1
|
Zhang B, Deneer A, Fleck C, Hülskamp M. Quantitative analysis of MBW complex formation in the context of trichome patterning. FRONTIERS IN PLANT SCIENCE 2024; 15:1331156. [PMID: 38504903 PMCID: PMC10948613 DOI: 10.3389/fpls.2024.1331156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/06/2024] [Indexed: 03/21/2024]
Abstract
Trichome patterning in Arabidopsis is regulated by R2R3MYB, bHLH and WDR (MBW) genes. These are considered to form a trimeric MBW protein complex that promotes trichome formation. The MBW proteins are engaged in a regulatory network to select trichome cells among epidermal cells through R3MYB proteins that can move between cells and repress the MBW complex by competitive binding with the R2R3MYB to the bHLHL protein. We use quantitative pull-down assays to determine the relative dissociation constants for the protein-protein interactions of the involved genes. We find similar binding strength between the trichome promoting genes and weaker binding of the R3MYB inhibitors. We used the dissociation constants to calculate the relative percentage of all possible complex combinations and found surprisingly low fractions of those complexes that are typically considered to be relevant for the regulation events. Finally, we predict an increased robustness in patterning as a consequence of higher ordered complexes mediated by GL3 dimerization.
Collapse
Affiliation(s)
- Bipei Zhang
- Key Laboratory of Tropical and Subtropical Flowers and Landscape Plants of Guangdong Higher Education Institutions/College of Horticulture and Landscape Architecture, ZhongKai University of Agriculture and Engineering, Guangzhou, China
| | - Anna Deneer
- Biometris, Department of Mathematical and Statistical Methods, Wageningen University, Wageningen, Netherlands
| | - Christian Fleck
- Spatial Systems Biology Group, Center for Data Analysis and Modeling, University of Freiburg, Freiburg, Germany
| | - Martin Hülskamp
- Botanical Institute, Biocenter, Cologne University, Cologne, Germany
| |
Collapse
|
2
|
Fan H, Xu J, Ao D, Jia T, Shi Y, Li N, Jing R, Sun D. QTL Mapping of Trichome Traits and Analysis of Candidate Genes in Leaves of Wheat ( Triticum aestivum L.). Genes (Basel) 2023; 15:42. [PMID: 38254932 PMCID: PMC10815787 DOI: 10.3390/genes15010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
Trichome plays an important role in heat dissipation, cold resistance, water absorption, protection of leaves from mechanical damage, and direct exposure to ultraviolet rays. It also plays an important role in the photosynthesis, transpiration, and respiration of plants. However, the genetic basis of trichome traits is not fully understood in wheat. In this study, wheat DH population (Hanxuan 10 × Lumai 14) was used to map quantitative trait loci (QTL) for trichome traits in different parts of flag leaf at 10 days after anther with growing in Zhao County, Hebei Province, and Taigu County, Shanxi Province, respectively. The results showed that trichome density (TD) was leaf center > leaf tip > leaf base and near vein > middle > edge, respectively, in both environments. The trichome length (TL) was leaf tip > leaf center > leaf base and edge > middle > near vein. Significant phenotypic positive correlations were observed between the trichome-related traits of different parts. A total of 83 QTLs for trichome-related traits were mapped onto 18 chromosomes, and each one accounted for 2.41 to 27.99% of the phenotypic variations. Two QTL hotspots were detected in two marker intervals: AX-95232910~AX-95658735 on 3A and AX-94850949~AX-109507404 on 7D. Six possible candidate genes (TraesCS3A02G406000, TraesCS3A02G414900, TraesCS3A02G440900, TraesCS7D02G145200, TraesCS7D02G149200, and TraesCS7D02G152400) for trichome-related traits of wheat leaves were screened out according to their predicted expression levels in wheat leaves. The expression of these genes may be induced by a variety of abiotic stresses. The results provide the basis for further validation and functional characterization of the candidate genes.
Collapse
Affiliation(s)
- Hua Fan
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (H.F.); (J.X.); (D.A.); (T.J.); (Y.S.); (N.L.)
- Experimental Teaching Center, Shanxi Agricultural University, Taigu, Jinzhong 030800, China
| | - Jianchao Xu
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (H.F.); (J.X.); (D.A.); (T.J.); (Y.S.); (N.L.)
| | - Dan Ao
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (H.F.); (J.X.); (D.A.); (T.J.); (Y.S.); (N.L.)
| | - Tianxiang Jia
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (H.F.); (J.X.); (D.A.); (T.J.); (Y.S.); (N.L.)
| | - Yugang Shi
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (H.F.); (J.X.); (D.A.); (T.J.); (Y.S.); (N.L.)
| | - Ning Li
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (H.F.); (J.X.); (D.A.); (T.J.); (Y.S.); (N.L.)
| | - Ruilian Jing
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100000, China;
| | - Daizhen Sun
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (H.F.); (J.X.); (D.A.); (T.J.); (Y.S.); (N.L.)
| |
Collapse
|
3
|
Zahid S, Schulfer AF, Di Stilio VS. A eudicot MIXTA family ancestor likely functioned in both conical cells and trichomes. FRONTIERS IN PLANT SCIENCE 2023; 14:1288961. [PMID: 38173925 PMCID: PMC10764028 DOI: 10.3389/fpls.2023.1288961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024]
Abstract
The MIXTA family of MYB transcription factors modulate the development of diverse epidermal features in land plants. This study investigates the evolutionary history and function of the MIXTA gene family in the early-diverging eudicot model lineage Thalictrum (Ranunculaceae), with R2R3 SBG9-A MYB transcription factors representative of the pre-core eudicot duplication and thus hereby referred to as "paleoMIXTA" (PMX). Cloning and phylogenetic analysis of Thalictrum paleoMIXTA (ThPMX) orthologs across 23 species reveal a genus-wide duplication coincident with a whole-genome duplication. Expression analysis by qPCR confirmed that the highest expression is found in carpels, while newly revealing high expression in leaves and nuanced differences between paralogs in representative polyploid species. The single-copy ortholog from the diploid species T. thalictroides (TthPMX, previously TtMYBML2), which has petaloid sepals with conical-papillate cells and trichomes on leaves, was functionally characterized by virus-induced gene silencing (VIGS), and its role in leaves was also assessed from heterologous overexpression in tobacco. Another ortholog from a species with conical-papillate cells on stamen filaments, TclPMX, was also targeted for silencing. Overexpression assays in tobacco provide further evidence that the paleoMIXTA lineage has the potential for leaf trichome function in a core eudicot. Transcriptome analysis by RNA-Seq on leaves of VIGS-treated plants suggests that TthPMX modulates leaf trichome development and morphogenesis through microtubule-associated mechanisms and that this may be a conserved pathway for eudicots. These experiments provide evidence for a combined role for paleoMIXTA orthologs in (leaf) trichomes and (floral) conical-papillate cells that, together with data from other systems, makes the functional reconstruction of a eudicot ancestor most likely as also having a combined function.
Collapse
|
4
|
Xu W, Nyamaharo KC, Huang Y, Mei J, Guo W, Ke L, Sun Y. A signal R3-type, CAPRICE-like MYB transcription factor from Dendrobium nobile controls trichome and root-hair development in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 337:111878. [PMID: 37777017 DOI: 10.1016/j.plantsci.2023.111878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/14/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
The CAPRICE-like MYB transcription factors with R3 MYB motif play a central role in regulating trichome and root-hair development in plants. We identified the homologous gene of ENHANCER OF TRY AND CPC (ETC) in Arabidopsis from Dendrobium nobile Lindl with full cDNA sequence and genomic sequence (CAPRICE-LIKE MYB, DnCPL and DngCPL) respectively. Phylogenic analyses revealed a close relationship of CAPRICE-like MYB TFs between D. nobile and A. thaliana. Promoter analysis indicated that DnCPL is specifically expressed in trichome basal cells of leaf epidermis and root hairs. Overexpression of DnCPL results in the suppression of trichome formation and overproduction of root hairs. In transgenic plants overexpressing DnCPL and DngCPL, trichome formation was inhibited, moreover, no trichomes were observed in tissues of aerial parts, and root-hair differentiation was significantly enhanced by strongly repressing endogenous genes of AtCPC, AtTCL1, and AtTCL2 expression, thereby enhancing AtTRY expression. The DnCPL RNAi plants formed fewer lateral roots with a corresponding change in AtCPC, AtTCL1 and AtTCL2 expression. These results suggest that Dendrobium and Arabidopsis partially use similar transcription factors for epidermal cell differentiation and the CPC-like R3 MYB, DnCPL, may be a key common regulator of plant trichome and root-hair development. The results also provided genes and means of regulation to improve the survival ratio of artificially cultivated Dendrobium with more lateral roots.
Collapse
Affiliation(s)
- Wenqi Xu
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Kundai Chelsea Nyamaharo
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Yinshuai Huang
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Jun Mei
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Wanli Guo
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Liping Ke
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China.
| | - Yuqiang Sun
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China.
| |
Collapse
|
5
|
Li Y, Wang W, Zhang N, Cheng Y, Hussain S, Wang Y, Tian H, Hussain H, Lin R, Yuan Y, Wang C, Wang T, Wang S. Antagonistic Regulation of ABA Responses by Duplicated Tandemly Repeated DUF538 Protein Genes in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2023; 12:2989. [PMID: 37631202 PMCID: PMC10459309 DOI: 10.3390/plants12162989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
The plant hormone ABA (abscisic acid) regulates plant responses to abiotic stresses by regulating the expression of ABA response genes. However, the functions of a large portion of ABA response genes have remained unclear. We report in this study the identification of ASDs (ABA-inducible signal peptide-containing DUF538 proteins), a subgroup of DUF538 proteins with a signal peptide, as the regulators of plant responses to ABA in Arabidopsis. ASDs are encoded by four closely related DUF538 genes, with ASD1/ASD2 and ASD3/ASD4 being two pairs of duplicated tandemly repeated genes. The quantitative RT-PCR (qRT-PCR) results showed that the expression levels of ASDs increased significantly in response to ABA as well as NaCl and mannitol treatments, with the exception that the expression level of ASD2 remained largely unchanged in response to NaCl treatment. The results of Arabidopsis protoplast transient transfection assays showed that ASDs were localized on the plasma membrane and in the cytosol and nucleus. When recruited to the promoter of the reporter gene via a fused GD domain, ASDs were able to slightly repress the expression of the co-transfected reporter gene. Seed germination and cotyledon greening assays showed that ABA sensitivity was increased in the transgenic plants that were over-expressing ASD1 or ASD3 but decreased in the transgenic plants that were over-expressing ASD2 or ASD4. On the other hand, ABA sensitivity was increased in the CRISPR/Cas9 gene-edited asd2 single mutants but decreased in the asd3 single mutants. A transcriptome analysis showed that differentially expressed genes in the 35S:ASD2 transgenic plant seedlings were enriched in several different processes, including in plant growth and development, the secondary metabolism, and plant hormone signaling. In summary, our results show that ASDs are ABA response genes and that ASDs are involved in the regulation of plant responses to ABA in Arabidopsis; however, ASD1/ASD3 and ASD2/ASD4 have opposite functions.
Collapse
Affiliation(s)
- Yingying Li
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
| | - Wei Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China; (W.W.); (S.H.)
| | - Na Zhang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
| | - Yuxin Cheng
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
| | - Saddam Hussain
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China; (W.W.); (S.H.)
| | - Yating Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
| | - Hainan Tian
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
| | - Hadia Hussain
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
| | - Rao Lin
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
| | - Yuan Yuan
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
| | - Chen Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
| | - Shucai Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China; (W.W.); (S.H.)
| |
Collapse
|
6
|
Wang Y, Wang W, Jia Q, Tian H, Wang X, Li Y, Hussain S, Hussain H, Wang T, Wang S. BIC2, a Cryptochrome Function Inhibitor, Is Involved in the Regulation of ABA Responses in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112220. [PMID: 37299199 DOI: 10.3390/plants12112220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/18/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
The plant hormone ABA (abscisic acid) is able to regulate plant responses to abiotic stresses via regulating the expression of ABA response genes. BIC1 (Blue-light Inhibitor of Cryptochromes 1) and BIC2 have been identified as the inhibitors of plant cryptochrome functions, and are involved in the regulation of plant development and metabolism in Arabidopsis . In this study, we report the identification of BIC2 as a regulator of ABA responses in Arabidopsis . RT-PCR (Reverse Transcription-Polymerase Chain Reaction) results show that the expression level of BIC1 remained largely unchanged, but that of BIC2 increased significantly in response to ABA treatment. Transfection assays in Arabidopsis protoplasts show that both BIC1 and BIC2 were mainly localized in the nucleus, and were able to activate the expression of the co-transfected reporter gene. Results in seed germination and seedling greening assays show that ABA sensitivity was increased in the transgenic plants overexpressing BIC2, but increased slightly, if any, in the transgenic plants overexpressing BIC1. ABA sensitivity was also increased in the bic2 single mutants in seedling greening assays, but no further increase was observed in the bic1 bic2 double mutants. On the other hand, in root elongation assays, ABA sensitivity was decreased in the transgenic plants overexpressing BIC2, as well as the bic2 single mutants, but no further decrease was observed in the bic1 bic2 double mutants. By using qRT-PCR (quantitative RT-PCR), we further examined how BIC2 may regulate ABA responses in Arabidopsis , and found that inhibition of ABA on the expression of the ABA receptor genes PYL4 (PYR1-Like 4) and PYL5 were decreased, but promotion of ABA on the expression of the protein kinase gene SnRK2.6 (SNF1-Related Protein Kinases 2.6) was enhanced in both the bic1 bic2 double mutants and 35S:BIC2 overexpression transgenic plants. Taken together, our results suggest that BIC2 regulates ABA responses in Arabidopsis possibly by affecting the expression of ABA signaling key regulator genes.
Collapse
Affiliation(s)
- Yating Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Wei Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China
| | - Qiming Jia
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Hainan Tian
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Xutong Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China
| | - Yingying Li
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Saddam Hussain
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Hadia Hussain
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Shucai Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China
| |
Collapse
|
7
|
Meng C, Liu X, Wu F, Ma L, Wang Y, Mu J, Wang M. Comparative transcriptome analysis provides insights into molecular pathway and genes associated with head-type formation and phenotypic divergence in Chinese cabbage. Front Genet 2023; 14:1190752. [PMID: 37229207 PMCID: PMC10203174 DOI: 10.3389/fgene.2023.1190752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
Background: The heading type of Chinese cabbage is a significant commercial trait with high economic value. At present, research on the phenotypic divergence and formation mechanism of heading type is limited. Results: Through comparative-transcriptome analysis, the formation and phenotypic divergence mechanism of the leafy head of diploid overlapping type cabbage, diploid outward-curling type cabbage, tetraploid overlapping type cabbage, and tetraploid outward-curling type cabbage were systematically and comprehensively investigated, and the phenotype-specific genes of four varieties were revealed. These phenotype-specific differentially expressed genes (DEGs) were considered crucial for cabbage heading type through WGCNA. Some transcription factors have been predicted as significant genes for phenotypic divergence, including the members of the bHLH, AP2/ERF-ERF, WRKY, MYB, NAC, and C2CH2 families. Phytohormone-related genes, including abscisic acid/auxin hormone, may play an important role in the phenotypic divergence of head type in cabbage. Conclusion: Comparative-transcriptome analysis supports a role for phytohormone-related genes and some transcription factors in head-type formation and divergence for four cultivars. These findings increase our understanding of the molecular basis for pattern formation and divergence of the leafy heads of Chinese cabbage and will contribute to developing more desirable leafy head patterns.
Collapse
|
8
|
Jiao Y, Long Y, Xu K, Zhao F, Zhao J, Li S, Geng S, Gao W, Sun P, Deng X, Chen Q, Li C, Qu Y. Weighted Gene Co-Expression Network Analysis Reveals Hub Genes for Fuzz Development in Gossypium hirsutum. Genes (Basel) 2023; 14:208. [PMID: 36672949 PMCID: PMC9858766 DOI: 10.3390/genes14010208] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/02/2023] [Accepted: 01/11/2023] [Indexed: 01/14/2023] Open
Abstract
Fuzzless Gossypium hirsutum mutants are ideal materials for investigating cotton fiber initiation and development. In this study, we used the fuzzless G. hirsutum mutant Xinluzao 50 FLM as the research material and combined it with other fuzzless materials for verification by RNA sequencing to explore the gene expression patterns and differences between genes in upland cotton during the fuzz period. A gene ontology (GO) enrichment analysis showed that differentially expressed genes (DEGs) were mainly enriched in the metabolic process, microtubule binding, and other pathways. A weighted gene co-expression network analysis (WGCNA) showed that two modules of Xinluzao 50 and Xinluzao 50 FLM and four modules of CSS386 and Sicala V-2 were highly correlated with fuzz. We selected the hub gene with the highest KME value among the six modules and constructed an interaction network. In addition, we selected some genes with high KME values from the six modules that were highly associated with fuzz in the four materials and found 19 common differential genes produced by the four materials. These 19 genes are likely involved in the formation of fuzz in upland cotton. Several hub genes belong to the arabinogalactan protein and GDSL lipase, which play important roles in fiber development. According to the differences in expression level, 4 genes were selected from the 19 genes and tested for their expression level in some fuzzless materials. The modules, hub genes, and common genes identified in this study can provide new insights into the formation of fiber and fuzz, and provide a reference for molecular design breeding for the genetic improvement of cotton fiber.
Collapse
Affiliation(s)
- Yang Jiao
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Yilei Long
- Institute of Cash Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Kaixiang Xu
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Fuxiang Zhao
- Xinjiang Academy of Agricultural Reclamation, Shihezi 832000, China
| | - Jieyin Zhao
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Shengmei Li
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Shiwei Geng
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Wenju Gao
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Peng Sun
- Xinjiang Kuitun Agricultural and Rural Bureau, KuiTun 833200, China
| | - Xiaojuan Deng
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Quanjia Chen
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Chunpin Li
- Institute of Cash Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Yanying Qu
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
9
|
CRISPR/Cas9 Gene Editing of NtAITRs, a Family of Transcription Repressor Genes, Leads to Enhanced Drought Tolerance in Tobacco. Int J Mol Sci 2022; 23:ijms232315268. [PMID: 36499605 PMCID: PMC9737578 DOI: 10.3390/ijms232315268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Tobacco is a cash crop throughout the world, and its growth and development are affected by abiotic stresses including drought stress; therefore, drought-tolerant breeding may help to improve tobacco yield and quality under drought stress conditions. Considering that the plant hormone ABA (abscisic acid) is able to regulate plant responses to abiotic stresses via activating ABA response genes, the characterization of ABA response genes may enable the identification of genes that can be used for molecular breeding to improve drought tolerance in tobacco. We report here the identification of NtAITRs (Nicotiana tabacum ABA-induced transcription repressors) as a family of novel regulators of drought tolerance in tobacco. Bioinformatics analysis shows that there are a total of eight NtAITR genes in tobacco, and all the NtAITRs have a partially conserved LxLxL motif at their C-terminus. RT-PCR results show that the expression levels of at least some NtAITRs were increased in response to ABA and drought treatments, and NtAITRs, when recruited to the Gal4 promoter via a fused GD (Gal4 DNA-binding domain), were able to repress transcription activator LD-VP activated expression of the LexA-Gal4-GUS reporter gene. Roles of NtAITRs in regulating drought tolerance in tobacco were analyzed by generating CRISPR/Cas9 gene-edited mutants. A total of three Cas9-free ntaitr12356 quintuple mutants were obtained, and drought treatment assays show that drought tolerance was increased in the ntaitr12356 quintuple mutants. On the other hand, results of seed germination and seedling greening assays show that ABA sensitivity was increased in the ntaitr12356 quintuple mutants, and the expression levels of some ABA signaling key regulator genes were altered in the ntaitr12356-c3 mutant. Taken together, our results suggest that NtAITRs are ABA-responsive genes, and that NtAITRs function as transcription repressors and negatively regulate drought tolerance in tobacco, possibly by affecting plant ABA response via affecting the expression of ABA signaling key regulator genes.
Collapse
|
10
|
Hussain S, Cheng Y, Li Y, Wang W, Tian H, Zhang N, Wang Y, Yuan Y, Hussain H, Lin R, Wang C, Wang T, Wang S. AtbZIP62 Acts as a Transcription Repressor to Positively Regulate ABA Responses in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2022; 11:3037. [PMID: 36432766 PMCID: PMC9699195 DOI: 10.3390/plants11223037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
The basic region/leucine zipper (bZIP) transcription factor AtbZIP62 is involved in the regulation of plant responses to abiotic stresses, including drought and salinity stresses, NO3 transport, and basal defense in Arabidopsis. It is unclear if it plays a role in regulating plant responses to abscisic acid (ABA), a phytohormone that can regulate plant abiotic stress responses via regulating downstream ABA-responsive genes. Using RT-PCR analysis, we found that the expression level of AtbZIP62 was increased in response to exogenously applied ABA. Protoplast transfection assays show that AtbZIP62 is predominantly localized in the nucleus and functions as a transcription repressor. To examine the roles of AtbZIP62 in regulating ABA responses, we generated transgenic Arabidopsis plants overexpressing AtbZIP62 and created gene-edited atbzip62 mutants using CRISPR/Cas9. We found that in both ABA-regulated seed germination and cotyledon greening assays, the 35S:AtbZIP62 transgenic plants were hypersensitive, whereas atbzip62 mutants were hyposensitive to ABA. To examine the functional mechanisms of AtbZIP62 in regulating ABA responses, we generated Arabidopsis transgenic plants overexpressing 35S:AtbZIP62-GR, and performed transcriptome analysis to identify differentially expressed genes (DEGs) in the presence and absence of DEX, and found that DEGs are highly enriched in processes including response to abiotic stresses and response to ABA. Quantitative RT-PCR results further show that AtbZIP62 may regulate the expression of several ABA-responsive genes, including USP, ABF2, and SnRK2.7. In summary, our results show that AtbZIP62 is an ABA-responsive gene, and AtbZIP62 acts as a transcription repressor to positively regulate ABA responses in Arabidopsis.
Collapse
Affiliation(s)
- Saddam Hussain
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Yuxin Cheng
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Yingying Li
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Wei Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China
| | - Hainan Tian
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Na Zhang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Yating Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Yuan Yuan
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Hadia Hussain
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Rao Lin
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Chen Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Shucai Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China
| |
Collapse
|
11
|
Wang X, Wang W, Chen S, Lian Y, Wang S. Tropaeolum majus R2R3 MYB Transcription Factor TmPAP2 Functions as a Positive Regulator of Anthocyanin Biosynthesis. Int J Mol Sci 2022; 23:12395. [PMID: 36293253 PMCID: PMC9604057 DOI: 10.3390/ijms232012395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 12/02/2022] Open
Abstract
Anthocyanins are an important group of water-soluble and non-toxic natural pigments with antioxidant and anti-inflammatory properties that can be found in flowers, vegetables, and fruits. Anthocyanin biosynthesis is regulated by several different types of transcription factors, including the WD40-repeat protein Transparent Testa Glabra 1 (TTG1), the bHLH transcription factor Transparent Testa 8 (TT8), Glabra3 (GL3), Enhancer of GL3 (EGL3), and the R2R3 MYB transcription factor Production of Anthocyanin Pigment 1 (PAP1), PAP2, MYB113, and MYB114, which are able to form MYB-bHLH-WD40 (MBW) complexes to regulate the expression of late biosynthesis genes (LBGs) in the anthocyanin biosynthesis pathway. Nasturtium (Tropaeolum majus) is an edible flower plant that offers many health benefits, as it contains numerous medicinally important ingredients, including anthocyanins. By a comparative examination of the possible anthocyanin biosynthesis regulator genes in nasturtium varieties with different anthocyanin contents, we found that TmPAP2, an R2R3 MYB transcription factor gene, is highly expressed in "Empress of India", a nasturtium variety with high anthocyanin content, while the expression of TmPAP2 in Arabidopsis led to the overproduction of anthocyanins. Protoplast transfection shows that TmPAP2 functions as a transcription activator; consistent with this finding, some of the biosynthesis genes in the general phenylpropanoid pathway and anthocyanin biosynthesis pathway were highly expressed in "Empress of India" and the 35S:TmPAP2 transgenic Arabidopsis plants. However, protoplast transfection indicates that TmPAP2 may not be able to form an MBW complex with TmGL3 and TmTTG1. These results suggest that TmPAP2 may function alone as a key regulator of anthocyanin biosynthesis in nasturtiums.
Collapse
Affiliation(s)
| | | | | | | | - Shucai Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China
| |
Collapse
|
12
|
AtEAU1 and AtEAU2, Two EAR Motif-Containing ABA Up-Regulated Novel Transcription Repressors Regulate ABA Response in Arabidopsis. Int J Mol Sci 2022; 23:ijms23169053. [PMID: 36012319 PMCID: PMC9409118 DOI: 10.3390/ijms23169053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 12/04/2022] Open
Abstract
EAR (Ethylene-responsive element binding factor-associated Amphiphilic Repression) motif-containing transcription repressors have been shown to regulate plant growth and development, and plant responses to plant hormones and environmental stresses including biotic and abiotic stresses. However, the functions of most EAR-motif-containing proteins remain largely uncharacterized. The plant hormone abscisic acid (ABA) also plays important roles in regulating plant responses to abiotic stresses via activation/repression of ABA-responsive genes. We report here the identification and functional characterization of two ABA-responsive EAR motif-containing protein genes, AtEAU1 (Arabidopsis thaliana EAR motif-containing ABAUp-regulated 1) and AtEAU2. Quantitative RT-PCR results show that the expressions of AtEAU1 and AtEAU2 were increased by ABA treatment, and were decreased in the ABA biosynthesis mutant aba1-5. Assays in transfected Arabidopsis protoplasts show that both AtEAU1 and AtEAU2 were specifically localized in the nucleus, and when recruited to the promoter region of the reporter gene by a fused DNA binding domain, repressed reporter gene expression. By using T-DNA insertion mutants and a gene-edited transgene-free mutant generated by CRISPR/Cas9 gene editing, we performed ABA sensitivity assays, and found that ABA sensitivity in the both ateau1 and ateau2 single mutants was increased in seedling greening assays. ABA sensitivity in the ateau1 ateau2 double mutants was also increased, but was largely similar to the ateau1 single mutants. On the other hand, all the mutants showed a wild type response to ABA in root elongation assays. Quantitative RT-PCR results show that the expression level of PYL4, an ABA receptor gene was increased, whereas that of ABI2, a PP2C gene was decreased in the ateau1 and ateau1 single, and the ateau1 ateau2 double mutants. In summary, our results suggest that AtEAU1 and AtEAU2 are ABA-response genes, and AtEAU1 and AtEAU2 are novel EAR motif-containing transcription repressors that negatively regulate ABA responses in Arabidopsis, likely by regulating the expression of some ABA signaling key regulator genes.
Collapse
|
13
|
Lal M, Bhardwaj E, Chahar N, Yadav S, Das S. Comprehensive analysis of 1R- and 2R-MYBs reveals novel genic and protein features, complex organisation, selective expansion and insights into evolutionary tendencies. Funct Integr Genomics 2022; 22:371-405. [PMID: 35260976 DOI: 10.1007/s10142-022-00836-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/10/2022] [Accepted: 02/23/2022] [Indexed: 11/28/2022]
Abstract
Myeloblastosis (MYB) family, the largest plant transcription factor family, has been subcategorised based on the number and type of repeats in the MYB domain. In spite of several reports, evolution of MYB genes and repeats remains enigmatic. Brassicaceae members are endowed with complex genomes, including dysploidy because of its unique history with multiple rounds of polyploidisation, genomic fractionations and rearrangements. The present study is an attempt to gain insights into the complexities of MYB family diversity, understand impacts of genome evolution on gene families and develop an evolutionary framework to understand the origin of various subcategories of MYB gene family. We identified and analysed 1129 MYBs that included 1R-, 2R-, 3R- and atypical-MYBs across sixteen species representing protists, fungi, animals and plants and exclude MYB identified from Brassicaceae except Arabidopsis thaliana; in addition, a total of 1137 2R-MYB genes from six Brassicaceae species were also analysed. Comparative analysis revealed predominance of 1R-MYBs in protists, fungi, animals and lower plants. Phylogenetic reconstruction and analysis of selection pressure suggested ancestral nature of R1-type repeat containing 1R-MYBs that might have undergone intragenic duplication to form multi-repeat MYBs. Distinct differences in gene structure between 1R-MYB and 2R-MYBs were observed regarding intron number, the ratio of gene length to coding DNA sequence (CDS) length and the length of exons encoding the MYB domain. Conserved as well as novel and lineage-specific intron phases were identified. Analyses of physicochemical properties revealed drastic differences indicating functional diversification in MYBs. Phylogenetic reconstruction of 1R- and 2R-MYB genes revealed a shared structure-function relationship in clades which was supported when transcriptome data was analysed in silico. Comparative genomics to study distribution pattern and mapping of 2R-MYBs revealed congruency and greater degree of synteny and collinearity among closely related species. Micro-synteny analysis of genomic segments revealed high conservation of genes that are immediately flanking the surrounding tandemly organised 2R-MYBs along with instances of local duplication, reorganisations and genome fractionation. In summary, polyploidy, dysploidy, reshuffling and genome fractionation were found to cause loss or gain of 2R-MYB genes. The findings need to be supported with functional validation to understand gene structure-function relationship along the evolutionary lineage and adaptive strategies based on comparative functional genomics in plants.
Collapse
Affiliation(s)
- Mukund Lal
- Department of Botany, University of Delhi, Delhi, 110007, India
| | - Ekta Bhardwaj
- Department of Botany, University of Delhi, Delhi, 110007, India
| | - Nishu Chahar
- Department of Botany, University of Delhi, Delhi, 110007, India
| | - Shobha Yadav
- Department of Botany, University of Delhi, Delhi, 110007, India
| | - Sandip Das
- Department of Botany, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
14
|
The R2R3 MYB Transcription Factor MYB71 Regulates Abscisic Acid Response in Arabidopsis. PLANTS 2022; 11:plants11101369. [PMID: 35631794 PMCID: PMC9143609 DOI: 10.3390/plants11101369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 11/17/2022]
Abstract
Abscisic acid (ABA) regulates plant responses to abiotic stresses via regulating the expression of downstream genes, yet the functions of many ABA responsive genes remain unknown. We report here the characterization of MYB71, a R2R3 MYB transcription factor in regulating ABA responses in Arabidopsis. RT-PCR results show that the expression level of MYB71 was increased in response to ABA treatment. Arabidopsis protoplasts transfection results show that MYB71 was specifically localized in nucleus and it activated the Gal4:GUS reporter gene when recruited to the Gal4 promoter by a fused DNA binding domain GD. Roles of MYB71 in regulating plant response to ABA were analyzed by generating Arabidopsis transgenic plants overexpression MYB71 and gene edited mutants of MYB71. The results show that ABA sensitivity was increased in the transgenic plants overexpression MYB71, but decreased in the MYB71 mutants. By using a DEX inducible system, we further identified genes are likely regulated by MYB71, and found that they are enriched in biological process to environmental stimuli including abiotic stresses, suggesting that MYB71 may regulate plant response to abiotic stresses. Taken together, our results suggest that MYB71 is an ABA responsive gene, and MYB71 functions as a transcription activator and it positively regulates ABA response in Arabidopsis.
Collapse
|
15
|
Liu X, He X, Liu Z, Wu P, Tang N, Chen Z, Zhang W, Rao S, Cheng S, Luo C, Xu F. Transcriptome mining of genes in Zanthoxylum armatum revealed ZaMYB86 as a negative regulator of prickly development. Genomics 2022; 114:110374. [PMID: 35489616 DOI: 10.1016/j.ygeno.2022.110374] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/23/2022] [Accepted: 04/22/2022] [Indexed: 01/14/2023]
Abstract
Zanthoxylum armatum DC. is an important economic tree species. Prickle is a type of trichome with special morphology, and there are a lot of prickles on the leaves of Z. armatum, which seriously restricts the development of Z. armatum industry. In this study, the leaves of Z. armatum cv. Zhuye (ZY) and its budding variety 'Rongchangwuci' (WC) (A less prickly mutant variety) at different developmental stages were used as materials, and the transcriptome sequencing data were analyzed. A total of 96,931 differentially expressed genes (DEGs) were identified among the samples, among which 1560 were candidate DEGs that might be involved in hormone metabolism. The contents of JA, auxin and CK phytohormones in ZY leaves were significantly higher than those in WC leaves. Combined with weighted gene co-expression network analysis, eight genes (MYC, IAA, ARF, CRE/AHK, PP2C, ARR-A, AOS and LOX) were identified, including 25 transcripts, which might affect the metabolism of the three hormones and indirectly participate in the formation of prickles. Combining with the proteins successfully reported in other plants to regulate trichome formation, ZaMYB86, a transcription factor of R2R3 MYB family, was identified through local Blast and phylogenetic tree analysis, which might regulate prickle formation of Z. armatum. Overexpression of ZaMYB86 in mutant A. thaliana resulted in the reduction of trichomes in A. thaliana leaves, which further verified that ZaMYB86 was involved in the formation of pickles. Yeast two-hybrid results showed that ZaMYB86 interacted with ZaMYB5. Furthermore, ZaMYB5 was highly homologous to AtMYB5, a transcription factor that regulated trichomes development, in MYB DNA binding domain. Taken together, these results indicated that ZaMYB86 and ZaMYB5 act together to regulate the formation of prickles in Z. armatum. Our findings provided a new perspective for revealing the molecular mechanism of prickly formation.
Collapse
Affiliation(s)
- Xiaomeng Liu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Xiao He
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Zhongbing Liu
- School of Horticulture and Landscape, Wuhan University of Bioengineering, Wuhan, China
| | - Peiyin Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Ning Tang
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing 400000, China
| | - Zexiong Chen
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing 400000, China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China; Spice Crops Research Institute, Yangtze University, Jingzhou 434025, Hubei, China.
| | - Shen Rao
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
| | - Shuiyuan Cheng
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, Hubei, China; National Selenium Rich Product Quality Supervision and Inspection Center, Enshi 445000, Hubei, China
| | - Chengrong Luo
- Sichuan Academy of Forestry, Chengdu 610081, Sichuan, China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China.
| |
Collapse
|
16
|
Li P, Fu J, Xu Y, Shen Y, Zhang Y, Ye Z, Tong W, Zeng X, Yang J, Tang D, Li P, Zuo H, Wu Q, Xia E, Wang S, Zhao J. CsMYB1 integrates the regulation of trichome development and catechins biosynthesis in tea plant domestication. THE NEW PHYTOLOGIST 2022; 234:902-917. [PMID: 35167117 PMCID: PMC9311817 DOI: 10.1111/nph.18026] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/02/2022] [Indexed: 05/09/2023]
Abstract
Tea trichomes synthesize numerous specialized metabolites to protect plants from environmental stresses and contribute to tea flavours, but little is known about the regulation of trichome development. Here, we showed that CsMYB1 is involved in the regulation of trichome formation and galloylated cis-catechins biosynthesis in tea plants. The variations in CsMYB1 expression levels are closely correlated with trichome indexes and galloylated cis-catechins contents in tea plant populations. Genome resequencing showed that CsMYB1 may be selected in modern tea cultivars, since a 192-bp insertion in CsMYB1 promoter was found exclusively in modern tea cultivars but not in the glabrous wild tea Camellia taliensis. Several enhancers in the 192-bp insertion increased CsMYB1 transcription in modern tea cultivars that coincided with their higher galloylated cis-catechins contents and trichome indexes. Biochemical analyses and transgenic data showed that CsMYB1 interacted with CsGL3 and CsWD40 and formed a MYB-bHLH-WD40 (MBW) transcriptional complex to activate the trichome regulator genes CsGL2 and CsCPC, and the galloylated cis-catechins biosynthesis genes anthocyanidin reductase and serine carboxypeptidase-like 1A. CsMYB1 integratively regulated trichome formation and galloylated cis-catechins biosynthesis. Results suggest that CsMYB1, trichome and galloylated cis-catechins are coincidently selected during tea domestication by harsh environments for improved adaption and by breeders for better tea flavours.
Collapse
Affiliation(s)
- Penghui Li
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural University130 West Changjiang RoadHefei230036China
| | - Jiamin Fu
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural University130 West Changjiang RoadHefei230036China
| | - Yujie Xu
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural University130 West Changjiang RoadHefei230036China
| | - Yihua Shen
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural University130 West Changjiang RoadHefei230036China
| | - Yanrui Zhang
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural University130 West Changjiang RoadHefei230036China
| | - Zhili Ye
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural University130 West Changjiang RoadHefei230036China
| | - Wei Tong
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural University130 West Changjiang RoadHefei230036China
| | - Xiangsheng Zeng
- College of AgronomyAnhui Agricultural University130 West Changjiang RoadHefei230036China
| | - Jihong Yang
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural University130 West Changjiang RoadHefei230036China
| | - Dingkun Tang
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural University130 West Changjiang RoadHefei230036China
| | - Ping Li
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural University130 West Changjiang RoadHefei230036China
| | - Hao Zuo
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural University130 West Changjiang RoadHefei230036China
| | - Qiong Wu
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural University130 West Changjiang RoadHefei230036China
| | - Enhua Xia
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural University130 West Changjiang RoadHefei230036China
| | - Shucai Wang
- Laboratory of Plant Molecular Genetics and Crop Gene EditingSchool of Life SciencesLinyi UniversityShuangling RoadLinyi276000China
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural University130 West Changjiang RoadHefei230036China
| |
Collapse
|
17
|
Feng X, Cheng H, Zuo D, Zhang Y, Wang Q, Lv L, Li S, Yu JZ, Song G. Genome-wide identification and expression analysis of GL2-interacting-repressor (GIR) genes during cotton fiber and fuzz development. PLANTA 2021; 255:23. [PMID: 34923605 DOI: 10.1007/s00425-021-03737-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/20/2021] [Indexed: 06/14/2023]
Abstract
GL2-interacting-repressor (GIR) family members may contribute to fiber/fuzz formation via a newly discovered unique pathway in Gossypium arboreum. There are similarities between cotton fiber development and the formation of trichomes and root hairs. The GL2-interacting-repressors (GIRs) are crucial regulators of root hair and trichome formation. The GaFzl gene, annotated as GaGIR1, is negatively associated with trichome development and fuzz initiation. However, there is relatively little available information regarding the other GIR genes in cotton, especially regarding their effects on cotton fiber development. In this study, 21 GIR family genes were identified in the diploid cotton species Gossypium arboreum; these genes were divided into three groups. The GIR genes were characterized in terms of their phylogenetic relationships, structures, chromosomal distribution and evolutionary dynamics. These GIR genes were revealed to be unequally distributed on 12 chromosomes in the diploid cotton genome, with no GIR gene detected on Ga06. The cis-acting elements in the promoter regions were predicted to be responsive to light, phytohormones, defense activities and stress. The transcriptomic data and qRT-PCR results revealed that most GIR genes were not differentially expressed between the wild-type control and the fuzzless mutant line. Moreover, 14 of 21 family genes were expressed at high levels, indicating these genes may play important roles during fiber development and fuzz formation. Furthermore, Ga01G0231 was predominantly expressed in root samples, suggestive of a role in root hair formation rather than in fuzz initiation and development. The results of this study have enhanced our understanding of the GIR genes and their potential utility for improving cotton fiber through breeding.
Collapse
Affiliation(s)
- Xiaoxu Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Plant Genetics, Gembloux Agro Bio-Tech, University of Liège, 5030, Gembloux, Belgium
| | - Hailiang Cheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Dongyun Zuo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Youping Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Qiaolian Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Limin Lv
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Shuyan Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - John Z Yu
- Southern Plains Agricultural Research Center, USDA-ARS, Crop Germplasm Research Unit, 2881 F&B Road, College Station, Texas, 77845, USA.
| | - Guoli Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| |
Collapse
|
18
|
Lu R, Zhang J, Wu YW, Wang Y, Zhang J, Zheng Y, Li Y, Li XB. bHLH transcription factors LP1 and LP2 regulate longitudinal cell elongation. PLANT PHYSIOLOGY 2021; 187:2577-2591. [PMID: 34618066 PMCID: PMC8644604 DOI: 10.1093/plphys/kiab387] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/21/2021] [Indexed: 05/31/2023]
Abstract
Basic helix-loop-helix/helix-loop-helix (bHLH/HLH) transcription factors play substantial roles in plant cell elongation. In this study, two bHLH/HLH homologous proteins leaf related protein 1 and leaf-related protein 2 (AtLP1 and AtLP2) were identified in Arabidopsis thaliana. LP1 and LP2 play similar positive roles in longitudinal cell elongation. Both LP1 and LP2 overexpression plants exhibited long hypocotyls, elongated cotyledons, and particularly long leaf blades. The elongated leaves resulted from increased longitudinal cell elongation. lp1 and lp2 loss-of-function single mutants did not display distinct phenotypes, but the lp1lp2 double mutant showed decreased leaf length associated with less longitudinal polar cell elongation. Furthermore, the phenotype of lp1lp2 could be rescued by the expression of LP1 or LP2. Expression of genes related to cell elongation was upregulated in LP1 and LP2 overexpression plants but downregulated in lp1lp2 double mutant plants compared with that of wild type. LP1 and LP2 proteins could directly bind to the promoters of Longifolia1 (LNG1) and LNG2 to activate the expression of these cell elongation related genes. Both LP1 and LP2 could interact with two other bHLH/HLH proteins, IBH1 (ILI1 binding BHLH Protein1) and IBL1 (IBH1-like1), thereby suppressing the transcriptional activation of LP1 and LP2 to the target genes LNG1 and LNG2. Thus, our data suggested that LP1 and LP2 act as positive regulators to promote longitudinal cell elongation by activating the expression of LNG1 and LNG2 genes in Arabidopsis. Moreover, homodimerization of LP1 and LP2 may be essential for their function, and interaction between LP1/LP2 and other bHLH/HLH proteins may obstruct transcriptional regulation of target genes by LP1 and LP2.
Collapse
Affiliation(s)
- Rui Lu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Jiao Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Yu-Wei Wu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Yao Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Jie Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Yong Zheng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Yang Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Xue-Bao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
19
|
Chun JI, Kim SM, Kim H, Cho JY, Kwon HW, Kim JI, Seo JK, Jung C, Kang JH. SlHair2 Regulates the Initiation and Elongation of Type I Trichomes on Tomato Leaves and Stems. PLANT & CELL PHYSIOLOGY 2021; 62:1446-1459. [PMID: 34155514 DOI: 10.1093/pcp/pcab090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/18/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Trichomes are hair-like structures that are essential for abiotic and biotic stress responses. Tomato Hair (H), encoding a C2H2 zinc finger protein, was found to regulate the multicellular trichomes on stems. Here, we characterized Solyc10g078990 (hereafter Hair2, H2), its closest homolog, to examine whether it was involved in trichome development. The H2 gene was highly expressed in the leaves, and its protein contained a single C2H2 domain and was localized to the nucleus. The number and length of type I trichomes on the leaves and stems of knock-out h2 plants were reduced when compared to the wild-type, while overexpression increased their number and length. An auto-activation test with various truncated forms of H2 using yeast two-hybrid (Y2H) suggested that H2 acts as a transcriptional regulator or co-activator and that its N-terminal region is important for auto-activation. Y2H and pull-down analyses showed that H2 interacts with Woolly (Wo), which regulates the development of type I trichomes in tomato. Luciferase complementation imaging assays confirmed that they had direct interactions, implying that H2 and Wo function together to regulate the development of trichomes. These results suggest that H2 has a role in the initiation and elongation of type I trichomes in tomato.
Collapse
Affiliation(s)
- Jae-In Chun
- Department of Agriculture, Forestry and Bioresources and Integrated Major in Global Smart Farm, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Institutes of Green-bio Science & Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Seong-Min Kim
- Department of Agriculture, Forestry and Bioresources and Integrated Major in Global Smart Farm, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Institutes of Green-bio Science & Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Heejin Kim
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Gyeongbuk, Republic of Korea
| | - Jae-Yong Cho
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hyun-Woo Kwon
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jeong-Il Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jang-Kyun Seo
- Institutes of Green-bio Science & Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Choonkyun Jung
- Department of Agriculture, Forestry and Bioresources and Integrated Major in Global Smart Farm, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Institutes of Green-bio Science & Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Jin-Ho Kang
- Department of Agriculture, Forestry and Bioresources and Integrated Major in Global Smart Farm, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Institutes of Green-bio Science & Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| |
Collapse
|
20
|
Involvement of ABA Responsive SVB Genes in the Regulation of Trichome Formation in Arabidopsis. Int J Mol Sci 2021; 22:ijms22136790. [PMID: 34202673 PMCID: PMC8268597 DOI: 10.3390/ijms22136790] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 01/19/2023] Open
Abstract
Trichome formation in Arabidopsis is regulated by several key regulators, and plants hormones such as gibberellin, salicylic acid, jasmonic acid and cytokinins have been shown to regulate trichome formation by affecting the transcription or activities of the key regulators. We report here the identification of two abscisic acid (ABA) responsive genes, SMALLER TRICHOMES WITH VARIABLE BRANCHES (SVB) and SVB2 as trichome formation regulator genes in Arabidopsis. The expression levels of SVB and SVB2 were increased in response to ABA treatment, their expression levels were reduced in the ABA biosynthesis mutant aba1-5, and they have similar expression pattern. In addition to the trichome defects reported previously for the svb single mutant, we found that even though the trichome numbers were largely unaffected in both the svb and svb2 single mutants generate by using CRISPR/Cas9 gene editing, the trichome numbers were greatly reduced in the svb svb2 double mutants. On the other hand, trichome numbers were increased in SVB or SVB2 overexpression plants. RT-PCR results show that the expression of the trichome formation key regulator gene ENHANCER OF GLABRA3 (EGL3) was affected in the svb svb2 double mutants. Our results suggest that SVB and SVB2 are ABA responsive genes, and SVB and SVB2 function redundantly to regulate trichome formation in Arabidopsis.
Collapse
|
21
|
Zheng K, Wang X, Wang Y, Wang S. Conserved and non-conserved functions of the rice homologs of the Arabidopsis trichome initiation-regulating MBW complex proteins. BMC PLANT BIOLOGY 2021; 21:234. [PMID: 34034660 PMCID: PMC8145838 DOI: 10.1186/s12870-021-03035-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Trichome initiation in Arabidopsis is regulated by a MYB-bHLH-WD40 (MBW) transcriptional activator complex formed by the R2R3 MYB transcription factor GLABRA1 (GL1), MYB23 or MYB82, the bHLH transcription factor GLABRA3 (GL3), ENHANCER OF GLABRA3 (EGL3) or TRANSPARENT TESTA8 (TT8), and the WD40-repeat protein TRANSPARENT TESTA GLABRA1 (TTG1). However, the functions of the rice homologs of the MBW complex proteins remained uncharacterized. RESULTS Based on amino acid sequence identity and similarity, and protein interaction prediction, we identified OsGL1s, OsGL3s and OsTTG1s as rice homologs of the MBW complex proteins. By using protoplast transfection, we show that OsGL1D, OsGL1E, OsGL3B and OsTTG1A were predominantly localized in the nucleus, OsGL3B functions as a transcriptional activator and is able to interact with GL1 and TTG1. By using yeast two-hybrid and protoplast transfection assays, we show that OsGL3B is able to interact with OsGL1E and OsTTG1A, and OsGL1E and OsTTG1A are also able to interact with GL3. On the other hand, we found that OsGL1D functions as a transcription activator, and it can interact with GL3 but not OsGL3B. Furthermore, our results show that expression of OsTTG1A in the ttg1 mutant restored the phenotypes including alternations in trichome and root hair formation, seed color, mucilage production and anthocyanin biosynthesis, indicating that OsTTG1A and TTG1 may have similar functions. CONCLUSION These results suggest that the rice homologs of the Arabidopsis MBW complex proteins are able to form MBW complexes, but may have conserved and non-conserved functions.
Collapse
Affiliation(s)
- Kaijie Zheng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Xutong Wang
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Yating Wang
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Shucai Wang
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China.
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi, China.
| |
Collapse
|
22
|
Weighted Gene Co-Expression Network Analysis Reveals Hub Genes Contributing to Fuzz Development in Gossypium arboreum. Genes (Basel) 2021; 12:genes12050753. [PMID: 34067654 PMCID: PMC8156360 DOI: 10.3390/genes12050753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022] Open
Abstract
Fuzzless mutants are ideal materials to decipher the regulatory network and mechanism underlying fuzz initiation and formation. In this study, we utilized two Gossypium arboreum accessions differing in fuzz characteristics to explore expression pattern differences and discriminate genes involved in fuzz development using RNA sequencing. Gene ontology (GO) analysis was conducted and found that DEGs were mainly enriched in the regulation of transcription, metabolic processes and oxidation–reduction-related processes. Weighted gene co-expression network analysis discerned the MEmagenta module highly associated with a fuzz/fuzzless trait, which included a total of 50 hub genes differentially expressed between two materials. GaFZ, which negatively regulates trichome and fuzz formation, was found involved in MEmagenta cluster1. In addition, twenty-eight hub genes in MEmagenta cluster1 were significantly up-regulated and expressed in fuzzless mutant DPL972. It is noteworthy that Ga04G1219 and Ga04G1240, which, respectively, encode Fasciclin-like arabinogalactan protein 18(FLA18) and transport protein, showed remarkable differences of expression level and implied that they may be involved in protein glycosylation to regulate fuzz formation and development. This module and hub genes identified in this study will provide new insights on fiber and fuzz formation and be useful for the molecular design breeding of cotton genetic improvement.
Collapse
|
23
|
Wang T, Dong Q, Wang W, Chen S, Cheng Y, Tian H, Li X, Hussain S, Wang L, Gong L, Wang S. Evolution of AITR family genes in cotton and their functions in abiotic stress tolerance. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23 Suppl 1:58-68. [PMID: 33202099 DOI: 10.1111/plb.13218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/11/2020] [Indexed: 05/18/2023]
Abstract
Abiotic stresses are major environmental factors inhibiting plant growth and development. AITRs (ABA-induced transcription repressors) are a novel family of transcription factors regulating ABA (abscisic acid) signalling and plant responses to abiotic stresses in Arabidopsis. However, the composition and evolution history of AITRs and their roles in the cotton genus are largely unknown. A total of 12 putative AITRs genes were identified in cultivated tetraploid cotton, Gossypium hirsutum. Phylogenetic analysis of GhAITRs in these tetraploid cottons and their closely related species implicate ancient genome-wide duplication occurring after speciation of Gossypium, and Theobroma could generate duplicates of GhAITRs. Duplicated GhAITRs were stably inherited following diploid speciation and further allotetraploidy in Gossypium. Homologous GhAITRs shared common expression patterns in response to ABA, drought and salinity treatments, and drought tolerance induced in transgenic Arabidopsis plants expressing GhAITR-A1. Together, our findings reveal that duplicates in the GhAITRs gene family were achieved by whole genome duplication rather than three individual duplication events, and that GhAITRs function as transcription repressors and are involved in the regulation of plant responses to ABA and drought stress. These results provide insights towards the improvement of abiotic stress tolerance in cotton using GhAITRs.
Collapse
Affiliation(s)
- T Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Q Dong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - W Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - S Chen
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Y Cheng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - H Tian
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - X Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - S Hussain
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - L Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi, China
| | - L Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - S Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi, China
| |
Collapse
|
24
|
Yang J, Song HD, Chen Y, Chen B, Kim M, Kim P, Kawabata S, Li Y, Wang Y. A single amino acid substitution in the R2R3 conserved domain of the BrPAP1a transcription factor impairs anthocyanin production in turnip (Brassica rapa subsp. rapa). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:124-136. [PMID: 33676299 DOI: 10.1016/j.plaphy.2021.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/10/2021] [Indexed: 05/27/2023]
Abstract
The purple pigmentation in the epidermis of swollen roots of 'Tsuda' turnip (Brassica rapa subsp. rapa) is induced by light, providing a good system to investigate the genetic mechanism of light-dependent anthocyanin biosynthesis in B. rapa. Here, we identified the R2R3 MYB transcription factor gene PRODUCTION OF ANTHOCYANIN PIGMENT1 (BrPAP1a) as the critical gene in the anthocyanin-defective mutant w68. A nucleotide mutation in the turn region of the R3 domain was screened, which caused an amino acid substitution from glycine to serine (G94S). Functional analysis showed that the interaction of BrPAP1a with two bHLH factors ENHANCER OF GLABRA 3 (BrEGL3) and TRANSPARENT TESTA 8 (BrTT8) were impaired by the mutation. Expression of BrTT8 was activated by BrPAP1a and enhanced by MYB-bHLH-WDR (MBW) complexes, but blocked by the mutation. Furthermore, BrPAP1a directly bound the MYB-recognizing element (MRE) in the BrTT8 promoter, while the G94S substitution caused a loss of DNA-binding activity. Our findings indicate that G94 is required for protein interaction with BrTT8 and BrEGL3 and DNA-binding of BrPAP1a to activate BrTT8 expression, which leads to anthocyanin biosynthesis. Collectively, our data indicate the importance of the highly conserved amino acids within R2R3 MYB proteins in regulating anthocyanin biosynthesis and could aid programs to increase anthocyanins in turnip roots.
Collapse
Affiliation(s)
- Jianfei Yang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| | - Hyon Dok Song
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| | - Yunzhu Chen
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| | - Bowei Chen
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| | - Minjun Kim
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| | - Pyol Kim
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| | - Saneyuki Kawabata
- Institute for Sustainable Agroecosystem Services, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Midoricho, Nishitokyo, Tokyo, 188-0002, Japan.
| | - Yuhua Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| | - Yu Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
25
|
Chen S, Zhang N, Zhou G, Hussain S, Ahmed S, Tian H, Wang S. Knockout of the entire family of AITR genes in Arabidopsis leads to enhanced drought and salinity tolerance without fitness costs. BMC PLANT BIOLOGY 2021; 21:137. [PMID: 33726681 PMCID: PMC7967987 DOI: 10.1186/s12870-021-02907-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 03/01/2021] [Indexed: 05/18/2023]
Abstract
BACKGORUND Environmental stresses including abiotic stresses and biotic stresses limit yield of plants. Stress-tolerant breeding is an efficient way to improve plant yield under stress conditions. Genome editing by CRISPR/Cas9 can be used in molecular breeding to improve agronomic traits in crops, but in most cases, with fitness costs. The plant hormone ABA regulates plant responses to abiotic stresses via signaling transduction. We previously identified AITRs as a family of novel transcription factors that play a role in regulating plant responses to ABA and abiotic stresses. We found that abiotic stress tolerance was increased in the single, double and triple aitr mutants. However, it is unclear if the increased abiotic stress tolerance in the mutants may have fitness costs. RESULTS We report here the characterization of AITRs as suitable candidate genes for CRISPR/Cas9 editing to improve plant stress tolerance. By using CRISPR/Cas9 to target AITR3 and AITR4 simultaneously in the aitr256 triple and aitr1256 quadruple mutants respectively, we generated Cas9-free aitr23456 quintuple and aitr123456 sextuple mutants. We found that reduced sensitivities to ABA and enhanced tolerance to drought and salt were observed in these mutants. Most importantly, plant growth and development was not affected even in the aitr123456 sextuple mutants, in whom the entire AITR family genes have been knocked out, and the aitr123456 sextuple mutants also showed a wild type response to the pathogen infection. CONCLUSIONS Our results suggest that knockout of the AITR family genes in Arabidopsis enhanced abiotic stress tolerance without fitness costs. Considering that knock-out a few AITRs will lead to enhanced abiotic stress tolerance, that AITRs are widely distributed in angiosperms with multiple encoding genes, AITRs may be targeted for molecular breeding to improve abiotic stress tolerance in plants including crops.
Collapse
Affiliation(s)
- Siyu Chen
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, 276000, Linyi, China
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, 130024, Changchun, China
| | - Na Zhang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, 130024, Changchun, China
| | - Ganghua Zhou
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, 130024, Changchun, China
| | - Saddam Hussain
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, 130024, Changchun, China
| | - Sajjad Ahmed
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, 130024, Changchun, China
| | - Hainan Tian
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, 130024, Changchun, China.
| | - Shucai Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, 276000, Linyi, China.
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, 130024, Changchun, China.
| |
Collapse
|
26
|
Wang X, Shen C, Meng P, Tan G, Lv L. Analysis and review of trichomes in plants. BMC PLANT BIOLOGY 2021; 21:70. [PMID: 33526015 PMCID: PMC7852143 DOI: 10.1186/s12870-021-02840-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/11/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND Trichomes play a key role in the development of plants and exist in a wide variety of species. RESULTS In this paper, it was reviewed that the structure and morphology characteristics of trichomes, alongside the biological functions and classical regulatory mechanisms of trichome development in plants. The environment factors, hormones, transcription factor, non-coding RNA, etc., play important roles in regulating the initialization, branching, growth, and development of trichomes. In addition, it was further investigated the atypical regulation mechanism in a non-model plant, found that regulating the growth and development of tea (Camellia sinensis) trichome is mainly affected by hormones and the novel regulation factors. CONCLUSIONS This review further displayed the complex and differential regulatory networks in trichome initiation and development, provided a reference for basic and applied research on trichomes in plants.
Collapse
Affiliation(s)
- Xiaojing Wang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, People's Republic of China
| | - Chao Shen
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, People's Republic of China
| | - Pinghong Meng
- Institute of Horticulture, Guizhou Province Academy of Agricultural Sciences, Guiyang, Guizhou, People's Republic of China
| | - Guofei Tan
- Institute of Horticulture, Guizhou Province Academy of Agricultural Sciences, Guiyang, Guizhou, People's Republic of China.
| | - Litang Lv
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, People's Republic of China.
| |
Collapse
|
27
|
Ma Y, Tian H, Lin R, Wang W, Zhang N, Hussain S, Yang W, Zhang C, Zhou G, Wang T, Wang S. AITRL, an evolutionarily conserved plant specific transcription repressor regulates ABA response in Arabidopsis. Sci Rep 2021; 11:721. [PMID: 33436924 PMCID: PMC7804847 DOI: 10.1038/s41598-020-80695-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/24/2020] [Indexed: 12/23/2022] Open
Abstract
Expression of stress response genes can be regulated by abscisic acid (ABA) dependent and ABA independent pathways. Osmotic stresses promote ABA accumulation, therefore inducing the expression of stress response genes via ABA signaling. Whereas cold and heat stresses induce the expression of stress response genes via ABA independent pathway. ABA induced transcription repressors (AITRs) are a family of novel transcription factors that play a role in ABA signaling, and Drought response gene (DRG) has previously been shown to play a role in regulating plant response to drought and freezing stresses. We report here the identification of DRG as a novel transcription factor and a regulator of ABA response in Arabidopsis. We found that the expression of DRG was induced by ABA treatment. Homologs searching identified AITR5 as the most closely related Arabidopsis protein to DRG, and homologs of DRG, including the AITR-like (AITRL) proteins in bryophytes and gymnosperms, are specifically presented in embryophytes. Therefore we renamed DRG as AITRL. Protoplast transfection assays show that AITRL functioned as a transcription repressor. In seed germination and seedling greening assays, the aitrl mutants showed an increased sensitivity to ABA. By using qRT-PCR, we show that ABA responses of some ABA signaling component genes including some PYR1-likes (PYLs), PROTEIN PHOSPHATASE 2Cs (PP2Cs) and SUCROSE NONFERMENTING 1 (SNF1)-RELATED PROTEIN KINASES 2s (SnRK2s) were reduced in the aitrl mutants. Taken together, our results suggest that AITRLs are a family of novel transcription repressors evolutionally conserved in embryophytes, and AITRL regulates ABA response in Arabidopsis by affecting ABA response of some ABA signaling component genes.
Collapse
Affiliation(s)
- Yanxing Ma
- Laboratory of Plant Molecular Genetics and Crop Gene Editing, School of Life Sciences, Linyi University, Linyi, China.,Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, China
| | - Hainan Tian
- Laboratory of Plant Molecular Genetics and Crop Gene Editing, School of Life Sciences, Linyi University, Linyi, China
| | - Rao Lin
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, China
| | - Wei Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, China
| | - Na Zhang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, China
| | - Saddam Hussain
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, China
| | - Wenting Yang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, China
| | - Chen Zhang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, China
| | - Ganghua Zhou
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, China
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, China
| | - Shucai Wang
- Laboratory of Plant Molecular Genetics and Crop Gene Editing, School of Life Sciences, Linyi University, Linyi, China. .,Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, China.
| |
Collapse
|
28
|
Yang Z, Li Y, Gao F, Jin W, Li S, Kimani S, Yang S, Bao T, Gao X, Wang L. MYB21 interacts with MYC2 to control the expression of terpene synthase genes in flowers of Freesia hybrida and Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4140-4158. [PMID: 32275056 DOI: 10.1093/jxb/eraa184] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/09/2020] [Indexed: 05/09/2023]
Abstract
Previously, linalool was found to be the most abundant component among the cocktail of volatiles released from flowers of Freesia hybrida. Linalool formation is catalysed by monoterpene synthase TPS1. However, the regulatory network developmentally modulating the expression of the TPS1 gene in Freesia hybrida remains unexplored. In this study, three regulatory genes, FhMYB21L1, FhMYB21L2, and FhMYC2, were screened from 52 candidates. Two MYB transcription factor genes were synchronously expressed with FhTPS1 and could activate its expression significantly when overexpressed, and the binding of FhMYB21L2 to the MYBCORE sites in the FhTPS1 promoter was further confirmed, indicating a direct role in activation. FhMYC2 showed an inverse expression pattern compared with FhTPS1; its expression led to a decreased binding of FhMYB21 to the FhTPS1 promoter to reduce its activation capacity when co-expressed, suggesting a role for an MYB-bHLH complex in the regulation of the FhTPS1 gene. In Arabidopsis, both MYB21 and MYC2 regulators were shown to activate the expression of sesquiterpene synthase genes, and the regulatory roles of AtMYB21 and AtMYC2 in the expression of the linalool synthase gene were also confirmed, implying conserved functions of the MYB-bHLH complex in these two evolutionarily divergent plants. Moreover, the expression ratio between MYB21 and MYC2 orthologues might be a determinant factor in floral linalool emission.
Collapse
Affiliation(s)
- Zhongzhou Yang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Yueqing Li
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Fengzhan Gao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Wei Jin
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Shuying Li
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Shadrack Kimani
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
- Department of Biological and Physical Sciences, Karatina University, Karatina, Kenya
| | - Song Yang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Tingting Bao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Xiang Gao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
- National Demonstration Center for Experimental Biology Education, Northeast Normal University, Changchun, China
| | - Li Wang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| |
Collapse
|
29
|
Li Y, Shan X, Tong L, Wei C, Lu K, Li S, Kimani S, Wang S, Wang L, Gao X. The Conserved and Particular Roles of the R2R3-MYB Regulator FhPAP1 from Freesia hybrida in Flower Anthocyanin Biosynthesis. PLANT & CELL PHYSIOLOGY 2020; 61:1365-1380. [PMID: 32392327 DOI: 10.1093/pcp/pcaa065] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
Anthocyanin biosynthesis is mainly controlled by MYB-bHLH-WD40 (MBW) complexes that modulate the expression of anthocyanin biosynthetic genes (ABGs). The MYB regulators involved in anthocyanin biosynthesis arose early during plant evolution and thus might function divergently in different evolutionary lineages. Although the anthocyanin-promoting R2R3-MYB regulators in eudicots have been comprehensively explored, little consensus has been reached about functional discrepancies versus conservation among MYB regulators from different plant lineages. Here, we integrated transcriptome analysis, gene expression profiles, gain-of-function experiments and transient protoplast transfection assays to functionally characterize the monocot Freesia hybrida anthocyanin MYB regulator gene FhPAP1, which showed correlations with late ABGs. FhPAP1 could activate ABGs as well as TT8-clade genes FhTT8L, AtTT8 and NtAN1 when overexpressed in Freesia, Arabidopsis and tobacco, respectively. Consistently, FhPAP1 could interact with FhTT8L and FhTTG1 to form the conserved MBW complex and shared similar target genes with its orthologs from Arabidopsis. Most prominently, FhPAP1 displayed higher transactivation capacity than its homologs in Arabidopsis and tobacco, which was instantiated in its powerful regulation on ABGs. Moreover, we found that FhPAP1 might be the selected gene during the domestication and rapid evolution of the wild Freesia species to generate intensive flower pigmentation. These results showed that while the MBW complex was highly evolutionarily conserved between tested monocot and core eudicot plants, participating MYB regulators showed functional differences in transactivation capacity according to their activation domain and played important roles in the flower coloration domestication and evolution of angiosperms.
Collapse
Affiliation(s)
- Yueqing Li
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Xiaotong Shan
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Linna Tong
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Chao Wei
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Keyu Lu
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Shuying Li
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Shadrack Kimani
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
- Department of Biological and Physical Sciences, Karatina University, P.O. Box 1957, 10101 Karatina, Kenya
| | - Shucai Wang
- School of Life Sciences, Linyi University, Linyi, China
| | - Li Wang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Xiang Gao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
- National Demonstration Center for Experimental Biology Education, Northeast Normal University, Changchun, China
| |
Collapse
|
30
|
Chen S, Wang S. GLABRA2, A Common Regulator for Epidermal Cell Fate Determination and Anthocyanin Biosynthesis in Arabidopsis. Int J Mol Sci 2019; 20:ijms20204997. [PMID: 31601032 PMCID: PMC6834157 DOI: 10.3390/ijms20204997] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/24/2019] [Accepted: 09/30/2019] [Indexed: 01/18/2023] Open
Abstract
Epidermal cell fate determination—including trichome initiation, root hair formation, and flavonoid and mucilage biosynthesis in Arabidopsis (Arabidopsis thaliana)—are controlled by a similar transcriptional regulatory network. In the network, it has been proposed that the MYB-bHLH-WD40 (MBW) activator complexes formed by an R2R3 MYB transcription factor, a bHLH transcription factor and the WD40-repeat protein TRANSPARENT TESTA GLABRA1 (TTG1) regulate the expression of downstream genes required for cell fate determination, flavonoid or mucilage biosynthesis, respectively. In epidermal cell fate determination and mucilage biosynthesis, the MBW activator complexes activate the expression of GLABRA2 (GL2). GL2 is a homeodomain transcription factor that promotes trichome initiation in shoots, mucilage biosynthesis in seeds, and inhibits root hair formation in roots. The MBW activator complexes also activate several R3 MYB genes. The R3 MYB proteins, in turn, competing with the R2R3 MYBs for binding bHLH transcription factors, therefore inhibiting the formation of the MBW activator complexes, lead to the inhibition of trichome initiation in shoots, and promotion of root hair formation in roots. In flavonoid biosynthesis, the MBW activator complexes activate the expression of the late biosynthesis genes in the flavonoid pathway, resulting in the production of anthocyanins or proanthocyanidins. Research progress in recent years suggests that the transcriptional regulatory network that controls epidermal cell fate determination and anthocyanin biosynthesis in Arabidopsis is far more complicated than previously thought. In particular, more regulators of GL2 have been identified, and GL2 has been shown to be involved in the regulation of anthocyanin biosynthesis. This review focuses on the research progress on the regulation of GL2 expression, and the roles of GL2 in the regulation of epidermal cell fate determination and anthocyanin biosynthesis in Arabidopsis.
Collapse
Affiliation(s)
- Siyu Chen
- College of Life Science, Linyi University, Linyi 276005, China.
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China.
| | - Shucai Wang
- College of Life Science, Linyi University, Linyi 276005, China.
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
31
|
Cheng Y, Zhang N, Hussain S, Ahmed S, Yang W, Wang S. Integration of a FT expression cassette into CRISPR/Cas9 construct enables fast generation and easy identification of transgene-free mutants in Arabidopsis. PLoS One 2019; 14:e0218583. [PMID: 31545795 PMCID: PMC6756540 DOI: 10.1371/journal.pone.0218583] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/09/2019] [Indexed: 11/18/2022] Open
Abstract
The CRISPR/Cas9 genome editing technique has been widely used to generate transgene-free mutants in different plant species. Several different methods including fluorescence marker-assisted visual screen of transgene-free mutants and programmed self-elimination of CRISPR/Cas9 construct have been used to increase the efficiency of genome edited transgene-free mutant isolation, but the overall time length required to obtain transgene-free mutants has remained unchanged in these methods. We report here a method for fast generation and easy identification of transgene-free mutants in Arabidopsis. By generating and using a single FT expression cassette-containing CRISPR/Cas9 construct, we targeted two sites of the AITR1 gene. We obtained many early bolting plants in T1 generation, and found that about two thirds of these plants have detectable mutations. We then analyzed T2 generations of two representative lines of genome edited early bolting T1 plants, and identified plants without early bolting phenotype, i.e., transgene-free plants, for both lines. Further more, aitr1 homozygous mutants were successful obtained for both lines from these transgene-free plants. Taken together, these results suggest that the method described here enables fast generation, and at the mean time, easy identification of transgene-free mutants in plants.
Collapse
Affiliation(s)
- Yuxin Cheng
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, China
| | - Na Zhang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, China
| | - Saddam Hussain
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, China
| | - Sajjad Ahmed
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, China
| | - Wenting Yang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, China
| | - Shucai Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, China
- College of Life Science, Linyi University, Linyi, Shandong, China
| |
Collapse
|
32
|
Chen S, Zhang N, Zhang Q, Zhou G, Tian H, Hussain S, Ahmed S, Wang T, Wang S. Genome Editing to Integrate Seed Size and Abiotic Stress Tolerance Traits in Arabidopsis Reveals a Role for DPA4 and SOD7 in the Regulation of Inflorescence Architecture. Int J Mol Sci 2019; 20:ijms20112695. [PMID: 31159296 PMCID: PMC6600516 DOI: 10.3390/ijms20112695] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/26/2019] [Accepted: 05/27/2019] [Indexed: 01/21/2023] Open
Abstract
Both seed size and abiotic stress tolerance are important agronomic traits in crops. In Arabidopsis, two closely related transcription repressors DPA4 (Development-Related PcG Target in the APEX4)/NGAL3 and SOD7 (Suppressor of da1-1)/NGAL2 (NGATHA-like protein) function redundantly to regulate seed size, which was increased in the dpa4 sod7 double mutants. Whereas ABA-induced transcription repressors (AITRs) are involved in the regulation of ABA signaling and abiotic stress tolerance, Arabidopsis aitr2 aitr5 aitr6 (aitr256) triple mutant showed enhanced tolerance to drought and salt. Here we performed CRISPR/Cas9 genome editing to disrupt DPA4 and SOD7 in aitr256 mutant, trying to integrate seed size and abiotic stress tolerance traits in Arabidopsis, and also to examine whether DPA4 and SOD7 may regulate other aspects of plant growth and development. Indeed, seed size was increased in the dpa4 sod7 aitr256 quintuple mutants, and enhanced tolerance to drought was observed in the mutants. In addition, we found that shoot branching was affected in the dpa4 sod7 aitr256 mutants. The mutant plants failed to produce secondary branches, and flowers/siliques were distributed irregularly on the main stems of the plants. Floral organ number and fertility were also affected in the dpa4 sod7 aitr256 mutant plants. To examine if these phenotypes were dependent on loss-of-function of AITRs, dpa4 sod7 double mutants were generated in Col wild type background, and we found that the dpa4 sod7 mutant plants showed a phenotype similar to the dpa4 sod7 aitr256 quintuple mutants. Taken together, our results indicate that the integration of seed size and abiotic stress tolerance traits by CRISPR/Cas9 editing was successful, and our results also revealed a role of DPA4 and SOD7 in the regulation of inflorescence architecture in Arabidopsis.
Collapse
Affiliation(s)
- Siyu Chen
- College of Life Sciences, Linyi University, Linyi 276005, China.
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China.
| | - Na Zhang
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China.
| | - Qimeng Zhang
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China.
| | - Ganghua Zhou
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China.
| | - Hainan Tian
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China.
| | - Saddam Hussain
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China.
| | - Sajjad Ahmed
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China.
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China.
| | - Shucai Wang
- College of Life Sciences, Linyi University, Linyi 276005, China.
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
33
|
Maheepala DC, Emerling CA, Rajewski A, Macon J, Strahl M, Pabón-Mora N, Litt A. Evolution and Diversification of FRUITFULL Genes in Solanaceae. FRONTIERS IN PLANT SCIENCE 2019; 10:43. [PMID: 30846991 PMCID: PMC6394111 DOI: 10.3389/fpls.2019.00043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 01/11/2019] [Indexed: 05/12/2023]
Abstract
Ecologically and economically important fleshy edible fruits have evolved from dry fruit numerous times during angiosperm diversification. However, the molecular mechanisms that underlie these shifts are unknown. In the Solanaceae there has been a major shift to fleshy fruits in the subfamily Solanoideae. Evidence suggests that an ortholog of FRUITFULL (FUL), a transcription factor that regulates cell proliferation and limits the dehiscence zone in the silique of Arabidopsis, plays a similar role in dry-fruited Solanaceae. However, studies have shown that FUL orthologs have taken on new functions in fleshy fruit development, including regulating elements of tomato ripening such as pigment accumulation. FUL belongs to the core eudicot euFUL clade of the angiosperm AP1/FUL gene lineage. The euFUL genes fall into two paralogous clades, euFULI and euFULII. While most core eudicots have one gene in each clade, Solanaceae have two: FUL1 and FUL2 in the former, and MBP10 and MBP20 in the latter. We characterized the evolution of the euFUL genes to identify changes that might be correlated with the origin of fleshy fruit in Solanaceae. Our analyses revealed that the Solanaceae FUL1 and FUL2 clades probably originated through an early whole genome multiplication event. By contrast, the data suggest that the MBP10 and MBP20 clades are the result of a later tandem duplication event. MBP10 is expressed at weak to moderate levels, and its atypical short first intron lacks putative transcription factor binding sites, indicating possible pseudogenization. Consistent with this, our analyses show that MBP10 is evolving at a faster rate compared to MBP20. Our analyses found that Solanaceae euFUL gene duplications, evolutionary rates, and changes in protein residues and expression patterns are not correlated with the shift in fruit type. This suggests deeper analyses are needed to identify the mechanism underlying the change in FUL ortholog function.
Collapse
Affiliation(s)
- Dinusha C. Maheepala
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Christopher A. Emerling
- Institut des Sciences de l’Évolution de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, École Pratique des Hautes Études, Montpellier, France
| | - Alex Rajewski
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Jenna Macon
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Maya Strahl
- The New York Botanical Garden, Bronx, NY, United States
| | | | - Amy Litt
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
- *Correspondence: Amy Litt,
| |
Collapse
|
34
|
Lu R, Zhang J, Liu D, Wei YL, Wang Y, Li XB. Characterization of bHLH/HLH genes that are involved in brassinosteroid (BR) signaling in fiber development of cotton (Gossypium hirsutum). BMC PLANT BIOLOGY 2018; 18:304. [PMID: 30482177 PMCID: PMC6258498 DOI: 10.1186/s12870-018-1523-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/14/2018] [Indexed: 05/09/2023]
Abstract
BACKGROUND Basic helix-loop-helix/helix-loop-helix (bHLH/HLH) transcription factors play important roles in plant development. Many reports have suggested that bHLH/HLH proteins participate in brassinosteroid (BR) hormone signaling pathways to promote cell elongation. Cotton fibers are single-cells and derived from seed surface. To explore the roles of bHLH/HLH proteins in cotton fiber development progress by modulating BR signaling pathway, we performed a systematic analysis of the bHLH/HLH gene family in upland cotton (Gossypium hirsutum) genome. RESULTS In this study, we identified 437 bHLH/HLH genes in upland cotton (G. hirsutum) genome. Phylogenetic analysis revealed that GhbHLH/HLH proteins were split into twenty six clades in the tree. These GhbHLH/HLH genes are distributed unevenly in different chromosomes of cotton genome. Segmental duplication is the predominant gene duplication event and the major contributor for amplification of GhbHLH/HLH gene family. The GhbHLH/HLHs within the same group have conserved exon/intron pattern and their encoding proteins show conserved motif composition. Based on transcriptome data, we identified 77 GhbHLH/HLH candidates that are expressed at relatively high levels in cotton fibers. As adding exogenous BR (brassinolide, BL) or brassinazole (Brz, a BR biosynthesis inhibitor), expressions of these GhbHLH/HLH genes were up-regulated or down-regulated in cotton fibers. Furthermore, overexpression of GhbHLH282 (one of the BR-response genes) in Arabidopsis not only promoted the plant growth, but also changed plant response to BR signaling. CONCLUSION Collectively, these data suggested that these GhbHLH/HLH genes may participate in BR signaling transduction during cotton fiber development. Thus, our results may provide a valuable reference data as the basis for further studying the roles of these bHLH/HLH genes in cotton fiber development.
Collapse
Affiliation(s)
- Rui Lu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079 China
| | - Jiao Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079 China
| | - Dong Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079 China
| | - Ying-Li Wei
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079 China
| | - Yao Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079 China
| | - Xue-Bao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079 China
| |
Collapse
|
35
|
Zhang N, Yang L, Luo S, Wang X, Wang W, Cheng Y, Tian H, Zheng K, Cai L, Wang S. Genetic evidence suggests that GIS functions downstream of TCL1 to regulate trichome formation in Arabidopsis. BMC PLANT BIOLOGY 2018; 18:63. [PMID: 29653514 PMCID: PMC5899377 DOI: 10.1186/s12870-018-1271-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 03/26/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND Trichome formation in Arabidopsis is regulated by a MBW complex formed by MYB, bHLH and WD40 transcriptional factors, which can activate GLABRA2 (GL2) and the R3 MYB transcription factor genes. GL2 promotes trichome formation, whereas R3 MYBs are able to block the formation of the MBW complex. It has been reported that the C2H2 transcription factor GIS (GLABROUS INFLORESCENCE STEMS) functions upstream of the MBW activator complex to regulate trichome formation, and that the expression of TCL1 is not regulated by the MBW complex. However, gis and the R3 MYB gene mutant tcl1 (trichomeless 1) have opposite inflorescence trichome phenotypes, but their relationship in regulating trichome formation remained unknown. RESULTS By generating and characterization of the gis tcl1 double mutant, we found that trichome formation in the gis tcl1double and the tcl1 single mutants were largely indistinguishable, but the trichome formation in the 35S:TCL1/gis transgenic plant was similar to that in the gis mutant. By using quantitative RT-PCR analysis, we showed that expression level of GIS was increased in the triple mutant tcl1 try cpc, but the expression level of TCL1 was not affected in the gis mutant. On the other hand, trichome morphology in both gis tcl1 and 35S:TCL1/gis plants was similar to that in the gis mutant. CONCLUSIONS In summary, our results indicate that GIS may work downstream of TCL1 to regulate trichome formation, and GIS has a dominant role in controlling trichome morphology.
Collapse
Affiliation(s)
- Na Zhang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, 130024 China
| | - Li Yang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, 130024 China
| | - Sha Luo
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, 130024 China
| | - Xutong Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, 130024 China
| | - Wei Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, 130024 China
| | - Yuxin Cheng
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, 130024 China
| | - Hainan Tian
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, 130024 China
| | - Kaijie Zheng
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, 130024 China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Ling Cai
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, 130024 China
| | - Shucai Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, 130024 China
| |
Collapse
|
36
|
Albert NW, Thrimawithana AH, McGhie TK, Clayton WA, Deroles SC, Schwinn KE, Bowman JL, Jordan BR, Davies KM. Genetic analysis of the liverwort Marchantia polymorpha reveals that R2R3MYB activation of flavonoid production in response to abiotic stress is an ancient character in land plants. THE NEW PHYTOLOGIST 2018; 218:554-566. [PMID: 29363139 DOI: 10.1111/nph.15002] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 12/19/2017] [Indexed: 05/21/2023]
Abstract
The flavonoid pathway is hypothesized to have evolved during land colonization by plants c. 450 Myr ago for protection against abiotic stresses. In angiosperms, R2R3MYB transcription factors are key for environmental regulation of flavonoid production. However, angiosperm R2R3MYB gene families are larger than those of basal plants, and it is not known whether the regulatory system is conserved across land plants. We examined whether R2R3MYBs regulate the flavonoid pathway in liverworts, one of the earliest diverging land plant lineages. We characterized MpMyb14 from the liverwort Marchantia polymorpha using genetic mutagenesis, transgenic overexpression, gene promoter analysis, and transcriptomic and chemical analysis. MpMyb14 is phylogenetically basal to characterized angiosperm R2R3MYB flavonoid regulators. Mpmyb14 knockout lines lost all red pigmentation from the flavonoid riccionidin A, whereas overexpression conferred production of large amounts of flavones and riccionidin A, activation of associated biosynthetic genes, and constitutive red pigmentation. MpMyb14 expression and flavonoid pigmentation were induced by light- and nutrient-deprivation stress in M. polymorpha as for anthocyanins in angiosperms. MpMyb14 regulates stress-induced flavonoid production in M. polymorpha, and is essential for red pigmentation. This suggests that R2R3MYB regulated flavonoid production is a conserved character across land plants which arose early during land colonization.
Collapse
Affiliation(s)
- Nick W Albert
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North, New Zealand
| | - Amali H Thrimawithana
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
| | - Tony K McGhie
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North, New Zealand
| | - William A Clayton
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North, New Zealand
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, 7647, New Zealand
| | - Simon C Deroles
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North, New Zealand
| | - Kathy E Schwinn
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North, New Zealand
| | - John L Bowman
- School of Biological Sciences, Monash University, Melbourne, Victoria, 3800, Australia
| | - Brian R Jordan
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, 7647, New Zealand
| | - Kevin M Davies
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North, New Zealand
| |
Collapse
|
37
|
Gao C, Guo Y, Wang J, Li D, Liu K, Qi S, Jin C, Duan S, Gong J, Li Z, Chen M. Brassica napusGLABRA3-1 promotes anthocyanin biosynthesis and trichome formation in true leaves when expressed in Arabidopsis thaliana. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:3-9. [PMID: 28940939 DOI: 10.1111/plb.12633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 09/18/2017] [Indexed: 06/07/2023]
Abstract
Previous studies have shown that GLABRA3 (AtGL3), a bHLH transcription factor, plays essential roles in anthocyanin biosynthesis and trichome formation in Arabidopsis thaliana. However, there have been no such studies of a homologue, BnGL3, from the closely related crop, Brassica napus. Here, we analysed the BnGL3-1 coding domain sequence from the B. napus cultivar QINYOU Seven, identified conserved protein domains and performed a phylogenetic analysis to elucidate its relationship with homologues form a range of plant species. When expressed in tobacco leaves as a fusion protein with green fluorescent protein, BnGL3-1 accumulated in the nucleus, consistent with its predicted function as a transcription factor. Ectopic expression of the BnGL3-1 gene in the A. thaliana gl3-3 mutant resulted in levels of anthocyanins and numbers of trichomes in true leaves that were higher than in wild-type plants. Moreover, overexpression of BnGL3-1 in gl3-3 compensated for the promotion and repression of genes involved in anthocyanin biosynthesis and trichome formation, respectively, that has been reported in gl3-3 young shoots and expanding true leaves. This study provides new insights into GL3 function in anthocyanin biosynthesis and trichome formation in crucifers, and represents a promising target for genetic manipulation of B. napus.
Collapse
Affiliation(s)
- C Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Y Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - J Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - D Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - K Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - S Qi
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - C Jin
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - S Duan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - J Gong
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Z Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - M Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
38
|
Hahn F, Eisenhut M, Mantegazza O, Weber APM. Homology-Directed Repair of a Defective Glabrous Gene in Arabidopsis With Cas9-Based Gene Targeting. FRONTIERS IN PLANT SCIENCE 2018; 9:424. [PMID: 29675030 PMCID: PMC5895730 DOI: 10.3389/fpls.2018.00424] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/16/2018] [Indexed: 05/18/2023]
Abstract
The CRISPR/Cas9 system has emerged as a powerful tool for targeted genome editing in plants and beyond. Double-strand breaks induced by the Cas9 enzyme are repaired by the cell's own repair machinery either by the non-homologous end joining pathway or by homologous recombination (HR). While the first repair mechanism results in random mutations at the double-strand break site, HR uses the genetic information from a highly homologous repair template as blueprint for repair of the break. By offering an artificial repair template, this pathway can be exploited to introduce specific changes at a site of choice in the genome. However, frequencies of double-strand break repair by HR are very low. In this study, we compared two methods that have been reported to enhance frequencies of HR in plants. The first method boosts the repair template availability through the formation of viral replicons, the second method makes use of an in planta gene targeting (IPGT) approach. Additionally, we comparatively applied a nickase instead of a nuclease for target strand priming. To allow easy, visual detection of HR events, we aimed at restoring trichome formation in a glabrous Arabidopsis mutant by repairing a defective glabrous1 gene. Using this efficient visual marker, we were able to regenerate plants repaired by HR at frequencies of 0.12% using the IPGT approach, while both approaches using viral replicons did not yield any trichome-bearing plants.
Collapse
|
39
|
Tian H, Chen S, Yang W, Wang T, Zheng K, Wang Y, Cheng Y, Zhang N, Liu S, Li D, Liu B, Wang S. A novel family of transcription factors conserved in angiosperms is required for ABA signalling. PLANT, CELL & ENVIRONMENT 2017; 40:2958-2971. [PMID: 28857190 DOI: 10.1111/pce.13058] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 08/19/2017] [Accepted: 08/21/2017] [Indexed: 05/18/2023]
Abstract
The plant hormone abscisic acid (ABA) plays a crucial role in regulating plant responses to environmental stresses. Interplay of several different proteins including the PYR/PYL/RCAR receptors, A-group PP2C protein phosphatases, SnRK2 protein kinases, and downstream transcription factors regulates ABA signalling. We report here the identification of a family of ABA-induced transcription repressors (AITRs) that act as feedback regulators in ABA signalling. We found that the expression of all the 6 Arabidopsis AITR genes was induced by exogenously ABA, and their expression levels were decreased in ABA biosynthesis mutant aba1-5. BLAST searches showed that AITRs are exclusively present in angiosperms. When recruited to the promoter region of a reporter gene by a fused DNA binding domain, all AITRs inhibited reporter gene expression in transfected protoplasts. In Arabidopsis, aitr mutants showed reduced sensitivity to ABA and to stresses such as salt and drought. Quantitative RT-PCR analysis demonstrated that the ABA-induced response of PP2C and some PYR/PYL/RCAR genes was reduced in AITR5 transgenic plants but increased in an aitr2 aitr5 aitr6 triple mutant. These results provide important new insights into the regulation of ABA signalling in plants, and such information may lead to the production of plants with enhanced resistance to environmental stresses.
Collapse
Affiliation(s)
- Hainan Tian
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Siyu Chen
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Wenting Yang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Kaijie Zheng
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Yating Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Yuxin Cheng
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Na Zhang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Shanda Liu
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Dongqiu Li
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Shucai Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, 130024, China
| |
Collapse
|
40
|
Genome-wide identification of GLABRA3 downstream genes for anthocyanin biosynthesis and trichome formation in Arabidopsis. Biochem Biophys Res Commun 2017; 485:360-365. [PMID: 28216162 DOI: 10.1016/j.bbrc.2017.02.074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 02/13/2017] [Indexed: 01/03/2023]
Abstract
GLABRA3 (GL3), a bHLH transcription factor, has previously proved to be involved in anthocyanin biosynthesis and trichome formation in Arabidopsis, however, its downstream targeted genes are still largely unknown. Here, we found that GL3 was widely present in Arabidopsis vegetative and reproductive organs. New downstream targeted genes of GL3 for anthocyanin biosynthesis and trichome formation were identified in young shoots and expanding true leaves by RNA sequencing. GL3-mediated gene expression was tissue specific in the two biological processes. This study provides new clues to further understand the GL3-mediated regulatory network of anthocyanin biosynthesis and trichome formation in Arabidopsis.
Collapse
|
41
|
Zheng K, Wang Y, Zhang N, Jia Q, Wang X, Hou C, Chen JG, Wang S. Involvement of PACLOBUTRAZOL RESISTANCE6/KIDARI, an Atypical bHLH Transcription Factor, in Auxin Responses in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:1813. [PMID: 29114256 PMCID: PMC5660721 DOI: 10.3389/fpls.2017.01813] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/05/2017] [Indexed: 05/05/2023]
Abstract
Auxin regulates nearly all aspects of plant growth and development including cell division, cell elongation and cell differentiation, which are achieved largely by rapid regulation of auxin response genes. However, the functions of a large number of auxin response genes remain uncharacterized. Paclobutrazol Resistance (PRE) proteins are non-DNA binding basic helix-loop-helix transcription factors that have been shown to be involved in gibberellin and brassinosteroid signaling, and light responses in Arabidopsis. Here, we provide molecular and genetic evidence that PRE6, one of the six PRE genes in Arabidopsis, is an auxin response gene, and that PRE6 is involved in the regulation of auxin signaling. By using quantitative RT-PCR, we showed that the expression level of PRE6 was increased in response to exogenously applied IAA. GUS staining results also showed that the expression of GUS reporter gene in the PRE6p:GUS transgenic seedlings was elevated in response to auxin. Phenotypic analysis showed that overexpression of PRE6 in Arabidopsis resulted in auxin-related phenotypes including elongated hypocotyl and primary roots, and reduced number of lateral roots when compared with the Col wild type seedlings, whereas opposite phenotypes were observed in the pre6 mutants. Further analysis showed that PRE6 overexpression plants were hyposensitive, whereas pre6 mutants were hypersensitive to auxin in root and hypocotyl elongation and lateral root formation assays. By using protoplasts transfection, we showed that PRE6 functions as a transcriptional repressor. Consistent with this, the expression of the auxin response reporter DR5:GUS was decreased in PRE6 overexpression lines, but increased in pre6 mutants. When co-transfected into protoplasts, ARF5 and ARF8 activated the expression of the PRE6p:GUS reporter. Chromatin immunoprecipitation assays showed that ARF5 and ARF8 can be recruited to the promoter regions of PRE6. Taken together, these results suggest that PRE6 is an auxin response gene whose expression is directly regulated by ARF5 and ARF8, and that PRE6 is a transcriptional repressor that negatively regulates auxin responses in Arabidopsis.
Collapse
Affiliation(s)
- Kaijie Zheng
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Yating Wang
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Na Zhang
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Qiming Jia
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Xutong Wang
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Chunjiang Hou
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Shucai Wang
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
- *Correspondence: Shucai Wang,
| |
Collapse
|