified from genomes of two lotus species. These genes were classified into 13 groups according to the grouping principle of the Arabidopsis bZIP gene family. Analysis of promoter cis-acting elements indicated that most bZIP gene family members in lotus are associated with response to abiotic stresses. The promoters of some bZIP genes contain MYB binding sites that regulate anthocyanin synthesis. We examined the anthocyanin content of the petals from three different colored lotus, combined with transcriptome data analysis and qRT-PCR results, showing that the expression trends of NnbZIP36 and the homologous gene NlbZIP38 were significantly correlated with the anthocyanin content in lotus petals. Furthermore, we found that overexpression of NnbZIP36 in Arabidopsis promoted anthocyanin accumulation by upregulating the expression of genes (4CL, CHI, CHS, F3H, F3'H, DFR, ANS and UF3GT) related to anthocyanin synthesis. CONCLUSIONS Our study enhances the understanding of the bZIP gene family in lotus and provides evidence for the role of NnbZIP36 in regulating anthocyanin synthesis. This study also sets the stage for future investigations into the mechanism by which the bZIP gene family regulates anthocyanin biosynthesis in lotus.
Collapse
Affiliation(s)
- Ping Zhou
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jingwen Li
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Huiyan Jiang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Qijiang Jin
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yanjie Wang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yingchun Xu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
26
|
Song J, Lin R, Tang M, Wang L, Fan P, Xia X, Yu J, Zhou Y. SlMPK1- and SlMPK2-mediated SlBBX17 phosphorylation positively regulates CBF-dependent cold tolerance in tomato. THE NEW PHYTOLOGIST 2023; 239:1887-1902. [PMID: 37322592 DOI: 10.1111/nph.19072] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023]
Abstract
B-box (BBX) proteins are an important class of zinc finger transcription factors that play a critical role in plant growth and stress response. However, the mechanisms of how BBX proteins participate in the cold response in tomato remain unclear. Here, using approaches of reverse genetics, biochemical and molecular biology we characterized a BBX transcription factor, SlBBX17, which positively regulates cold tolerance in tomato (Solanum lycopersicum). Overexpressing SlBBX17 enhanced C-repeat binding factor (CBF)-dependent cold tolerance in tomato plants, whereas silencing SlBBX17 increased plant susceptibility to cold stress. Crucially, the positive role of SlBBX17 in CBF-dependent cold tolerance was dependent on ELONGATED HYPOCOTYL5 (HY5). SlBBX17 physically interacted with SlHY5 to directly promote the protein stability of SlHY5 and subsequently increased the transcriptional activity of SlHY5 on SlCBF genes under cold stress. Further experiments showed that cold-activated mitogen-activated protein kinases, SlMPK1 and SlMPK2, also physically interact with and phosphorylate SlBBX17 to enhance the interaction between SlBBX17 and SlHY5, leading to enhanced CBF-dependent cold tolerance. Collectively, the study unveiled a mechanistic framework by which SlMPK1/2-SlBBX17-SlHY5 regulated transcription of SlCBFs to enhance cold tolerance, thereby shedding light on the molecular mechanisms of how plants respond to cold stress via multiple transcription factors.
Collapse
Affiliation(s)
- Jianing Song
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Rui Lin
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Mingjia Tang
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Lingyu Wang
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Pengxiang Fan
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Xiaojian Xia
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Hainan Institute, Zhejiang University, Sanya, 572025, China
| | - Jingquan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yanhong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Hainan Institute, Zhejiang University, Sanya, 572025, China
- Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
27
|
Anthocyanins distribution, transcriptional regulation, epigenetic and post-translational modification in fruits. Food Chem 2023; 411:135540. [PMID: 36701918 DOI: 10.1016/j.foodchem.2023.135540] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/04/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
Anthocyanins have indispensable functions in plant resistance, human health, and fruit coloring, which arouse people's favorite. It has been reported that anthocyanins are widely found in fruits, and can be affected by numerous factors. In this review, we systematically summarize anthocyanin functions, classifications, distributions, biosynthesis, decoration, transportation, transcriptional regulation, DNA methylation, and post-translational regulation in fruits.
Collapse
|
28
|
Li S, Ou C, Wang F, Zhang Y, Ismail O, Elaziz YSA, Edris S, Jiang S, Li H. Mutant Ppbbx24-delgene positively regulates light-induced anthocyanin accumulation in the red pear.. [DOI: 10.1101/2023.05.19.541476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
AbstractAnthocyanins are pigments and nutrients in red pears regulated by BBX family genes. Herein, we characterized a 14-nucleotide deletion mutation in the coding region of thePpBBX24gene from ‘Red Zaosu’ pear (Pyrus pyrifoliaWhite Pear Group), namedPpbbx24-del. Genetic and biochemical approaches were used to compare the roles of PpBBX24 and Ppbbx24-del in anthocyanin accumulation.Ppbbx24-delplayed a positive role in anthocyanin biosynthesis of the ‘Red Zaosu’ pear peel by light treatment. Functional analyses based on overexpression in tobacco and transient overexpression in pear fruit peels showed thatPpbbx24-delpromoted anthocyanin accumulation. Cyanidin and peonidin were major differentially expressed anthocyanins, and transcript levels of some structural genes in the anthocyanin biosynthesis pathway were significantly increased. Protein interaction assays showed that PpBBX24 was located in the nucleus and interacted with PpHY5, whereas Ppbbx24-del was colocalized in the nucleoplasm and did not interact with PpHY5. PpHY5 and Ppbbx24-del had positive regulatory effects on the expression ofPpCHS,PpCHI, andPpMYB10when acting alone, but had cumulative effects on gene activation when acting simultaneously. Alone, PpBBX24 had no significant effect on the expression ofPpCHS,PpCHI, orPpMYB10, whereas it inhibited the activation effects of PpHY5 on downstream genes when it existed with PpHY5. Our study demonstrated that mutant Ppbbx24-del positively regulates the anthocyanin accumulation in pear. The results of this study clarify the mechanism and enrich the regulatory network of anthocyanin biosynthesis, which lays a theoretical foundation forPpbbx24-deluse to create red pear cultivars.
Collapse
|
29
|
Liu W, Mei Z, Yu L, Gu T, Li Z, Zou Q, Zhang S, Fang H, Wang Y, Zhang Z, Chen X, Wang N. The ABA-induced NAC transcription factor MdNAC1 interacts with a bZIP-type transcription factor to promote anthocyanin synthesis in red-fleshed apples. HORTICULTURE RESEARCH 2023; 10:uhad049. [PMID: 37200839 PMCID: PMC10186271 DOI: 10.1093/hr/uhad049] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/07/2023] [Indexed: 05/20/2023]
Abstract
Anthocyanins are valuable compounds in red-fleshed apples. The MdMYB10 transcription factor is an important regulator of the anthocyanin synthesis pathway. However, other transcription factors are key components of the complex network controlling anthocyanin synthesis and should be more thoroughly characterized. In this study, we used a yeast-based screening technology to identify MdNAC1 as a transcription factor that positively regulates anthocyanin synthesis. The overexpression of MdNAC1 in apple fruits and calli significantly promoted the accumulation of anthocyanins. In binding experiments, we demonstrated that MdNAC1 combines with the bZIP-type transcription factor MdbZIP23 to activate the transcription of MdMYB10 and MdUFGT. Our analyses also indicated that the expression of MdNAC1 is strongly induced by ABA because of the presence of an ABRE cis-acting element in its promoter. Additionally, the accumulation of anthocyanins in apple calli co-transformed with MdNAC1 and MdbZIP23 increased in the presence of ABA. Therefore, we revealed a novel anthocyanin synthesis mechanism involving the ABA-induced transcription factor MdNAC1 in red-fleshed apples.
Collapse
Affiliation(s)
- Wenjun Liu
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Zhuoxin Mei
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Lei Yu
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Tingting Gu
- College of Agricultural Science and Technology, Shandong Agricultural and Engineering University, Jinan, Shandong 250100, China
| | - Zhiqiang Li
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Qi Zou
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Shuhui Zhang
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Hongcheng Fang
- StateForestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Yicheng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Zongying Zhang
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | | | - Nan Wang
- Corresponding authors. E-mails: ;
| |
Collapse
|
30
|
Yang Z, Qin T, Jin H, Wang J, Li C, Lim KJ, Wang Z. Quantitative Phosphoproteomic Analysis Reveals Potential Regulatory Mechanisms of Early Fruit Enlargement in Pecan ( Carya illinoinensis). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4901-4914. [PMID: 36938622 DOI: 10.1021/acs.jafc.2c08876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Pecan (Carya illinoinensis) is a popular tree nut. Its fruit development undergoes slow growth, rapid expansion, core hardening, and kernel maturation stages. However, little is known about how pecan initiates fruit development and enlargement after pollination. In this study, we performed the first large-scale identification of potential phosphorylation sites and proteins at early development of pecan fruit by a label-free phosphoproteomic quantification technique. A total of 2155 phosphosites were identified from 1953 phosphopeptides covering 1311 phosphoproteins in unpollinated pistils and fruits at 5 and 9 weeks after pollination. Of these, 699 nonredundant phosphoproteins were differentially phosphorylated (DP). Furthermore, the phosphorylation intensity of DP proteins in brassinolide (BR) and auxin signaling were analyzed, and the function of CiBZR1 was investigated. Ectopic expression of CiBZR1 resulted in BR response phenotypes with curled leaves and fruit, while enlarged seed size in Arabidopsis. Subcellular localization and transcriptional activation activity assay demonstrated that CiBZR1 distributed in both the nucleus and cytoplasm with transcriptional activity. When two phosphosites mutated, CiBZR1S201P,S205G moved to the nucleus completely, while the transcriptional activity remained unchanged. Taken together, our data reveal extensive phosphoproteins and lay a foundation to comprehensively dissect the potential post-translational regulation mechanism of early development of pecan fruit.
Collapse
Affiliation(s)
- Zhengfu Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an District, 311300 Hangzhou, Zhejiang, China
| | - Tao Qin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an District, 311300 Hangzhou, Zhejiang, China
| | - Hongmiao Jin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an District, 311300 Hangzhou, Zhejiang, China
| | - Jiani Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an District, 311300 Hangzhou, Zhejiang, China
| | - Caiyun Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an District, 311300 Hangzhou, Zhejiang, China
| | - Kean-Jin Lim
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an District, 311300 Hangzhou, Zhejiang, China
| | - Zhengjia Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an District, 311300 Hangzhou, Zhejiang, China
| |
Collapse
|
31
|
Liu A, Zhu Y, Wang Y, Wang T, Zhao S, Feng K, Li L, Wu P. Molecular identification of phenylalanine ammonia lyase-encoding genes EfPALs and EfPAL2-interacting transcription factors in Euryale ferox. FRONTIERS IN PLANT SCIENCE 2023; 14:1114345. [PMID: 37008508 PMCID: PMC10064797 DOI: 10.3389/fpls.2023.1114345] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Flavonoids are one of the most important secondary metabolites in plants, and phenylalanine ammonia-lyase (PAL) is the first rate-limiting enzyme for their biosynthesis. However, detailed information on the regulation of PAL in plants is still little. In this study, PAL in E. ferox was identified and functionally analyzed, and its upstream regulatory network was investigated. Through genome-wide identification, we obtained 12 putative PAL genes from E. ferox. Phylogenetic tree and synteny analysis revealed that PAL in E. ferox was expanded and mostly preserved. Subsequently, enzyme activity assays demonstrated that EfPAL1 and EfPAL2 both catalyzed the production of cinnamic acid from phenylalanine only, with EfPAL2 exhibiting a superior enzyme activity. Overexpression of EfPAL1 and EfPAL2 in Arabidopsis thaliana, respectively, both enhanced the biosynthesis of flavonoids. Furthermore, two transcription factors, EfZAT11 and EfHY5, were identified by yeast one-hybrid library assays as binding to the promoter of EfPAL2, and further luciferase (LUC) activity analysis indicated that EfZAT11 promoted the expression of EfPAL2, while EfHY5 repressed the expression of EfPAL2. These results suggested that EfZAT11 and EfHY5 positively and negatively regulate flavonoid biosynthesis, respectively. Subcellular localization revealed that EfZAT11 and EfHY5 were localized in the nucleus. Our findings clarified the key EfPAL1 and EfPAL2 of flavonoid biosynthesis in E. ferox and established the upstream regulatory network of EfPAL2, which would provide novel information for the study of flavonoid biosynthesis mechanism.
Collapse
Affiliation(s)
- AiLian Liu
- College of Horticulture and Landscape Architecture, Yangzhou, Jiangsu, China
| | - Yue Zhu
- College of Horticulture and Landscape Architecture, Yangzhou, Jiangsu, China
| | - YuHao Wang
- College of Horticulture and Landscape Architecture, Yangzhou, Jiangsu, China
| | - TianYu Wang
- College of Horticulture and Landscape Architecture, Yangzhou, Jiangsu, China
| | - ShuPing Zhao
- College of Horticulture and Landscape Architecture, Yangzhou, Jiangsu, China
| | - Kai Feng
- College of Horticulture and Landscape Architecture, Yangzhou, Jiangsu, China
| | - LiangJun Li
- College of Horticulture and Landscape Architecture, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Peng Wu
- College of Horticulture and Landscape Architecture, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
32
|
Jia Z, Zhang M, Ma C, Wang Z, Wang Z, Fang Y, Wang J. Identification and Functional Validation of Auxin-Responsive Tabzip Genes from Wheat Leaves in Arabidopsis. Int J Mol Sci 2023; 24:ijms24010756. [PMID: 36614202 PMCID: PMC9821592 DOI: 10.3390/ijms24010756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Leaves are an essential and unique organ of plants, and many studies have proved that auxin has significant impacts on the architecture of leaves, thus the manipulation of the three-dimensional structure of a leaf could provide potential strategies for crop yields. In this study, 32 basic leucine zipper transcription factors (bZIP TFs) which responded to 50 μM of indole-acetic acid (IAA) were identified in wheat leaves by transcriptome analysis. Phylogenetic analysis indicated that the 32 auxin-responsive TabZIPs were classified into eight groups with possible different functions. Phenotypic analysis demonstrated that knocking out the homologous gene of the most down-regulated auxin-responsive TabZIP6D_20 in Arabidopsis (AtHY5) decreased its sensitivity to 1 and 50 μM IAA, while the TabZIP6D_20/hy5 complementary lines recovered its sensitivity to auxin as a wild type (Wassilewskija), suggesting that the down-regulated TabZIP6D_20 was a negative factor in the auxin-signaling pathway. These results demonstrated that the auxin-responsive TabZIP genes might have various and vital functions in the architecture of a wheat leaf under auxin response.
Collapse
Affiliation(s)
- Ziyao Jia
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China
| | - Mengjie Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China
| | - Can Ma
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Xianyang 712100, China
| | - Zanqiang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China
| | - Zhonghua Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China
| | - Yan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Xianyang 712100, China
- Correspondence: (Y.F.); (J.W.)
| | - Jun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China
- Correspondence: (Y.F.); (J.W.)
| |
Collapse
|