1
|
Antala M, Abdelmajeed AYA, Stróżecki M, Krzesiński W, Juszczak R, Rastogi A. Photosynthetic Responses of Peat Moss ( Sphagnum spp.) and Bog Cranberry ( Vaccinium oxycoccos L.) to Spring Warming. PLANTS (BASEL, SWITZERLAND) 2024; 13:3246. [PMID: 39599455 PMCID: PMC11598035 DOI: 10.3390/plants13223246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
The rising global temperature makes understanding the impact of warming on plant physiology in critical ecosystems essential, as changes in plant physiology can either help mitigate or intensify climate change. The northern peatlands belong to the most important parts of the global carbon cycle. Therefore, knowledge of the ongoing and future climate change impacts on peatland vegetation photosynthesis is crucial for further refinement of peatland or global carbon cycle and vegetation models. As peat moss (Sphagnum spp.) and bog cranberry (Vaccinium oxycoccos L.) represent some of the most common plant functional groups of peatland vegetation, we examined the impact of experimental warming on the status of their photosynthetic apparatus during the early vegetation season. We also studied the differences in the winter to early spring transition of peat moss and bog cranberry photosynthetic activity. We have shown that peat moss starts photosynthetic activity earlier because it relies on light-dependent energy dissipation through the winter. However, bog cranberry needs a period of warmer temperature to reach full activity due to the sustained, non-regulated, heat dissipation during winter, as suggested by the doubling of photosystem II efficiency and 36% decrease in sustained heat dissipation between the mid-March and beginning of May. The experimental warming further enhanced the performance of photosystem II, indicated by a significant increase in the photosystem II performance index on an absorption basis due to warming. Therefore, our results suggest that bog cranberry can benefit more from early spring warming, as its activity is sped up more compared to peat moss. This will probably result in faster shrub encroachment of the peatlands in the warmer future. The vegetation and carbon models should take into account the results of this research to predict the peatland functions under changing climate conditions.
Collapse
Affiliation(s)
- Michal Antala
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Poznan University of Life Sciences, 60-649 Poznan, Poland; (A.Y.A.A.); (M.S.); (R.J.)
| | - Abdallah Yussuf Ali Abdelmajeed
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Poznan University of Life Sciences, 60-649 Poznan, Poland; (A.Y.A.A.); (M.S.); (R.J.)
| | - Marcin Stróżecki
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Poznan University of Life Sciences, 60-649 Poznan, Poland; (A.Y.A.A.); (M.S.); (R.J.)
| | - Włodzimierz Krzesiński
- Department of Vegetable Crops, Poznan University of Life Sciences, 60-995 Poznan, Poland;
| | - Radosław Juszczak
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Poznan University of Life Sciences, 60-649 Poznan, Poland; (A.Y.A.A.); (M.S.); (R.J.)
| | - Anshu Rastogi
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Poznan University of Life Sciences, 60-649 Poznan, Poland; (A.Y.A.A.); (M.S.); (R.J.)
| |
Collapse
|
2
|
Herndon E, Richardson J, Carrell AA, Pierce E, Weston D. Sulfur speciation in Sphagnum peat moss modified by mutualistic interactions with cyanobacteria. THE NEW PHYTOLOGIST 2024; 241:1998-2008. [PMID: 38135655 DOI: 10.1111/nph.19476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023]
Abstract
Peat moss (Sphagnum spp.) develops mutualistic interactions with cyanobacteria by providing carbohydrates and S compounds in exchange for N-rich compounds, potentially facilitating N inputs into peatlands. Here, we evaluate how colonization of Sphagnum angustifolium hyaline cells by Nostoc muscorum modifies S abundance and speciation at the scales of individual cells and across whole leaves. For the first time, S K-edge X-ray Absorption Spectroscopy was used to identify bulk and micron-scale S speciation across isolated cyanobacteria colonies, and in colonized and uncolonized leaves. Uncolonized leaves contained primarily reduced organic S and oxidized sulfonate- and sulfate-containing compounds. Increasing Nostoc colonization resulted in an enrichment of S and changes in speciation, with increases in sulfate relative to reduced S and sulfonate. At the scale of individual hyaline cells, colonized cells exhibited localized enrichment of reduced S surrounded by diffuse sulfonate, similar to observations of cyanobacteria colonies cultured in the absence of leaves. We infer that colonization stimulates plant S uptake and the production of sulfate-containing metabolites that are concentrated in stem tissues. Sulfate compounds that are produced in response to colonization become depleted in colonized cells where they may be converted into reduced S metabolites by cyanobacteria.
Collapse
Affiliation(s)
- Elizabeth Herndon
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | | | - Alyssa A Carrell
- Biological Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Eric Pierce
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - David Weston
- Biological Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| |
Collapse
|
3
|
Pacheco-Cancino PA, Carrillo-López RF, Sepulveda-Jauregui A, Somos-Valenzuela MA. Sphagnum mosses, the impact of disturbances and anthropogenic management actions on their ecological role in CO 2 fluxes generated in peatland ecosystems. GLOBAL CHANGE BIOLOGY 2024; 30:e16972. [PMID: 37882506 DOI: 10.1111/gcb.16972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 10/27/2023]
Abstract
Mosses of the genus Sphagnum are the dominant vegetation in most pristine peatlands in temperate and high-latitude regions. They play a crucial role in carbon sequestration, being responsible for ca. 50% of carbon accumulation through their active participation in peat formation. They have a significant influence on the dynamics of CO2 emissions due to an efficient maximum potential photosynthetic rate, lower respiration rates, and the production of a recalcitrant litter whose decomposition is gradual. However, various anthropogenic disturbances and land use management actions that favor its reestablishment have the potential to modify the dynamics of these CO2 emissions. Therefore, the objective of this review is to discuss the role of Sphagnum in CO2 emissions generated in peatland ecosystems, and to understand the impacts of anthropogenic practices favorable and detrimental to Sphagnum on these emissions. Based on our review, increased Sphagnum cover reduces CO2 emissions and fosters C sequestration, but drainage transforms peatlands dominated by Sphagnum into a persistent source of CO2 due to lower gross primary productivity of the moss and increased respiration rates. Sites with moss removal used as donor material for peatland restoration emit twice as much CO2 as adjacent undisturbed natural sites, and those with commercial Sphagnum extraction generate almost neutral CO2 emissions, yet both can recover their sink status in the short term. The reintroduction of fragments and natural recolonization of Sphagnum in transitional peatlands, can reduce emissions, recover, or increase the CO2 sink function in the short and medium term. Furthermore, Sphagnum paludiculture is seen as a sustainable alternative for the use of transitional peatlands, allowing moss production strips to become CO2 sink, however, it is necessary to quantify the emissions of all the components of the field of production (ditches, causeway), and the biomass harvested from the moss to establish a final closing balance of C.
Collapse
Affiliation(s)
- Patricio A Pacheco-Cancino
- Department of Agricultural Sciences and Natural Resources, Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Temuco, Región de La Araucanía, Chile
- Doctorate in Agri-Food and Environmental Sciences, Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Temuco, Región de La Araucanía, Chile
| | - Rubén F Carrillo-López
- Department of Agricultural Sciences and Natural Resources, Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Temuco, Región de La Araucanía, Chile
| | - Armando Sepulveda-Jauregui
- Gaia Antarctic Research Center (CIGA), Universidad de Magallanes, Punta Arenas, Región de Magallanes y Antartica Chilena, Chile
- Network for Extreme Environment Research (NEXER), Universidad de Magallanes, Punta Arenas, Región de Magallanes y Antartica Chilena, Chile
| | - Marcelo A Somos-Valenzuela
- Department of Forest Sciences, Faculty of Agricultural and Environmental Science, Universidad de La Frontera, Temuco, Región de La Araucanía, Chile
| |
Collapse
|
4
|
Yang Q, Liu Z, Bai E. Comparison of carbon and nitrogen accumulation rate between bog and fen phases in a pristine peatland with the fen-bog transition. GLOBAL CHANGE BIOLOGY 2023; 29:6350-6366. [PMID: 37602716 DOI: 10.1111/gcb.16915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023]
Abstract
Long-term carbon and nitrogen dynamics in peatlands are affected by both vegetation production and decomposition processes. Here, we examined the carbon accumulation rate (CAR), nitrogen accumulation rate (NAR) and δ13 C, δ15 N of plant residuals in a peat core dated back to ~8500 cal year BP in a temperate peatland in Northeast China. Impacted by the tephra during 1160 and 789 cal year BP and climate change, the peatland changed from a fen dominated by vascular plants to a bog dominated by Sphagnum mosses. We used the Clymo model to quantify peat addition rate and decay constant for acrotelm and catotelm layers during both bog and fen phases. Our studied peatland was dominated by Sphagnum fuscum during the bog phase (789 to -59 cal year BP) and lower accumulation rates in the acrotelm layer was found during this phase, suggesting the dominant role of volcanic eruption in the CAR of the peat core. Both mean CAR and NAR were higher during the bog phase than during the fen phase in our study, consistent with the results of the only one similar study in the literature. Because the input rate of organic matter was considered to be lower during the bog phase, the decomposition process must have been much lower during the bog phase than during the fen phase and potentially controlled CAR and NAR. During the fen phase, CAR was also lower under higher temperature and summer insolation, conditions beneficial for decomposition. δ15 N of Sphagnum hinted that nitrogen fixation had a positive effect on nitrogen accumulation, particular in recent decades. Our study suggested that decomposition is more important for carbon and nitrogen sequestration than production in peatlands in most conditions and if future climate changes or human disturbance increase decomposition rate, carbon sequestration in peatlands will be jeopardized.
Collapse
Affiliation(s)
- Qiannan Yang
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
| | - Ziping Liu
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, China
| | - Edith Bai
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, China
| |
Collapse
|
5
|
Santoni S, Garel E, Gillon M, Babic M, Spangenberg JE, Bomou B, Sebag D, Adatte T, van Geldern R, Pasqualini V, Mattei A, Huneau F. The role of groundwater in CO 2 production and carbon storage in Mediterranean peatlands: An isotope geochemistry approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161098. [PMID: 36587657 DOI: 10.1016/j.scitotenv.2022.161098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/28/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Peatlands are permanent wetlands recognized for ecosystem services such as biodiversity conservation and carbon storage capacity. Little information is available about their response to global change, the reason why most Earth system climate models consider a linear increase in the release of greenhouse gases (GHG), such as CO2, with increasing temperatures. Nevertheless, numerous studies suggest that an increase in the temperature may not imply a decrease in photosynthesis and carbon storage rates if water availability is sufficient, the latter being under the control of local hydrology mechanisms. Mediterranean peatlands well illustrate this fact. Since they are groundwater-dependent, they are hydrologically resilient to the strong seasonality of hydroclimatic conditions, especially during the summer drought. In the present study, we demonstrate that, even if such peatlands release CO2 into the atmosphere, they can maintain a carbon storage capacity. To this end, a geochemical study disentangles the origin and fate of carbon within a Mediterranean peatland at the watershed scale. Field parameters, major ions, dissolved organic and inorganic carbon content and associated δ13C values allow for characterizing the seasonality of hydrochemical mechanisms and carbon input from an alluvial aquifer (where rain, river, shallow, and deep groundwater flows are mixing) to the peatland. The inorganic and organic content of peat soil and δ13C values of total organic matter and CO2 complete the dataset, making it possible to provide arguments in favour of lower organic matter oxidation compared to primary production. Overall, this study highlights the groundwater role in the fluxes of CO2 at the peatland-atmosphere interface, and more broadly the need to understand the interactions between the water and carbon cycles to build better models of the future evolution of the global climate.
Collapse
Affiliation(s)
- S Santoni
- Université de Corse Pascal Paoli, Département d'Hydrogéologie, Campus Grimaldi, BP52, 20250 Corte, France; CNRS, UMR 6134 SPE, BP52, 20250 Corte, France.
| | - E Garel
- Université de Corse Pascal Paoli, Département d'Hydrogéologie, Campus Grimaldi, BP52, 20250 Corte, France; CNRS, UMR 6134 SPE, BP52, 20250 Corte, France
| | - M Gillon
- Avignon Université, UMR 1114 EMMAH, INRAE, 301 rue Baruch de Spinoza, BP21239, 84916 Avignon, France
| | - M Babic
- Avignon Université, UMR 1114 EMMAH, INRAE, 301 rue Baruch de Spinoza, BP21239, 84916 Avignon, France
| | - J E Spangenberg
- University of Lausanne, Institute of Earth Surface Dynamics (IDYST), Géopolis, 1022 Chavannes-près-Renens, Lausanne 1015, Switzerland
| | - B Bomou
- University of Lausanne, Institute of Earth Sciences (ISTE), Géopolis, 1022 Chavannes-près-Renens, Lausanne 1015, Switzerland
| | - D Sebag
- IFP Energies Nouvelles, Earth Sciences and Environmental Technologies Division, 1-4 Avenue du bois Préau, 92852 Rueil-Malmaison, France
| | - T Adatte
- University of Lausanne, Institute of Earth Sciences (ISTE), Géopolis, 1022 Chavannes-près-Renens, Lausanne 1015, Switzerland
| | - R van Geldern
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Geography and Geosciences, GeoZentrum Nordbayern, Schlossgarten 5, 91054 Erlangen, Germany
| | - V Pasqualini
- Université de Corse Pascal Paoli, Département d'Hydrogéologie, Campus Grimaldi, BP52, 20250 Corte, France; CNRS, UMR 6134 SPE, BP52, 20250 Corte, France
| | - A Mattei
- Université de Corse Pascal Paoli, Département d'Hydrogéologie, Campus Grimaldi, BP52, 20250 Corte, France; CNRS, UMR 6134 SPE, BP52, 20250 Corte, France
| | - F Huneau
- Université de Corse Pascal Paoli, Département d'Hydrogéologie, Campus Grimaldi, BP52, 20250 Corte, France; CNRS, UMR 6134 SPE, BP52, 20250 Corte, France
| |
Collapse
|
6
|
Porada P, Bader MY, Berdugo MB, Colesie C, Ellis CJ, Giordani P, Herzschuh U, Ma Y, Launiainen S, Nascimbene J, Petersen I, Raggio Quílez J, Rodríguez-Caballero E, Rousk K, Sancho LG, Scheidegger C, Seitz S, Van Stan JT, Veste M, Weber B, Weston DJ. A research agenda for nonvascular photoautotrophs under climate change. THE NEW PHYTOLOGIST 2023; 237:1495-1504. [PMID: 36511294 DOI: 10.1111/nph.18631] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Nonvascular photoautotrophs (NVP), including bryophytes, lichens, terrestrial algae, and cyanobacteria, are increasingly recognized as being essential to ecosystem functioning in many regions of the world. Current research suggests that climate change may pose a substantial threat to NVP, but the extent to which this will affect the associated ecosystem functions and services is highly uncertain. Here, we propose a research agenda to address this urgent question, focusing on physiological and ecological processes that link NVP to ecosystem functions while also taking into account the substantial taxonomic diversity across multiple ecosystem types. Accordingly, we developed a new categorization scheme, based on microclimatic gradients, which simplifies the high physiological and morphological diversity of NVP and world-wide distribution with respect to several broad habitat types. We found that habitat-specific ecosystem functions of NVP will likely be substantially affected by climate change, and more quantitative process understanding is required on: (1) potential for acclimation; (2) response to elevated CO2 ; (3) role of the microbiome; and (4) feedback to (micro)climate. We suggest an integrative approach of innovative, multimethod laboratory and field experiments and ecophysiological modelling, for which sustained scientific collaboration on NVP research will be essential.
Collapse
Affiliation(s)
- Philipp Porada
- Ecological Modelling, Universität Hamburg, Ohnhorststr. 18, 22609, Hamburg, Germany
| | - Maaike Y Bader
- Ecological Plant Geography, University of Marburg, Deutschhausstr. 10, 35032, Marburg, Germany
| | - Monica B Berdugo
- Ecological Plant Geography, University of Marburg, Deutschhausstr. 10, 35032, Marburg, Germany
| | - Claudia Colesie
- School of Geosciences, University of Edinburgh, Edinburgh, EH9 3JW, UK
| | | | | | - Ulrike Herzschuh
- Polar Terrestrial Environmental Systems, Alfred Wegener Institute, Telegrafenberg A45, 14473, Potsdam, Germany
| | - Yunyao Ma
- Ecological Modelling, Universität Hamburg, Ohnhorststr. 18, 22609, Hamburg, Germany
| | - Samuli Launiainen
- Ecosystems and Modeling, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790, Helsinki, Finland
| | - Juri Nascimbene
- BIOME Lab, Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, 40126, Bologna, Italy
| | - Imke Petersen
- Ecological Modelling, Universität Hamburg, Ohnhorststr. 18, 22609, Hamburg, Germany
| | - José Raggio Quílez
- Department of Pharmacology, Pharmacognosy and Botany, Universidad Complutense de Madrid, E-28040, Madrid, Spain
| | | | - Kathrin Rousk
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, København, Denmark
| | - Leopoldo G Sancho
- Department of Pharmacology, Pharmacognosy and Botany, Universidad Complutense de Madrid, E-28040, Madrid, Spain
| | - Christoph Scheidegger
- Biodiversity and Conservation Biology, Eidg. Forschungsanstalt WSL, Zürcherstr. 111, 8903, Birmensdorf, Switzerland
| | - Steffen Seitz
- Soil Science and Geomorphology, University of Tübingen, Rümelinstr. 19-23, 72070, Tübingen, Germany
| | - John T Van Stan
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, 2121 Euclid Ave., Cleveland, OH, 44115, USA
| | - Maik Veste
- Institute of Environmental Sciences, Brandenburgische Technische Universität Cottbus-Senftenberg, Konrad-Wachsmann-Allee 6, 03046, Cottbus, Germany
| | - Bettina Weber
- Division of Plant Sciences, Institute for Biology, University of Graz, Holteigasse 6, A-8010, Graz, Austria
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128, Mainz, Germany
| | - David J Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
7
|
Man B, Xiang X, Zhang J, Cheng G, Zhang C, Luo Y, Qin Y. Keystone Taxa and Predictive Functional Analysis of Sphagnum palustre Tank Microbiomes in Erxianyan Peatland, Central China. BIOLOGY 2022; 11:1436. [PMID: 36290340 PMCID: PMC9598613 DOI: 10.3390/biology11101436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Sphagnum is a fundamental ecosystem of engineers, including more than 300 species around the world. These species host diverse microbes, either endosymbiotic or ectosymbiotic, and are key to carbon sequestration in peatland ecosystems. However, the linkages between different types of Sphagnum and the diversity and ecological functions of Sphagnum-associated microbiomes are poorly known, and so are their joint responses to ecological functions. Here, we systematically investigated endophytes in Sphagnum palustre via next-generation sequencing (NGS) techniques in the Erxianyan peatland, central China. The total bacterial microbiome was classified into 38 phyla and 55 classes, 122 orders and 490 genera. The top 8 phyla of Proteobacteria (33.69%), Firmicutes (11.94%), Bacteroidetes (9.42%), Actinobacteria (6.53%), Planctomycetes (6.37%), Gemmatimonadetes (3.05%), Acidobacteria (5.59%) and Cyanobacteria (1.71%) occupied 78.31% of total OTUs. The core microbiome of S. palustre was mainly distributed mainly in 7 phyla, 9 classes, 15 orders, 22 families and 43 known genera. There were many differences in core microbiomes compared to those in the common higher plants. We further demonstrate that the abundant functional groups have a substantial potential for nitrogen fixation, carbon cycle, nitrate metabolism, sulfate respiration and chitinolysis. These results indicate that potential ecological function of Sphagnum palustre in peatlands is partially rooted in its microbiomes, and that incorporating into functional groups of Sphagnum-associated microbiomes can promote mechanistic understanding of Sphagnum ecology in subalpine peatlands.
Collapse
Affiliation(s)
- Baiying Man
- College of Life Science, Shangrao Normal University, Shangrao 334001, China
| | - Xing Xiang
- College of Life Science, Shangrao Normal University, Shangrao 334001, China
| | - Junzhong Zhang
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Higher Education Institutions, South West Forestry University, Kunming 650224, China
| | - Gang Cheng
- College of Life Science, Shangrao Normal University, Shangrao 334001, China
| | - Chao Zhang
- College of Life Science, Shangrao Normal University, Shangrao 334001, China
| | - Yang Luo
- College of Life Science, Shangrao Normal University, Shangrao 334001, China
| | - Yangmin Qin
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
8
|
Antala M, Juszczak R, van der Tol C, Rastogi A. Impact of climate change-induced alterations in peatland vegetation phenology and composition on carbon balance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154294. [PMID: 35247401 DOI: 10.1016/j.scitotenv.2022.154294] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/03/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Global climate is changing faster than humankind has ever experienced. Model-based predictions of future climate are becoming more complex and precise, but they still lack crucial information about the reaction of some important ecosystems, such as peatlands. Peatlands belong to one of the largest carbon stores on the Earth. They are mostly distributed in high latitudes, where the temperature rises faster than in the other parts of the planet. Warmer climate and changes in precipitation patterns cause changes in the composition and phenology of peatland vegetation. Peat mosses are becoming less abundant, vascular plants cover is increasing, and the vegetation season and phenophases of vascular plants start sooner. The alterations in vegetation cause changes in the carbon assimilation and release of greenhouse gases. Therefore, this article reviews the impact of climate change-induced alterations in peatland vegetation phenology and composition on future climate and the uncertainties that need to be addressed for more accurate climate prediction.
Collapse
Affiliation(s)
- Michal Antala
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Faculty of Environmental Engineering and Mechanical Engineering, Poznan University of Life Sciences, Piątkowska 94, 60-649 Poznań, Poland
| | - Radoslaw Juszczak
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Faculty of Environmental Engineering and Mechanical Engineering, Poznan University of Life Sciences, Piątkowska 94, 60-649 Poznań, Poland
| | - Christiaan van der Tol
- Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, 7500 AE Enschede, the Netherlands
| | - Anshu Rastogi
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Faculty of Environmental Engineering and Mechanical Engineering, Poznan University of Life Sciences, Piątkowska 94, 60-649 Poznań, Poland; Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, 7500 AE Enschede, the Netherlands.
| |
Collapse
|
9
|
Carrell AA, Lawrence TJ, Cabugao KGM, Carper DL, Pelletier DA, Lee JH, Jawdy SS, Grimwood J, Schmutz J, Hanson PJ, Shaw AJ, Weston DJ. Habitat-adapted microbial communities mediate Sphagnum peatmoss resilience to warming. THE NEW PHYTOLOGIST 2022; 234:2111-2125. [PMID: 35266150 PMCID: PMC9310625 DOI: 10.1111/nph.18072] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 02/21/2022] [Indexed: 05/19/2023]
Abstract
Sphagnum peatmosses are fundamental members of peatland ecosystems, where they contribute to the uptake and long-term storage of atmospheric carbon. Warming threatens Sphagnum mosses and is known to alter the composition of their associated microbiome. Here, we use a microbiome transfer approach to test if microbiome thermal origin influences host plant thermotolerance. We leveraged an experimental whole-ecosystem warming study to collect field-grown Sphagnum, mechanically separate the associated microbiome and then transfer onto germ-free laboratory Sphagnum for temperature experiments. Host and microbiome dynamics were assessed with growth analysis, Chla fluorescence imaging, metagenomics, metatranscriptomics and 16S rDNA profiling. Microbiomes originating from warming field conditions imparted enhanced thermotolerance and growth recovery at elevated temperatures. Metagenome and metatranscriptome analyses revealed that warming altered microbial community structure in a manner that induced the plant heat shock response, especially the HSP70 family and jasmonic acid production. The heat shock response was induced even without warming treatment in the laboratory, suggesting that the warm-microbiome isolated from the field provided the host plant with thermal preconditioning. Our results demonstrate that microbes, which respond rapidly to temperature alterations, can play key roles in host plant growth response to rapidly changing environments.
Collapse
Affiliation(s)
- Alyssa A. Carrell
- Biosciences DivisionOak Ridge National Laboratory1 Bethel Valley RdOak RidgeTN37831USA
| | - Travis J. Lawrence
- Biosciences DivisionOak Ridge National Laboratory1 Bethel Valley RdOak RidgeTN37831USA
| | - Kristine Grace M. Cabugao
- Bredesen Center for Interdisciplinary Research and Graduate EducationUniversity of Tennessee1502 Cumberland Ave.KnoxvilleTN37996USA
| | - Dana L. Carper
- Biosciences DivisionOak Ridge National Laboratory1 Bethel Valley RdOak RidgeTN37831USA
| | - Dale A. Pelletier
- Biosciences DivisionOak Ridge National Laboratory1 Bethel Valley RdOak RidgeTN37831USA
| | - Jun Hyung Lee
- Biosciences DivisionOak Ridge National Laboratory1 Bethel Valley RdOak RidgeTN37831USA
| | - Sara S. Jawdy
- Biosciences DivisionOak Ridge National Laboratory1 Bethel Valley RdOak RidgeTN37831USA
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology601 Genome WayHuntsvilleAL35806USA
- Department of Energy Joint Genome InstituteLawrence Berkeley National Lab1 Cyclotron Rd.BerkeleyCA94720USA
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology601 Genome WayHuntsvilleAL35806USA
- Department of Energy Joint Genome InstituteLawrence Berkeley National Lab1 Cyclotron Rd.BerkeleyCA94720USA
| | - Paul J. Hanson
- Environmental Sciences DivisionOak Ridge National Laboratory1 Bethel Valley RdOak RidgeTN37831USA
| | | | - David J. Weston
- Biosciences DivisionOak Ridge National Laboratory1 Bethel Valley RdOak RidgeTN37831USA
| |
Collapse
|
10
|
Wu Y, Xu X, McCarter CPR, Zhang N, Ganzoury MA, Waddington JM, de Lannoy CF. Assessing leached TOC, nutrients and phenols from peatland soils after lab-simulated wildfires: Implications to source water protection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153579. [PMID: 35114220 DOI: 10.1016/j.scitotenv.2022.153579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Pollutant leaching from wildfire-impacted peatland soils (peat) is well-known, but often underestimated when considering boreal ecosystem source water protection and when treating source waters to provide clean drinking water. Burning peat impacts its physical properties and chemical composition, yet the consequences of these transformations to source water quality through pollutant leaching has not been studied in detail. We combusted near-surface boreal peat under simulated peat smoldering conditions at two temperatures (250 °C and 300 °C) and quantified the concentrations of the leached carbon, nutrients and phenols from 5 g peat L-1 reverse osmosis (RO) water suspensions over a 2-day leaching period. For the conditions studied, measured water quality parameters exceeded US surface water guidelines and even exceeded EU and Canadian wastewater/sewer discharge limits including chemical oxygen demand (COD) (125 mg/L), total nitrogen (TN) (15 mg/L), and total phosphorus (TP) (2 mg/L). Phenols were close to or higher than the suggested water supply standard established by US EPA (1 mg/L). Leached carbon, nitrogen and phosphorus mainly came from the organic fraction of peats. Heating peats to 250 °C promoted the leaching of carbon-related pollutants, whereas heating to 300 °C enhanced the leaching of nutrients. Post-heated peats leached higher loads of pollutants in water than pre-heated peats, suggesting that fire-damaged boreal peats may be a critical but underappreciated source of water pollution. A simplified Partial Least Squares (PLS) model based on other easily measured parameters provided a simple method for determining the extent of COD and phenolic pollution in bulk water, relevant for water and wastewater treatment plants. Conclusions from this lab study indicate the need for field measurements of aquatic pollutants downstream of peatland watersheds post-fire as well as increased monitoring and treatment of potable water sources for leachable micropollutants in fire-dominated forested peatlands.
Collapse
Affiliation(s)
- Yichen Wu
- Department of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada
| | - Xuebin Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Chinese Academy of Sciences, Institute of Soil Science, Nanjing, 210008, China
| | - Colin P R McCarter
- School of Earth, Environment & Society, McMaster University, Hamilton, ON L8S 4L7, Canada
| | - Nan Zhang
- Department of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada
| | - Mohamed A Ganzoury
- Department of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada
| | | | | |
Collapse
|
11
|
Sytiuk A, Céréghino R, Hamard S, Delarue F, Dorrepaal E, Küttim M, Lamentowicz M, Pourrut B, Robroek BJM, Tuittila E, Jassey VEJ. Biochemical traits enhance the trait concept in
Sphagnum
ecology. OIKOS 2022. [DOI: 10.1111/oik.09119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Anna Sytiuk
- Laboratoire Ecologie Fonctionnelle et Environnement, Univ. Paul Sabatier Toulouse 3, UPS, CNRS Toulouse France
| | - Regis Céréghino
- Laboratoire Ecologie Fonctionnelle et Environnement, Univ. Paul Sabatier Toulouse 3, UPS, CNRS Toulouse France
| | - Samuel Hamard
- Laboratoire Ecologie Fonctionnelle et Environnement, Univ. Paul Sabatier Toulouse 3, UPS, CNRS Toulouse France
| | | | - Ellen Dorrepaal
- Climate Impacts Research Centre, Dept of Ecology and Environmental Science, Umeå Univ. Abisko Sweden
| | - Martin Küttim
- Inst. of Ecology, School of Natural Sciences and Health, Tallinn Univ. Tallinn Estonia
| | - Mariusz Lamentowicz
- Climate Change Ecology Research Unit, Faculty of Geographical and Geological Sciences, Adam Mickiewicz Univ. in Poznań Poznań Poland
| | - Bertrand Pourrut
- Laboratoire Ecologie Fonctionnelle et Environnement, Univ. Paul Sabatier Toulouse 3, UPS, CNRS Toulouse France
| | - Bjorn J. M. Robroek
- Aquatic Ecology&Environmental Biology, Radboud Inst. for Biological and Environmental Sciences, Faculty of Science, Radboud Univ. Nijmegen Nijmegen the Netherlands
| | - Eeva‐Stiina Tuittila
- Biological Sciences, Faculty of Natural and Environmental Sciences, Inst. for Life Sciences, Univ. of Southampton Southampton UK
| | - Vincent E. J. Jassey
- Laboratoire Ecologie Fonctionnelle et Environnement, Univ. Paul Sabatier Toulouse 3, UPS, CNRS Toulouse France
| |
Collapse
|
12
|
Serk H, Nilsson MB, Bohlin E, Ehlers I, Wieloch T, Olid C, Grover S, Kalbitz K, Limpens J, Moore T, Münchberger W, Talbot J, Wang X, Knorr KH, Pancotto V, Schleucher J. Global CO 2 fertilization of Sphagnum peat mosses via suppression of photorespiration during the twentieth century. Sci Rep 2021; 11:24517. [PMID: 34972838 PMCID: PMC8720097 DOI: 10.1038/s41598-021-02953-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
Natural peatlands contribute significantly to global carbon sequestration and storage of biomass, most of which derives from Sphagnum peat mosses. Atmospheric CO2 levels have increased dramatically during the twentieth century, from 280 to > 400 ppm, which has affected plant carbon dynamics. Net carbon assimilation is strongly reduced by photorespiration, a process that depends on the CO2 to O2 ratio. Here we investigate the response of the photorespiration to photosynthesis ratio in Sphagnum mosses to recent CO2 increases by comparing deuterium isotopomers of historical and contemporary Sphagnum tissues collected from 36 peat cores from five continents. Rising CO2 levels generally suppressed photorespiration relative to photosynthesis but the magnitude of suppression depended on the current water table depth. By estimating the changes in water table depth, temperature, and precipitation during the twentieth century, we excluded potential effects of these climate parameters on the observed isotopomer responses. Further, we showed that the photorespiration to photosynthesis ratio varied between Sphagnum subgenera, indicating differences in their photosynthetic capacity. The global suppression of photorespiration in Sphagnum suggests an increased net primary production potential in response to the ongoing rise in atmospheric CO2, in particular for mire structures with intermediate water table depths.
Collapse
Affiliation(s)
- Henrik Serk
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden.,Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Mats B Nilsson
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden.
| | - Elisabet Bohlin
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Ina Ehlers
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Thomas Wieloch
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Carolina Olid
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden.,Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden
| | - Samantha Grover
- Department of Applied Chemistry and Environmental Science, RMIT University, Melbourne, Australia
| | - Karsten Kalbitz
- Institute of Soil Science and Site Ecology, Dresden University of Technology, Tharandt, Germany
| | - Juul Limpens
- Department of Environmental Sciences, Wageningen University, Wageningen, The Netherlands
| | - Tim Moore
- Department of Geography, McGill University, Montreal, Canada
| | | | - Julie Talbot
- Department of Geography, Université de Montréal, Montreal, Canada
| | - Xianwei Wang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, People's Republic of China
| | | | - Verónica Pancotto
- Centro Austral de Investigaciones Científicas (CADIC-CONICET), Ushuaia, Argentina
| | - Jürgen Schleucher
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden.
| |
Collapse
|
13
|
ÇATAL B, AKGÜN U. The Hand Surgery Subspecialty Education Program in Turkey and its Impact on Productivity in The Hand Surgery Literature. BEZMIALEM SCIENCE 2021. [DOI: 10.14235/bas.galenos.2021.6024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
14
|
Serk H, Nilsson MB, Figueira J, Wieloch T, Schleucher J. CO 2 fertilization of Sphagnum peat mosses is modulated by water table level and other environmental factors. PLANT, CELL & ENVIRONMENT 2021; 44:1756-1768. [PMID: 33751592 DOI: 10.1111/pce.14043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Sphagnum mosses account for most accumulated dead organic matter in peatlands. Therefore, understanding their responses to increasing atmospheric CO2 is needed for estimating peatland C balances under climate change. A key process is photorespiration: a major determinant of net photosynthetic C assimilation that depends on the CO2 to O2 ratio. We used climate chambers to investigate photorespiratory responses of Sphagnum fuscum hummocks to recent increases in atmospheric CO2 (from 280 to 400 ppm) under different water table, temperature, and light intensity levels. We tested the photorespiratory variability using a novel method based on deuterium isotopomers (D6S /D6R ratio) of photosynthetic glucose. The effect of elevated CO2 on photorespiration was highly dependent on water table. At low water table (-20 cm), elevated CO2 suppressed photorespiration relative to C assimilation, thus substantially increasing the net primary production potential. In contrast, a high water table (~0 cm) favored photorespiration and abolished this CO2 effect. The response was further tested for Sphagnum majus lawns at typical water table levels (~0 and -7 cm), revealing no effect of CO2 under those conditions. Our results indicate that hummocks, which typically experience low water table levels, benefit from the 20th century's increase in atmospheric CO2 .
Collapse
Affiliation(s)
- Henrik Serk
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Mats B Nilsson
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - João Figueira
- Department of Chemistry, Scilife Lab, Umeå University, Umeå, Sweden
| | - Thomas Wieloch
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Jürgen Schleucher
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| |
Collapse
|
15
|
Role of Microorganisms in the Remediation of Wastewater in Floating Treatment Wetlands: A Review. SUSTAINABILITY 2020. [DOI: 10.3390/su12145559] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This article provides useful information for understanding the specific role of microbes in the pollutant removal process in floating treatment wetlands (FTWs). The current literature is collected and organized to provide an insight into the specific role of microbes toward plants and pollutants. Several aspects are discussed, such as important components of FTWs, common bacterial species, rhizospheric and endophytes bacteria, and their specific role in the pollutant removal process. The roots of plants release oxygen and exudates, which act as a substrate for microbial growth. The bacteria attach themselves to the roots and form biofilms to get nutrients from the plants. Along the plants, the microbial community also influences the performance of FTWs. The bacterial community contributes to the removal of nitrogen, phosphorus, toxic metals, hydrocarbon, and organic compounds. Plant–microbe interaction breaks down complex compounds into simple nutrients, mobilizes metal ions, and increases the uptake of pollutants by plants. The inoculation of the roots of plants with acclimatized microbes may improve the phytoremediation potential of FTWs. The bacteria also encourage plant growth and the bioavailability of toxic pollutants and can alleviate metal toxicity.
Collapse
|
16
|
Rastogi A, Antala M, Gąbka M, Rosadziński S, Stróżecki M, Brestic M, Juszczak R. Impact of warming and reduced precipitation on morphology and chlorophyll concentration in peat mosses (Sphagnum angustifolium and S. fallax). Sci Rep 2020; 10:8592. [PMID: 32451474 PMCID: PMC7248058 DOI: 10.1038/s41598-020-65032-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 04/15/2020] [Indexed: 12/02/2022] Open
Abstract
Peatlands are one of the most important ecosystems due to their biodiversity and abundant organic compounds; therefore, it is important to observe how different plant species in peatlands react to changing environmental conditions. Sphagnum spp. are the main component of peatlands and are considered as the creator of conditions favorable for carbon storage in the form of peat. Sphagnum angustifolium and Sphagnum fallax are taxonomically very close species. To examine their adaptability to climate change, we studied the morphology and pigment content of these two species from environmental manipulation sites in Poland, where the environment was continuously manipulated for temperature and precipitation. The warming of peat was induced by using infrared heaters, whereas total precipitation was reduced by a curtain that cuts the nighttime precipitation. Morphology of S. angustifolium stayed under climate manipulation relatively stable. However, the main morphological parameters of S. fallax were significantly affected by precipitation reduction. Thus, this study indicates S. angustifolium is better adapted in comparison to S. fallax for drier and warmer conditions.
Collapse
Affiliation(s)
- Anshu Rastogi
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Piątkowska 94, 60-649, Poznan, Poland.
| | - Michal Antala
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Piątkowska 94, 60-649, Poznan, Poland
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976, Nitra, Slovak Republic
| | - Maciej Gąbka
- Department of Hydrobiology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| | - Stanisław Rosadziński
- Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Marcin Stróżecki
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Piątkowska 94, 60-649, Poznan, Poland
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976, Nitra, Slovak Republic
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources Czech University of Life Sciences, 16500 Prague, Czech Republic
| | - Radosław Juszczak
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Piątkowska 94, 60-649, Poznan, Poland
| |
Collapse
|
17
|
Vesty EF, Whitbread AL, Needs S, Tanko W, Jones K, Halliday N, Ghaderiardakani F, Liu X, Cámara M, Coates JC. Cross-kingdom signalling regulates spore germination in the moss Physcomitrella patens. Sci Rep 2020; 10:2614. [PMID: 32054953 PMCID: PMC7018845 DOI: 10.1038/s41598-020-59467-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/17/2020] [Indexed: 01/10/2023] Open
Abstract
Plants live in close association with microorganisms that can have beneficial or detrimental effects. The activity of bacteria in association with flowering plants has been extensively analysed. Bacteria use quorum-sensing as a way of monitoring their population density and interacting with their environment. A key group of quorum sensing molecules in Gram-negative bacteria are the N-acylhomoserine lactones (AHLs), which are known to affect the growth and development of both flowering plants, including crops, and marine algae. Thus, AHLs have potentially important roles in agriculture and aquaculture. Nothing is known about the effects of AHLs on the earliest-diverging land plants, thus the evolution of AHL-mediated bacterial-plant/algal interactions is unknown. In this paper, we show that AHLs can affect spore germination in a representative of the earliest plants on land, the Bryophyte moss Physcomitrella patens. Furthermore, we demonstrate that sporophytes of some wild isolates of Physcomitrella patens are associated with AHL-producing bacteria.
Collapse
Affiliation(s)
- Eleanor F Vesty
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK.,University Centre Shrewsbury, Guildhall, Frankwell Quay, Shrewsbury, Shropshire, UK
| | - Amy L Whitbread
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK.,Karlsruhe Institute of Technology, Karlsruhe, Baden-Württemberg, Germany
| | - Sarah Needs
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK.,School of Life, Health and Chemical Sciences, Open University, Walton Hall, Kents Hill, Milton Keynes, UK
| | - Wesal Tanko
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Kirsty Jones
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Nigel Halliday
- National Biofilm Innovations Centre, University of Nottingham Biodiscovery Institute, School of Life Sciences, University of Nottingham, University Park, Nottingham, UK
| | | | - Xiaoguang Liu
- National Biofilm Innovations Centre, University of Nottingham Biodiscovery Institute, School of Life Sciences, University of Nottingham, University Park, Nottingham, UK.,Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Miguel Cámara
- National Biofilm Innovations Centre, University of Nottingham Biodiscovery Institute, School of Life Sciences, University of Nottingham, University Park, Nottingham, UK.
| | - Juliet C Coates
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK.
| |
Collapse
|
18
|
Tian W, Xiang X, Ma L, Evers S, Wang R, Qiu X, Wang H. Rare Species Shift the Structure of Bacterial Communities Across Sphagnum Compartments in a Subalpine Peatland. Front Microbiol 2020; 10:3138. [PMID: 32038572 PMCID: PMC6986206 DOI: 10.3389/fmicb.2019.03138] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/27/2019] [Indexed: 12/17/2022] Open
Abstract
Sphagnum-associated microbiomes are crucial to Sphagnum growth and peatland ecological functions. However, roles of rare species in bacterial communities across Sphagnum compartments are poorly understood. Here the structures of rare taxa (RT) and conditionally abundant and rare taxa (CART) from Sphagnum palustre peat (SP), S. palustre ectosphere (Ecto) and S. palustre endosphere (Endo) were investigated in the Dajiuhu Peatland, central China. Our results showed that plant compartment effects significantly altered the diversities and structures of bacterial communities. The Observed species and Simpson indices of RT and CART in alpha diversity significantly increased from Endo to SP, with those of Ecto in-between. The variations of community dissimilarities of RT and CART among compartments were consistent with those of whole bacterial communities (WBC). Network analysis indicated a non-random co-occurrence pattern of WBC and all keystone species are affiliated with RT and CART, indicating their important role in sustaining the WBC. Furthermore, the community structures of RT and CART in SP were significantly shaped by water table and total nitrogen content, which coincided with the correlations between WBC and environmental factors. Collectively, our results for the first time confirm the importance of rare species to bacterial communities through structural and predicted functional analyses, which expands our understanding of rare species in Sphagnum-associated microbial communities in subalpine peatlands.
Collapse
Affiliation(s)
- Wen Tian
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Xing Xiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Liyuan Ma
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Stephanie Evers
- School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, United Kingdom
- TROCARI (Tropical Catchment Research Initiative), Semenyih, Malaysia
| | - Ruicheng Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Xuan Qiu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Hongmei Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- School of Environmental Studies, China University of Geosciences, Wuhan, China
- Laboratory of Basin Hydrology and Wetland Eco-Restoration, China University of Geosciences, Wuhan, China
| |
Collapse
|
19
|
Norby RJ, Childs J, Hanson PJ, Warren JM. Rapid loss of an ecosystem engineer: Sphagnum decline in an experimentally warmed bog. Ecol Evol 2019; 9:12571-12585. [PMID: 31788198 PMCID: PMC6875578 DOI: 10.1002/ece3.5722] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/13/2019] [Accepted: 09/15/2019] [Indexed: 01/16/2023] Open
Abstract
Sphagnum mosses are keystone components of peatland ecosystems. They facilitate the accumulation of carbon in peat deposits, but climate change is predicted to expose peatland ecosystem to sustained and unprecedented warming leading to a significant release of carbon to the atmosphere. Sphagnum responses to climate change, and their interaction with other components of the ecosystem, will determine the future trajectory of carbon fluxes in peatlands. We measured the growth and productivity of Sphagnum in an ombrotrophic bog in northern Minnesota, where ten 12.8-m-diameter plots were exposed to a range of whole-ecosystem (air and soil) warming treatments (+0 to +9°C) in ambient or elevated (+500 ppm) CO2. The experiment is unique in its spatial and temporal scale, a focus on response surface analysis encompassing the range of elevated temperature predicted to occur this century, and consideration of an effect of co-occurring CO2 altering the temperature response surface. In the second year of warming, dry matter increment of Sphagnum increased with modest warming to a maximum at 5°C above ambient and decreased with additional warming. Sphagnum cover declined from close to 100% of the ground area to <50% in the warmest enclosures. After three years of warming, annual Sphagnum productivity declined linearly with increasing temperature (13-29 g C/m2 per °C warming) due to widespread desiccation and loss of Sphagnum. Productivity was less in elevated CO2 enclosures, which we attribute to increased shading by shrubs. Sphagnum desiccation and growth responses were associated with the effects of warming on hydrology. The rapid decline of the Sphagnum community with sustained warming, which appears to be irreversible, can be expected to have many follow-on consequences to the structure and function of this and similar ecosystems, with significant feedbacks to the global carbon cycle and climate change.
Collapse
Affiliation(s)
- Richard J. Norby
- Environmental Sciences Division and Climate Change Science InstituteOak Ridge National LaboratoryOak RidgeTNUSA
| | - Joanne Childs
- Environmental Sciences Division and Climate Change Science InstituteOak Ridge National LaboratoryOak RidgeTNUSA
| | - Paul J. Hanson
- Environmental Sciences Division and Climate Change Science InstituteOak Ridge National LaboratoryOak RidgeTNUSA
| | - Jeffrey M. Warren
- Environmental Sciences Division and Climate Change Science InstituteOak Ridge National LaboratoryOak RidgeTNUSA
| |
Collapse
|
20
|
Hamard S, Robroek BJM, Allard PM, Signarbieux C, Zhou S, Saesong T, de Baaker F, Buttler A, Chiapusio G, Wolfender JL, Bragazza L, Jassey VEJ. Effects of Sphagnum Leachate on Competitive Sphagnum Microbiome Depend on Species and Time. Front Microbiol 2019; 10:2042. [PMID: 31555245 PMCID: PMC6742715 DOI: 10.3389/fmicb.2019.02042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 08/20/2019] [Indexed: 12/03/2022] Open
Abstract
Plant specialized metabolites play an important role in soil carbon (C) and nutrient fluxes. Through anti-microbial effects, they can modulate microbial assemblages and associated microbial-driven processes, such as nutrient cycling, so to positively or negatively cascade on plant fitness. As such, plant specialized metabolites can be used as a tool to supplant competitors. These compounds are little studied in bryophytes. This is especially notable in peatlands where Sphagnum mosses can dominate the vegetation and show strong interspecific competition. Sphagnum mosses form carpets where diverse microbial communities live and play a crucial role in Sphagnum fitness by regulating C and nutrient cycling. Here, by means of a microcosm experiment, we assessed to what extent moss metabolites of two Sphagnum species (S. fallax and S. divinum) modulate the competitive Sphagnum microbiome, with particular focus on microbial respiration. Using a reciprocal leachate experiment, we found that interactions between Sphagnum leachates and microbiome are species-specific. We show that both Sphagnum leachates differed in compound richness and compound relative abundance, especially sphagnum acid derivates, and that they include microbial-related metabolites. The addition of S. divinum leachate on the S. fallax microbiome immediately reduced microbial respiration (−95%). Prolonged exposition of S. fallax microbiome to S. divinum leachate destabilized the food web structure due to a modulation of microbial abundance. In particular, leachate addition decreased the biomass of testate amoebae and rotifers but increased that of ciliates. These changes did not influence microbial CO2 respiration, suggesting that the structural plasticity of the food web leads to its functional resistance through the replacement of species that are functionally redundant. In contrast, S. fallax leachate neither affected S. divinum microbial respiration, nor microbial biomass. We, however, found that S. fallax leachate addition stabilized the food web structure associated to S. divinum by changing trophic interactions among species. The differences in allelopathic effects between both Sphagnum leachates might impact their competitiveness and affect species distribution at local scale. Our study further paves the way to better understand the role of moss and microbial specialized metabolites in peatland C dynamics.
Collapse
Affiliation(s)
- Samuel Hamard
- ECOLAB, Laboratoire d'Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France.,Laboratory of Ecological Systems (ECOS), Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering, Lausanne, Switzerland.,Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Lausanne, Switzerland.,Laboratoire de Géologie, UMR 8538, CNRS-ENS, Ecole Normale Supérieure, Paris, France
| | - Bjorn J M Robroek
- Laboratory of Ecological Systems (ECOS), Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering, Lausanne, Switzerland.,School of Biological Sciences, University of Southampton, Southampton, United Kingdom.,Aquatic Ecology and Environmental Biology Group, Faculty of Science, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Pierre-Marie Allard
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Constant Signarbieux
- Laboratory of Ecological Systems (ECOS), Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering, Lausanne, Switzerland.,Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Lausanne, Switzerland
| | - Shuaizhen Zhou
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Tongchai Saesong
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland.,Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
| | - Flore de Baaker
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Alexandre Buttler
- Laboratory of Ecological Systems (ECOS), Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering, Lausanne, Switzerland.,Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Lausanne, Switzerland.,Laboratoire Chrono-Environnement, Université Bourgogne Franche Comté, UMR CNRS 6249 USC INRA, Montbéliard, France
| | - Geneviève Chiapusio
- Laboratoire Chrono-Environnement, Université Bourgogne Franche Comté, UMR CNRS 6249 USC INRA, Montbéliard, France.,Laboratoire Carrtel, Université Savoie Mont Blanc INRA 042, Domaine Universitaire Belledonne, Le Bourget-du-Lac, France
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Luca Bragazza
- Laboratory of Ecological Systems (ECOS), Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering, Lausanne, Switzerland.,Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Lausanne, Switzerland.,Department of Life Science and Biotechnologies, University of Ferrara, Ferrara, Italy
| | - Vincent E J Jassey
- ECOLAB, Laboratoire d'Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France.,Laboratory of Ecological Systems (ECOS), Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering, Lausanne, Switzerland.,Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Lausanne, Switzerland
| |
Collapse
|
21
|
Tian W, Wang H, Xiang X, Wang R, Xu Y. Structural Variations of Bacterial Community Driven by Sphagnum Microhabitat Differentiation in a Subalpine Peatland. Front Microbiol 2019; 10:1661. [PMID: 31396183 PMCID: PMC6667737 DOI: 10.3389/fmicb.2019.01661] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/04/2019] [Indexed: 11/13/2022] Open
Abstract
Sphagnum microbiomes play an important role in the northern peatland ecosystems. However, information about above and belowground microbiomes related to Sphagnum at subtropical area remains largely limited. In this study, microbial communities from Sphagnum palustre peat, S. palustre green part, and S. palustre brown part at the Dajiuhu Peatland, in central China were investigated via 16S rRNA gene amplicon sequencing. Results indicated that Alphaproteobacteria was the dominant class in all samples, and the classes Acidobacteria and Gammaproteobacteria were abundant in S. palustre peat and S. palustre brown part samples, respectively. In contrast, the class Cyanobacteria dominated in S. palustre green part samples. Microhabitat differentiation mainly contributes to structural differences of bacterial microbiome. In the S. palustre peat, microbial communities were significantly shaped by water table and total nitrogen content. Our study is a systematical investigation on above and belowground bacterial microbiome in a subalpine Sphagnum peatland and the results offer new knowledge about the distribution of bacterial microbiome associated with different microhabitats in subtropical area.
Collapse
Affiliation(s)
- Wen Tian
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Hongmei Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- Laboratory of Basin Hydrology and Wetland Eco-Restoration, China University of Geosciences, Wuhan, China
| | - Xing Xiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Ruicheng Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Ying Xu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| |
Collapse
|
22
|
Shaw AJ, Carter BE, Aguero B, da Costa DP, Crowl AA. Range change evolution of peat mosses (Sphagnum) within and between climate zones. GLOBAL CHANGE BIOLOGY 2019; 25:108-120. [PMID: 30346105 DOI: 10.1111/gcb.14485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 06/08/2023]
Abstract
Peat mosses (Sphagnum) hold exceptional importance in the control of global carbon fluxes and climate because of the vast stores of carbon bound up in partially decomposed biomass (peat). This study tests the hypothesis that the early diversification of Sphagnum was in the Northern Hemisphere, with subsequent range expansions to tropical latitudes and the Southern Hemisphere. A phylogenetic analysis of 192 accessions representing the moss class Sphagnopsida based on four plastid loci was conducted in conjunction with biogeographic analyses using BioGeoBEARS to investigate the tempo and mode of geographic range evolution. Analyses support the hypothesis that the major intrageneric clades of peat-forming species accounting for >90% of peat moss diversity originated and diversified at northern latitudes. The genus underwent multiple range expansions into tropical and Southern Hemisphere regions. Range evolution in peat mosses was most common within latitudinal zones, attesting to the relative difficulty of successfully invading new climate zones. Allopolyploidy in Sphagnum (inferred from microsatellite heterozygosity) does not appear to be biased with regard to geographic region nor intrageneric clade. The inference that Sphagnum diversified in cool-or cold-climate regions and repeatedly expanded its range into tropical regions makes the genus an excellent model for studying morphological, physiological, and genomic traits associated with adaptation to warming climates.
Collapse
Affiliation(s)
- A Jonathan Shaw
- Department of Biology, Duke University, Durham, North Carolina
| | - Benjamin E Carter
- Department of Biological Sciences, San Jose State University, San Jose, California
| | - Blanka Aguero
- Department of Biology, Duke University, Durham, North Carolina
| | | | - Andrew A Crowl
- Department of Biology, Duke University, Durham, North Carolina
| |
Collapse
|
23
|
Kox MAR, Aalto SL, Penttilä T, Ettwig KF, Jetten MSM, van Kessel MAHJ. The influence of oxygen and methane on nitrogen fixation in subarctic Sphagnum mosses. AMB Express 2018; 8:76. [PMID: 29730829 PMCID: PMC5936483 DOI: 10.1186/s13568-018-0607-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 04/28/2018] [Indexed: 11/10/2022] Open
Abstract
Biological nitrogen fixation is an important source of bioavailable nitrogen in Sphagnum dominated peatlands. Sphagnum mosses harbor a diverse microbiome including nitrogen-fixing and methane (CH4) oxidizing bacteria. The inhibitory effect of oxygen on microbial nitrogen fixation is documented for many bacteria. However, the role of nitrogen-fixing methanotrophs in nitrogen supply to Sphagnum peat mosses is not well explored. Here, we investigated the role of both oxygen and methane on nitrogen fixation in subarctic Sphagnum peat mosses. Five species of Sphagnum mosses were sampled from two mesotrophic and three oligotrophic sites within the Lakkasuo peatland in Orivesi, central Finland. Mosses were incubated under either ambient or low oxygen conditions in the presence or absence of methane. Stable isotope activity assays revealed considerable nitrogen-fixing and methane-assimilating rates at all sites (1.4 ± 0.2 µmol 15N-N2 g-1 DW day-1 and 12.0 ± 1.1 µmol 13C-CH4 g-1 DW day-1, respectively). Addition of methane did not stimulate incorporation of 15N-nitrogen into biomass, whereas oxygen depletion increased the activity of the nitrogen-fixing community. Analysis of the 16S rRNA genes at the bacterial community level showed a very diverse microbiome that was dominated by Alphaproteobacteria in all sites. Bona fide methane-oxidizing taxa were not very abundant (relative abundance less than 0.1%). Based on our results we conclude that methanotrophs did not contribute significantly to nitrogen fixation in the investigated peatlands.
Collapse
Affiliation(s)
- Martine A. R. Kox
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
| | - Sanni L. Aalto
- Department of Biological and Environmental Science, University of Jyväskylä, PO Box 35, 40014 Jyväskylä, Finland
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 1627, 70211 Kuopio, Finland
| | - Timo Penttilä
- Natural Resources Institute Finland, PO Box 2, 00791 Helsinki, Finland
| | | | - Mike S. M. Jetten
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
| | | |
Collapse
|
24
|
Lees KJ, Quaife T, Artz RRE, Khomik M, Clark JM. Potential for using remote sensing to estimate carbon fluxes across northern peatlands - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 615:857-874. [PMID: 29017128 DOI: 10.1016/j.scitotenv.2017.09.103] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 06/07/2023]
Abstract
Peatlands store large amounts of terrestrial carbon and any changes to their carbon balance could cause large changes in the greenhouse gas (GHG) balance of the Earth's atmosphere. There is still much uncertainty about how the GHG dynamics of peatlands are affected by climate and land use change. Current field-based methods of estimating annual carbon exchange between peatlands and the atmosphere include flux chambers and eddy covariance towers. However, remote sensing has several advantages over these traditional approaches in terms of cost, spatial coverage and accessibility to remote locations. In this paper, we outline the basic principles of using remote sensing to estimate ecosystem carbon fluxes and explain the range of satellite data available for such estimations, considering the indices and models developed to make use of the data. Past studies, which have used remote sensing data in comparison with ground-based calculations of carbon fluxes over Northern peatland landscapes, are discussed, as well as the challenges of working with remote sensing on peatlands. Finally, we suggest areas in need of future work on this topic. We conclude that the application of remote sensing to models of carbon fluxes is a viable research method over Northern peatlands but further work is needed to develop more comprehensive carbon cycle models and to improve the long-term reliability of models, particularly on peatland sites undergoing restoration.
Collapse
Affiliation(s)
- K J Lees
- Department of Geography and Environmental Science, University of Reading, Whiteknights, PO box 227, Reading RG6 6AB, UK.
| | - T Quaife
- Department of Meteorology, University of Reading, Earley Gate, PO box 243, Reading RG6 6BB, UK
| | - R R E Artz
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
| | - M Khomik
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
| | - J M Clark
- Department of Geography and Environmental Science, University of Reading, Whiteknights, PO box 227, Reading RG6 6AB, UK
| |
Collapse
|
25
|
Weston DJ, Turetsky MR, Johnson MG, Granath G, Lindo Z, Belyea LR, Rice SK, Hanson DT, Engelhardt KAM, Schmutz J, Dorrepaal E, Euskirchen ES, Stenøien HK, Szövényi P, Jackson M, Piatkowski BT, Muchero W, Norby RJ, Kostka JE, Glass JB, Rydin H, Limpens J, Tuittila ES, Ullrich KK, Carrell A, Benscoter BW, Chen JG, Oke TA, Nilsson MB, Ranjan P, Jacobson D, Lilleskov EA, Clymo RS, Shaw AJ. The Sphagnome Project: enabling ecological and evolutionary insights through a genus-level sequencing project. THE NEW PHYTOLOGIST 2018; 217:16-25. [PMID: 29076547 DOI: 10.1111/nph.14860] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Considerable progress has been made in ecological and evolutionary genetics with studies demonstrating how genes underlying plant and microbial traits can influence adaptation and even 'extend' to influence community structure and ecosystem level processes. Progress in this area is limited to model systems with deep genetic and genomic resources that often have negligible ecological impact or interest. Thus, important linkages between genetic adaptations and their consequences at organismal and ecological scales are often lacking. Here we introduce the Sphagnome Project, which incorporates genomics into a long-running history of Sphagnum research that has documented unparalleled contributions to peatland ecology, carbon sequestration, biogeochemistry, microbiome research, niche construction, and ecosystem engineering. The Sphagnome Project encompasses a genus-level sequencing effort that represents a new type of model system driven not only by genetic tractability, but by ecologically relevant questions and hypotheses.
Collapse
Affiliation(s)
- David J Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Merritt R Turetsky
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Matthew G Johnson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79414, USA
| | - Gustaf Granath
- Department of Ecology, Swedish University of Agricultural Sciences, Box 7044, SE-750 07, Uppsala, Sweden
| | - Zoë Lindo
- Department of Biology, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Lisa R Belyea
- School of Geography, Queen Mary University of London, London, E1 4NS, UK
| | - Steven K Rice
- Department of Biological Sciences, Union College, Schenectady, NY, 12308, USA
| | - David T Hanson
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Katharina A M Engelhardt
- Appalachian Lab, University of Maryland Center of Environmental Science, Frostburg, MD, 21532, USA
| | - Jeremy Schmutz
- HudsonAlpha Institute of Biotechnology, Huntsville, AL, 35806, USA
- Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Ellen Dorrepaal
- Climate Impacts Research Center, Department of Ecology and Environmental Science, Umeå University, 98107, Abisko, Sweden
| | | | - Hans K Stenøien
- NTNU University Museum, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway
| | - Péter Szövényi
- Department of Systematic and Evolutionary Botany, University of Zurich, 8008, Zurich, Switzerland
| | | | | | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Richard J Norby
- Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Joel E Kostka
- Schools of Biology and Earth & Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jennifer B Glass
- Schools of Biology and Earth & Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Håkan Rydin
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden
| | - Juul Limpens
- Plant Ecology and Nature Conservation Group, Department of Environmental Sciences, Wageningen University, Droevendaalse steeg 3a, NL-6708 PD, Wageningen, the Netherlands
| | - Eeva-Stiina Tuittila
- Peatland and Soil Ecology Group, School of Forest Sciences, University of Eastern Finland, Joensuu, Finland
| | | | - Alyssa Carrell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Brian W Benscoter
- Department of Biological Sciences, Florida Atlantic University, Davie, FL, 33314, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Tobi A Oke
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Mats B Nilsson
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Skogsmarksgränd, SE-901 83, Umeå, Sweden
| | - Priya Ranjan
- Department of Plant Sciences, University of Tennessee, 2431 Joe Johnson Drive, Knoxville, TN, 37996-4561, USA
| | - Daniel Jacobson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Erik A Lilleskov
- US Forest Service, Northern Research Station, 410 MacInnes Dr., Houghton, MI, 49931, USA
| | - R S Clymo
- School of Biological & Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - A Jonathan Shaw
- Department of Biology, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
26
|
Meleshko O, Stenøien HK, Speed JDM, Flatberg KI, Kyrkjeeide MO, Hassel K. Is interspecific gene flow and speciation in peatmosses ( Sphagnum) constrained by phylogenetic relationship and life-history traits? LINDBERGIA 2018. [DOI: 10.25227/linbg.01107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Olena Meleshko
- O. Meleshko , H. K. Stenøien, J. D. M. Speed, K, I. Flatberg and K. Hassel, NTNU University Museum, Norwegian Univ. of Science and Technology, NO-7491 Trondheim, Norway
| | - Hans K. Stenøien
- O. Meleshko , H. K. Stenøien, J. D. M. Speed, K, I. Flatberg and K. Hassel, NTNU University Museum, Norwegian Univ. of Science and Technology, NO-7491 Trondheim, Norway
| | - James D. M. Speed
- O. Meleshko , H. K. Stenøien, J. D. M. Speed, K, I. Flatberg and K. Hassel, NTNU University Museum, Norwegian Univ. of Science and Technology, NO-7491 Trondheim, Norway
| | - Kjell I. Flatberg
- O. Meleshko , H. K. Stenøien, J. D. M. Speed, K, I. Flatberg and K. Hassel, NTNU University Museum, Norwegian Univ. of Science and Technology, NO-7491 Trondheim, Norway
| | | | - Kristian Hassel
- O. Meleshko , H. K. Stenøien, J. D. M. Speed, K, I. Flatberg and K. Hassel, NTNU University Museum, Norwegian Univ. of Science and Technology, NO-7491 Trondheim, Norway
| |
Collapse
|
27
|
Matthews B, Best RJ, Feulner PGD, Narwani A, Limberger R. Evolution as an ecosystem process: insights from genomics. Genome 2017; 61:298-309. [PMID: 29241022 DOI: 10.1139/gen-2017-0044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Evolution is a fundamental ecosystem process. The study of genomic variation of organisms can not only improve our understanding of evolutionary processes, but also of contemporary and future ecosystem dynamics. We argue that integrative research between the fields of genomics and ecosystem ecology could generate new insights. Specifically, studies of biodiversity and ecosystem functioning, evolutionary rescue, and eco-evolutionary dynamics could all benefit from information about variation in genome structure and the genetic architecture of traits, whereas genomic studies could benefit from information about the ecological context of evolutionary dynamics. We propose new ways to help link research on functional genomic diversity with (reciprocal) interactions between phenotypic evolution and ecosystem change. Despite numerous challenges, we anticipate that the wealth of genomic data being collected on natural populations will improve our understanding of ecosystems.
Collapse
Affiliation(s)
- Blake Matthews
- a Eawag, Department of Aquatic Ecology, Center for Ecology, Evolution and Biogeochemistry, Kastanienbaum, Switzerland
| | - Rebecca J Best
- a Eawag, Department of Aquatic Ecology, Center for Ecology, Evolution and Biogeochemistry, Kastanienbaum, Switzerland.,b School of Earth Sciences and Environmental Sustainability, Northern Arizona University, 525 S. Beaver Street, Flagstaff, AZ 86011, USA
| | - Philine G D Feulner
- c Eawag, Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry, Kastanienbaum, Switzerland.,d University of Bern, Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, Bern, Switzerland
| | - Anita Narwani
- a Eawag, Department of Aquatic Ecology, Center for Ecology, Evolution and Biogeochemistry, Kastanienbaum, Switzerland
| | - Romana Limberger
- a Eawag, Department of Aquatic Ecology, Center for Ecology, Evolution and Biogeochemistry, Kastanienbaum, Switzerland.,e Research Institute for Limnology, University of Innsbruck, Mondsee, Austria
| |
Collapse
|
28
|
Molybdenum-Based Diazotrophy in a Sphagnum Peatland in Northern Minnesota. Appl Environ Microbiol 2017; 83:AEM.01174-17. [PMID: 28667112 DOI: 10.1128/aem.01174-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 06/28/2017] [Indexed: 11/20/2022] Open
Abstract
Microbial N2 fixation (diazotrophy) represents an important nitrogen source to oligotrophic peatland ecosystems, which are important sinks for atmospheric CO2 and are susceptible to the changing climate. The objectives of this study were (i) to determine the active microbial group and type of nitrogenase mediating diazotrophy in an ombrotrophic Sphagnum-dominated peat bog (the S1 peat bog, Marcell Experimental Forest, Minnesota, USA); and (ii) to determine the effect of environmental parameters (light, O2, CO2, and CH4) on potential rates of diazotrophy measured by acetylene (C2H2) reduction and 15N2 incorporation. A molecular analysis of metabolically active microbial communities suggested that diazotrophy in surface peat was primarily mediated by Alphaproteobacteria (Bradyrhizobiaceae and Beijerinckiaceae). Despite higher concentrations of dissolved vanadium ([V] 11 nM) than molybdenum ([Mo] 3 nM) in surface peat, a combination of metagenomic, amplicon sequencing, and activity measurements indicated that Mo-containing nitrogenases dominate over the V-containing form. Acetylene reduction was only detected in surface peat exposed to light, with the highest rates observed in peat collected from hollows with the highest water contents. Incorporation of 15N2 was suppressed 90% by O2 and 55% by C2H2 and was unaffected by CH4 and CO2 amendments. These results suggest that peatland diazotrophy is mediated by a combination of C2H2-sensitive and C2H2-insensitive microbes that are more active at low concentrations of O2 and show similar activity at high and low concentrations of CH4 IMPORTANCE Previous studies indicate that diazotrophy provides an important nitrogen source and is linked to methanotrophy in Sphagnum-dominated peatlands. However, the environmental controls and enzymatic pathways of peatland diazotrophy, as well as the metabolically active microbial populations that catalyze this process, remain in question. Our findings indicate that oxygen levels and photosynthetic activity override low nutrient availability in limiting diazotrophy and that members of the Alphaproteobacteria (Rhizobiales) catalyze this process at the bog surface using the molybdenum-based form of the nitrogenase enzyme.
Collapse
|
29
|
Iturrate‐Garcia M, O'Brien MJ, Khitun O, Abiven S, Niklaus PA, Schaepman‐Strub G. Interactive effects between plant functional types and soil factors on tundra species diversity and community composition. Ecol Evol 2016; 6:8126-8137. [PMID: 27878083 PMCID: PMC5108264 DOI: 10.1002/ece3.2548] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 09/13/2016] [Accepted: 09/19/2016] [Indexed: 01/15/2023] Open
Abstract
Plant communities are coupled with abiotic factors, as species diversity and community composition both respond to and influence climate and soil characteristics. Interactions between vegetation and abiotic factors depend on plant functional types (PFT) as different growth forms will have differential responses to and effects on site characteristics. However, despite the importance of different PFT for community assembly and ecosystem functioning, research has mainly focused on vascular plants. Here, we established a set of observational plots in two contrasting habitats in northeastern Siberia in order to assess the relationship between species diversity and community composition with soil variables, as well as the relationship between vegetation cover and species diversity for two PFT (nonvascular and vascular). We found that nonvascular species diversity decreased with soil acidity and moisture and, to a lesser extent, with soil temperature and active layer thickness. In contrast, no such correlation was found for vascular species diversity. Differences in community composition were found mainly along soil acidity and moisture gradients. However, the proportion of variation in composition explained by the measured soil variables was much lower for nonvascular than for vascular species when considering the PFT separately. We also found different relationships between vegetation cover and species diversity according the PFT and habitat. In support of niche differentiation theory, species diversity and community composition were related to edaphic factors. The distinct relationships found for nonvascular and vascular species suggest the importance of considering multiple PFT when assessing species diversity and composition and their interaction with edaphic factors. Synthesis: Identifying vegetation responses to edaphic factors is a first step toward a better understanding of vegetation-soil feedbacks under climate change. Our results suggest that incorporating differential responses of PFT is important for predicting vegetation shifts, primary productivity, and in turn, ecosystem functioning in a changing climate.
Collapse
Affiliation(s)
- Maitane Iturrate‐Garcia
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| | - Michael J. O'Brien
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
- Estación Experimental de Zonas ÁridasConsejo Superior de Investigaciones CientíficasAlmeríaSpain
| | - Olga Khitun
- Komarov Botanical InstituteRussian Academy of ScienceSt. PetersburgRussia
| | - Samuel Abiven
- Department of GeographyUniversity of ZurichZurichSwitzerland
| | - Pascal A. Niklaus
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| | - Gabriela Schaepman‐Strub
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| |
Collapse
|
30
|
Jonathan Shaw A, Devos N, Liu Y, Cox CJ, Goffinet B, Flatberg KI, Shaw B. Organellar phylogenomics of an emerging model system: Sphagnum (peatmoss). ANNALS OF BOTANY 2016; 118:185-96. [PMID: 27268484 PMCID: PMC4970357 DOI: 10.1093/aob/mcw086] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/11/2016] [Accepted: 03/28/2016] [Indexed: 05/09/2023]
Abstract
BACKGROUND AND AIMS Sphagnum-dominated peatlands contain approx. 30 % of the terrestrial carbon pool in the form of partially decomposed plant material (peat), and, as a consequence, Sphagnum is currently a focus of studies on biogeochemistry and control of global climate. Sphagnum species differ in ecologically important traits that scale up to impact ecosystem function, and sequencing of the genome from selected Sphagnum species is currently underway. As an emerging model system, these resources for Sphagnum will facilitate linking nucleotide variation to plant functional traits, and through those traits to ecosystem processes. A solid phylogenetic framework for Sphagnum is crucial to comparative analyses of species-specific traits, but relationships among major clades within Sphagnum have been recalcitrant to resolution because the genus underwent a rapid radiation. Herein a well-supported hypothesis for phylogenetic relationships among major clades within Sphagnum based on organellar genome sequences (plastid, mitochondrial) is provided. METHODS We obtained nucleotide sequences (273 753 nucleotides in total) from the two organellar genomes from 38 species (including three outgroups). Phylogenetic analyses were conducted using a variety of methods applied to nucleotide and amino acid sequences. The Sphagnum phylogeny was rooted with sequences from the related Sphagnopsida genera, Eosphagnum and Flatbergium KEY RESULTS Phylogenetic analyses of the data converge on the following subgeneric relationships: (Rigida (((Subsecunda) (Cuspidata)) ((Sphagnum) (Acutifolia))). All relationships were strongly supported. Species in the two major clades (i.e. Subsecunda + Cuspidata and Sphagnum + Acutifolia), which include >90 % of all Sphagnum species, differ in ecological niches and these differences correlate with other functional traits that impact biogeochemical cycling. Mitochondrial intron presence/absence are variable among species and genera of the Sphagnopsida. Two new nomenclatural combinations are made, in the genera Eosphagnum and Flatbergium CONCLUSIONS Newly resolved relationships now permit phylogenetic analyses of morphological, biochemical and ecological traits among Sphagnum species. The results clarify long-standing disagreements about subgeneric relationships and intrageneric classification.
Collapse
Affiliation(s)
- A Jonathan Shaw
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Nicolas Devos
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Yang Liu
- Department of Ecology and Evolutionary Biology, 75 North Eagleville Road, Storrs, CT 06269, USA
| | - Cymon J Cox
- Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, Edif. 7, 8005-139 Faro, Portugal
| | - Bernard Goffinet
- Department of Ecology and Evolutionary Biology, 75 North Eagleville Road, Storrs, CT 06269, USA
| | - Kjell Ivar Flatberg
- NTNU University Museum, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Blanka Shaw
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
31
|
Kostka JE, Weston DJ, Glass JB, Lilleskov EA, Shaw AJ, Turetsky MR. The Sphagnum microbiome: new insights from an ancient plant lineage. THE NEW PHYTOLOGIST 2016; 211:57-64. [PMID: 27173909 DOI: 10.1111/nph.13993] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 02/15/2016] [Indexed: 05/03/2023]
Abstract
57 I. 57 II. 58 III. 59 IV. 59 V. 61 VI. 62 63 References 63 SUMMARY: Peat mosses of the genus Sphagnum play a major role in global carbon storage and dominate many northern peatland ecosystems, which are currently being subjected to some of the most rapid climate changes on Earth. A rapidly expanding database indicates that a diverse community of microorganisms is intimately associated with Sphagnum, inhabiting the tissues and surface of the plant. Here we summarize the current state of knowledge regarding the Sphagnum microbiome and provide a perspective for future research directions. Although the majority of the microbiome remains uncultivated and its metabolic capabilities uncharacterized, prokaryotes and fungi have the potential to act as mutualists, symbionts, or antagonists of Sphagnum. For example, methanotrophic and nitrogen-fixing bacteria may benefit the plant host by providing up to 20-30% of Sphagnum carbon and nitrogen, respectively. Next-generation sequencing approaches have enabled the detailed characterization of microbiome community composition in peat mosses. However, as with other ecologically or economically important plants, our knowledge of Sphagnum-microbiome associations is in its infancy. In order to attain a predictive understanding of the role of the microbiome in Sphagnum productivity and ecosystem function, the mechanisms of plant-microbiome interactions and the metabolic potential of constituent microbial populations must be revealed.
Collapse
Affiliation(s)
- Joel E Kostka
- Schools of Biology and Earth & Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - David J Weston
- Biosciences Division, Oak Ridge National Lab, Oak Ridge, TN, 37831, USA
| | - Jennifer B Glass
- Schools of Biology and Earth & Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Erik A Lilleskov
- Northern Research Station, USDA Forest Service, Houghton, MI, 49931, USA
| | | | - Merritt R Turetsky
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
32
|
Zhao J, Peichl M, Nilsson MB. Enhanced winter soil frost reduces methane emission during the subsequent growing season in a boreal peatland. GLOBAL CHANGE BIOLOGY 2016; 22:750-762. [PMID: 26452333 DOI: 10.1111/gcb.13119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/01/2015] [Indexed: 06/05/2023]
Abstract
Winter climate change may result in reduced snow cover and could, consequently, alter the soil frost regime and biogeochemical processes underlying the exchange of methane (CH4 ) in boreal peatlands. In this study, we investigated the short-term (1-3 years) vs. long-term (11 years) effects of intensified winter soil frost (induced by experimental snow exclusion) on CH4 exchange during the following growing season in a boreal peatland. In the first 3 years (2004-2006), lower CH4 emissions in the treatment plots relative to the control coincided with delayed soil temperature increase in the treatment plots at the beginning of the growing season (May). After 11 treatment years (in 2014), CH4 emissions were lower in the treatment plots relative to the control over the entire growing season, resulting in a reduction in total growing season CH4 emission by 27%. From May to July 2014, reduced sedge leaf area coincided with lower CH4 emissions in the treatment plots compared to the control. From July to August, lower dissolved organic carbon concentrations in the pore water of the treatment plots explained 72% of the differences in CH4 emission between control and treatment. In addition, greater Sphagnum moss growth in the treatment plots resulted in a larger distance between the moss surface and the water table (i.e., increasing the oxic layer) which may have enhanced the CH4 oxidation potential in the treatment plots relative to the control in 2014. The differences in vegetation might also explain the lower temperature sensitivity of CH4 emission observed in the treatment plots relative to the control. Overall, this study suggests that greater soil frost, associated with future winter climate change, might substantially reduce the growing season CH4 emission in boreal peatlands through altering vegetation dynamics and subsequently causing vegetation-mediated effects on CH4 exchange.
Collapse
Affiliation(s)
- Junbin Zhao
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, 901 83, Sweden
| | - Matthias Peichl
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, 901 83, Sweden
| | - Mats B Nilsson
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, 901 83, Sweden
| |
Collapse
|
33
|
Bragina A, Berg C, Berg G. The core microbiome bonds the Alpine bog vegetation to a transkingdom metacommunity. Mol Ecol 2015; 24:4795-807. [DOI: 10.1111/mec.13342] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/16/2015] [Accepted: 07/22/2015] [Indexed: 01/15/2023]
Affiliation(s)
- Anastasia Bragina
- Institute of Environmental Biotechnology; Graz University of Technology; Petersgasse 12 8010 Graz Austria
| | - Christian Berg
- Institue of Plant Sciences; University of Graz; Holteigasse 6 8010 Graz Austria
| | - Gabriele Berg
- Institute of Environmental Biotechnology; Graz University of Technology; Petersgasse 12 8010 Graz Austria
| |
Collapse
|
34
|
Way DA, Long SP. Climate-smart agriculture and forestry: maintaining plant productivity in a changing world while minimizing production system effects on climate. PLANT, CELL & ENVIRONMENT 2015; 38:1683-1685. [PMID: 26248200 DOI: 10.1111/pce.12592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Affiliation(s)
- Danielle A Way
- Department of Biology, University of Western Ontario, London, Ontario, Canada, N6A 5B7
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | - Steve P Long
- Institute of Genomic Biology, University of Illinois, Urbana, IL, 61801, USA
| |
Collapse
|