1
|
Crabos A, Huang Y, Boursat T, Maurel C, Ruffel S, Krouk G, Boursiac Y. Distinct early transcriptional regulations by turgor and osmotic potential in the roots of Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5917-5930. [PMID: 37603421 DOI: 10.1093/jxb/erad307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/28/2023] [Indexed: 08/23/2023]
Abstract
In a context of climate change, deciphering signaling pathways driving plant adaptation to drought, changes in water availability, and salt is key. A crossing point of these plant stresses is their impact on plant water potential (Ψ), a composite physico-chemical variable reflecting the availability of water for biological processes such as plant growth and stomatal aperture. The Ψ of plant cells is mainly driven by their turgor and osmotic pressures. Here we investigated the effect of a variety of osmotic treatments on the roots of Arabidopsis plants grown in hydroponics. We used, among others, a permeating solute as a way to differentiate variations on turgor from variations in osmotic pressure. Measurement of cortical cell turgor pressure with a cell pressure probe allowed us to monitor the intensity of the treatments and thereby preserve the cortex from plasmolysis. Transcriptome analyses at an early time point (15 min) showed specific and quantitative transcriptomic responses to both osmotic and turgor pressure variations. Our results highlight how water-related biophysical parameters can shape the transcriptome of roots under stress and provide putative candidates to explore further the early perception of water stress in plants.
Collapse
Affiliation(s)
- Amandine Crabos
- Institute for Plant Sciences of Montpellier (IPSiM), Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Yunji Huang
- Institute for Plant Sciences of Montpellier (IPSiM), Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Thomas Boursat
- Institute for Plant Sciences of Montpellier (IPSiM), Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
- Laboratoire de Mécanique et Génie Civil (LMGC), Univ Montpellier, CNRS, Montpellier, France
| | - Christophe Maurel
- Institute for Plant Sciences of Montpellier (IPSiM), Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Sandrine Ruffel
- Institute for Plant Sciences of Montpellier (IPSiM), Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Gabriel Krouk
- Institute for Plant Sciences of Montpellier (IPSiM), Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Yann Boursiac
- Institute for Plant Sciences of Montpellier (IPSiM), Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
2
|
Duruflé H, Balliau T, Blanchet N, Chaubet A, Duhnen A, Pouilly N, Blein-Nicolas M, Mangin B, Maury P, Langlade NB, Zivy M. Sunflower Hybrids and Inbred Lines Adopt Different Physiological Strategies and Proteome Responses to Cope with Water Deficit. Biomolecules 2023; 13:1110. [PMID: 37509146 PMCID: PMC10377273 DOI: 10.3390/biom13071110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Sunflower is a hybrid crop that is considered moderately drought-tolerant and adapted to new cropping systems required for the agro-ecological transition. Here, we studied the impact of hybridity status (hybrids vs. inbred lines) on the responses to drought at the molecular and eco-physiological level exploiting publicly available datasets. Eco-physiological traits and leaf proteomes were measured in eight inbred lines and their sixteen hybrids grown in the high-throughput phenotyping platform Phenotoul-Heliaphen. Hybrids and parental lines showed different growth strategies: hybrids grew faster in the absence of water constraint and arrested their growth more abruptly than inbred lines when subjected to water deficit. We identified 471 differentially accumulated proteins, of which 256 were regulated by drought. The amplitude of up- and downregulations was greater in hybrids than in inbred lines. Our results show that hybrids respond more strongly to water deficit at the molecular and eco-physiological levels. Because of presence/absence polymorphism, hybrids potentially contain more genes than their parental inbred lines. We propose that detrimental homozygous mutations and the lower number of genes in inbred lines lead to a constitutive defense mechanism that may explain the lower growth of inbred lines under well-watered conditions and their lower reactivity to water deficit.
Collapse
Affiliation(s)
- Harold Duruflé
- INRAE UMR441, CNRS UMR2594, LIPME, Université de Toulouse, 31077 Toulouse, France
- INRAE, ONF, BioForA, 45075 Orleans, France
| | - Thierry Balliau
- AgroParisTech, GQE-Le Moulon, PAPPSO, Université Paris-Saclay, INRAE, CNRS, 91190 Gif-sur-Yvette, France
| | - Nicolas Blanchet
- INRAE UMR441, CNRS UMR2594, LIPME, Université de Toulouse, 31077 Toulouse, France
| | - Adeline Chaubet
- INRAE UMR441, CNRS UMR2594, LIPME, Université de Toulouse, 31077 Toulouse, France
| | - Alexandra Duhnen
- INRAE UMR441, CNRS UMR2594, LIPME, Université de Toulouse, 31077 Toulouse, France
| | - Nicolas Pouilly
- INRAE UMR441, CNRS UMR2594, LIPME, Université de Toulouse, 31077 Toulouse, France
| | - Mélisande Blein-Nicolas
- AgroParisTech, GQE-Le Moulon, PAPPSO, Université Paris-Saclay, INRAE, CNRS, 91190 Gif-sur-Yvette, France
| | - Brigitte Mangin
- INRAE UMR441, CNRS UMR2594, LIPME, Université de Toulouse, 31077 Toulouse, France
| | - Pierre Maury
- INRAE, INP-ENSAT Toulouse, UMR AGIR, Université de Toulouse, 31000 Toulouse, France
| | | | - Michel Zivy
- AgroParisTech, GQE-Le Moulon, PAPPSO, Université Paris-Saclay, INRAE, CNRS, 91190 Gif-sur-Yvette, France
| |
Collapse
|
3
|
Hu R, Shi J, Tian C, Chen X, Zuo H. Nucleic Acid Aptamers for Pesticides, Toxins, and Biomarkers in Agriculture. Chempluschem 2022; 87:e202200230. [PMID: 36410759 DOI: 10.1002/cplu.202200230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/17/2022] [Indexed: 01/31/2023]
Abstract
Nucleic acid aptamers are short single-stranded DNA/RNA (ssDNA/RNA) oligonucleotides that can selectively bind to the targets. They are widely used in medicine, biosensing, and diagnostic assay. They have also been identified and extensively used for various targets in agriculture. In this review we summarize the progress of nucleic acid aptamers on pesticides (herbicides, insecticides, and fungicides), toxins, specific biomarkers of crops, and plant growth regulators in agricultural field in recent years. The basic process of aptamer selection, the already identified DNA/RNA aptamers and the aptasensors are discussed. We also discuss the future perspectives and the challenges for aptamer development in agriculture.
Collapse
Affiliation(s)
- Rongping Hu
- Sichuan Institute of Edible Fungi, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 610066, P. R. China
| | - Jun Shi
- Mianyang Academy of Agricultural Sciences, Crop Characteristic Resources Creation, and Utilization Key Laboratory of Sichuan Province, Mianyang, Sichuan, 621023 (P. R., China
| | - Cheng Tian
- Key Laboratory of Luminescence Analysis, and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Xiaojuan Chen
- Sichuan Institute of Edible Fungi, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 610066, P. R. China
| | - Hua Zuo
- Key Laboratory of Luminescence Analysis, and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
4
|
Prasad P, Khatoon U, Verma RK, Sawant SV, Bag SK. Data mining of transcriptional biomarkers at different cotton fiber developmental stages. Funct Integr Genomics 2022; 22:989-1002. [PMID: 35788822 DOI: 10.1007/s10142-022-00878-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 11/04/2022]
Abstract
Advancement of the gene expression study provides comprehensive information on pivotal genes at different cotton fiber development stages. For the betterment of cotton fiber yield and their quality, genetic improvement is a major target point for the cotton community. Therefore, various studies were carried out to understand the transcriptional machinery of fiber leading to the detailed integrative as well as innovative study. Through data mining and statistical approaches, we identified and validated the transcriptional biomarkers for staged specific differentiation of fiber. With the unique mapping read matrix of ~ 200 cotton transcriptome data and sequential statistical analysis, we identified several important genes that have a deciding and specific role in fiber cell commitment, initiation and elongation, or secondary cell wall synthesis stage. Based on the importance score and validation analysis, IQ domain 26, Aquaporin, Gibberellin regulated protein, methionine gamma lyase, alpha/beta hydrolases, and HAD-like superfamily have shown the specific and determining role for fiber developmental stages. These genes are represented as transcriptional biomarkers that provide a base for molecular characterization for cotton fiber development which will ultimately determine the high yield.
Collapse
Affiliation(s)
- Priti Prasad
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Uzma Khatoon
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India.,Department of Botany, University of Lucknow, Lucknow, 226001, India
| | - Rishi Kumar Verma
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Samir V Sawant
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Sumit K Bag
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Mitu SA, Stewart P, Tran TD, Reddell PW, Cummins SF, Ogbourne SM. Identification of Gene Biomarkers for Tigilanol Tiglate Content in Fontainea picrosperma. Molecules 2022; 27:molecules27133980. [PMID: 35807225 PMCID: PMC9268252 DOI: 10.3390/molecules27133980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 02/04/2023] Open
Abstract
Tigilanol tiglate (EBC-46) is a small-molecule natural product under development for the treatment of cancers in humans and companion animals. The drug is currently produced by purification from the Australian rainforest tree Fontainea picrosperma (Euphorbiaceae). As part of a selective-breeding program to increase EBC-46 yield from F. picrosperma plantations, we investigated potential gene biomarkers associated with biosynthesis of EBC-46. Initially, we identified individual plants that were either high (>0.039%) or low EBC-46 (<0.008%) producers, then assessed their differentially expressed genes within the leaves and roots of these two groups by quantitative RNA sequencing. Compared to low EBC-46 producers, high-EBC-46-producing plants were found to have 145 upregulated genes and 101 downregulated genes in leaves and 53 upregulated genes and 82 downregulated genes in roots. Most of these genes were functionally associated with defence, transport, and biosynthesis. Genes identified as expressed exclusively in either the high or low EBC-46-producing plants were further validated by quantitative PCR, showing that cytochrome P450 94C1 in leaves and early response dehydration 7.1 and 2-alkenal reductase in roots were consistently and significantly upregulated in high-EBC-46 producers. In summary, this study has identified biomarker genes that may be used in the selective breeding of F. picrosperma.
Collapse
Affiliation(s)
- Shahida A Mitu
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia; (S.A.M.); (T.D.T.); (S.F.C.)
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia;
| | - Praphaporn Stewart
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia;
| | - Trong D Tran
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia; (S.A.M.); (T.D.T.); (S.F.C.)
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia;
| | | | - Scott F Cummins
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia; (S.A.M.); (T.D.T.); (S.F.C.)
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia;
| | - Steven M. Ogbourne
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia; (S.A.M.); (T.D.T.); (S.F.C.)
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia;
- Correspondence:
| |
Collapse
|
6
|
Lee JS, Jahani M, Huang K, Mandel JR, Marek LF, Burke JM, Langlade NB, Owens GL, Rieseberg LH. Expression complementation of gene presence/absence polymorphisms in hybrids contributes importantly to heterosis in sunflower. J Adv Res 2022; 42:83-98. [PMID: 36513422 PMCID: PMC9788961 DOI: 10.1016/j.jare.2022.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/01/2022] [Accepted: 04/16/2022] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Numerous crops have transitioned to hybrid seed production to increase yields and yield stability through heterosis. However, the molecular mechanisms underlying heterosis and its stability across environments are not yet fully understood. OBJECTIVES This study aimed to (1) elucidate the genetic and molecular mechanisms underlying heterosis in sunflower, and (2) determine how heterosis is maintained under different environments. METHODS Genome-wide association (GWA) analyses were employed to assess the effects of presence/absence variants (PAVs) and stop codons on 16 traits phenotyped in the sunflower association mapping population at three locations. To link the GWA results to transcriptomic variation, we sequenced the transcriptomes of two sunflower cultivars and their F1 hybrid (INEDI) under both control and drought conditions and analyzed patterns of gene expression and alternative splicing. RESULTS Thousands of PAVs were found to affect phenotypic variation using a relaxed significance threshold, and at most such loci the "absence" allele reduced values of heterotic traits, but not those of non-heterotic traits. This pattern was strengthened for PAVs that showed expression complementation in INEDI. Stop codons were much rarer than PAVs and less likely to reduce heterotic trait values. Hybrid expression patterns were enriched for the GO category, sensitivity to stimulus, but all genotypes responded to drought similarily - by up-regulating water stress response pathways and down-regulating metabolic pathways. Changes in alternative splicing were strongly negatively correlated with expression variation, implying that alternative splicing in this system largely acts to reinforce expression responses. CONCLUSION Our results imply that complementation of expression of PAVs in hybrids is a major contributor to heterosis in sunflower, consistent with the dominance model of heterosis. This mechanism can account for yield stability across different environments. Moreover, given the much larger numbers of PAVs in plant vs. animal genomes, it also offers an explanation for the stronger heterotic responses seen in the former.
Collapse
Affiliation(s)
- Joon Seon Lee
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Mojtaba Jahani
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Kaichi Huang
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jennifer R. Mandel
- Department of Biological Sciences and Center for Biodiversity, University of Memphis, Memphis, TN 38152, USA
| | - Laura F. Marek
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA
| | - John M. Burke
- Department of Plant Biology, Miller Plant Sciences, University of Georgia, Athens 30602, Georgia
| | | | - Gregory L. Owens
- Department of Biology, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Loren H. Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada,Corresponding author.
| |
Collapse
|
7
|
Mastronardi E, Cyr K, Monreal CM, DeRosa MC. Selection of DNA Aptamers for Root Exudate l-Serine Using Multiple Selection Strategies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4294-4306. [PMID: 33600189 DOI: 10.1021/acs.jafc.0c06796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Agricultural biosensing can aid decisions about crop health and maintenance, because crops release root exudates that can inform about their status. l-Serine has been found to be indicative of nitrogen uptake in wheat and canola. The development of a biosensor for l-serine could allow farmers to monitor crop nutrient demands more precisely. The development of robust l-serine-binding DNA aptamers is described. Because small molecules can be challenging targets for Systematic Evolution of Ligands by EXponential enrichment (SELEX), three separate DNA libraries were used for SELEX experiments. A l-homocysteine aptamer was randomized to create a starting library for a l-serine selection (randomized SELEX). The final selection rounds of the l-homocysteine selection were also used as a starting library for l-serine (redirected SELEX). Finally, an original DNA library was used (original SELEX). All three SELEX experiments produced l-serine-binding aptamers with micromolar affinity, with Red.1 aptamer having a Kd of 7.9 ± 3.6 μM. Truncation improved the binding affinity to 5.2 ± 2.7 μM, and from this sequence, a Spiegelmer with improved nuclease resistance was created with a Kd of 2.0 ± 0.8 μM. This l-serine-binding Spiegelmer has the affinity and stability to be incorporated into aptamer-based biosensors for agricultural applications.
Collapse
Affiliation(s)
- Emily Mastronardi
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Kathryn Cyr
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Carlos M Monreal
- Agriculture and Agri-Food Canada, K.W. Neatby Building, Ottawa, Ontario K1A 0C6, Canada
| | - Maria C DeRosa
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| |
Collapse
|
8
|
Lekshmy VS, Vijayaraghavareddy P, Nagashree AN, Ramu VS, Ramegowda V, Makarla U, Sreeman S. Induction of Acquired Tolerance Through Gradual Progression of Drought Is the Key for Maintenance of Spikelet Fertility and Yield in Rice Under Semi-irrigated Aerobic Conditions. FRONTIERS IN PLANT SCIENCE 2021; 11:632919. [PMID: 33679820 PMCID: PMC7930615 DOI: 10.3389/fpls.2020.632919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 12/22/2020] [Indexed: 06/01/2023]
Abstract
Plants have evolved several adaptive mechanisms to cope with water-limited conditions. While most of them are through constitutive traits, certain "acquired tolerance" traits also provide significant improvement in drought adaptation. Most abiotic stresses, especially drought, show a gradual progression of stress and hence provide an opportunity to upregulate specific protective mechanisms collectively referred to as "acquired tolerance" traits. Here, we demonstrate a significant genetic variability in acquired tolerance traits among rice germplasm accessions after standardizing a novel gradual stress progress protocol. Two contrasting genotypes, BPT 5204 (drought susceptible) and AC 39000 (tolerant), were used to standardize methodology for capturing acquired tolerance traits at seedling phase. Seedlings exposed to gradual progression of stress showed higher recovery with low free radical accumulation in both the genotypes compared to rapid stress. Further, the gradual stress progression protocol was used to examine the role of acquired tolerance at flowering phase using a set of 17 diverse rice genotypes. Significant diversity in free radical production and scavenging was observed among these genotypes. Association of these parameters with yield attributes showed that genotypes that managed free radical levels in cells were able to maintain high spikelet fertility and hence yield under stress. This study, besides emphasizing the importance of acquired tolerance, explains a high throughput phenotyping approach that significantly overcomes methodological constraints in assessing genetic variability in this important drought adaptive mechanism.
Collapse
Affiliation(s)
- V. S. Lekshmy
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India
| | - Preethi Vijayaraghavareddy
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India
- Department of Plant Sciences, Centre for Crop Systems Analysis, Wageningen University & Research, Wageningen, Netherlands
| | - A. N. Nagashree
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India
| | | | | | - Udayakumar Makarla
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India
| | - Sheshshayee Sreeman
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India
| |
Collapse
|
9
|
Fernandez O, Urrutia M, Berton T, Bernillon S, Deborde C, Jacob D, Maucourt M, Maury P, Duruflé H, Gibon Y, Langlade NB, Moing A. Metabolomic characterization of sunflower leaf allows discriminating genotype groups or stress levels with a minimal set of metabolic markers. Metabolomics 2019; 15:56. [PMID: 30929085 PMCID: PMC6441456 DOI: 10.1007/s11306-019-1515-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 03/18/2019] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Plant and crop metabolomic analyses may be used to study metabolism across genetic and environmental diversity. Complementary analytical strategies are useful for investigating metabolic changes and searching for biomarkers of response or performance. METHODS AND OBJECTIVES The experimental material consisted in eight sunflower lines with two line status, four restorers (R, used as males) and four maintainers (B, corresponding to females) routinely used for sunflower hybrid varietal production, respectively to complement or maintain the cytoplasmic male sterility PET1. These lines were either irrigated at full soil capacity (WW) or submitted to drought stress (DS). Our aim was to combine targeted and non-targeted metabolomics to characterize sunflower leaf composition in order to investigate the effect of line status genotypes and environmental conditions and to find the best and smallest set of biomarkers for line status and stress response using a custom-made process of variables selection. RESULTS Five hundred and eighty-eight metabolic variables were measured by using complementary analytical methods such as 1H-NMR, MS-based profiles and targeted analyses of major metabolites. Based on statistical analyses, a limited number of markers were able to separate WW and DS samples in a more discriminant manner than previously published physiological data. Another metabolic marker set was able to discriminate line status. CONCLUSION This study underlines the potential of metabolic markers for discriminating genotype groups and environmental conditions. Their potential use for prediction is discussed.
Collapse
Affiliation(s)
- Olivier Fernandez
- UMR1332 Biologie du Fruit et Pathologie, INRA, Centre INRA de Bordeaux, 71 av Edouard Bourlaux, 33140 Villenave d’Ornon, France
- Present Address: Laboratoire RIBP, Université de Reims Champagne Ardenne, Moulin de la Housse Chemin des Rouliers, 51100 Reims, France
| | - Maria Urrutia
- UMR1332 Biologie du Fruit et Pathologie, INRA, Centre INRA de Bordeaux, 71 av Edouard Bourlaux, 33140 Villenave d’Ornon, France
- UMR AgroImpact, INRA, Estrées-Mons, 80203 Péronne, France
- Present Address: Enza Zaden Centro de Investigacion S.L., Santa Maria del Aguila, 04710 Almeria, Spain
| | - Thierry Berton
- UMR1332 Biologie du Fruit et Pathologie, INRA, Centre INRA de Bordeaux, 71 av Edouard Bourlaux, 33140 Villenave d’Ornon, France
- Present Address: Centre for CardioVascular and Nutrition, UMR INRA-INSERM, Aix-Marseille Univ, INSERM, 13005 Marseilles, France
| | - Stéphane Bernillon
- UMR1332 Biologie du Fruit et Pathologie, INRA, Centre INRA de Bordeaux, 71 av Edouard Bourlaux, 33140 Villenave d’Ornon, France
- Plateforme Métabolome Bordeaux, CGFB, MetaboHUB-PHENOME, 33140 Villenave d’Ornon, France
| | - Catherine Deborde
- UMR1332 Biologie du Fruit et Pathologie, INRA, Centre INRA de Bordeaux, 71 av Edouard Bourlaux, 33140 Villenave d’Ornon, France
- Plateforme Métabolome Bordeaux, CGFB, MetaboHUB-PHENOME, 33140 Villenave d’Ornon, France
| | - Daniel Jacob
- UMR1332 Biologie du Fruit et Pathologie, INRA, Centre INRA de Bordeaux, 71 av Edouard Bourlaux, 33140 Villenave d’Ornon, France
- Plateforme Métabolome Bordeaux, CGFB, MetaboHUB-PHENOME, 33140 Villenave d’Ornon, France
| | - Mickaël Maucourt
- UMR1332 Biologie du Fruit et Pathologie, INRA, Centre INRA de Bordeaux, 71 av Edouard Bourlaux, 33140 Villenave d’Ornon, France
- Plateforme Métabolome Bordeaux, CGFB, MetaboHUB-PHENOME, 33140 Villenave d’Ornon, France
- Present Address: Enza Zaden Centro de Investigacion S.L., Santa Maria del Aguila, 04710 Almeria, Spain
| | - Pierre Maury
- UMR LIPM, INRA, CNRS, Université de Toulouse, 31326 Castanet-Tolosan, France
| | - Harold Duruflé
- UMR LIPM, INRA, CNRS, Université de Toulouse, 31326 Castanet-Tolosan, France
| | - Yves Gibon
- UMR1332 Biologie du Fruit et Pathologie, INRA, Centre INRA de Bordeaux, 71 av Edouard Bourlaux, 33140 Villenave d’Ornon, France
- Plateforme Métabolome Bordeaux, CGFB, MetaboHUB-PHENOME, 33140 Villenave d’Ornon, France
| | - Nicolas B. Langlade
- UMR LIPM, INRA, CNRS, Université de Toulouse, 31326 Castanet-Tolosan, France
| | - Annick Moing
- UMR1332 Biologie du Fruit et Pathologie, INRA, Centre INRA de Bordeaux, 71 av Edouard Bourlaux, 33140 Villenave d’Ornon, France
- Plateforme Métabolome Bordeaux, CGFB, MetaboHUB-PHENOME, 33140 Villenave d’Ornon, France
| |
Collapse
|
10
|
Blanchet N, Casadebaig P, Debaeke P, Duruflé H, Gody L, Gosseau F, Langlade NB, Maury P. Data describing the eco-physiological responses of twenty-four sunflower genotypes to water deficit. Data Brief 2018; 21:1296-1301. [PMID: 30456247 PMCID: PMC6231244 DOI: 10.1016/j.dib.2018.10.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/10/2018] [Accepted: 10/15/2018] [Indexed: 11/17/2022] Open
Abstract
This article presents experimental data describing the physiology and morphology of sunflower plants subjected to water deficit. Twenty-four sunflower genotypes were selected to represent genetic diversity within cultivated sunflower and included both inbred lines and their hybrids. Drought stress was applied to plants in pots at the vegetative stage using the high-throughput phenotyping platform Heliaphen at INRA Toulouse (France). Here, we provide data including specific leaf area, osmotic potential and adjustment, carbon isotope discrimination, leaf transpiration, plant architecture: plant height, leaf number, stem diameter. We also provide leaf areas of individual organs through time and growth rate during the stress period, environmental data such as temperatures, wind and radiation during the experiment. These data differentiate both treatment and the different genotypes and constitute a valuable resource to the community to study adaptation of crops to drought and the physiological basis of heterosis. It is available on the following repository: https://doi.org/10.25794/phenotype/er6lPW7V.
Collapse
Affiliation(s)
- Nicolas Blanchet
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | | | | | - Harold Duruflé
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Louise Gody
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Florie Gosseau
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | | | - Pierre Maury
- AGIR, Université de Toulouse, INP, ENSAT, Castanet-Tolosan, France
| |
Collapse
|
11
|
Mastronardi E, Monreal C, DeRosa MC. Personalized Medicine for Crops? Opportunities for the Application of Molecular Recognition in Agriculture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6457-6461. [PMID: 28985063 DOI: 10.1021/acs.jafc.7b03295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This perspective examines the detection of rhizosphere biomarkers, namely, root exudates and microbial metabolites, using molecular recognition elements, such as molecularly imprinted polymers, antibodies, and aptamers. Tracking these compounds in the rhizosphere could provide valuable insight into the status of the crop and soil in a highly localized way. The outlook and potential impact of the combination of molecular recognition and other innovations, such as nanotechnology and precision agriculture, and the comparison to advances in personalized medicine are considered.
Collapse
Affiliation(s)
- Emily Mastronardi
- Department of Chemistry , Carleton University , 1125 Colonel By Drive , Ottawa , Ontario K1S 5B6 , Canada
| | - Carlos Monreal
- Agriculture and Agrifood Canada , 960 Carling Avenue , Neatby Building, Ottawa , Ontario K1Y 4X2 , Canada
| | - Maria C DeRosa
- Department of Chemistry , Carleton University , 1125 Colonel By Drive , Ottawa , Ontario K1S 5B6 , Canada
| |
Collapse
|
12
|
Andrianasolo FN, Casadebaig P, Langlade N, Debaeke P, Maury P. Effects of plant growth stage and leaf aging on the response of transpiration and photosynthesis to water deficit in sunflower. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:797-805. [PMID: 32480504 DOI: 10.1071/fp15235] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 04/18/2016] [Indexed: 06/11/2023]
Abstract
Water deficit influences leaf transpiration rate and photosynthetic activity. The genotype-dependent response of the latter has not been assessed in sunflower (Helianthus annuus L.), particularly during the reproductive period when grain filling and lipogenesis depend greatly on photosynthate availability. To evaluate genotypic responses to water deficit before and after flowering, two greenhouse experiments were performed. Four genotypes-two inbred lines (PSC8, XRQ) and two cultivars (Inedi, Melody)-were subjected to progressive water deficit. Non-linear regression was used to calculate the soil water deficit threshold (FTSWt) at which processes (transpiration and photosynthetic activity) were affected by water deficit. In the vegetative growth stage, photosynthetic activity was affected at a lower mean value of FTSWt (0.39) than transpiration (0.55). However, in the reproductive stage, photosynthetic activity was more sensitive to soil water deficit (FTSWt=0.45). We found a significant (P=0.02) effect of plant growth stage on the difference between photosynthesis and transpiration rate thresholds and, a significant (P=0.03) effect of leaf age on transpiration. Such results will improve phenotyping methods and provide paths for integrating genotypic variability into crop models.
Collapse
Affiliation(s)
| | | | - Nicolas Langlade
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326 Castanet-Tolosan, France
| | - Philippe Debaeke
- INRA, UMR AGIR, CS 52627, F-31326 Castanet-Tolosan Cedex, France
| | - Pierre Maury
- INRA, UMR AGIR, CS 52627, F-31326 Castanet-Tolosan Cedex, France
| |
Collapse
|
13
|
Jones HG. The use of indirect or proxy markers in plant physiology. PLANT, CELL & ENVIRONMENT 2014; 37:1270-1272. [PMID: 24386877 DOI: 10.1111/pce.12264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 12/18/2013] [Indexed: 06/03/2023]
Affiliation(s)
- Hamlyn G Jones
- Division of Plant Science, College of Life Science, University of Dundee at the James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland; School of Plant Biology, University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|