1
|
Wang X, Cheng L, Xiong C, Whalley WR, Miller AJ, Rengel Z, Zhang F, Shen J. Understanding plant-soil interactions underpins enhanced sustainability of crop production. TRENDS IN PLANT SCIENCE 2024:S1360-1385(24)00126-2. [PMID: 38897884 DOI: 10.1016/j.tplants.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
The Green Revolution transformed agriculture with high-yielding, stress-resistant varieties. However, the urgent need for more sustainable agricultural development presents new challenges: increasing crop yield, improving nutritional quality, and enhancing resource-use efficiency. Soil plays a vital role in crop-production systems and ecosystem services, providing water, nutrients, and physical anchorage for crop growth. Despite advancements in plant and soil sciences, our understanding of belowground plant-soil interactions, which impact both crop performance and soil health, remains limited. Here, we argue that a lack of understanding of these plant-soil interactions hinders sustainable crop production. We propose that targeted engineering of crops and soils can provide a fresh approach to achieve higher yields, more efficient sustainable crop production, and improved soil health.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Nutrient Use and Management, Department of Plant Nutrition, College of Resources and Environmental Sciences, China Agricultural University, Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing 100193, China; State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lingyun Cheng
- State Key Laboratory of Nutrient Use and Management, Department of Plant Nutrition, College of Resources and Environmental Sciences, China Agricultural University, Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing 100193, China
| | - Chuanyong Xiong
- State Key Laboratory of Nutrient Use and Management, Department of Plant Nutrition, College of Resources and Environmental Sciences, China Agricultural University, Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing 100193, China; Horticultural Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - William R Whalley
- Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Anthony J Miller
- Biochemistry and Metabolism Department, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Zed Rengel
- Soil Science and Plant Nutrition, UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; Institute for Adriatic Crops and Karst Reclamation, 21000 Split, Croatia
| | - Fusuo Zhang
- State Key Laboratory of Nutrient Use and Management, Department of Plant Nutrition, College of Resources and Environmental Sciences, China Agricultural University, Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing 100193, China
| | - Jianbo Shen
- State Key Laboratory of Nutrient Use and Management, Department of Plant Nutrition, College of Resources and Environmental Sciences, China Agricultural University, Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing 100193, China.
| |
Collapse
|
2
|
Li P, Li H, Si B. Estimating deep soil water depletion and availability under planted forest on the Loess Plateau, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172228. [PMID: 38599401 DOI: 10.1016/j.scitotenv.2024.172228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
Deep soil water (DSW) plays a pivotal role in tree growth, susceptibility to drought-induced mortality, and belowground carbon and nutrient cycling. Assessing DSW depletion is essential for evaluating the resilience and sustainability of planted forests. But, due to the poor accessibility of deep soil layers, little is known about large scale DSW depletion. In this study, we leverage the concept that "plants are reliable indicators of deep soil water" to estimate DSW depletion in planted forests within the arid and semi-arid regions of the Chinese Loess Plateau (CLP). Our approach involves establishing a model that correlates forest age with DSW depletion. We then employ this model to estimate DSW depletion across the region, utilizing readily available data on the distribution of forest age and utilize the boundary models to consider the variability of DSW depletion estimated with forest age. Our results indicate that the model effectively estimates DSW depletion in planted forests, demonstrating a strong fit with an R2 of 0.71 and a low root mean square error (RMSE) of 332 mm. Notably, a substantial portion of the planted forest areas on the CLP has experienced DSW depletion from 800 mm to 1600 mm, and totaling 2.41 × 1010 m3 DSW depletion from 1995 to 2020 based on the general model. However, the available DSW in the existing planted forests on the CLP is estimated at only 1.73 × 1010 m3 by 2038. This suggests that there is potential risks and unsustainability for further afforestation efforts and carbon sequestration on the CLP under the current continuous afforestation measures. Our study holds significant implications for sustainable regional ecological management and quantifying water resources for carbon trading through afforestation.
Collapse
Affiliation(s)
- Peng Li
- College of Resources and Environmental Engineering, Ludong University, Yantai 264025, China; Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling 712100, China
| | - Huijie Li
- College of Resources and Environmental Engineering, Ludong University, Yantai 264025, China.
| | - Bingcheng Si
- College of Resources and Environmental Engineering, Ludong University, Yantai 264025, China; Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling 712100, China; Department of Soil Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada.
| |
Collapse
|
3
|
Lynch JP, Galindo-Castañeda T, Schneider HM, Sidhu JS, Rangarajan H, York LM. Root phenotypes for improved nitrogen capture. PLANT AND SOIL 2023; 502:31-85. [PMID: 39323575 PMCID: PMC11420291 DOI: 10.1007/s11104-023-06301-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2024]
Abstract
Background Suboptimal nitrogen availability is a primary constraint for crop production in low-input agroecosystems, while nitrogen fertilization is a primary contributor to the energy, economic, and environmental costs of crop production in high-input agroecosystems. In this article we consider avenues to develop crops with improved nitrogen capture and reduced requirement for nitrogen fertilizer. Scope Intraspecific variation for an array of root phenotypes has been associated with improved nitrogen capture in cereal crops, including architectural phenotypes that colocalize root foraging with nitrogen availability in the soil; anatomical phenotypes that reduce the metabolic costs of soil exploration, improve penetration of hard soil, and exploit the rhizosphere; subcellular phenotypes that reduce the nitrogen requirement of plant tissue; molecular phenotypes exhibiting optimized nitrate uptake kinetics; and rhizosphere phenotypes that optimize associations with the rhizosphere microbiome. For each of these topics we provide examples of root phenotypes which merit attention as potential selection targets for crop improvement. Several cross-cutting issues are addressed including the importance of soil hydrology and impedance, phenotypic plasticity, integrated phenotypes, in silico modeling, and breeding strategies using high throughput phenotyping for co-optimization of multiple phenes. Conclusions Substantial phenotypic variation exists in crop germplasm for an array of root phenotypes that improve nitrogen capture. Although this topic merits greater research attention than it currently receives, we have adequate understanding and tools to develop crops with improved nitrogen capture. Root phenotypes are underutilized yet attractive breeding targets for the development of the nitrogen efficient crops urgently needed in global agriculture.
Collapse
Affiliation(s)
- Jonathan P Lynch
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802 USA
| | | | - Hannah M Schneider
- Department of Plant Sciences, Wageningen University and Research, PO Box 430, 6700AK Wageningen, The Netherlands
| | - Jagdeep Singh Sidhu
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802 USA
| | - Harini Rangarajan
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802 USA
| | - Larry M York
- Biosciences Division and Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| |
Collapse
|
4
|
Lucas M, Santiago JP, Chen J, Guber A, Kravchenko A. The soil pore structure encountered by roots affects plant-derived carbon inputs and fate. THE NEW PHYTOLOGIST 2023; 240:515-528. [PMID: 37532958 DOI: 10.1111/nph.19159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/05/2023] [Indexed: 08/04/2023]
Abstract
Plant roots are the main supplier of carbon (C) to the soil, the largest terrestrial C reservoir. Soil pore structure drives root growth, yet how it affects belowground C inputs remains a critical knowledge gap. By combining X-ray computed tomography with 14 C plant labelling, we identified root-soil contact as a previously unrecognised influence on belowground plant C allocations and on the fate of plant-derived C in the soil. Greater contact with the surrounding soil, when the growing root encounters a pore structure dominated by small (< 40 μm Ø) pores, results in strong rhizodeposition but in areas of high microbial activity. The root system of Rudbeckia hirta revealed high plasticity and thus maintained high root-soil contact. This led to greater C inputs across a wide range of soil pore structures. The root-soil contact Panicum virgatum, a promising bioenergy feedstock crop, was sensitive to the encountered structure. Pore structure built by a polyculture, for example, restored prairie, can be particularly effective in promoting lateral root growth and thus root-soil contact and associated C benefits. The findings suggest that the interaction of pore structure with roots is an important, previously unrecognised, stimulus of soil C gains.
Collapse
Affiliation(s)
- Maik Lucas
- Department of Plant, Soil and Microbial Sciences, DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
- Department of Soil System Sciences, Helmholtz Centre for Environmental Research - UFZ, Halle (Saale), 06110, Germany
| | - James P Santiago
- Plant Resilience Institute and MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Jinyi Chen
- Department of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Andrey Guber
- Department of Plant, Soil and Microbial Sciences, DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
| | - Alexandra Kravchenko
- Department of Plant, Soil and Microbial Sciences, DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
5
|
Ahmad I, Sohail M, Hameed M, Fatima S, Ahmad MSA, Ahmad F, Mehmood A, Basharat S, Asghar A, Shah SMR, Ahmad KS. Morpho-anatomical determinants of yield potential in Olea europaea L. cultivars belonging to diversified origin grown in semi-arid environments. PLoS One 2023; 18:e0286736. [PMID: 37285364 DOI: 10.1371/journal.pone.0286736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 05/17/2023] [Indexed: 06/09/2023] Open
Abstract
Plant performance is mainly estimated based on plant architecture, leaf features and internal microstructural changes. Olive (Olea europaea L.) is a drought tolerant, oil yielding, and medium sized woody tree that shows specific structural and functional modifications under changing environment. This study was aimed to know the microstructural alteration involving in growth and yield responses of different Olive cultivars. Eleven cultivars were collected all over the world and were planted at Olive germplasm unit, Barani Agricultural Research Institute, Chakwal (Punjab) Pakistan, during September to November 2017. Plant material was collected to correlate morpho-anatomical traits with yield contributing characteristics. Overall, the studied morphological characters, yield and yield parameters, and root, stem and leaf anatomical features varied highly significantly in all olive cultivars. The most promising cultivar regarding yield was Erlik, in which plant height seed weight and root anatomical characteristics, i.e., epidermal thickness and phloem thickness, stem features like collenchymatous thickness, phloem thickness and metaxylem vessel diameter, and leaf traits like midrib thickness, palisade cell thickness a phloem thickness were the maximum. The second best Hamdi showed the maximum plant height, fruit length, weight and diameter and seed length and weight. It also showed maximum stem phloem thickness, midrib and lamina thicknesses, palisade cell thickness. Fruit yield in the studied olive cultivars can be more closely linked to high proportion of storage parenchyma, broader xylem vessels and phloem proportion, dermal tissue, and high proportion of collenchyma.
Collapse
Affiliation(s)
- Iftikhar Ahmad
- Department of Botany, University of Sargodha, Sargodha, Punjab, Pakistan
| | - Mohammad Sohail
- Department of Botany, University of Sargodha, Sargodha, Punjab, Pakistan
| | - Mansoor Hameed
- Department of Botany, University of Agriculture Faisalabad, Pakistan
| | - Sana Fatima
- Department of Botany, The Government Sadiq College Women University, Bahawalpur, Pakistan
| | | | - Farooq Ahmad
- Department of Botany, University of Agriculture Faisalabad, Pakistan
| | - Ansar Mehmood
- Department of Botany, University of Poonch Rawlakot, Azad Jammu and Kashmir, Pakistan
| | - Sana Basharat
- Department of Botany, University of Agriculture Faisalabad, Pakistan
| | - Ansa Asghar
- Department of Botany, University of Agriculture Faisalabad, Pakistan
| | - Syed Mohsan Raza Shah
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | | |
Collapse
|
6
|
Hobson DJ, Harty MA, Langton D, McDonnell K, Tracy SR. The establishment of winter wheat root system architecture in field soils: The effect of soil type on root development in a temperate climate. SOIL USE AND MANAGEMENT 2023; 39:198-208. [PMID: 37033407 PMCID: PMC10078784 DOI: 10.1111/sum.12795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/20/2022] [Accepted: 02/19/2022] [Indexed: 06/19/2023]
Abstract
Winter wheat (Triticum aestivum L.) is an important cereal crop in the temperate climates of western Europe. Root system architecture is a significant contributor to resource capture and plant resilience. However, the impact of soil type on root system architecture (RSA) in field structured soils is yet to be fully assessed. This work studied the development of root growth using deep cultivation (250 mm) during the tillering phase stage (Zadock stage 25) of winter wheat across three soil types. The three sites of contrasting soil types covered a geographical area in the UK and Ireland in October 2018. Root samples were analysed using two methods: X-ray computed tomography (CT) which provides 3D images of the undisturbed roots in the soil, and a WinRHIZO™ scanner used to generate 2D images of washed roots and to measure further root parameters. Important negative relationships existed between soil bulk density and root properties (root length density, root volume, surface area and length) across the three sites. The results revealed that despite reduced root growth, the clay (Southoe) site had a significantly higher crop yield irrespective of root depth. The loamy sand (Harper Adams) site had significantly higher root volume, surface area and root length density compared with the other sites. However, a reduction in grain yield of 2.42 Mt ha-1 was incurred compared with the clay site and 1.6 Mt ha-1 compared with the clay loam site. The significantly higher rooting characteristics found in the loamy sand site were a result of the significantly lower soil bulk density compared with the other two sites. The loamy sand site had a lower soil bulk density, but no significant difference in macroporosity between sites (p > 0.05). This suggests that soil type and structure directly influence crop yield to greater extent than root parameters, but the interactions between both need simultaneous assessment in field sites.
Collapse
Affiliation(s)
- David J. Hobson
- School of Agriculture and Food ScienceUniversity College DublinBelfield, Dublin 4Ireland
| | - Mary A. Harty
- School of Agriculture and Food ScienceUniversity College DublinBelfield, Dublin 4Ireland
| | - David Langton
- Origin Enterprises LtdDublin 24Ireland
- Biosystems Engineering Ltd, NovaUCD BelfieldDublin 4Ireland
| | - Kevin McDonnell
- School of Agriculture and Food ScienceUniversity College DublinBelfield, Dublin 4Ireland
- Origin Enterprises LtdDublin 24Ireland
- Biosystems Engineering Ltd, NovaUCD BelfieldDublin 4Ireland
| | - Saoirse R. Tracy
- School of Agriculture and Food ScienceUniversity College DublinBelfield, Dublin 4Ireland
| |
Collapse
|
7
|
Schneider HM. Functional implications of multiseriate cortical sclerenchyma for soil resource capture and crop improvement. AOB PLANTS 2022; 14:plac050. [PMID: 36545297 PMCID: PMC9762723 DOI: 10.1093/aobpla/plac050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/17/2022] [Indexed: 06/09/2023]
Abstract
Suboptimal nutrient and water availability are primary constraints to crop growth. Global agriculture requires crops with greater nutrient and water efficiency. Multiseriate cortical sclerenchyma (MCS), a root anatomical trait characterized by small cells with thick cell walls encrusted with lignin in the outer cortex, has been shown to be an important trait for adaptation in maize and wheat in mechanically impeded soils. However, MCS has the potential to improve edaphic stress tolerance in a number of different crop taxa and in a number of different environments. This review explores the functional implications of MCS as an adaptive trait for water and nutrient acquisition and discusses future research perspectives on this trait for incorporation into crop breeding programs. For example, MCS may influence water and nutrient uptake, resistance to pests, symbiotic interactions, microbial interactions in the rhizosphere and soil carbon deposition. Root anatomical phenotypes are underutilized; however, important breeding targets for the development of efficient, productive and resilient crops urgently needed in global agriculture.
Collapse
|
8
|
Chen W, Chen Y, Siddique KH, Li S. Root penetration ability and plant growth in agroecosystems. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 183:160-168. [PMID: 35605464 DOI: 10.1016/j.plaphy.2022.04.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Root penetration ability is critical for plant growth and development. When roots encounter soil impedance, hormones are activated that affect cells and tissues, leading to changes in root morphology and configuration that often increase root penetration ability. Factors, such as root system architecture, root anatomic traits, rhizosphere exudation and root-induced phytohormones, influencing root penetration ability and how they affect plant performance under soil impedance were summarized. Root penetration ability affects plant capturing water and nutrients, and thus determines plant performance and productivity in adverse environments. Great efforts have been made in searching for the underlying mechanisms of root penetration ability, and tools have been developed for phenotyping variability in root penetration ability. Therefore, with the continued development of agroecosystems based on the advocated low input costs and controlled tillage, crops or genotypes of a crop species with stronger root penetration ability may have the potential for developing new varieties with enhanced adaptation and grain yield under mechanical impedance in soil.
Collapse
Affiliation(s)
- Wenqian Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Yinglong Chen
- The UWA Institute of Agriculture, And School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6155, Australia
| | - Kadambot Hm Siddique
- The UWA Institute of Agriculture, And School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6155, Australia
| | - Shiqing Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
9
|
Characteristics of Soil Structure and Greenhouse Gas Fluxes on Ten-Year Old Skid Trails with and without Black Alders (Alnus glutinosa (L.) Gaertn.). SOIL SYSTEMS 2022. [DOI: 10.3390/soilsystems6020043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Forest soil compaction caused by heavy machines can cause ecosystem degradation, reduced site productivity and increased greenhouse gas (GHG) emissions. Recent studies investigating the plant-mediated alleviation of soil compaction with black alder showed promising results (Alnus glutinosa). This study aimed to measure soil recovery and GHG fluxes on machine tracks with and without black alders in North-East Switzerland. In 2008, two machine tracks were created under controlled conditions in a European beech (Fagus sylvatica) stand with a sandy loam texture. Directly after compaction, soil physical parameters were measured on one track while the other track was planted with alders. Initial topsoil bulk density and porosity on the track without alders were 1.52 g cm−3 and 43%, respectively. Ten years later, a decrease in bulk density to 1.23 g cm−3 and an increase in porosity to 57% indicated partial structure recovery. Compared with the untreated machine track, alder had no beneficial impact on soil physical parameters. Elevated cumulative N2O emission (+30%) under alder compared with the untreated track could result from symbiotic nitrogen fixation by alder. Overall, CH4 fluxes were sensitive to the effects of soil trafficking. We conclude that black alder did not promote the recovery of a compacted sandy loam while it had the potential to deteriorate the GHG balance of the investigated forest stand.
Collapse
|
10
|
Wacker TS, Popovic O, Olsen NAF, Markussen B, Smith AG, Svane SF, Thorup-Kristensen K. Semifield root phenotyping: Root traits for deep nitrate uptake. PLANT, CELL & ENVIRONMENT 2022; 45:823-836. [PMID: 34806183 DOI: 10.1111/pce.14227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/02/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Deep rooting winter wheat genotypes can reduce nitrate leaching losses and increase N uptake. We aimed to investigate which deep root traits are correlated to deep N uptake and to estimate genetic variation in root traits and deep 15 N tracer uptake. In 2 years, winter wheat genotypes were grown in RadiMax, a semifield root-screening facility. Minirhizotron root imaging was performed three times during the main growing season. At anthesis, 15 N was injected via subsurface drip irrigation at 1.8 m depth. Mature ears from above the injection area were analysed for 15 N content. From minirhizotron image-based root length data, 82 traits were constructed, describing root depth, density, distribution and growth aspects. Their ability to predict 15 N uptake was analysed with the least absolute shrinkage and selection operator (LASSO) regression. Root traits predicted 24% and 14% of tracer uptake variation in 2 years. Both root traits and genotype showed significant effects on tracer uptake. In 2018, genotype and the three LASSO-selected root traits predicted 41% of the variation in tracer uptake, in 2019 genotype and one root trait predicted 48%. In both years, one root trait significantly mediated the genotype effect on tracer uptake. Deep root traits from minirhizotron images can predict deep N uptake, indicating the potential to breed deep-N-uptake-genotypes.
Collapse
Affiliation(s)
- Tomke S Wacker
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Olga Popovic
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Niels A F Olsen
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Bo Markussen
- Data Science Laboratory, Department of Mathematical Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Abraham G Smith
- Department of Computer Science, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Simon F Svane
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Thorup-Kristensen
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Vanhees DJ, Schneider HM, Sidhu JS, Loades KW, Bengough AG, Bennett MJ, Pandey BK, Brown KM, Mooney SJ, Lynch JP. Soil penetration by maize roots is negatively related to ethylene-induced thickening. PLANT, CELL & ENVIRONMENT 2022; 45:789-804. [PMID: 34453329 PMCID: PMC9291135 DOI: 10.1111/pce.14175] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 05/22/2023]
Abstract
Radial expansion is a classic response of roots to a mechanical impedance that has generally been assumed to aid penetration. We analysed the response of maize nodal roots to impedance to test the hypothesis that radial expansion is not related to the ability of roots to cross a compacted soil layer. Genotypes varied in their ability to cross the compacted layer, and those with a steeper approach to the compacted layer or less radial expansion in the compacted layer were more likely to cross the layer and achieve greater depth. Root radial expansion was due to cortical cell size expansion, while cortical cell file number remained constant. Genotypes and nodal root classes that exhibited radial expansion in the compacted soil layer generally also thickened in response to exogenous ethylene in hydroponic culture, that is, radial expansion in response to ethylene was correlated with the thickening response to impedance in soil. We propose that ethylene insensitive roots, that is, those that do not thicken and can overcome impedance, have a competitive advantage under mechanically impeded conditions as they can maintain their elongation rates. We suggest that prolonged exposure to ethylene could function as a stop signal for axial root growth.
Collapse
Affiliation(s)
- Dorien J. Vanhees
- School of BiosciencesUniversity of Nottingham, Sutton Bonington CampusLeicestershireUK
- The James Hutton InstituteInvergowrieUK
| | - Hannah M. Schneider
- Department of Plant ScienceThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
- Centre for Crop Systems AnalysisWageningen University & ResearchWageningenThe Netherlands
| | - Jagdeep Singh Sidhu
- Department of Plant ScienceThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | | | - A. Glyn Bengough
- The James Hutton InstituteInvergowrieUK
- School of Science and EngineeringThe University of DundeeDundeeUK
| | - Malcolm J. Bennett
- School of BiosciencesUniversity of Nottingham, Sutton Bonington CampusLeicestershireUK
| | - Bipin K. Pandey
- School of BiosciencesUniversity of Nottingham, Sutton Bonington CampusLeicestershireUK
| | - Kathleen M. Brown
- Department of Plant ScienceThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Sacha J. Mooney
- School of BiosciencesUniversity of Nottingham, Sutton Bonington CampusLeicestershireUK
| | - Jonathan P. Lynch
- School of BiosciencesUniversity of Nottingham, Sutton Bonington CampusLeicestershireUK
- Department of Plant ScienceThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| |
Collapse
|
12
|
Guerin TF. The effect of interactions between soil compaction and phenol contamination on plant growth characteristics: Implications for scaling bioremediation at industrial sites. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:114017. [PMID: 34731711 DOI: 10.1016/j.jenvman.2021.114017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
In phenol contaminated soils from an industrial site, soil compaction and soil chemical contaminants influenced germination, emergence, and early plant growth (roots and shoots) for Thrift (Ameria maratima) and Blackbutt oats (Avena sativa). The specific effects were of soil compaction (low, 100 psi and high, 800 psi) at two concentrations of phenol (biotreated, ∼200 mg kg-3; untreated, ∼1150 mg kg-3). Plant responses to compaction and phenol varies between the two species. Emergence of Thrift showed greater sensitivity to increasing soil compaction but only under high phenol concentrations. Low phenol inhibited Thrift root length, as is the case with Balckbutt oats, although high phenol had no significant impact on Thrift. While shoot length of Blackbutt oats is not significantly affected by increasing soil compaction, it is negatively impacted at the increased phenol concentrations in the untreated soils indicating an interaction effect with compaction. This is the first study that examines the impact of soil contamination on oats. The oat variety tested had known drought tolerance and hardiness indicating an ability to withstand compaction, and which may explain those characteristics. Thrift was most resistant to contamination which is consistent with its previously reported tolerance of pollutants. Implications of the study are that Blackbutt oats represent a potential candidate species for land rehabilitation under high compaction conditions such as at degraded soil sites at decommissioned mining operations, polluted industrial sites, or degraded (compacted) agricultural land.
Collapse
Affiliation(s)
- Turlough F Guerin
- Climate Alliance Limited, and Ag Institute of Australia c/o 1A Pasley St, Sunbury, Victoria, 3429, Australia.
| |
Collapse
|
13
|
Lynch JP. Harnessing root architecture to address global challenges. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:415-431. [PMID: 34724260 PMCID: PMC9299910 DOI: 10.1111/tpj.15560] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 05/06/2023]
Abstract
Root architecture can be targeted in breeding programs to develop crops with better capture of water and nutrients. In rich nations, such crops would reduce production costs and environmental pollution and, in developing nations, they would improve food security and economic development. Crops with deeper roots would have better climate resilience while also sequestering atmospheric CO2 . Deeper rooting, which improves water and N capture, is facilitated by steeper root growth angles, fewer axial roots, reduced lateral branching, and anatomical phenotypes that reduce the metabolic cost of root tissue. Mechanical impedance, hypoxia, and Al toxicity are constraints to subsoil exploration. To improve topsoil foraging for P, K, and other shallow resources, shallower root growth angles, more axial roots, and greater lateral branching are beneficial, as are metabolically cheap roots. In high-input systems, parsimonious root phenotypes that focus on water capture may be advantageous. The growing prevalence of Conservation Agriculture is shifting the mechanical impedance characteristics of cultivated soils in ways that may favor plastic root phenotypes capable of exploiting low resistance pathways to the subsoil. Root ideotypes for many low-input systems would not be optimized for any one function, but would be resilient against an array of biotic and abiotic challenges. Root hairs, reduced metabolic cost, and developmental regulation of plasticity may be useful in all environments. The fitness landscape of integrated root phenotypes is large and complex, and hence will benefit from in silico tools. Understanding and harnessing root architecture for crop improvement is a transdisciplinary opportunity to address global challenges.
Collapse
Affiliation(s)
- Jonathan P. Lynch
- Department of Plant ScienceThe Pennsylvania State UniversityUniversity ParkPA16802USA
| |
Collapse
|
14
|
Reynolds M, Atkin OK, Bennett M, Cooper M, Dodd IC, Foulkes MJ, Frohberg C, Hammer G, Henderson IR, Huang B, Korzun V, McCouch SR, Messina CD, Pogson BJ, Slafer GA, Taylor NL, Wittich PE. Addressing Research Bottlenecks to Crop Productivity. TRENDS IN PLANT SCIENCE 2021; 26:607-630. [PMID: 33893046 DOI: 10.1016/j.tplants.2021.03.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 05/22/2023]
Abstract
Asymmetry of investment in crop research leads to knowledge gaps and lost opportunities to accelerate genetic gain through identifying new sources and combinations of traits and alleles. On the basis of consultation with scientists from most major seed companies, we identified several research areas with three common features: (i) relatively underrepresented in the literature; (ii) high probability of boosting productivity in a wide range of crops and environments; and (iii) could be researched in 'precompetitive' space, leveraging previous knowledge, and thereby improving models that guide crop breeding and management decisions. Areas identified included research into hormones, recombination, respiration, roots, and source-sink, which, along with new opportunities in phenomics, genomics, and bioinformatics, make it more feasible to explore crop genetic resources and improve breeding strategies.
Collapse
Affiliation(s)
- Matthew Reynolds
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera Mexico, El Batan, Texcoco, Mexico.
| | - Owen K Atkin
- Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University Canberra, Acton, ACT 2601, Australia.
| | - Malcolm Bennett
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Leicestershire, LE12 5RD, UK.
| | - Mark Cooper
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ian C Dodd
- The Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - M John Foulkes
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Leicestershire, LE12 5RD, UK
| | - Claus Frohberg
- BASF BBC-Innovation Center Gent, Technologiepark-Zwijnaarde 101, 9052 Gent, Belgium
| | - Graeme Hammer
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Bingru Huang
- Department of Plant Biology and Pathology, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901, USA.
| | | | - Susan R McCouch
- Plant Breeding & Genetics, School of Integrative Plant Sciences, Cornell University, Ithaca, NY 14850, USA.
| | - Carlos D Messina
- Corteva Agriscience, 7250 NW 62nd Avenue, Johnston, IA 50310, USA.
| | - Barry J Pogson
- Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University Canberra, Acton, ACT 2601, Australia
| | - Gustavo A Slafer
- Department of Crop and Forest Sciences, University of Lleida, AGROTECNIO, CERCA Center, Av. R. Roure 191, 25198 Lleida, Spain; ICREA, Catalonian Institution for Research and Advanced Studies, Barcelona, Spain.
| | - Nicolas L Taylor
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences and Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - Peter E Wittich
- Syngenta Seeds B.V., Westeinde 62, 1601 BK, Enkhuizen, The Netherlands.
| |
Collapse
|
15
|
Prediction of precise subsoiling based on analytical method, discrete element simulation and experimental data from soil bin. Sci Rep 2021; 11:11082. [PMID: 34040130 PMCID: PMC8155074 DOI: 10.1038/s41598-021-90682-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/30/2021] [Indexed: 11/08/2022] Open
Abstract
Prediction of a precise subsoiling using an analytical model (AM) and Discrete Element Method (DEM) was conducted to explain cutting forces and the soil profile induced changes by a subsoiler. Although sensors, AMs and DEM exist, there are still cases of soil structure deformation during deep tillage. Therefore, this study aimed to provide a clear understanding of the deep tillage using prediction models. Experimental data obtained in the soil bin trolley with force sensors were used for verification of the models. Experiments were designed using Taguchi method. In the AM, the modified-McKyes and Willat and Willis equations were used to determine cutting forces and soil furrow profile respectively. Calculations were done using MATLAB software. The elastoplastic behavior of soil was incorporated into the DEM. The DEM predicted results with the best regression of 0.984 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$R^{2}$$\end{document}R2 at a \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$NRMSE$$\end{document}NRMSE of 1.936 while the AM had the lowest \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$R^{2}$$\end{document}R2 of 0.957, at a \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$NRMSE$$\end{document}NRMSE of 6.008. All regression results were obtained at p < 0.05. The ANOVA test showed that the p-values for the horizontal and vertical forces were 0.9396 and 0.9696, respectively. The DEM predicted better than the AM. DEM is easy to use and is effective in developing models for precision subsoiling.
Collapse
|
16
|
Zhou H, Whalley WR, Hawkesford MJ, Ashton RW, Atkinson B, Atkinson JA, Sturrock CJ, Bennett MJ, Mooney SJ. The interaction between wheat roots and soil pores in structured field soil. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:747-756. [PMID: 33064808 PMCID: PMC7853603 DOI: 10.1093/jxb/eraa475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/16/2020] [Indexed: 05/11/2023]
Abstract
Wheat (Triticum aestivum L.) root growth in the subsoil is usually constrained by soil strength, although roots can use macropores to elongate to deeper layers. The quantitative relationship between the elongation of wheat roots and the soil pore system, however, is still to be determined. We studied the depth distribution of roots of six wheat varieties and explored their relationship with soil macroporosity from samples with the field structure preserved. Undisturbed soil cores (to a depth of 100 cm) were collected from the field and then non-destructively imaged using X-ray computed tomography (at a spatial resolution of 90 µm) to quantify soil macropore structure and root number density (the number of roots cm-2 within a horizontal cross-section of a soil core). Soil macroporosity changed significantly with depth but not between the different wheat lines. There was no significant difference in root number density between wheat varieties. In the subsoil, wheat roots used macropores, especially biopores (i.e. former root or earthworm channels) to grow into deeper layers. Soil macroporosity explained 59% of the variance in root number density. Our data suggested that the development of the wheat root system in the field was more affected by the soil macropore system than by genotype. On this basis, management practices which enhance the porosity of the subsoil may therefore be an effective strategy to improve deep rooting of wheat.
Collapse
Affiliation(s)
- Hu Zhou
- School of Biosciences, University of Nottingham, Loughborough, Leicestershire, UK
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, Nanjing, PR China
- Correspondence:
| | | | | | | | - Brian Atkinson
- School of Biosciences, University of Nottingham, Loughborough, Leicestershire, UK
| | - Jonathan A Atkinson
- School of Biosciences, University of Nottingham, Loughborough, Leicestershire, UK
| | - Craig J Sturrock
- School of Biosciences, University of Nottingham, Loughborough, Leicestershire, UK
| | - Malcolm J Bennett
- School of Biosciences, University of Nottingham, Loughborough, Leicestershire, UK
| | - Sacha J Mooney
- School of Biosciences, University of Nottingham, Loughborough, Leicestershire, UK
| |
Collapse
|
17
|
Xu F, Chen S, Yang X, Zhou S, Chen X, Li J, Zhan K, He D. Genome-Wide Association Study on Seminal and Nodal Roots of Wheat Under Different Growth Environments. FRONTIERS IN PLANT SCIENCE 2021; 11:602399. [PMID: 33505411 PMCID: PMC7829178 DOI: 10.3389/fpls.2020.602399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
The root of wheat consists of seminal and nodal roots. Comparatively speaking, fewer studies have been carried out on the nodal root system because of its disappearance at the early seedling stage under indoor environments. In this study, 196 accessions from the Huanghuai Wheat Region (HWR) were used to identify the characteristics of seminal and nodal root traits under different growth environments, including indoor hydroponic culture (IHC), outdoor hydroponic culture (OHC), and outdoor pot culture (OPC), for three growing seasons. The results indicated that the variation range of root traits in pot environment was larger than that in hydroponic environment, and canonical coefficients were the greatest between OHC and OPC (0.86) than those in other two groups, namely, IHC vs. OPC (0.48) and IHC vs. OHC (0.46). Most root traits were negatively correlated with spikes per area (SPA), grains per spike (GPS), and grain yield (GY), while all the seminal root traits were positively correlated with thousand-kernel weight (TKW). Genome-wide association study (GWAS) was carried out on root traits by using a wheat 660K SNP array. A total of 35 quantitative trait loci (QTLs)/chromosomal segments associated with root traits were identified under OPC and OHC. In detail, 11 and 24 QTLs were significantly associated with seminal root and nodal root traits, respectively. Moreover, 13 QTLs for number of nodal roots per plant (NRP) containing 14 stable SNPs, were distributed on chromosomes 1B, 2B, 3A, 4B, 5D, 6D, 7A, 7B, and Un. Based on LD and bioinformatics analysis, these QTLs may contain 17 genes closely related to NRP. Among them, TraesCS2B02G552500 and TraesCS7A02G428300 were highly expressed in root tissues. Moreover, the frequencies of favorable alleles of these 14 SNPs were confirmed to be less than 70% in the natural population, suggesting that the utilization of these superior genes in wheat root is still improving.
Collapse
Affiliation(s)
- Fengdan Xu
- College of Agronomy of Henan Agricultural University/National Engineering Research Center for Wheat/Co-construction State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Shulin Chen
- College of Agronomy of Henan Agricultural University/National Engineering Research Center for Wheat/Co-construction State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Xiwen Yang
- College of Agronomy of Henan Agricultural University/National Engineering Research Center for Wheat/Co-construction State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Sumei Zhou
- College of Agronomy of Henan Agricultural University/National Engineering Research Center for Wheat/Co-construction State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Xu Chen
- College of Agronomy of Henan Agricultural University/National Engineering Research Center for Wheat/Co-construction State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Jie Li
- College of Agronomy, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Kehui Zhan
- College of Agronomy of Henan Agricultural University/National Engineering Research Center for Wheat/Co-construction State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Dexian He
- College of Agronomy of Henan Agricultural University/National Engineering Research Center for Wheat/Co-construction State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
18
|
Wang X, Whalley WR, Miller AJ, White PJ, Zhang F, Shen J. Sustainable Cropping Requires Adaptation to a Heterogeneous Rhizosphere. TRENDS IN PLANT SCIENCE 2020; 25:1194-1202. [PMID: 32830043 DOI: 10.1016/j.tplants.2020.07.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/02/2020] [Accepted: 07/09/2020] [Indexed: 05/19/2023]
Abstract
Root-soil interactions in the rhizosphere are central to resource acquisition and crop production in agricultural systems. However, apart from studies in idealized experimental systems, rhizosphere processes in real agricultural soils in situ are largely uncharacterized. This limits the contribution of rhizosphere science to agriculture and the ongoing Green Revolution. Here, we argue that understanding plant responses to soil heterogeneity is key to understanding rhizosphere processes. We highlight rhizosphere sensing and root-induced soil modification in the context of heterogeneous soil structure, resource distribution, and root-soil interactions. A deeper understanding of the integrated and dynamic root-soil interactions in the heterogeneously structured rhizosphere could increase crop production and resource use efficiency towards sustainable agriculture.
Collapse
Affiliation(s)
- Xin Wang
- Department of Plant Nutrition, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing 100193, PR China
| | | | | | - Philip J White
- Ecological Science Group, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Distinguished Scientist Fellowship Program, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fusuo Zhang
- Department of Plant Nutrition, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing 100193, PR China
| | - Jianbo Shen
- Department of Plant Nutrition, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing 100193, PR China.
| |
Collapse
|
19
|
Brunel-Saldias N, Ferrio JP, Elazab A, Orellana M, del Pozo A. Root Architecture and Functional Traits of Spring Wheat Under Contrasting Water Regimes. FRONTIERS IN PLANT SCIENCE 2020; 11:581140. [PMID: 33262777 PMCID: PMC7686047 DOI: 10.3389/fpls.2020.581140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/07/2020] [Indexed: 05/29/2023]
Abstract
Wheat roots are known to play an important role in the yield performance under water-limited (WL) conditions. Three consecutive year trials (2015, 2016, and 2017) were conducted in a glasshouse in 160 cm length tubes on a set of spring wheat (Triticum aestivum L.) genotypes under contrasting water regimes (1) to assess genotypic variability in root weight density (RWD) distribution in the soil profile, biomass partitioning, and total water used; and (2) to determine the oxygen and hydrogen isotopic signatures of plant and soil water in order to evaluate the contribution of shallow and deep soil water to plant water uptake and the evaporative enrichment of these isotopes in the leaf as a surrogate for plant transpiration. In the 2015 trial under well-watered (WW) conditions, the aerial biomass (AB) was not significantly different among 15 wheat genotypes, while the total root biomass and the RWD distribution in the soil profile were significantly different. In the 2016 and 2017 trials, a subset of five genotypes from the 2015 trial was grown under WW and WL regimes. The water deficit significantly reduced AB only in 2016. The water regimes did not significantly affect the root biomass and root biomass distribution in the soil depths for both the 2016 and 2017 trials. The study results highlighted that under a WL regime, the production of thinner roots with low biomass is more beneficial for increasing the water uptake than the production of large thick roots. The models applied to estimate the relative contribution of the plant's primary water sources (shallow or deep soil water) showed large interindividual variability in soil, and plant water isotopic composition resulted in large uncertainties in the model estimates. On the other side, the combined information of root architecture and the leaf stable isotope signatures could explain plant water status.
Collapse
Affiliation(s)
- Nidia Brunel-Saldias
- Centro de Mejoramiento Genético y Fenómica Vegetal, Facultad de Ciencias Agrarias, Universidad de Talca, Talca, Chile
| | - Juan Pedro Ferrio
- Fundacion Agencia Aragonesa para la Investigacion y el Desarrollo (ARAID), Zaragoza, Spain
- Department of Forest Resources, Agrifood Research and Technology Center of Aragón (CITA), Zaragoza, Spain
- Department of Botany, Faculty of Natural Sciences and Oceanography, University of Concepción, Concepción, Chile
| | - Abdelhalim Elazab
- Centro de Mejoramiento Genético y Fenómica Vegetal, Facultad de Ciencias Agrarias, Universidad de Talca, Talca, Chile
| | - Massiel Orellana
- Centro de Mejoramiento Genético y Fenómica Vegetal, Facultad de Ciencias Agrarias, Universidad de Talca, Talca, Chile
| | - Alejandro del Pozo
- Centro de Mejoramiento Genético y Fenómica Vegetal, Facultad de Ciencias Agrarias, Universidad de Talca, Talca, Chile
| |
Collapse
|
20
|
Burridge JD, Black CK, Nord EA, Postma JA, Sidhu JS, York LM, Lynch JP. An Analysis of Soil Coring Strategies to Estimate Root Depth in Maize ( Zea mays) and Common Bean ( Phaseolus vulgaris). PLANT PHENOMICS (WASHINGTON, D.C.) 2020; 2020:3252703. [PMID: 33313549 PMCID: PMC7706327 DOI: 10.34133/2020/3252703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/05/2020] [Indexed: 06/12/2023]
Abstract
A soil coring protocol was developed to cooptimize the estimation of root length distribution (RLD) by depth and detection of functionally important variation in root system architecture (RSA) of maize and bean. The functional-structural model OpenSimRoot was used to perform in silico soil coring at six locations on three different maize and bean RSA phenotypes. Results were compared to two seasons of field soil coring and one trench. Two one-sided T-test (TOST) analysis of in silico data suggests a between-row location 5 cm from plant base (location 3), best estimates whole-plot RLD/D of deep, intermediate, and shallow RSA phenotypes, for both maize and bean. Quadratic discriminant analysis indicates location 3 has ~70% categorization accuracy for bean, while an in-row location next to the plant base (location 6) has ~85% categorization accuracy in maize. Analysis of field data suggests the more representative sampling locations vary by year and species. In silico and field studies suggest location 3 is most robust, although variation is significant among seasons, among replications within a field season, and among field soil coring, trench, and simulations. We propose that the characterization of the RLD profile as a dynamic rhizo canopy effectively describes how the RLD profile arises from interactions among an individual plant, its neighbors, and the pedosphere.
Collapse
Affiliation(s)
- James D. Burridge
- The Pennsylvania State University, Department of Plant Science, Tyson Building, University Park, PA 16802, USA
| | - Christopher K. Black
- The Pennsylvania State University, Department of Plant Science, Tyson Building, University Park, PA 16802, USA
| | - Eric A. Nord
- The Pennsylvania State University, Department of Plant Science, Tyson Building, University Park, PA 16802, USA
- Department of Biology, Greenville University, 315 E. College Ave, Greenville, IL 62246, USA
| | - Johannes A. Postma
- Forschungszentrum Jülich GmbH, Institute of Bio-and Geosciences-Plant Sciences (IBG-2), 52425 Jülich, Germany
| | - Jagdeep S. Sidhu
- The Pennsylvania State University, Department of Plant Science, Tyson Building, University Park, PA 16802, USA
| | - Larry M. York
- The Pennsylvania State University, Department of Plant Science, Tyson Building, University Park, PA 16802, USA
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Jonathan P. Lynch
- The Pennsylvania State University, Department of Plant Science, Tyson Building, University Park, PA 16802, USA
| |
Collapse
|
21
|
Li S, Peng F, Xiao Y, Gong Q, Bao Z, Li Y, Wu X. Mechanisms of High Concentration Valine-Mediated Inhibition of Peach Tree Shoot Growth. FRONTIERS IN PLANT SCIENCE 2020; 11:603067. [PMID: 33193558 PMCID: PMC7658097 DOI: 10.3389/fpls.2020.603067] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 10/09/2020] [Indexed: 05/10/2023]
Abstract
The vigorous growth of the new shoots of the peach tree was not beneficial to high quality and efficient cultivation. High concentration of amino acids can inhibit plant growth, but the mechanism is not clear. In this study, we explored the regulatory effects of seven amino acids (phenylalanine, valine, leucine, isoleucine, serine, D-alanine, and proline) (10 g⋅L-1) on the growth of peach trees. The results showed that phenylalanine, valine, and proline inhibited peach seedling growth and valine has the most significant effect and it can promote the root growth of peach seedlings. Compared with paclobutrazol, valine treatment improves net photosynthetic rate and fruit quality without reducing shoot diameter or puncture strength, and it does not affect leaf morphology. Valine enhanced the expression of PpSnRK1 (sucrose non-fermenting-1-related protein kinase) and inhibited the expression of PpTOR (Target of Rapamycin) and PpS6K (Ribosomal S6 kinase). The gibberellin content was significantly reduced in the valine treatment group. The endogenous valine content of peach seedlings was increased, acetohydroxyacid synthase (AHAS, E.C. 2.2.1.6) activity was inhibited by feedback, isoleucine synthesis was decreased, the relative amounts of branched chain amino acids were unbalanced, and growth was inhibited. However, isoleucine spraying after valine treatment could increase the content of isoleucine and alleviate the inhibition of valine on the shoot growth. In conclusion, valine is environmentally friendly to inhibit the growth of new shoots of peach trees by regulating the balance of PpSnRK1 and PpTOR and the synthesis of isoleucine.
Collapse
Affiliation(s)
- Suhong Li
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
| | - Futian Peng
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- *Correspondence: Futian Peng,
| | - Yuansong Xiao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- Yuansong Xiao,
| | | | - Ziyi Bao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
| | - Yanyan Li
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
| | - Xuelian Wu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
22
|
Correa J, Postma JA, Watt M, Wojciechowski T. Soil compaction and the architectural plasticity of root systems. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6019-6034. [PMID: 31504740 PMCID: PMC6859514 DOI: 10.1093/jxb/erz383] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/15/2019] [Indexed: 05/18/2023]
Abstract
Soil compaction is a serious global problem, and is a major cause of inadequate rooting and poor yield in crops around the world. Root system architecture (RSA) describes the spatial arrangement of root components within the soil and determines the plant's exploration of the soil. Soil strength restricts root growth and may slow down root system development. RSA plasticity may have an adaptive value, providing environmental tolerance to soil compaction. However, it is challenging to distinguish developmental retardation (apparent plasticity) or responses to severe stress from those root architectural changes that may provide an actual environmental tolerance (adaptive plasticity). In this review, we outline the consequences of soil compaction on the rooting environment and extensively review the various root responses reported in the literature. Finally, we discuss which responses enhance root exploration capabilities in tolerant genotypes, and to what extent these responses might be useful for breeding. We conclude that RSA plasticity in response to soil compaction is complex and can be targeted in breeding to increase the performance of crops under specific agronomical conditions.
Collapse
Affiliation(s)
- José Correa
- Institute of Biosciences and Geosciences (IBG-2): Plant Sciences, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Strasse, Jülich,Germany
| | - Johannes A Postma
- Institute of Biosciences and Geosciences (IBG-2): Plant Sciences, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Strasse, Jülich,Germany
| | - Michelle Watt
- Institute of Biosciences and Geosciences (IBG-2): Plant Sciences, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Strasse, Jülich,Germany
| | | |
Collapse
|
23
|
de Moraes MT, Debiasi H, Franchini JC, Bonetti JDA, Levien R, Schnepf A, Leitner D. Mechanical and Hydric Stress Effects on Maize Root System Development at Different Soil Compaction Levels. FRONTIERS IN PLANT SCIENCE 2019; 10:1358. [PMID: 31736998 PMCID: PMC6833975 DOI: 10.3389/fpls.2019.01358] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 10/02/2019] [Indexed: 05/27/2023]
Abstract
Soil mechanical resistance, aeration, and water availability directly affect plant root growth. The objective of this work was to identify the contribution of mechanical and hydric stresses on maize root elongation, by modeling root growth while taking the dynamics of these stresses in an Oxisol into consideration. The maize crop was cultivated under four compaction levels (soil chiseling, no-tillage system, areas trafficked by a tractor, and trafficked by a harvester), and we present a new model, which allows to distinguish between mechanical and hydric stresses. Root length density profiles, soil bulk density, and soil water retention curves were determined for four compaction levels up to 50 cm in depth. Furthermore, grain yield and shoot biomass of maize were quantified. The new model described the mechanical and hydric stresses during maize growth with field data for the first time in maize crop. Simulations of root length density in 1D and 2D showed adequate agreement with the values measured under field conditions. Simulation makes it possible to identify the interaction between the soil physical conditions and maize root growth. Compared to the no-tillage system, grain yield was reduced due to compaction caused by harvester traffic and by soil chiseling. The root growth was reduced by the occurrence of mechanical and hydric stresses during the crop cycle, the principal stresses were mechanical in origin for areas with agricultural traffic, and water based in areas with soil chiseling. Including mechanical and hydric stresses in root growth models can help to predict future scenarios, and coupling soil biophysical models with weather, soil, and crop responses will help to improve agricultural management.
Collapse
Affiliation(s)
- Moacir Tuzzin de Moraes
- Department of Agronomic Science, Federal University of Technology-Paraná campus Francisco Beltrão, Francisco Beltrão, Brazil
| | - Henrique Debiasi
- Department of Soil and Crop Management, Embrapa Soybean, Londrina, Brazil
| | | | | | - Renato Levien
- Department of Soil Science, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Andrea Schnepf
- Forschungszentrum Juelich GmbH, Institute of Bio- and Geosciences, IBG-3: Agrosphere, Juelich, Germany
| | - Daniel Leitner
- Services in Computational Science, Simulationswerkstatt, Leonding, Austria
| |
Collapse
|
24
|
De Bauw P, Vandamme E, Lupembe A, Mwakasege L, Senthilkumar K, Dramé KN, Merckx R. Anatomical root responses of rice to combined phosphorus and water stress - relations to tolerance and breeding opportunities. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:1009-1022. [PMID: 31543094 DOI: 10.1071/fp19002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/20/2019] [Indexed: 06/10/2023]
Abstract
Drought and low P availability are major limitations for rainfed rice (Oryza spp.) production. Root anatomy plays a key role in resource acquisition and tolerance to P and water limitations. Root anatomical responses of three contrasting rice varieties to combinations of different levels of P (deficient to non-limiting) and water availability (water stress to submergence) were evaluated in two pot trials. P availability was the dominant growth-limiting factor, but anatomical root responses to water availability were more prominent than responses to P availability. Cortical cell file number and number of xylem vessels decreased as a response to water stress, but stele and xylem diameter increased. Low P availability induced thinner xylem vessels and a thinner stele. Drought tolerance related to an overall thicker root stele, thicker xylem vessels and a larger water conductance. Some root traits were observed to be more responsive to water and P availability, whereas other traits were more robust to these environmental factors but highly determined by variety. The observed genotypic variation in root anatomy provides opportunities for trait-based breeding. The plasticity of several traits to multiple environmental factors highlights the need for strategic trait selection or breeding adapted to specific target environments.
Collapse
Affiliation(s)
- Pieterjan De Bauw
- Katholieke Universiteit Leuven, Dept. of Earth and Environmental Sciences, 3000 Leuven, Belgium; and Corresponding author.
| | - Elke Vandamme
- International Potato Center (CIP), PO Box 1269, Kigali, Rwanda; and Africa Rice Center (AfricaRice), PO Box 33581, Dar es Salaam, Tanzania
| | - Allen Lupembe
- Africa Rice Center (AfricaRice), PO Box 33581, Dar es Salaam, Tanzania
| | - Leah Mwakasege
- Africa Rice Center (AfricaRice), PO Box 33581, Dar es Salaam, Tanzania
| | - Kalimuthu Senthilkumar
- Africa Rice Center (AfricaRice), PO Box 33581, Dar es Salaam, Tanzania; and Africa Rice Center (AfricaRice), PO Box 1690, Antananarivo, Madagascar
| | - Khady N Dramé
- Africa Rice Center (AfricaRice), 01 BP 4029, Abidjan, Côte d'Ivoire
| | - Roel Merckx
- Katholieke Universiteit Leuven, Dept. of Earth and Environmental Sciences, 3000 Leuven, Belgium
| |
Collapse
|
25
|
Svane SF, Jensen CS, Thorup-Kristensen K. Construction of a large-scale semi-field facility to study genotypic differences in deep root growth and resources acquisition. PLANT METHODS 2019; 15:26. [PMID: 30930953 PMCID: PMC6425565 DOI: 10.1186/s13007-019-0409-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/06/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND Roots are vital organs for plants, and the effective use of resources from the soil is important for yield stability. However, phenotypic variation in root traits among crop genotypes is mostly unknown and field screening of root development is costly and labour demanding. As a consequence, new methods are needed to investigate root traits of fully grown crops under field conditions, particularly roots in the deeper soil horizons. RESULTS We developed a new phenotyping facility (RadiMax) for the study of root growth and soil resource acquisition under semi-field conditions. The facility consists of 4 units each covering 400 m2 and containing 150 minirhizotrons, allowing root observation in the 0.4 m-1.8 m or 0.7 m-2.8 m soil depth interval. Roots are observed through minirhizotrons using a multispectral imaging system. Plants are grown in rows perpendicular to a water stress gradient created by a multi-depth sub-irrigation system and movable rainout shelters. The water stress gradient allows for a direct link between root observations and the development of stress response in the canopy. CONCLUSION To test the concept and technical features, selected spring barley (Hordeum vulgare L.) cultivars were grown in the system for two seasons. The system enabled genotypic differences for deep root growth to be observed, and clear aboveground physiological response was also visible along the water stress gradient. Although further technical development and field validation are ongoing, the semi-field facility concept offers novel possibilities for characterising genotypic differences in the effective use of soil resources in deeper soil layers.
Collapse
Affiliation(s)
- Simon Fiil Svane
- Department of Plant and Environmental Science, University of Copenhagen, 1871 Frederiksberg, Denmark
| | | | | |
Collapse
|
26
|
Humphreys MW, Doonan JH, Boyle R, Rodriguez AC, Marley CL, Williams K, Farrell MS, Brook J, Gasior D, Loka D, Collins RP, Marshall AH, Allen DK, Yadav RS, Dungait JAJ, Murray P, Harper JA. Root imaging showing comparisons in root distribution and ontogeny in novel Festulolium populations and closely related perennial ryegrass varieties. Food Energy Secur 2018; 7:e00145. [PMID: 30774947 PMCID: PMC6360931 DOI: 10.1002/fes3.145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 07/13/2018] [Accepted: 07/19/2018] [Indexed: 12/15/2022] Open
Abstract
The incorporation of new sophisticated phenotyping technologies within a crop improvement program allows for a plant breeding strategy that can include selections for major root traits previously inaccessible due to the challenges in their phenotype assessment. High-throughput precision phenotyping technology is employed to evaluate root ontogeny and progressive changes to root architecture of both novel amphiploid and introgression lines of Festulolium over four consecutive months of the growing season and these compared under the same time frame to that of closely related perennial ryegrass (L. perenne) varieties. Root imaging using conventional photography and assembled multiple merged images was used to compare frequencies in root number, their distribution within 0-20 and 20-40 cm depths within soil columns, and progressive changes over time. The Festulolium hybrids had more extensive root systems in comparison with L. perenne, and this was especially evident at depth. It was shown that the acquisition of extensive root systems in Festulolium hybrids was not dependent on the presence of an entire Festuca genome. On the contrary, the most pronounced effect on root development within the four Festulolium populations studied was observed in the introgression line Bx509, where a single small genome sequence from F. arundinacea had been previously transferred onto its homoeologous site on the long arm of chromosome 3 of an otherwise complete L. perenne genome. This demonstrates that a targeted introgression-breeding approach may be sufficient to confer a significant improvement in the root morphology in Lolium without a significant compromise to its genome integrity. The forage production of Bx509 was either higher (months 1-3) or equivalent to (month 4) that of its L. perenne parent control demonstrating that the enhanced root development achieved by the introgression line was without compromise to its agronomic performance.
Collapse
Affiliation(s)
| | - John H. Doonan
- IBERSAberystwyth University, GogerddanAberystwythCeredigionUK
| | - Roger Boyle
- IBERSAberystwyth University, GogerddanAberystwythCeredigionUK
| | - Anyela C. Rodriguez
- IBERSAberystwyth University, GogerddanAberystwythCeredigionUK
- Genetics and BreedingThe John Bingham Laboratory National Institute of Agricultural Botany (NIAB)CambridgeUK
| | | | - Kevin Williams
- IBERSAberystwyth University, GogerddanAberystwythCeredigionUK
| | | | - Jason Brook
- IBERSAberystwyth University, GogerddanAberystwythCeredigionUK
| | - Dagmara Gasior
- IBERSAberystwyth University, GogerddanAberystwythCeredigionUK
| | - Dimitra Loka
- IBERSAberystwyth University, GogerddanAberystwythCeredigionUK
| | | | | | - Debbie K. Allen
- IBERSAberystwyth University, GogerddanAberystwythCeredigionUK
| | - Rattan S. Yadav
- IBERSAberystwyth University, GogerddanAberystwythCeredigionUK
| | | | - Phil Murray
- Sustainable Agriculture Sciences, Rothamsted ResearchOkehamptonDevonUK
| | - John A. Harper
- IBERSAberystwyth University, GogerddanAberystwythCeredigionUK
| |
Collapse
|
27
|
Wu D, Yu X, Chu S, Jacobs DF, Wei X, Wang C, Long F, Chen X, Zeng S. Alleviation of heavy metal phytotoxicity in sewage sludge by vermicomposting with additive urban plant litter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 633:71-80. [PMID: 29573693 DOI: 10.1016/j.scitotenv.2018.03.167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/20/2018] [Accepted: 03/16/2018] [Indexed: 06/08/2023]
Abstract
The handling of sewage sludge (SS) and urban plant litter (UPL) has become an important concern. Immobilizing heavy metals (HMs) is regarded as a necessary process for recycling SS in agriculture and forestry. Here, HM removal and HM phytotoxicity in SS during vermicomposting with different additive UPLs was investigated. The results show that vermicomposting with additive UPL significantly reduced the content of HMs, and increased organic carbon content and the proportion of macroaggregates in SS. This process also significantly immobilized HMs by mainly transforming extractable and reducible HMs into residual products. The litters of Dracontomelon duperreanum and Bauhinia purpurea increased oxidizable HMs in SS and the accumulation capacity of HMs of earthworms during vermicomposting. The Cd content in vermicomposts with the B. purpurea litter addition was decreased by 31% relative to the initial SS. Maize in vermicomposts with UPL additions, especially with B. purpurea litter, exhibited significan5tly higher seed germination rates, seedling biomass, root activity, and a lower accumulation of HMs than in SS compost without UPL additions. These results suggest that vermicomposting with additive UPL can alleviate the phytotoxicity of HMs in SS and provides a new method for simultaneously recycling SS and UPL.
Collapse
Affiliation(s)
- Daoming Wu
- College of Forestry & Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoli Yu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Shuangshuang Chu
- College of Forestry & Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Douglass F Jacobs
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907-2061, USA
| | - Xiaohua Wei
- Earth, Environmental and Geographical Sciences, University of British Columbia (Okanagan Campus), Kelowna, British Columbia V1V1V7, Canada
| | - Cai Wang
- College of Forestry & Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Fengling Long
- College of Forestry & Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyang Chen
- College of Forestry & Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Shucai Zeng
- College of Forestry & Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
28
|
Hodgkinson L, Dodd I, Binley A, Ashton R, White R, Watts C, Whalley W. Root growth in field-grown winter wheat: Some effects of soil conditions, season and genotype. EUROPEAN JOURNAL OF AGRONOMY : THE JOURNAL OF THE EUROPEAN SOCIETY FOR AGRONOMY 2017; 91:74-83. [PMID: 29129966 PMCID: PMC5669304 DOI: 10.1016/j.eja.2017.09.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/25/2017] [Accepted: 09/27/2017] [Indexed: 05/03/2023]
Abstract
This work compared root length distributions of different winter wheat genotypes with soil physical measurements, in attempting to explain the relationship between root length density and soil depth. Field experiments were set up to compare the growth of various wheat lines, including near isogenic lines (Rht-B1a Tall NIL and Rht-B1c Dwarf NIL) and wheat lines grown commercially (cv. Battalion, Hystar Hybrid, Istabraq, and Robigus). Experiments occurred in two successive years under rain fed conditions. Soil water content, temperature and penetrometer resistance profiles were measured, and soil cores taken to estimate vertical profiles of pore distribution, and root number with the core-break method and by root washing. Root length distributions differed substantially between years. Wetter soil in 2014/2015 was associated with shallower roots. Although there was no genotypic effect in 2014/2015, in 2013/2014 the dwarf wheat had the most roots at depth. In the shallower layers, some wheat lines, especially Battalion, seemed better at penetrating non-structured soil. The increase in penetrometer resistance with depth was a putative explanation for the rapid decrease in root length density with depth. Differences between the two years in root profiles were greater than those due to genotype, suggesting that comparisons of different genotypic effects need to take account of different soil conditions and seasonal differences. We also demonstrate that high yields are not necessarily linked to resource acquisition, which did not seem to be limiting in the low yielding dwarf NIL.
Collapse
Affiliation(s)
- L. Hodgkinson
- Lancaster Environment Centre, Lancaster University, LA1 4YQ, United Kingdom
| | - I.C. Dodd
- Lancaster Environment Centre, Lancaster University, LA1 4YQ, United Kingdom
| | - A. Binley
- Lancaster Environment Centre, Lancaster University, LA1 4YQ, United Kingdom
| | - R.W. Ashton
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom
| | - R.P. White
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom
| | - C.W. Watts
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom
| | - W.R. Whalley
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom
| |
Collapse
|
29
|
Jin K, White PJ, Whalley WR, Shen J, Shi L. Shaping an Optimal Soil by Root-Soil Interaction. TRENDS IN PLANT SCIENCE 2017; 22:823-829. [PMID: 28803694 DOI: 10.1016/j.tplants.2017.07.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/06/2017] [Accepted: 07/16/2017] [Indexed: 05/23/2023]
Abstract
Crop production depends on the availability of water and mineral nutrients, and increased yields might be facilitated by a greater focus on roots-soil interactions. Soil properties affecting plant growth include drought, compaction, nutrient deficiency, mineral toxicity, salinity, and submergence. Plant roots respond to the soil environment both spatially and temporally by avoiding stressful soil environments and proliferating in more favorable environments. We observe that crops can be bred for specific root architectural and biochemical traits that facilitate soil exploration and resource acquisition, enabling greater crop yields. These root traits affect soil physical and chemical properties and might be utilized to improve the soil for subsequent crops. We argue that optimizing root-soil interactions is a prerequisite for future food security.
Collapse
Affiliation(s)
- Kemo Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Philip J White
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | | | - Jianbo Shen
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
30
|
|
31
|
Whalley W, Binley A, Watts C, Shanahan P, Dodd I, Ober E, Ashton R, Webster C, White R, Hawkesford MJ. Methods to estimate changes in soil water for phenotyping root activity in the field. PLANT AND SOIL 2017; 415:407-422. [PMID: 32025056 PMCID: PMC6979655 DOI: 10.1007/s11104-016-3161-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/20/2016] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND AIMS There is an urgent need to develop new high throughput approaches to phenotype roots in the field. Excavating roots to make direct measurements is labour intensive. An alternative to excavation is to measure soil drying profiles and to infer root activity. METHODS We grew 23 lines of wheat in 2013, 2014 and 2015. In each year we estimated soil water profiles with electrical resistance tomography (ERT), electromagnetic inductance (EMI), penetrometer measurements and measurements of soil water content. We determined the relationships between the measured variable and soil water content and matric potential. RESULTS We found that ERT and penetrometer measurements were closely related to soil matric potential and produced the best discrimination between wheat lines. We found genotypic differences in depth of water uptake in soil water profiles and in the extent of surface drying. CONCLUSIONS Penetrometer measurements can provide a reliable approach to comparing soil drying profiles by different wheat lines, and genotypic rankings are repeatable across years. EMI, which is more sensitive to soil water content than matric potential, and is less effective in drier soils than the penetrometer or ERT, nevertheless can be used to rapidly screen large populations for differences in root activity.
Collapse
Affiliation(s)
| | - A. Binley
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ UK
| | - C.W. Watts
- Rothamsted Research, Harpenden, AL5 2JQ UK
| | - P. Shanahan
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ UK
| | - I.C. Dodd
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ UK
| | - E.S. Ober
- NIAB, Huntingdon Road, Cambridge, CB3 0LE UK
| | | | | | - R.P. White
- Rothamsted Research, Harpenden, AL5 2JQ UK
| | | |
Collapse
|
32
|
Wasson AP, Chiu GS, Zwart AB, Binns TR. Differentiating Wheat Genotypes by Bayesian Hierarchical Nonlinear Mixed Modeling of Wheat Root Density. FRONTIERS IN PLANT SCIENCE 2017; 8:282. [PMID: 28303148 PMCID: PMC5332416 DOI: 10.3389/fpls.2017.00282] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 02/15/2017] [Indexed: 05/03/2023]
Abstract
Ensuring future food security for a growing population while climate change and urban sprawl put pressure on agricultural land will require sustainable intensification of current farming practices. For the crop breeder this means producing higher crop yields with less resources due to greater environmental stresses. While easy gains in crop yield have been made mostly "above ground," little progress has been made "below ground"; and yet it is these root system traits that can improve productivity and resistance to drought stress. Wheat pre-breeders use soil coring and core-break counts to phenotype root architecture traits, with data collected on rooting density for hundreds of genotypes in small increments of depth. The measured densities are both large datasets and highly variable even within the same genotype, hence, any rigorous, comprehensive statistical analysis of such complex field data would be technically challenging. Traditionally, most attributes of the field data are therefore discarded in favor of simple numerical summary descriptors which retain much of the high variability exhibited by the raw data. This poses practical challenges: although plant scientists have established that root traits do drive resource capture in crops, traits that are more randomly (rather than genetically) determined are difficult to breed for. In this paper we develop a hierarchical nonlinear mixed modeling approach that utilizes the complete field data for wheat genotypes to fit, under the Bayesian paradigm, an "idealized" relative intensity function for the root distribution over depth. Our approach was used to determine heritability: how much of the variation between field samples was purely random vs. being mechanistically driven by the plant genetics? Based on the genotypic intensity functions, the overall heritability estimate was 0.62 (95% Bayesian confidence interval was 0.52 to 0.71). Despite root count profiles that were statistically very noisy, our approach led to denoised profiles which exhibited rigorously discernible phenotypic traits. Profile-specific traits could be representative of a genotype, and thus, used as a quantitative tool to associate phenotypic traits with specific genotypes. This would allow breeders to select for whole root system distributions appropriate for sustainable intensification, and inform policy for mitigating crop yield risk and food insecurity.
Collapse
Affiliation(s)
- Anton P. Wasson
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture & FoodCanberra, ACT, Australia
- *Correspondence: Anton P. Wasson
| | - Grace S. Chiu
- Research School of Finance, Actuarial Studies and Statistics, College of Business and Economics, Australian National UniversityCanberra, ACT, Australia
- Grace S. Chiu
| | - Alexander B. Zwart
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Data61Canberra, ACT, Australia
| | | |
Collapse
|