1
|
El-Shazoly RM, Othman AA, Zaheer MS, Al-Hossainy AF, Abdel-Wahab DA. Zinc oxide seed priming enhances drought tolerance in wheat seedlings by improving antioxidant activity and osmoprotection. Sci Rep 2025; 15:3863. [PMID: 39890839 PMCID: PMC11785979 DOI: 10.1038/s41598-025-86824-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/14/2025] [Indexed: 02/03/2025] Open
Abstract
Drought can affect all growth stages and has a significant effect on seed germination, which affects all physiological and metabolic germination processes. It also leads to dehydration, which increases the oxidation of lipids and membranes and disrupts the functioning of biomolecules in plants. Zinc is an essential element for several enzymes involved in metabolism, cell elongation, preservation of the strength and integrity of cell membranes, seed development, and resistance to environmental stress. A pot experiment was conducted to determine how ZnO seed priming, either in the form of ZnO NPs (nanopriming) or ZnO bulk priming (60 mg L- 1), counteracts the negative impacts of drought at different levels (80% and 60% FC) on wheat (Triticum aestivum L.) seedlings at the seedling stage. A recent experiment revealed that seed priming agents significantly mitigate the negative effects of drought stress, especially at 60% FC, by positively influencing various parameters of wheat seedlings. Notably, the POD activity increased by 91.8% and 289.9% for the shoots, 218.6% and 261.6% for the roots, the phenolic content increased by 194.4% for the shoots and 1139.6% for the roots, the H2O2 scavenging percentage increased by 124.9% and 135.4% for the shoots and 147.6% for the roots, and the lipid peroxidation inhibition percentage increased by 320.6% and 433% for the shoots. Moreover, the utilization of seed priming agents had a profound effect on free amino acids (393.8%, 502.8% for roots) and soluble carbohydrates (183.4% for roots) compared with those in stressed seedlings without priming. Experimental and computational methods (time-dependent density functional theory (TD-DFT)) were employed to perform IR and XRD analyses of the isolated molecules of the ZnO NPs/Iso. In conclusion, the application of ZnO NPs or bulk ZnO was found to create effective mechanical and physiological barriers, as confirmed by the analysis of antioxidant enzyme activities, nonenzymatic components, free radical scavenging, and osmoprotectant constituents.
Collapse
Affiliation(s)
- Rasha M El-Shazoly
- Botany and Microbiology Department, Faculty of Science, New Valley University, Al-Kharja, New Valley, 72511, Egypt.
| | - A A Othman
- Physics Department, Faculty of Science, Assiut University, Assiut, 71515, Egypt
| | - Muhammad Saqlain Zaheer
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Ahmed F Al-Hossainy
- Chemistry Department, Faculty of Science, New Valley University, Al-Wadi Al-Gadid, Al-Kharga, 72511, Egypt
- Chemistry Department, Faculty of Science, Northern Border University, 1321, Arar, Saudi Arabia
| | - Dalia A Abdel-Wahab
- Botany and Microbiology Department, Faculty of Science, New Valley University, Al-Kharja, New Valley, 72511, Egypt
| |
Collapse
|
2
|
Bouzidi NE, Grama SB, Khelef AE, Yang D, Li J. Inhibition of antioxidant enzyme activities enhances carotenogenesis in microalga Dactylococcus dissociatus MT1. Front Bioeng Biotechnol 2022; 10:1014604. [PMID: 36213061 PMCID: PMC9538356 DOI: 10.3389/fbioe.2022.1014604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Microalgal biotechnology has become a promising field of research for the production of valuable, sustainable and environmentally friendly byproducts, especially for carotenoids. Bulk accumulation of secondary carotenoids in microalgae are mostly induced by oxidative stress of cells. In this research, we investigated the effects of antioxidant enzyme activity inhibition on carotenogenesis in a microalga Dactylococcus dissociatus MT1. The activities of four major antioxidant enzyme families, namely superoxide dismutase (SOD), catalases (CAT), glutathione peroxydases (GPX) and ascorbate perxodases (APX), were inhibited by relevant inhibitors during the stressed cultivation of D. dissociatus to observe the effects on carotenogensis. A 91% decrease in activity was observed for CAT, comparing with controls without any inhibitors added, followed by 65%, 61%, and 47% for the enzymes SOD, APX, and GPX, respectively. Concomitantly, it was found that this partial inhibition had substantial influences on the accumulation of carotenoids, with the highest production levels obtained in CAT inhibition conditions and an increase of 2.6 times of carotenoid concentration observed, comparing with control cultivation conditions. We conclude that the modulation of antioxidant enzyme activities could lead to the overproduction of carotenoids in this microalgal cell culture, and we expect that this novel approach of optimizing carotenogenesis processes for D. dissociatus cell cultures could be transferrable to other cell culture systems and might have an important impact on the carotenoid production industry.
Collapse
Affiliation(s)
- Nour Elaimane Bouzidi
- Laboratory of Natural Substances, Biomolecules and Biotechnological Applications, University of Oum El Bouaghi, Oum El Bouaghi, Algeria
| | - Samir Borhane Grama
- Laboratory of Natural Substances, Biomolecules and Biotechnological Applications, University of Oum El Bouaghi, Oum El Bouaghi, Algeria
- *Correspondence: Samir Borhane Grama , ; Jian Li ,
| | - Aboubakeur Essedik Khelef
- Laboratory of Natural Substances, Biomolecules and Biotechnological Applications, University of Oum El Bouaghi, Oum El Bouaghi, Algeria
| | - Duanpeng Yang
- College of Chemical and Biological Engineering, Panzhihua University, Panzhihua, China
| | - Jian Li
- College of Chemical and Biological Engineering, Panzhihua University, Panzhihua, China
- *Correspondence: Samir Borhane Grama , ; Jian Li ,
| |
Collapse
|
3
|
Dao O, Kuhnert F, Weber APM, Peltier G, Li-Beisson Y. Physiological functions of malate shuttles in plants and algae. TRENDS IN PLANT SCIENCE 2022; 27:488-501. [PMID: 34848143 DOI: 10.1016/j.tplants.2021.11.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Subcellular compartmentalization confers evolutionary advantage to eukaryotic cells but entails the need for efficient interorganelle communication. Malate functions as redox carrier and metabolic intermediate. It can be shuttled across membranes through translocators. The interconversion of malate and oxaloacetate mediated by malate dehydrogenases requires oxidation/reduction of NAD(P)H/NAD(P)+; therefore, malate trafficking serves to transport reducing equivalents and this is termed the 'malate shuttle'. Although the term 'malate shuttle' was coined more than 50 years ago, novel functions are still emerging. This review highlights recent findings on the functions of malate shuttles in photorespiration, fatty acid β-oxidation, interorganelle signaling and its putative role in CO2-concentrating mechanisms. We compare and contrast knowledge in plants and algae, thereby providing an evolutionary perspective on redox trafficking in photosynthetic eukaryotes.
Collapse
Affiliation(s)
- Ousmane Dao
- Aix Marseille Univ, CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, Saint Paul-Lez-Durance 13108, France
| | - Franziska Kuhnert
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Gilles Peltier
- Aix Marseille Univ, CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, Saint Paul-Lez-Durance 13108, France
| | - Yonghua Li-Beisson
- Aix Marseille Univ, CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, Saint Paul-Lez-Durance 13108, France.
| |
Collapse
|
4
|
Nowicka B. Heavy metal-induced stress in eukaryotic algae-mechanisms of heavy metal toxicity and tolerance with particular emphasis on oxidative stress in exposed cells and the role of antioxidant response. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:16860-16911. [PMID: 35006558 PMCID: PMC8873139 DOI: 10.1007/s11356-021-18419-w] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/27/2021] [Indexed: 04/15/2023]
Abstract
Heavy metals is a collective term describing metals and metalloids with a density higher than 5 g/cm3. Some of them are essential micronutrients; others do not play a positive role in living organisms. Increased anthropogenic emissions of heavy metal ions pose a serious threat to water and land ecosystems. The mechanism of heavy metal toxicity predominantly depends on (1) their high affinity to thiol groups, (2) spatial similarity to biochemical functional groups, (3) competition with essential metal cations, (4) and induction of oxidative stress. The antioxidant response is therefore crucial for providing tolerance to heavy metal-induced stress. This review aims to summarize the knowledge of heavy metal toxicity, oxidative stress and antioxidant response in eukaryotic algae. Types of ROS, their formation sites in photosynthetic cells, and the damage they cause to the cellular components are described at the beginning. Furthermore, heavy metals are characterized in more detail, including their chemical properties, roles they play in living cells, sources of contamination, biochemical mechanisms of toxicity, and stress symptoms. The following subchapters contain the description of low-molecular-weight antioxidants and ROS-detoxifying enzymes, their properties, cellular localization, and the occurrence in algae belonging to different clades, as well as the summary of the results of the experiments concerning antioxidant response in heavy metal-treated eukaryotic algae. Other mechanisms providing tolerance to metal ions are briefly outlined at the end.
Collapse
Affiliation(s)
- Beatrycze Nowicka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
5
|
The mammalian-type thioredoxin reductase 1 confers a high-light tolerance to the green alga Chlamydomonas reinhardtii. Biochem Biophys Res Commun 2022; 596:97-103. [PMID: 35121375 DOI: 10.1016/j.bbrc.2022.01.088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/23/2022] [Indexed: 11/21/2022]
Abstract
Reactive oxygen species (ROS) can both act as a poison causing cell death and important signaling molecules among various organisms. Photosynthetic organisms inevitably produce ROS, making the appropriate elimination of ROS an essential strategy for survival. Interestingly, the unicellular green alga Chlamydomonas reinhardtii expresses a mammalian form of thioredoxin reductase, TR1, which functions as a ROS scavenger in animal cells. To investigate the properties of TR1 in C. reinhardtii, we generated TR1 knockout strains using CRISPR/Cas9-based genome editing. We found a reduced tolerance to high-light and ROS stresses in the TR1 knockout strains compared to the parental strain. In addition, the regulation of phototactic orientation, known to be regulated by ROS, was affected in the knockout strains. These results suggest that TR1 contributes to a ROS-scavenging pathway in C. reinhardtii.
Collapse
|
6
|
Wakao S, Niyogi KK. Chlamydomonas as a model for reactive oxygen species signaling and thiol redox regulation in the green lineage. PLANT PHYSIOLOGY 2021; 187:687-698. [PMID: 35237823 PMCID: PMC8491031 DOI: 10.1093/plphys/kiab355] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/13/2021] [Indexed: 05/15/2023]
Abstract
One-sentence summary: Advances in proteomic and transcriptomic studies have made Chlamydomonas a powerful research model in redox and reactive oxygen species regulation with unique and overlapping mechanisms with plants.
Collapse
Affiliation(s)
- Setsuko Wakao
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
- Author for communication: Senior author
| | - Krishna K. Niyogi
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA
| |
Collapse
|
7
|
Structural and functional insights into nitrosoglutathione reductase from Chlamydomonas reinhardtii. Redox Biol 2020; 38:101806. [PMID: 33316743 PMCID: PMC7744773 DOI: 10.1016/j.redox.2020.101806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/06/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
Protein S-nitrosylation plays a fundamental role in cell signaling and nitrosoglutathione (GSNO) is considered as the main nitrosylating signaling molecule. Enzymatic systems controlling GSNO homeostasis are thus crucial to indirectly control the formation of protein S-nitrosothiols. GSNO reductase (GSNOR) is the key enzyme controlling GSNO levels by catalyzing its degradation in the presence of NADH. Here, we found that protein extracts from the microalga Chlamydomonas reinhardtii catabolize GSNO via two enzymatic systems having specific reliance on NADPH or NADH and different biochemical features. Scoring the Chlamydomonas genome for orthologs of known plant GSNORs, we found two genes encoding for putative and almost identical GSNOR isoenzymes. One of the two, here named CrGSNOR1, was heterologously expressed and purified. Its kinetic properties were determined and the three-dimensional structures of the apo-, NAD+- and NAD+/GSNO-forms were solved. These analyses revealed that CrGSNOR1 has a strict specificity towards GSNO and NADH, and a conserved folding with respect to other plant GSNORs. The catalytic zinc ion, however, showed an unexpected variability of the coordination environment. Furthermore, we evaluated the catalytic response of CrGSNOR1 to thermal denaturation, thiol-modifying agents and oxidative modifications as well as the reactivity and position of accessible cysteines. Despite being a cysteine-rich protein, CrGSNOR1 contains only two solvent-exposed/reactive cysteines. Oxidizing and nitrosylating treatments have null or limited effects on CrGSNOR1 activity and folding, highlighting a certain resistance of the algal enzyme to redox modifications. The molecular mechanisms and structural features underlying the response to thiol-based modifications are discussed. Chlamydomonas protein extracts catalyze NAD(P)H-dependent GSNO degradation. Chlamydomonas GSNOR1 is a zinc-containing protein strictly relying on GSNO and NADH. The 3D-structure of CrGSNOR1 revealed a conserved folding with other plant GSNORs. CrGSNOR1 contains only two solvent-exposed/reactive cysteines. Oxidizing and nitrosylating treatments have limited effects on CrGSNOR1 activity.
Collapse
|
8
|
Adil MF, Sehar S, Han Z, Wa Lwalaba JL, Jilani G, Zeng F, Chen ZH, Shamsi IH. Zinc alleviates cadmium toxicity by modulating photosynthesis, ROS homeostasis, and cation flux kinetics in rice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114979. [PMID: 32585549 DOI: 10.1016/j.envpol.2020.114979] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/19/2020] [Accepted: 06/04/2020] [Indexed: 05/03/2023]
Abstract
Understanding of cadmium (Cd) uptake mechanism and development of lower Cd crop genotypes are crucial for combating its phytotoxicity and meeting 70% increase in food demand by 2050. Bio-accumulation of Cd continuously challenges quality of life specifically in regions without adequate environmental planning. Here, we investigated the mechanisms operating in Cd tolerance of two rice genotypes (Heizhan-43 and Yinni-801). Damage to chlorophyll contents and PSII, histochemical staining and quantification of reactive oxygen species (ROS), cell viability and osmolyte accumulation were studied to decipher the interactions between Cd and zinc (Zn) by applying two Cd and two Zn levels (alone as well as combined). Cd2+ and Ca2+ fluxes were also measured by employing sole Cd100 (100 μmol L-1) and Zn50 (50 μmol L-1), and their combination with microelectrode ion flux estimation (MIFE) technique. Cd toxicity substantially reduced chlorophyll contents and maximal photochemical efficiency (Fv/Fm) compared to control plants. Zn supplementation reverted the Cd-induced toxicity by augmenting osmoprotectants and interfering with ROS homeostasis under combined treatments, particularly in Yinni-801 genotype. Fluorescence microscopy indicated a unique pattern of live and dead root cells, depicting more damage with Cd10, Cd15 and Cd15+Zn50. Our results confer that Cd2+ impairs the uptake of Ca2+ whereas, Zn not only competes with Cd2+ but also Ca2+, thereby modifying ion homeostasis in rice plants. This study suggests that exogenous application of Zn is beneficial for rice plants in ameliorating Cd toxicity in a genotype and dose dependent manner by minimizing ROS generation and suppressing collective oxidative damage. The observations confer that Yinni-801 performed better than Heizhan-43 genotype mainly under combined Zn treatments with low-Cd, presenting Zn fortification as a solution to increase rice production.
Collapse
Affiliation(s)
- Muhammad Faheem Adil
- Department of Agronomy, College of Agriculture and Biotechnology, Key Laboratory of Crop Germplasm Resource, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Shafaque Sehar
- Department of Agronomy, College of Agriculture and Biotechnology, Key Laboratory of Crop Germplasm Resource, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Zhigang Han
- Department of Agronomy, College of Agriculture and Biotechnology, Key Laboratory of Crop Germplasm Resource, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Jonas Lwalaba Wa Lwalaba
- Department of Agronomy, College of Agriculture and Biotechnology, Key Laboratory of Crop Germplasm Resource, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Ghulam Jilani
- Institute of Soil Science, PMAS Arid Agriculture University, Rawalpindi, 46300, Pakistan
| | - Fanrong Zeng
- Department of Agronomy, College of Agriculture and Biotechnology, Key Laboratory of Crop Germplasm Resource, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, 2751, Australia; Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Imran Haider Shamsi
- Department of Agronomy, College of Agriculture and Biotechnology, Key Laboratory of Crop Germplasm Resource, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
9
|
Kuo EY, Cai MS, Lee TM. Ascorbate peroxidase 4 plays a role in the tolerance of Chlamydomonas reinhardtii to photo-oxidative stress. Sci Rep 2020; 10:13287. [PMID: 32764698 PMCID: PMC7414030 DOI: 10.1038/s41598-020-70247-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/27/2020] [Indexed: 01/01/2023] Open
Abstract
Ascorbate peroxidase (APX; EC 1.11.1.11) activity and transcript levels of CrAPX1, CrAPX2, and CrAPX4 of Chlamydomonas reinhardtii increased under 1,400 μE·m−2·s−1 condition (HL). CrAPX4 expression was the most significant. So, CrAPX4 was downregulated using amiRNA technology to examine the role of APX for HL acclimation. The CrAPX4 knockdown amiRNA lines showed low APX activity and CrAPX4 transcript level without a change in CrAPX1 and CrAPX2 transcript levels, and monodehydroascorbate reductase (MDAR), dehydroascorbate reductase (DHAR), and glutathione reductase (GR) activities and transcript levels. Upon exposure to HL, CrAPX4 knockdown amiRNA lines appeared a modification in the expression of genes encoding the enzymes in the ascorbate–glutathione cycle, including an increase in transcript level of CrVTC2, a key enzyme for ascorbate (AsA) biosynthesis but a decrease in MDAR and DHAR transcription and activity after 1 h, followed by increases in reactive oxygen species production and lipid peroxidation after 6 h and exhibited cell death after 9 h. Besides, AsA content and AsA/DHA (dehydroascorbate) ratio decreased in CrAPX4 knockdown amiRNA lines after prolonged HL treatment. Thus, CrAPX4 induction together with its association with the modulation of MDAR and DHAR expression for AsA regeneration is critical for Chlamydomonas to cope with photo-oxidative stress.
Collapse
Affiliation(s)
- Eva YuHua Kuo
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.,Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Meng-Siou Cai
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Tse-Min Lee
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan. .,Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.
| |
Collapse
|
10
|
Roccuzzo S, Couto N, Karunakaran E, Kapoore RV, Butler TO, Mukherjee J, Hansson EM, Beckerman AP, Pandhal J. Metabolic Insights Into Infochemicals Induced Colony Formation and Flocculation in Scenedesmus subspicatus Unraveled by Quantitative Proteomics. Front Microbiol 2020; 11:792. [PMID: 32457714 PMCID: PMC7220994 DOI: 10.3389/fmicb.2020.00792] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 04/02/2020] [Indexed: 01/15/2023] Open
Abstract
Microalgae can respond to natural cues from crustacean grazers, such as Daphnia, by forming colonies and aggregations called flocs. Combining microalgal biology, physiological ecology, and quantitative proteomics, we identified how infochemicals from Daphnia trigger physiological and cellular level changes in the microalga Scenedesmus subspicatus, underpinning colony formation and flocculation. We discovered that flocculation occurs at an energy-demanding ‘alarm’ phase, with an important role proposed in cysteine synthesis. Flocculation appeared to be initially stimulated by the production of an extracellular matrix where polysaccharides and fatty acids were present, and later sustained at an ‘acclimation’ stage through mitogen-activated protein kinase (MAPK) signaling cascades. Colony formation required investment into fatty acid metabolism, likely linked to separation of membranes during cell division. Higher energy demands were required at the alarm phase, which subsequently decreased at the acclimation stage, thus suggesting a trade-off between colony formation and flocculation. From an ecological and evolutionary perspective, our findings represent an improved understanding of the effect of infochemicals on microalgae-grazers interactions, and how they can therefore potentially impact on the structure of aquatic communities. Moreover, the mechanisms revealed are of interest in algal biotechnology, for exploitation in low-cost, sustainable microalgal biomass harvesting.
Collapse
Affiliation(s)
- Sebastiana Roccuzzo
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Narciso Couto
- Centre for Applied Pharmacokinetic Research, The University of Manchester, Manchester, United Kingdom
| | - Esther Karunakaran
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Rahul Vijay Kapoore
- Department of Biosciences, College of Science, Swansea University, Swansea, United Kingdom
| | - Thomas O Butler
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Joy Mukherjee
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Erika M Hansson
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Andrew P Beckerman
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Jagroop Pandhal
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
11
|
Sikdar A, Wang J, Hasanuzzaman M, Liu X, Feng S, Roy R, Sial TA, Lahori AH, Arockiam Jeyasundar PGS, Wang X. Phytostabilization of Pb-Zn Mine Tailings with Amorpha fruticosa Aided by Organic Amendments and Triple Superphosphate. Molecules 2020; 25:molecules25071617. [PMID: 32244753 PMCID: PMC7181007 DOI: 10.3390/molecules25071617] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
A greenhouse pot trial was conducted to investigate the effect of organic amendments combined with triple superphosphate on the bioavailability of heavy metals (HMs), Amorpha fruticosa growth and metal uptake from Pb-Zn mine tailings. Cattle manure compost (CMC), spent mushroom compost (SMC) and agricultural field soil (AFS) were applied to tailings at 5%, 10%, 20% and 30% w/w ratio, whereas sewage sludge (SS) and wood biochar (WB) were mixed at 2.5%, 5%, 10% and 20% w/w ratio. Triple superphosphate (TSP) was added to all the treatments at 4:1 (molar ratio). Amendments efficiently decreased DTPA-extracted Pb, Zn, Cd and Cu in treatments. Chlorophyll contents and shoot and root dry biomass significantly (p < 0.05) increased in the treatments of CMC (except T4 for chlorophyll b) and SMC, whereas treatments of SS (except T1 for chlorophyll a and b), WB and AFS (except T4 for chlorophyll a and b) did not show positive effects as compared to CK1. Bioconcentration factor (BCF) and translocation factor (TF) values in plant tissues were below 1 for most treatments. In amended treatments, soluble protein content increased, phenylalanine ammonialyase (PAL) and polyphenol oxidase (PPO) decreased, and catalase (CAT) activity showed varied results as compared to CK1 and CK2. Results suggested that A. fruticosa can be a potential metal phytostabilizer and use of CMC or SMC in combination with TSP are more effective than other combinations for the in situ stabilization of Pb-Zn mine tailings.
Collapse
Affiliation(s)
- Ashim Sikdar
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; (A.S.); (R.R.); or (T.A.S.); (P.G.S.A.J.)
- Department of Agroforestry and Environmental Science, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Jinxin Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; (A.S.); (R.R.); or (T.A.S.); (P.G.S.A.J.)
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling 712100, China
- Correspondence: or ; Tel.: +86-029-8708-0055
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh;
| | - Xiaoyang Liu
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China; (X.L.); (S.F.); (X.W.)
| | - Shulin Feng
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China; (X.L.); (S.F.); (X.W.)
| | - Rana Roy
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; (A.S.); (R.R.); or (T.A.S.); (P.G.S.A.J.)
- Department of Agroforestry and Environmental Science, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Tanveer Ali Sial
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; (A.S.); (R.R.); or (T.A.S.); (P.G.S.A.J.)
- Department of Soil Science, Sindh Agriculture University, Tandojam 70060, Pakistan
| | - Altaf Hussain Lahori
- Department of Environmental Sciences, Sindh Madressatul Islam University, Karachi 74000, Pakistan;
| | | | - Xiuqing Wang
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China; (X.L.); (S.F.); (X.W.)
| |
Collapse
|
12
|
Cruces E, Rautenberger R, Cubillos VM, Ramírez-Kushel E, Rojas-Lillo Y, Lara C, Montory JA, Gómez I. Interaction of Photoprotective and Acclimation Mechanisms in Ulva rigida (Chlorophyta) in Response to Diurnal Changes in Solar Radiation in Southern Chile. JOURNAL OF PHYCOLOGY 2019; 55:1011-1027. [PMID: 31222742 DOI: 10.1111/jpy.12894] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 05/24/2019] [Indexed: 06/09/2023]
Abstract
Species of the genus Ulva (Chlorophyta) are regarded as opportunistic organisms, which efficiently adjust their metabolism to the prevailing environmental conditions. In this study, changes in chlorophyll-a fluorescence-based photoinhibition of photosynthesis, electron transport rates, photosynthetic pigments, lipid peroxidation, total phenolic compounds, and antioxidant metabolism were investigated during a diurnal cycle of natural solar radiation in summer (for 12 h) under two treatments: photosynthetically active radiation (PAR: 400-700 nm) and PAR+ ultraviolet (UV) radiation (280-700 nm). In the presence of PAR alone, Ulva rigida showed dynamic photoinhibition, and photosynthetic parameters and pigment concentrations decreased with the intensification of the radiation. On the other hand, under PAR+UV conditions a substantial decline up to 43% was detected and an incomplete fluorescence recovery, also, P-I curve values remained low in relation to the initial condition. The phenolic compounds increased their concentration only in UV radiation treatments without showing a correlation with the antioxidant activity. The enzimatic activity of superoxide dismutase (SOD) and ascorbate peroxidase (APX) increased over 2-fold respect at initial values during the onset of light intensity. In contrast, catalase (CAT) increased its activity rapidly in response to the radiation stress to reach maxima at 10 a.m. and decreasing during solar. The present study suggests that U. rigida is capable of acclimating to natural radiation stress relies on a concerted action of various physiological mechanisms that act at different times of the day and under different levels of environmental stress.
Collapse
Affiliation(s)
- Edgardo Cruces
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, General Gana 1780, Santiago, 8370854, Chile
- Centro de Investigaciones Costeras-Universidad de Atacama (CIC-UDA), Universidad de Atacama, Avenida Copayapu 485, Copiapó, Atacama, Chile
| | - Ralf Rautenberger
- Division of Biotechnology and Plant Health, Department of Algae Production, Norwegian Institute for Bioeconomy Research (NIBIO), Kudalsveien 6, 8027, Bodø, Norway
| | - Víctor Mauricio Cubillos
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
- Laboratorio Costero de Recursos Acuáticos de Calfuco, Universidad Austral de Chile, Valdivia, Chile
| | - Eduardo Ramírez-Kushel
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - Yesenia Rojas-Lillo
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, General Gana 1780, Santiago, 8370854, Chile
| | - Carlos Lara
- Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS), Universidad Bernardo O'Higgins, Santiago, 8370993, Chile
| | | | - Iván Gómez
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
- Research Center FONDAP Dynamic of High Latitude Marine Ecosystems de (IDEAL), Valdivia, Chile
| |
Collapse
|
13
|
Nakamura M, Boussac A, Sugiura M. Consequences of structural modifications in cytochrome b 559 on the electron acceptor side of Photosystem II. PHOTOSYNTHESIS RESEARCH 2019; 139:475-486. [PMID: 29779191 DOI: 10.1007/s11120-018-0521-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
Cytb559 in Photosystem II is a heterodimeric b-type cytochrome. The subunits, PsbE and PsbF, consist each in a membrane α-helix. Mutants were previously designed and studied in Thermosynechococcus elongatus (Sugiura et al., Biochim Biophys Acta 1847:276-285, 2015) either in which an axial histidine ligand of the haem-iron was substituted for a methionine, the PsbE/H23M mutant in which the haem was lacking, or in which the haem environment was modified, the PsbE/Y19F and PsbE/T26P mutants. All these mutants remained active showing that the haem has no structural role provided that PsbE and PsbF subunits are present. Here, we have carried on the characterization of these mutants. The following results were obtained: (i) the Y19F mutation hardly affect the Em of Cytb559, whereas the T26P mutation converts the haem into a form with a Em much below 0 mV (so low that it is likely not reducible by QB-) even in an active enzyme; (ii) in the PsbE/H23M mutant, and to a less extent in PsbE/T26P mutant, the electron transfer efficiency from QA- to QB is decreased; (iii) the lower Em of the QA/QA- couple in the PsbE/H23M mutant correlates with a higher production of singlet oxygen; (iv) the superoxide and/or hydroperoxide formation was not increased in the PsbE/H23M mutant lacking the haem, whereas it was significantly larger in the PsbE/T26P. These data are discussed in view of the literature to discriminate between structural and redox roles for the haem of Cytb559 in the production of reactive oxygen species.
Collapse
Affiliation(s)
- Makoto Nakamura
- Graduate School of Science and Technology, Ehime University, Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Alain Boussac
- I2BC, CNRS UMR 9198, CEA Saclay, 91191, Gif-sur-Yvette, France
| | - Miwa Sugiura
- Graduate School of Science and Technology, Ehime University, Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan.
- Proteo-Science Research Center, Ehime University, Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan.
| |
Collapse
|
14
|
Mata-Pérez C, Spoel SH. Thioredoxin-mediated redox signalling in plant immunity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 279:27-33. [PMID: 30709489 DOI: 10.1016/j.plantsci.2018.05.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/16/2018] [Accepted: 05/01/2018] [Indexed: 05/26/2023]
Abstract
Activation of plant immune responses is associated with rapid production of vast amounts of reactive oxygen and nitrogen species (ROS/RNS) that dramatically alter cellular redox homeostasis. Even though excessive ROS/RNS accumulation can cause widespread cellular damage and thus constitute a major risk, plant cells have evolved to utilise these molecules as important signalling cues. Particularly their ability to modify redox-sensitive cysteine residues has emerged as a key mechanism to control the activity, conformation, protein-protein interaction and localisation of a growing number of immune signalling proteins. Regulated reversal of cysteine oxidation is dependent on activities of the conserved superfamily of Thioredoxin (TRX) enzymes that function as cysteine reductases. The plant immune system recruits specific TRX enzymes that have the potential to functionally regulate numerous immune signalling proteins. Although our knowledge of different TRX immune targets is now expanding, little remains known about how these enzymes select their substrates, what range of oxidized residues they target, and if they function selectively in different redox-mediated immune signalling pathways. In this review we discuss these questions by examining evidence showing TRX enzymes exhibit novel activities that play important roles in diverse aspects of plant immune signalling.
Collapse
Affiliation(s)
- Capilla Mata-Pérez
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Steven H Spoel
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK.
| |
Collapse
|
15
|
Shimakawa G, Miyake C. Oxidation of P700 Ensures Robust Photosynthesis. FRONTIERS IN PLANT SCIENCE 2018; 9:1617. [PMID: 30459798 PMCID: PMC6232666 DOI: 10.3389/fpls.2018.01617] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/18/2018] [Indexed: 05/18/2023]
Abstract
In the light, photosynthetic cells can potentially suffer from oxidative damage derived from reactive oxygen species. Nevertheless, a variety of oxygenic photoautotrophs, including cyanobacteria, algae, and plants, manage their photosynthetic systems successfully. In the present article, we review previous research on how these photoautotrophs safely utilize light energy for photosynthesis without photo-oxidative damage to photosystem I (PSI). The reaction center chlorophyll of PSI, P700, is kept in an oxidized state in response to excess light, under high light and low CO2 conditions, to tune the light utilization and dissipate the excess photo-excitation energy in PSI. Oxidation of P700 is co-operatively regulated by a number of molecular mechanisms on both the electron donor and acceptor sides of PSI. The strategies to keep P700 oxidized are diverse among a variety of photoautotrophs, which are evolutionarily optimized for their ecological niche.
Collapse
Affiliation(s)
- Ginga Shimakawa
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Chikahiro Miyake
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
- Core Research for Environmental Science and Technology, Japan Science and Technology Agency, Tokyo, Japan
| |
Collapse
|
16
|
Fedurayev PV, Mironov KS, Gabrielyan DA, Bedbenov VS, Zorina AA, Shumskaya M, Los DA. Hydrogen Peroxide Participates in Perception and Transduction of Cold Stress Signal in Synechocystis. PLANT & CELL PHYSIOLOGY 2018; 59:1255-1264. [PMID: 29590456 DOI: 10.1093/pcp/pcy067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 03/22/2018] [Indexed: 06/08/2023]
Abstract
The double mutant ΔkatG/tpx of cyanobacterium Synechocystis sp. strain PCC 6803, defective in the anti-oxidative enzymes catalase (KatG) and thioredoxin peroxidase (Tpx), is unable to grow in the presence of exogenous H2O2. The ΔkatG/tpx mutant is shown to be extremely sensitive to very low concentrations of H2O2, especially when intensified with cold stress. Analysis of gene expression in both wild-type and ΔkatG/tpx mutant cells treated by combined cold/oxidative stress revealed that H2O2 participates in regulation of expression of cold-responsive genes, affecting either signal perception or transduction. The central role of a transmembrane stress-sensing histidine kinase Hik33 in the cold/oxidative signal transduction pathway is discussed.
Collapse
Affiliation(s)
- Pavel V Fedurayev
- Department of Molecular Biosystems, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Science, Botanicheskaya street 35, Moscow 127276, Russia
- Institute of Living Systems, Immanuel Kant Baltic Federal University, 14 A. Nevskogo ul, Kaliningrad 236041, Russia
| | - Kirill S Mironov
- Department of Molecular Biosystems, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Science, Botanicheskaya street 35, Moscow 127276, Russia
| | - David A Gabrielyan
- Department of Molecular Biosystems, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Science, Botanicheskaya street 35, Moscow 127276, Russia
| | - Vladimir S Bedbenov
- Department of Molecular Biosystems, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Science, Botanicheskaya street 35, Moscow 127276, Russia
| | - Anna A Zorina
- Department of Molecular Biosystems, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Science, Botanicheskaya street 35, Moscow 127276, Russia
| | - Maria Shumskaya
- Department of Biology, School of Natural Sciences, Kean University, 1000 Morris Ave, Union, NJ 07083, USA
| | - Dmitry A Los
- Department of Molecular Biosystems, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Science, Botanicheskaya street 35, Moscow 127276, Russia
| |
Collapse
|
17
|
Nucleoredoxin guards against oxidative stress by protecting antioxidant enzymes. Proc Natl Acad Sci U S A 2017; 114:8414-8419. [PMID: 28724723 DOI: 10.1073/pnas.1703344114] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cellular accumulation of reactive oxygen species (ROS) is associated with a wide range of developmental and stress responses. Although cells have evolved to use ROS as signaling molecules, their chemically reactive nature also poses a threat. Antioxidant systems are required to detoxify ROS and prevent cellular damage, but little is known about how these systems manage to function in hostile, ROS-rich environments. Here we show that during oxidative stress in plant cells, the pathogen-inducible oxidoreductase Nucleoredoxin 1 (NRX1) targets enzymes of major hydrogen peroxide (H2O2)-scavenging pathways, including catalases. Mutant nrx1 plants displayed reduced catalase activity and were hypersensitive to oxidative stress. Remarkably, catalase was maintained in a reduced state by substrate-interaction with NRX1, a process necessary for its H2O2-scavenging activity. These data suggest that unexpectedly H2O2-scavenging enzymes experience oxidative distress in ROS-rich environments and require reductive protection from NRX1 for optimal activity.
Collapse
|
18
|
Surówka E, Dziurka M, Kocurek M, Goraj S, Rapacz M, Miszalski Z. Effects of exogenously applied hydrogen peroxide on antioxidant and osmoprotectant profiles and the C3-CAM shift in the halophyte Mesembryanthemum crystallinum L. JOURNAL OF PLANT PHYSIOLOGY 2016; 200:102-10. [PMID: 0 DOI: 10.1016/j.jplph.2016.05.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/12/2016] [Accepted: 05/12/2016] [Indexed: 05/21/2023]
|
19
|
Martins I, Romão CV, Goulart J, Cerqueira T, Santos RS, Bettencourt R. Activity of antioxidant enzymes in response to atmospheric pressure induced physiological stress in deep-sea hydrothermal vent mussel Bathymodiolus azoricus. MARINE ENVIRONMENTAL RESEARCH 2016; 114:65-73. [PMID: 26790096 DOI: 10.1016/j.marenvres.2016.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/21/2015] [Accepted: 01/07/2016] [Indexed: 06/05/2023]
Abstract
Deep sea hydrothermal Bathymodiolus azoricus mussels from Portuguese EEZ Menez Gwen hydrothermal field possess the remarkable ability to overcome decompression and survive successfully at atmospheric pressure conditions. We investigated the potential use of antioxidant defense enzymes in mussel B. azoricus as biomarkers of oxidative stress induced by long term acclimatization to atmospheric pressure conditions. Mussels collected at Menez Gwen hydrothermal field were acclimatized for two weeks in three distinct conditions suitable of promoting physiological stress, (i) in plain seawater for concomitant endosymbiont bacteria loss, (ii) in plain seawater under metal iron exposure, (iii) constant bubbling methane and pumped sulfide for endosymbiont bacteria survival. The enzymatic activities of superoxide dismutase (SOD), catalase (CAT), and iron storage proteins in addition to electrophoretic profiles were examined in vent mussel gills and digestive gland. Gills showed approximately 3 times more SOD specific activity than digestive glands. On the other hand, digestive glands showed approximately 6 times more CAT specific activity than gills. Iron storage proteins were identified in gill extracts from all experimental conditions mussels. However, in digestive gland extracts only fresh collected mussels and after 2 weeks in FeSO4 showed the presence of iron storage proteins. The differences between SOD, CAT specific activities and the presence of iron storage proteins in the examined tissues reflect dissimilar metabolic and antioxidant activities, as a result of tissue specificities and acclimatization conditions influences on the organism.
Collapse
Affiliation(s)
- Inês Martins
- MARE - Marine and Environmental Sciences Centre, University of Azores, 9901-862 Horta, Portugal; IMAR/Department of Oceanography and Fisheries, University of Azores, 9901-862 Horta, Portugal.
| | - Célia V Romão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal
| | - Joana Goulart
- MARE - Marine and Environmental Sciences Centre, University of Azores, 9901-862 Horta, Portugal; IMAR/Department of Oceanography and Fisheries, University of Azores, 9901-862 Horta, Portugal
| | - Teresa Cerqueira
- MARE - Marine and Environmental Sciences Centre, University of Azores, 9901-862 Horta, Portugal; IMAR/Department of Oceanography and Fisheries, University of Azores, 9901-862 Horta, Portugal
| | - Ricardo S Santos
- MARE - Marine and Environmental Sciences Centre, University of Azores, 9901-862 Horta, Portugal; IMAR/Department of Oceanography and Fisheries, University of Azores, 9901-862 Horta, Portugal
| | - Raul Bettencourt
- MARE - Marine and Environmental Sciences Centre, University of Azores, 9901-862 Horta, Portugal; IMAR/Department of Oceanography and Fisheries, University of Azores, 9901-862 Horta, Portugal
| |
Collapse
|
20
|
Blaby IK, Blaby-Haas CE, Pérez-Pérez ME, Schmollinger S, Fitz-Gibbon S, Lemaire SD, Merchant SS. Genome-wide analysis on Chlamydomonas reinhardtii reveals the impact of hydrogen peroxide on protein stress responses and overlap with other stress transcriptomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:974-988. [PMID: 26473430 PMCID: PMC4715741 DOI: 10.1111/tpj.13053] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 10/07/2015] [Indexed: 05/18/2023]
Abstract
Reactive oxygen species (ROS) are produced by and have the potential to be damaging to all aerobic organisms. In photosynthetic organisms, they are an unavoidable byproduct of electron transfer in both the chloroplast and mitochondrion. Here, we employ the reference unicellular green alga Chlamydomonas reinhardtii to identify the effect of H2O2 on gene expression by monitoring the changes in the transcriptome in a time-course experiment. Comparison of transcriptomes from cells sampled immediately prior to the addition of H2O2 and 0.5 and 1 h subsequently revealed 1278 differentially abundant transcripts. Of those transcripts that increase in abundance, many encode proteins involved in ROS detoxification, protein degradation and stress responses, whereas among those that decrease are transcripts encoding proteins involved in photosynthesis and central carbon metabolism. In addition to these transcriptomic adjustments, we observe that addition of H2O2 is followed by an accumulation and oxidation of the total intracellular glutathione pool, and a decrease in photosynthetic O2 output. Additionally, we analyze our transcriptomes in the context of changes in transcript abundance in response to singlet O2 (O2*), and relate our H2O2 -induced transcripts to a diurnal transcriptome, where we demonstrate enrichments of H2O2 -induced transcripts early in the light phase, late in the light phase and 2 h prior to light. On this basis several genes that are highlighted in this work may be involved in previously undiscovered stress remediation pathways or acclimation responses.
Collapse
Affiliation(s)
- Ian K Blaby
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Crysten E Blaby-Haas
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - María Esther Pérez-Pérez
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Stefan Schmollinger
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Sorel Fitz-Gibbon
- Institute for Genomics and Proteomics, University of California, Los Angeles, CA 90095
| | - Stéphane D Lemaire
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Sabeeha S Merchant
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
- Institute for Genomics and Proteomics, University of California, Los Angeles, CA 90095
| |
Collapse
|
21
|
Roach T, Miller R, Aigner S, Kranner I. Diurnal changes in the xanthophyll cycle pigments of freshwater algae correlate with the environmental hydrogen peroxide concentration rather than non-photochemical quenching. ANNALS OF BOTANY 2015; 116:519-27. [PMID: 25878139 PMCID: PMC4577991 DOI: 10.1093/aob/mcv034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 01/16/2015] [Accepted: 02/16/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS In photosynthetic organisms exposure to high light induces the production of reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), which in part is prevented by non-photochemical quenching (NPQ). As one of the most stable and longest-lived ROS, H2O2 is involved in key signalling pathways in development and stress responses, although in excess it can induce damage. A ubiquitous response to high light is the induction of the xanthophyll cycle, but its role in algae is unclear as it is not always associated with NPQ induction. The aim of this study was to reveal how diurnal changes in the level of H2O2 are regulated in a freshwater algal community. METHODS A natural freshwater community of algae in a temporary rainwater pool was studied, comprising photosynthetic Euglena species, benthic Navicula diatoms, Chlamydomonas and Chlorella species. Diurnal measurements were made of photosynthetic performance, concentrations of photosynthetic pigments and H2O2. The frequently studied model organisms Chlamydomonas and Chlorella species were isolated to study photosynthesis-related H2O2 responses to high light. KEY RESULTS NPQ was shown to prevent H2O2 release in Chlamydomonas and Chlorella species under high light; in addition, dissolved organic carbon excited by UV-B radiation was probably responsible for a part of the H2O2 produced in the water column. Concentrations of H2O2 peaked at 2 µm at midday and algae rapidly scavenged H2O2 rather than releasing it. A vertical H2O2 gradient was observed that was lowest next to diatom-rich benthic algal mats. The diurnal changes in photosynthetic pigments included the violaxanthin and diadinoxanthin cycles; the former was induced prior to the latter, but neither was strictly correlated with NPQ. CONCLUSIONS The diurnal cycling of H2O2 was apparently modulated by the organisms in this freshwater algal community. Although the community showed flexibility in its levels of NPQ, the diurnal changes in xanthophylls correlated with H2O2 concentrations. Alternative NPQ mechanisms in algae involving proteins of the light-harvesting complex type and antioxidant protection of the thylakoid membrane by de-epoxidized carotenoids are discussed.
Collapse
Affiliation(s)
- Thomas Roach
- Institute of Botany, Leopold-Franzens-Universität-Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Ramona Miller
- Institute of Botany, Leopold-Franzens-Universität-Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Siegfried Aigner
- Institute of Botany, Leopold-Franzens-Universität-Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Ilse Kranner
- Institute of Botany, Leopold-Franzens-Universität-Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| |
Collapse
|
22
|
Yu C, Sun C, Shen C, Wang S, Liu F, Liu Y, Chen Y, Li C, Qian Q, Aryal B, Geisler M, Jiang DA, Qi Y. The auxin transporter, OsAUX1, is involved in primary root and root hair elongation and in Cd stress responses in rice (Oryza sativa L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:818-30. [PMID: 26140668 DOI: 10.1111/tpj.12929] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/17/2015] [Accepted: 06/26/2015] [Indexed: 05/22/2023]
Abstract
Auxin and cadmium (Cd) stress play critical roles during root development. There are only a few reports on the mechanisms by which Cd stress influences auxin homeostasis and affects primary root (PR) and lateral root (LR) development, and almost nothing is known about how auxin and Cd interfere with root hair (RH) development. Here, we characterize rice osaux1 mutants that have a longer PR and shorter RHs in hydroponic culture, and that are more sensitive to Cd stress compared to wild-type (Dongjin). OsAUX1 expression in root hair cells is different from that of its paralogous gene, AtAUX1, which is expressed in non-hair cells. However, OsAUX1, like AtAUX1, localizes at the plasma membrane and appears to function as an auxin tranporter. Decreased auxin distribution and contents in the osaux1 mutant result in reduction of OsCyCB1;1 expression and shortened PRs, LRs and RHs under Cd stress, but may be rescued by treatment with the membrane-permeable auxin 1-naphthalene acetic acid. Treatment with the auxin transport inhibitors 1-naphthoxyacetic acid and N-1-naphthylphthalamic acid increased the Cd sensitivity of WT rice. Cd contents in the osaux1 mutant were not altered, but reactive oxygen species-mediated damage was enhanced, further increasing the sensitivity of the osaux1 mutant to Cd stress. Taken together, our results indicate that OsAUX1 plays an important role in root development and in responses to Cd stress.
Collapse
Affiliation(s)
- ChenLiang Yu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - ChenDong Sun
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Suikang Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fang Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yan Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - YunLong Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Bibek Aryal
- Department of Biology - Plant Biology, University of Fribourg, Rue Albert Gockel 3, CH-1700, Fribourg, Switzerland
| | - Markus Geisler
- Department of Biology - Plant Biology, University of Fribourg, Rue Albert Gockel 3, CH-1700, Fribourg, Switzerland
| | - De An Jiang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - YanHua Qi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
23
|
Vuosku J, Sutela S, Kestilä J, Jokela A, Sarjala T, Häggman H. Expression of catalase and retinoblastoma-related protein genes associates with cell death processes in Scots pine zygotic embryogenesis. BMC PLANT BIOLOGY 2015; 15:88. [PMID: 25887788 PMCID: PMC4396594 DOI: 10.1186/s12870-015-0462-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/18/2015] [Indexed: 05/02/2023]
Abstract
BACKGROUND The cell cycle and cellular oxidative stress responses are tightly controlled for proper growth and development of Scots pine (Pinus sylvestris L.) seed. Programmed cell death (PCD) is an integral part of the embryogenesis during which megagametophyte cells in the embryo surrounding region (ESR) and cells in the nucellar layers face death. In the present study, we show both the tissue and developmental stage specific expression of the genes encoding the autophagy related ATG5, catalase (CAT), and retinoblastoma related protein (RBR) as well as the connection between the gene expressions and cell death programs. RESULTS We found strong CAT expression in the cells of the developing embryo throughout the embryogenesis as well as in the cells of the megagametophyte and the nucellar layers at the early embryogeny. The CAT expression was found to overlap with both the ATG5 expression and hydrogen peroxide localization. At the late embryogeny, CAT expression diminished in the dying cells of the nucellar layers as well as in megagametophyte cells, showing the first signs of incipient cell death. Accumulation of starch and minor RBR expression were characteristic of megagametophyte cells in the ESR, whereas strong RBR expression was found in the cells of the nucellar layers at the late embryogeny. CONCLUSIONS Our results suggest that ATG5, CAT, and RBR are involved in the Scots pine embryogenesis and cell death processes. CAT seems to protect cells against hydrogen peroxide accumulation and oxidative stress related cell death especially during active metabolism. The opposite expression of RBR in the ESR and nucellar layers alongside morphological characteristics emphasizes the different type of the cell death processes in these tissues. Furthermore, the changes in ATG5 and RBR expressions specifically in the megagametophyte cells dying by necrotic cell death suggest the genetic regulation of developmental necrosis in Scots pine embryogenesis.
Collapse
Affiliation(s)
- Jaana Vuosku
- Genetics and Physiology Unit, University of Oulu, P.O. Box 3000, FI-90014, Oulu, Finland.
- Current address: Natural Resources Institute Finland (Luke), Rovaniemi Unit, FI-96301, Rovaniemi, Finland.
| | - Suvi Sutela
- Genetics and Physiology Unit, University of Oulu, P.O. Box 3000, FI-90014, Oulu, Finland.
| | - Johanna Kestilä
- Genetics and Physiology Unit, University of Oulu, P.O. Box 3000, FI-90014, Oulu, Finland.
| | - Anne Jokela
- Genetics and Physiology Unit, University of Oulu, P.O. Box 3000, FI-90014, Oulu, Finland.
| | - Tytti Sarjala
- Natural Resources Institute Finland (Luke), Parkano Unit, Kaironiementie 15, FI-39700, Parkano, Finland.
| | - Hely Häggman
- Genetics and Physiology Unit, University of Oulu, P.O. Box 3000, FI-90014, Oulu, Finland.
| |
Collapse
|
24
|
Roach T, Na CS, Krieger-Liszkay A. High light-induced hydrogen peroxide production in Chlamydomonas reinhardtii is increased by high CO2 availability. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:759-66. [PMID: 25619314 DOI: 10.1111/tpj.12768] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 12/20/2014] [Accepted: 01/12/2015] [Indexed: 05/24/2023]
Abstract
The production of reactive oxygen species (ROS) is an unavoidable part of photosynthesis. Stress that accompanies high light levels and low CO2 availability putatively includes enhanced ROS production in the so-called Mehler reaction. Such conditions are thought to encourage O2 to become an electron acceptor at photosystem I, producing the ROS superoxide anion radical (O2·-) and hydrogen peroxide (H2 O2 ). In contrast, here it is shown in Chlamydomonas reinhardtii that CO2 depletion under high light levels lowered cellular H2 O2 production, and that elevated CO2 levels increased H2 O2 production. Using various photosynthetic and mitochondrial mutants of C. reinhardtii, the chloroplast was identified as the main source of elevated H2 O2 production under high CO2 availability. High light levels under low CO2 availability induced photoprotective mechanisms called non-photochemical quenching, or NPQ, including state transitions (qT) and high energy state quenching (qE). The qE-deficient mutant npq4 produced more H2 O2 than wild-type cells under high light levels, although less so under high CO2 availability, whereas it demonstrated equal or greater enzymatic H2 O2 -degrading capacity. The qT-deficient mutant stt7-9 produced the same H2 O2 as wild-type cells under high CO2 availability. Physiological levels of H2 O2 were able to hinder qT and the induction of state 2, providing an explanation for why under high light levels and high CO2 availability wild-type cells behaved like stt7-9 cells stuck in state 1.
Collapse
Affiliation(s)
- Thomas Roach
- Commissariat à l'Energie Atomique (CEA) Saclay, iBiTec-S, CNRS UMR 8221, Service de Bioénergétique, Biologie Structurale et Mécanisme, 91191, Gif-sur-Yvette Cedex, France
| | | | | |
Collapse
|
25
|
Vaahtera L, Brosché M, Wrzaczek M, Kangasjärvi J. Specificity in ROS signaling and transcript signatures. Antioxid Redox Signal 2014; 21:1422-41. [PMID: 24180661 PMCID: PMC4158988 DOI: 10.1089/ars.2013.5662] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SIGNIFICANCE Reactive oxygen species (ROS), important signaling molecules in plants, are involved in developmental control and stress adaptation. ROS production can trigger broad transcriptional changes; however, it is not clear how specificity in transcriptional regulation is achieved. RECENT ADVANCES A large collection of public transcriptome data from the model plant Arabidopsis thaliana is available for analysis. These data can be used for the analysis of biological processes that are associated with ROS signaling and for the identification of suitable transcriptional indicators. Several online tools, such as Genevestigator and Expression Angler, have simplified the task to analyze, interpret, and visualize this wealth of data. CRITICAL ISSUES The analysis of the exact transcriptional responses to ROS requires the production of specific ROS in distinct subcellular compartments with precise timing, which is experimentally difficult. Analyses are further complicated by the effect of ROS production in one subcellular location on the ROS accumulation in other compartments. In addition, even subtle differences in the method of ROS production or treatment can lead to significantly different outcomes when various stimuli are compared. FUTURE DIRECTIONS Due to the difficulty of inducing ROS production specifically with regard to ROS type, subcellular localization, and timing, we propose that the concept of a "ROS marker gene" should be re-evaluated. We suggest guidelines for the analysis of transcriptional data in ROS signaling. The use of "ROS signatures," which consist of a set of genes that together can show characteristic and indicative responses, should be preferred over the use of individual marker genes.
Collapse
Affiliation(s)
- Lauri Vaahtera
- 1 Division of Plant Biology, Department of Biosciences, University of Helsinki , Helsinki, Finland
| | | | | | | |
Collapse
|
26
|
Xu Q, Lu Y, Jing L, Cai L, Zhu X, Xie J, Hu X. Specific binding and inhibition of 6-benzylaminopurine to catalase: multiple spectroscopic methods combined with molecular docking study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 123:327-335. [PMID: 24412785 DOI: 10.1016/j.saa.2013.12.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 12/05/2013] [Accepted: 12/05/2013] [Indexed: 06/03/2023]
Abstract
6-Benzylaminopurine (6-BA) is a kind of cytokinin which could regulate the activities of the antioxidant defense system of plants. In this work, its interaction with and inhibition of beef liver catalase have been systematically investigated using spectroscopic, isothermal titration calorimetric and molecular docking methods under physiological conditions. The fluorescence quenching of beef liver catalase (BLC) by 6-BA is due to the formation of 6-BA-BLC complex. Hydrogen bonds and van der Waals interactions play major roles in stabilizing the complex. The Stern-Volmer quenching constant, binding constant, the corresponding thermodynamic parameters and binding numbers were measured. The results of UV-vis absorption, three-dimensional fluorescence, synchronous fluorescence and circular dichroism spectroscopic results demonstrate that the binding of 6-BA results in the micro-environment change around tyrosine (Tyr) and tryptophan (Trp) residues of BLC. The BLC-mediated conversion of H2O2 to H2O and O2, in the presence and absence of 6-BA, was also studied. Lineweaver-Burk plot indicates a noncompetitive type of inhibition. Molecular docking study was used to find the binding sites.
Collapse
Affiliation(s)
- Qin Xu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Yanni Lu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Longyun Jing
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Lijuan Cai
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Xinfeng Zhu
- College of Information Technology, Yangzhou University, Yangzhou 225127, China
| | - Ju Xie
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Xiaoya Hu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| |
Collapse
|
27
|
Heyno E, Innocenti G, Lemaire SD, Issakidis-Bourguet E, Krieger-Liszkay A. Putative role of the malate valve enzyme NADP-malate dehydrogenase in H2O2 signalling in Arabidopsis. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130228. [PMID: 24591715 DOI: 10.1098/rstb.2013.0228] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In photosynthetic organisms, sudden changes in light intensity perturb the photosynthetic electron flow and lead to an increased production of reactive oxygen species. At the same time, thioredoxins can sense the redox state of the chloroplast. According to our hypothesis, thioredoxins and related thiol reactive molecules downregulate the activity of H2O2-detoxifying enzymes, and thereby allow a transient oxidative burst that triggers the expression of H2O2 responsive genes. It has been shown recently that upon light stress, catalase activity was reversibly inhibited in Chlamydomonas reinhardtii in correlation with a transient increase in the level of H2O2. Here, it is shown that Arabidopsis thaliana mutants lacking the NADP-malate dehydrogenase have lost the reversible inactivation of catalase activity and the increase in H2O2 levels when exposed to high light. The mutants were slightly affected in growth and accumulated higher levels of NADPH in the chloroplast than the wild-type. We propose that the malate valve plays an essential role in the regulation of catalase activity and the accumulation of a H2O2 signal by transmitting the redox state of the chloroplast to other cell compartments.
Collapse
Affiliation(s)
- Eiri Heyno
- Commissariat à l'Energie Atomique (CEA) Saclay, iBiTec-S, CNRS UMR 8221, Service de Bioénergétique, Biologie Structurale et Mécanisme, , 91191 Gif-sur-Yvette Cedex, France
| | | | | | | | | |
Collapse
|
28
|
Singh A, Prasad SM. Effect of agro-industrial waste amendment on Cd uptake in Amaranthus caudatus grown under contaminated soil: an oxidative biomarker response. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 100:105-13. [PMID: 24239268 DOI: 10.1016/j.ecoenv.2013.09.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 08/27/2013] [Accepted: 09/03/2013] [Indexed: 05/17/2023]
Abstract
In the present study phytoavailability of Cd, growth yield, cellular Cd accumulation and oxidative stress responses were studied in leafy vegetable Amaranthus caudatus under soil amendments. The test plant was cultivated in Cd contaminated soil (6 µgCdg(-1) soil) amended with different doses: 0.5, 2, 5 and 10 percent of rice husk (RH), saw dust (SD), farmyard manure (FYM), farmyard in combination with nitrogen, and phosphorus and potassium (FYM+NPK). Phytoavailability of Cd in amended soil and cellular Cd accumulation in edible parts (shoot) of A. caudatus declined maximally with 5 percent dose of each amendment, and decrease in Cd content in tissues was 36, 45, 23 and 14 percent under FYM, FYM+NPK, RH and SD amendments, respectively, over the value recorded in plants grown in Cd contaminated non-amended soil (Cd(+)NA soil). The shoot yield in control plant cultivated in the absence of Cd without amendment (Cd(-)NA soil) was 18.1 ± 0.98 gfwplant(-1) and it was declined up to 50 percent (9.2 ± 0.80 gfwplant(-1)) when plants were grown in Cd(+)NA soil. Amendments with 5 percent doses of FYM+NPK and FYM enhanced the yield up to 26.5 ± 0.57 and 20.5 ± 1.00 gfwplant(-1), respectively, which may be correlated with better mineral nutrients and organic carbon content in amended soil. RH and SD amendments with similar doses improved in yield up to 16.9 ± 0.43 and 15.2 ± 0.45 gfwplant(-1), respectively, however, it was still less than that of control. Further, correlation analysis of growth yield, Cd concentration and oxidative stress under these conditions suggest that with the decrease in cellular Cd concentration following amendment the level of oxidative markers (oxidants: O2(-) and H2O2 and lipid peroxidation: malondialdehyde; MDA) declined as a result of significant enhancement in the activity of enzymatic antioxidants (peroxidase, ascorbate peroxidase, superoxide dismutase, dyhydroascorbe reductase and catalase). Thus, the present technique can efficiently reduce the metal load in food chain and also increase plant yield, hence it could be applied in catchments area of urban cities where metal contamination has become an unavoidable factor.
Collapse
Affiliation(s)
- Anita Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad 211002, India
| | - Sheo Mohan Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad 211002, India.
| |
Collapse
|
29
|
Krishnamurthy A, Rathinasabapathi B. Auxin and its transport play a role in plant tolerance to arsenite-induced oxidative stress in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2013; 36:1838-49. [PMID: 23489261 DOI: 10.1111/pce.12093] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/01/2013] [Accepted: 03/02/2013] [Indexed: 05/08/2023]
Abstract
The role of auxin in plant development is well known; however, its possible function in root response to abiotic stress is poorly understood. In this study, we demonstrate a novel role of auxin transport in plant tolerance to oxidative stress caused by arsenite. Plant response to arsenite [As(III)] was evaluated by measuring root growth and markers for stress on seedlings treated with control or As(III)-containing medium. Auxin transporter mutants aux1, pin1 and pin2 were significantly more sensitive to As(III) than the wild type (WT). Auxin transport inhibitors significantly reduced plant tolerance to As(III) in the WT, while exogenous supply of indole-3-acetic acid improved As(III) tolerance of aux1 and not that of WT. Uptake assays using H(3) -IAA showed As(III) affected auxin transport in WT roots. As(III) increased the levels of H2 O2 in WT but not in aux1, suggesting a positive role for auxin transport through AUX1 on plant tolerance to As(III) stress via reactive oxygen species (ROS)-mediated signalling. Compared to the WT, the mutant aux1 was significantly more sensitive to high-temperature stress and salinity, also suggesting auxin transport influences a common element shared by plant tolerance to arsenite, salinity and high-temperature stress.
Collapse
Affiliation(s)
- Aparna Krishnamurthy
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611-0690, USA
| | | |
Collapse
|
30
|
Wang L, Yeung JHK, Hu T, Lee WY, Lu L, Zhang L, Shen J, Chan RLY, Wu WKK, Cho CH. Dihydrotanshinone induces p53-independent but ROS-dependent apoptosis in colon cancer cells. Life Sci 2013; 93:344-51. [PMID: 23871989 DOI: 10.1016/j.lfs.2013.07.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/26/2013] [Accepted: 07/06/2013] [Indexed: 12/16/2022]
Abstract
AIMS The therapeutic potential of various tanshinones was examined and compared for their anti-cancer activities on colon cancer cells. The role of ROS generation in the pro-apoptotic activity of dihydrotanshinone (DHTS) was further studied. MAIN METHODS Cell viability was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Apoptosis and poly-ADP-ribose-polymerase (PARP) cleavage were respectively measured by flow cytometer and Western blot. Changes of mitochondrial membrane potential (MMP), mitochondrial ROS (mitoROS) and total ROS were determined by confocal system under an inverted microscope. KEY FINDINGS Among the different tanshinones examined, DHTS produced the most potent anti-cancer effect. DHTS induced a selective cytotoxicity and apoptosis in both HCT116 p53(-/-) and HCT116 p53(+/+) colon cancer cells. A time- and concentration-dependent PARP cleavage further confirmed the apoptotic activity. In this regard, it was found DHTS provoked mitochondrial dysfunction in the early stage by decreasing MMP and mitoROS levels. This was followed by a time-dependent increase in intracellular ROS generation. Pretreatment with N-acetyl-l-cysteine (NAC) or catalase-PEG, the free radical scavengers, reduced apoptotic cell death. From these findings, it seems that leakage of ROS from mitochondria into cytosol by DHTS represents the major contributory factor leading to cell death in colon cancer cells. SIGNIFICANCE We report for the first time that DHTS induces apoptosis in colon cancer cells through a p53-independent pathway. Disturbance of ROS generation at the oxidative phosphorylation (OXPHOS) complex in mitochondria followed by the decrease of MMP and increase of intracellular ROS accumulation are suggested to be involved in the pro-apoptotic activity of DHTS.
Collapse
Affiliation(s)
- L Wang
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|