1
|
Cai Z, Ma C, Hao Y, Jia W, Cao Y, Wu H, Xu X, Han L, Li C, Shang H, Liang A, White JC, Xing B. Molecular Evidence of CeO 2 Nanoparticle Modulation of ABA and Genes Containing ABA-Responsive Cis-Elements to Promote Rice Drought Resistance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21804-21816. [PMID: 39584419 DOI: 10.1021/acs.est.4c08485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Cerium dioxide nanoparticles (CeO2 NPs) have enzyme-like properties and scavenge excess ROS induced by stressors such as drought. However, the underlying molecular mechanisms by which CeO2 NPs enhance drought resistance are unknown. In this work, both foliar application and soil injection of CeO2 NPs were used to rice seedlings under a 30 day moderate drought (40% soil relative moisture). Foliar application of 4 mg of CeO2 NPs per pot reduced excess reactive oxygen species and abscisic acid (ABA) in rice leaves, thereby maintaining chloroplast structural integrity and photosynthetic output, ultimately increasing drought-stressed rice biomass by 31.3%. Genes associated with photosynthesis and ribosome activity provided the foundation by which CeO2 NPs enhanced rice drought resistance. Importantly, these genes were tightly regulated by ABA due to the large number of abscisic acid responsive elements in their promoter regions. CeO2 NPs also upregulated the expression of soluble sugar and fatty acid synthesis associated genes in drought-stressed rice, thereby contributing to osmotic balance and membrane lipid stability. These results highlight the potential of CeO2 NPs to enhance rice photosynthesis and drought-resistant biomolecule accumulation by regulating ABA-dependent responses. This work provides further evidence demonstrating nanomaterials have great potential to sustainably promote stress resistance and climate resilient crops.
Collapse
Affiliation(s)
- Zeyu Cai
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Chuanxin Ma
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yi Hao
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Weili Jia
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Yini Cao
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Honghong Wu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinxin Xu
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Lanfang Han
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Chunyang Li
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Heping Shang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Anqi Liang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, United States
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
2
|
Jyoti SD, Singh G, Pradhan AK, Tarpley L, Septiningsih EM, Talukder SK. Rice breeding for low input agriculture. FRONTIERS IN PLANT SCIENCE 2024; 15:1408356. [PMID: 38974981 PMCID: PMC11224470 DOI: 10.3389/fpls.2024.1408356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/24/2024] [Indexed: 07/09/2024]
Abstract
A low-input-based farming system can reduce the adverse effects of modern agriculture through proper utilization of natural resources. Modern varieties often need to improve in low-input settings since they are not adapted to these systems. In addition, rice is one of the most widely cultivated crops worldwide. Enhancing rice performance under a low input system will significantly reduce the environmental concerns related to rice cultivation. Traits that help rice to maintain yield performance under minimum inputs like seedling vigor, appropriate root architecture for nutrient use efficiency should be incorporated into varieties for low input systems through integrated breeding approaches. Genes or QTLs controlling nutrient uptake, nutrient assimilation, nutrient remobilization, and root morphology need to be properly incorporated into the rice breeding pipeline. Also, genes/QTLs controlling suitable rice cultivars for sustainable farming. Since several variables influence performance under low input conditions, conventional breeding techniques make it challenging to work on many traits. However, recent advances in omics technologies have created enormous opportunities for rapidly improving multiple characteristics. This review highlights current research on features pertinent to low-input agriculture and provides an overview of alternative genomics-based breeding strategies for enhancing genetic gain in rice suitable for low-input farming practices.
Collapse
Affiliation(s)
- Subroto Das Jyoti
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | - Gurjeet Singh
- Texas A&M AgriLife Research Center, Beaumont, TX, United States
| | | | - Lee Tarpley
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
- Texas A&M AgriLife Research Center, Beaumont, TX, United States
| | - Endang M. Septiningsih
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | - Shyamal K. Talukder
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
- Texas A&M AgriLife Research Center, Beaumont, TX, United States
| |
Collapse
|
3
|
Gandikota M, Krishnakanth Yadav T, Maram RR, Kalluru S, Sena MB, Siddiq EA, Kalinati Narasimhan Y, Vemireddy LR, Ghanta A. Development of activation-tagged gain-of-functional mutants in indica rice line (BPT 5204) for sheath blight resistance. Mol Biol Rep 2024; 51:381. [PMID: 38430361 DOI: 10.1007/s11033-023-09194-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/21/2023] [Indexed: 03/03/2024]
Abstract
BACKGROUND The development of sheath blight (ShB) resistance varieties has been a challenge for scientists for long time in rice. Activation tagging is an efficient gain-of-function mutation approach to create novel phenotypes and to identify their underlying genes. In this study, a mutant population was developed employing activation tagging in the recalcitrant indica rice (Oryza sativa L.) cv. BPT 5204 (Samba Mahsuri) through activation tagging. METHODS AND RESULTS In this study, we have generated more than 1000 activation tagged lines in indica rice, from these mutant population 38 (GFP- RFP+) stable Ds plants were generated through germinal transposition at T2 generation based on molecular analysis and seeds selected on hygromycin (50 mg/L) containing medium segregation analyses confirmed that the transgene inherited as mendelian segregation ratio of 3:1 (3 resistant: 1 susceptible). Of them, five stable activation tagged Ds lines (M-Ds-1, M-Ds-2, M-Ds-3, M-Ds-4 and M-Ds-5) were selected based on phenotypic observation through screening for sheath blight (ShB) resistance caused by fungal pathogen Rhizoctonia solani (R. solani),. Among them, M-Ds-3 and M-Ds-5 lines showed significant resistance for ShB over other tagged lines and wild type (WT) plants. Furthermore, analysed for launch pad insertion through TAIL-PCR results and mapped on corresponding rice chromosomes. Flanking sequence and gene expression analysis revealed that the upregulation of glycoside hydrolase-OsGH or similar to Class III chitinase homologue (LOC_Os08g40680) in M-Ds-3 and a hypothetical protein gene (LOC_Os01g55000) in M-Ds-5 are potential candidate genes for sheath blight resistance in rice. CONCLUSION In the present study, we developed Ac-Ds based ShB resistance gain-of-functional mutants through activation tagging in rice. These activation tagged mutant lines can be excellent sources for the development of ShB resistant cultivars in rice.
Collapse
Affiliation(s)
- Mahendranath Gandikota
- Institute of Biotechnology, Professor Jayashankar Telangana State Agricultural University (PJTSAU), Rajendranagar, Hyderabad, 500030, India
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, 500030, India
| | - T Krishnakanth Yadav
- Institute of Biotechnology, Professor Jayashankar Telangana State Agricultural University (PJTSAU), Rajendranagar, Hyderabad, 500030, India
| | | | - Sudhamani Kalluru
- Department of Genetics and Plant Breeding, S.V. Agricultural College, Acharya N.G. Ranaga Agricultural University (ANGRAU), Tirupati, 517502, India
| | - M Balachandran Sena
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, 500030, India
| | - E A Siddiq
- Institute of Biotechnology, Professor Jayashankar Telangana State Agricultural University (PJTSAU), Rajendranagar, Hyderabad, 500030, India
| | - Yamini Kalinati Narasimhan
- Institute of Biotechnology, Professor Jayashankar Telangana State Agricultural University (PJTSAU), Rajendranagar, Hyderabad, 500030, India
| | - Lakshminarayana R Vemireddy
- Department of Molecular Biology and Biotechnology, S.V. Agricultural College, Acharya N.G. Ranaga Agricultural University (ANGRAU), Tirupati, 517502, India.
| | - Anuradha Ghanta
- Institute of Biotechnology, Professor Jayashankar Telangana State Agricultural University (PJTSAU), Rajendranagar, Hyderabad, 500030, India.
| |
Collapse
|
4
|
da Silva Filho JLB, Pestana RKN, da Silva Júnior WJ, Coelho Filho MA, Ferreira CF, de Oliveira EJ, Kido EA. Exploiting DNA methylation in cassava under water deficit for crop improvement. PLoS One 2024; 19:e0296254. [PMID: 38386677 PMCID: PMC10883565 DOI: 10.1371/journal.pone.0296254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/08/2023] [Indexed: 02/24/2024] Open
Abstract
DNA methylation plays a key role in the development and plant responses to biotic and abiotic stresses. This work aimed to evaluate the DNA methylation in contrasting cassava genotypes for water deficit tolerance. The varieties BRS Formosa (bitter) and BRS Dourada (sweet) were grown under greenhouse conditions for 50 days, and afterwards, irrigation was suspended. The stressed (water deficit) and non-stressed plants (negative control) consisted the treatments with five plants per variety. The DNA samples of each variety and treatment provided 12 MethylRAD-Seq libraries (two cassava varieties, two treatments, and three replicates). The sequenced data revealed methylated sites covering 18 to 21% of the Manihot esculenta Crantz genome, depending on the variety and the treatment. The CCGG methylated sites mapped mostly in intergenic regions, exons, and introns, while the CCNGG sites mapped mostly intergenic, upstream, introns, and exons regions. In both cases, methylated sites in UTRs were less detected. The differentially methylated sites analysis indicated distinct methylation profiles since only 12% of the sites (CCGG and CCNGG) were methylated in both varieties. Enriched gene ontology terms highlighted the immediate response of the bitter variety to stress, while the sweet variety appears to suffer more potential stress-damages. The predicted protein-protein interaction networks reinforced such profiles. Additionally, the genomes of the BRS varieties uncovered SNPs/INDELs events covering genes stood out by the interactomes. Our data can be useful in deciphering the roles of DNA methylation in cassava drought-tolerance responses and adaptation to abiotic stresses.
Collapse
Affiliation(s)
| | | | - Wilson José da Silva Júnior
- Laboratório de Genética Molecular de Plantas, Departamento de Genética, Universidade Federal de Pernambuco, Recife, Brazil
| | | | | | | | - Ederson Akio Kido
- Laboratório de Genética Molecular de Plantas, Departamento de Genética, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
5
|
Chen X, Chen H, Shen T, Luo Q, Xu M, Yang Z. The miRNA-mRNA Regulatory Modules of Pinus massoniana Lamb. in Response to Drought Stress. Int J Mol Sci 2023; 24:14655. [PMID: 37834103 PMCID: PMC10572226 DOI: 10.3390/ijms241914655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Masson pine (Pinus massoniana Lamb.) is a major fast-growing woody tree species and pioneer species for afforestation in barren sites in southern China. However, the regulatory mechanism of gene expression in P. massoniana under drought remains unclear. To uncover candidate microRNAs, their expression profiles, and microRNA-mRNA interactions, small RNA-seq was used to investigate the transcriptome from seedling roots under drought and rewatering in P. massoniana. A total of 421 plant microRNAs were identified. Pairwise differential expression analysis between treatment and control groups unveiled 134, 156, and 96 differential expressed microRNAs at three stages. These constitute 248 unique microRNAs, which were subsequently categorized into six clusters based on their expression profiles. Degradome sequencing revealed that these 248 differentially expressed microRNAs targeted 2069 genes. Gene Ontology enrichment analysis suggested that these target genes were related to translational and posttranslational regulation, cell wall modification, and reactive oxygen species scavenging. miRNAs such as miR482, miR398, miR11571, miR396, miR166, miRN88, and miRN74, along with their target genes annotated as F-box/kelch-repeat protein, 60S ribosomal protein, copper-zinc superoxide dismutase, luminal-binding protein, S-adenosylmethionine synthase, and Early Responsive to Dehydration Stress may play critical roles in drought response. This study provides insights into microRNA responsive to drought and rewatering in Masson pine and advances the understanding of drought tolerance mechanisms in Pinus.
Collapse
Affiliation(s)
- Xinhua Chen
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, 682 Guangshan Road 1, Guangzhou 510520, China;
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology Ministry of Education, College of Forestry, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China;
- Engineering Research Center of Masson Pine of State Forestry Administration, Engineering Research Center of Masson Pine of Guangxi, Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China; (H.C.); (Q.L.)
| | - Hu Chen
- Engineering Research Center of Masson Pine of State Forestry Administration, Engineering Research Center of Masson Pine of Guangxi, Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China; (H.C.); (Q.L.)
| | - Tengfei Shen
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology Ministry of Education, College of Forestry, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China;
| | - Qunfeng Luo
- Engineering Research Center of Masson Pine of State Forestry Administration, Engineering Research Center of Masson Pine of Guangxi, Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China; (H.C.); (Q.L.)
| | - Meng Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology Ministry of Education, College of Forestry, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China;
| | - Zhangqi Yang
- Engineering Research Center of Masson Pine of State Forestry Administration, Engineering Research Center of Masson Pine of Guangxi, Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China; (H.C.); (Q.L.)
| |
Collapse
|
6
|
Dias-Fields L, Adamala KP. Engineering Ribosomes to Alleviate Abiotic Stress in Plants: A Perspective. PLANTS (BASEL, SWITZERLAND) 2022; 11:2097. [PMID: 36015400 PMCID: PMC9415564 DOI: 10.3390/plants11162097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022]
Abstract
As the centerpiece of the biomass production process, ribosome activity is highly coordinated with environmental cues. Findings revealing ribosome subgroups responsive to adverse conditions suggest this tight coordination may be grounded in the induction of variant ribosome compositions and the differential translation outcomes they might produce. In this perspective, we go through the literature linking ribosome heterogeneity to plants' abiotic stress response. Once unraveled, this crosstalk may serve as the foundation of novel strategies to custom cultivars tolerant to challenging environments without the yield penalty.
Collapse
Affiliation(s)
| | - Katarzyna P. Adamala
- Department of Genetics, Cell Biology, and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA
| |
Collapse
|
7
|
Dash M, Somvanshi VS, Godwin J, Budhwar R, Sreevathsa R, Rao U. Exploring Genomic Variations in Nematode-Resistant Mutant Rice Lines. FRONTIERS IN PLANT SCIENCE 2022; 13:823372. [PMID: 35401589 PMCID: PMC8988285 DOI: 10.3389/fpls.2022.823372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Rice (Oryza sativa) production is seriously affected by the root-knot nematode Meloidogyne graminicola, which has emerged as a menace in upland and irrigated rice cultivation systems. Previously, activation tagging in rice was utilized to identify candidate gene(s) conferring resistance against M. graminicola. T-DNA insertional mutants were developed in a rice landrace (acc. JBT 36/14), and four mutant lines showed nematode resistance. Whole-genome sequencing of JBT 36/14 was done along with the four nematode resistance mutant lines to identify the structural genetic variations that might be contributing to M. graminicola resistance. Sequencing on Illumina NovaSeq 6000 platform identified 482,234 genetic variations in JBT 36/14 including 448,989 SNPs and 33,245 InDels compared to reference indica genome. In addition, 293,238-553,648 unique SNPs and 32,395-65,572 unique InDels were found in the four mutant lines compared to their JBT 36/14 background, of which 93,224 SNPs and 8,170 InDels were common between all the mutant lines. Functional annotation of genes containing these structural variations showed that the majority of them were involved in metabolism and growth. Trait analysis revealed that most of these genes were involved in morphological traits, physiological traits and stress resistance. Additionally, several families of transcription factors, such as FAR1, bHLH, and NAC, and putative susceptibility (S) genes, showed the presence of SNPs and InDels. Our results indicate that subject to further genetic validations, these structural genetic variations may be involved in conferring nematode resistance to the rice mutant lines.
Collapse
Affiliation(s)
- Manoranjan Dash
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | | - Roli Budhwar
- Bionivid Technology Private Limited, Bangalore, India
| | | | - Uma Rao
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
8
|
Choudhury AR, Roy SK, Trivedi P, Choi J, Cho K, Yun SH, Walitang DI, Park JH, Kim K, Sa T. Label-free proteomics approach reveals candidate proteins in rice (Oryza sativa L.) important for ACC deaminase producing bacteria-mediated tolerance against salt stress. Environ Microbiol 2022; 24:3612-3624. [PMID: 35191581 DOI: 10.1111/1462-2920.15937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 11/30/2022]
Abstract
The omics-based studies are important for identifying characteristic proteins in plants to elucidate the mechanism of ACC deaminase producing bacteria-mediated salt tolerance. This study evaluates the changes in the proteome of rice inoculated with ACC deaminase producing bacteria under salt stress conditions. Salt stress resulted in a significant decrease in photosynthetic pigments, whereas inoculation of Methylobacterium oryzae CBMB20 had significantly increased pigment contents under normal and salt stress conditions. A total of 76, 51 and 33 differentially abundant proteins (DAPs) were identified in non-inoculated salt stressed plants, bacteria inoculated plants under normal and salt stress conditions, respectively. The abundances of proteins responsible for ethylene emission and programmed cell death were increased, and that of photosynthesis-related proteins were decreased in non-inoculated plants under salt stress. Whereas, bacteria-inoculated plants had shown higher abundance of antioxidant proteins, RuBisCo and ribosomal proteins that are important for enhancing stress tolerance and improving plant physiological traits. Collectively, salt stress might affect plant physiological traits by impairing photosynthetic machinery and accelerating apoptosis leading to a decline in biomass. However, inoculation of plants with bacteria can assist in enhancing photosynthetic activity, antioxidant activities and ethylene regulation related proteins for attenuating salt induced apoptosis and sustaining growth and development. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Aritra Roy Choudhury
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Republic of Korea.,Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Swapan Kumar Roy
- College of Agricultural Sciences, IUBAT-International University of Business Agriculture and Technology, Dhaka, Bangladesh
| | - Pankaj Trivedi
- Microbiome Network and Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Jeongyun Choi
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Republic of Korea.,Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Kun Cho
- Bio-chemical Analysis Team, Center for Research Equipment, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Sung Ho Yun
- Bio-chemical Analysis Team, Center for Research Equipment, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Denver I Walitang
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Republic of Korea.,College of Agriculture, Fisheries and Forestry, Romblon State University, Philippines
| | - Jung-Ho Park
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea.,Department of Bioprocess Engineering, University of Science and Technology (UST) of Korea, Daejeon, Republic of Korea
| | - Kiyoon Kim
- National Forest Seed Variety Center, Chungju, Republic of Korea
| | - Tongmin Sa
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Republic of Korea.,The Korean Academy of Science and Technology, Seongnam, Republic of Korea
| |
Collapse
|
9
|
Sonsungsan P, Chantanakool P, Suratanee A, Buaboocha T, Comai L, Chadchawan S, Plaimas K. Identification of Key Genes in 'Luang Pratahn', Thai Salt-Tolerant Rice, Based on Time-Course Data and Weighted Co-expression Networks. FRONTIERS IN PLANT SCIENCE 2021; 12:744654. [PMID: 34925399 PMCID: PMC8675607 DOI: 10.3389/fpls.2021.744654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/01/2021] [Indexed: 05/13/2023]
Abstract
Salinity is an important environmental factor causing a negative effect on rice production. To prevent salinity effects on rice yields, genetic diversity concerning salt tolerance must be evaluated. In this study, we investigated the salinity responses of rice (Oryza sativa) to determine the critical genes. The transcriptomes of 'Luang Pratahn' rice, a local Thai rice variety with high salt tolerance, were used as a model for analyzing and identifying the key genes responsible for salt-stress tolerance. Based on 3' Tag-Seq data from the time course of salt-stress treatment, weighted gene co-expression network analysis was used to identify key genes in gene modules. We obtained 1,386 significantly differentially expressed genes in eight modules. Among them, six modules indicated a significant correlation within 6, 12, or 48h after salt stress. Functional and pathway enrichment analysis was performed on the co-expressed genes of interesting modules to reveal which genes were mainly enriched within important functions for salt-stress responses. To identify the key genes in salt-stress responses, we considered the two-state co-expression networks, normal growth conditions, and salt stress to investigate which genes were less important in a normal situation but gained more impact under stress. We identified key genes for the response to biotic and abiotic stimuli and tolerance to salt stress. Thus, these novel genes may play important roles in salinity tolerance and serve as potential biomarkers to improve salt tolerance cultivars.
Collapse
Affiliation(s)
- Pajaree Sonsungsan
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Pheerawat Chantanakool
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Apichat Suratanee
- Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand
| | - Teerapong Buaboocha
- Molecular Crop Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Luca Comai
- Department of Plant Biology, College of Biological Sciences, College of Biological Sciences, University of California, Davis, Davis, CA, United States
| | - Supachitra Chadchawan
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Kitiporn Plaimas
- Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Advanced Virtual and Intelligent Computing (AVIC) Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
10
|
Dutta M, Saha A, Moin M, Kirti PB. Genome-Wide Identification, Transcript Profiling and Bioinformatic Analyses of GRAS Transcription Factor Genes in Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:777285. [PMID: 34899804 PMCID: PMC8660974 DOI: 10.3389/fpls.2021.777285] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/26/2021] [Indexed: 05/28/2023]
Abstract
Our group has previously identified the activation of a GRAS transcription factor (TF) gene in the gain-of-function mutant population developed through activation tagging in rice (in an indica rice variety, BPT 5204) that was screened for water use efficiency. This family of GRAS transcription factors has been well known for their diverse roles in gibberellin signaling, light responses, root development, gametogenesis etc. Recent studies indicated their role in biotic and abiotic responses as well. Although this family of TFs received significant attention, not many genes were identified specifically for their roles in mediating stress tolerance in rice. Only OsGRAS23 (here named as OsGRAS22) was reported to code for a TF that induced drought tolerance in rice. In the present study, we have analyzed the expression patterns of rice GRAS TF genes under abiotic (NaCl and ABA treatments) and biotic (leaf samples infected with pathogens, Xanthomonas oryzae pv. oryzae that causes bacterial leaf blight and Rhizoctonia solani that causes sheath blight) stress conditions. In addition, their expression patterns were also analyzed in 13 different developmental stages. We studied their spatio-temporal regulation and correlated them with the in-silico studies. Fully annotated genomic sequences available in rice database have enabled us to study the protein properties, ligand interactions, domain analysis and presence of cis-regulatory elements through the bioinformatic approach. Most of the genes were induced immediately after the onset of stress particularly in the roots of ABA treated plants. OsGRAS39 was found to be a highly expressive gene under sheath blight infection and both abiotic stress treatments while OsGRAS8, OsSHR1 and OsSLR1 were also responsive. Our earlier activation tagging based functional characterization followed by the genome-wide characterization of the GRAS gene family members in the present study clearly show that they are highly appropriate candidate genes for manipulating stress tolerance in rice and other crop plants.
Collapse
Affiliation(s)
- Mouboni Dutta
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - Anusree Saha
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - Mazahar Moin
- Department of Biotechnology, Indian Institute of Rice Research, Hyderabad, India
| | - Pulugurtha Bharadwaja Kirti
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
- Agri Biotech Foundation, PJTS Agricultural University Campus, Hyderabad, India
| |
Collapse
|
11
|
Dutta M, Moin M, Saha A, Dutta D, Bakshi A, Kirti PB. Gain-of-function mutagenesis through activation tagging identifies XPB2 and SEN1 helicase genes as potential targets for drought stress tolerance in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2253-2272. [PMID: 33821294 DOI: 10.1007/s00122-021-03823-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 03/23/2021] [Indexed: 05/13/2023]
Abstract
XPB2 and SEN1 helicases were identified through activation tagging as potential candidate genes in rice for inducing high water-use efficiency (WUE) and maintaining sustainable yield under drought stress. As a follow-up on the high-water-use-efficiency screening and physiological analyses of the activation-tagged gain-of-function mutant lines that were developed in an indica rice variety, BPT-5204 (Moin et al. in Plant Cell Environ 39:2440-2459, 2016a, https://doi.org/10.1111/pce.12796 ), we have identified two gain-of-function mutant lines (XM3 and SM4), which evidenced the activation of two helicases, ATP-dependent DNA helicase (XPB2) and RNA helicase (SEN1), respectively. We performed the transcript profiling of XPB2 and SEN1 upon exposure to various stress conditions and found their significant upregulation, particularly in ABA and PEG treatments. Extensive morpho-physiological and biochemical analyses based on 24 metrics were performed under dehydration stress (PEG) and phytohormone (ABA) treatments for the wild-type and the two mutant lines. Principal component analysis (PCA) performed on the dataset captured 72.73% of the cumulative variance using the parameters influencing the first two principal components. The tagged mutants exhibited reduced leaf wilting, improved revival efficiency, constant amylose:amylopectin ratio, high chlorophyll and proline contents, profuse tillering, high quantum efficiency and yield-related traits with respect to their controls. These observations were further validated under greenhouse conditions by the periodic withdrawal of water at the pot level. Germination of the seeds of these mutant lines indicated their insensitivity to high ABA concentration. The associated upregulation of stress-specific genes further suggests that their drought tolerance might be because of the coordinated expression of several stress-responsive genes in these two mutants. Altogether, our results provided a firm basis for SEN1 and XPB2 as potential candidates for manipulation of drought tolerance and improving rice performance and yield under limited water conditions.
Collapse
Affiliation(s)
- Mouboni Dutta
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Mazahar Moin
- Biotechnology Division, Indian Institute of Rice Research, Hyderabad, 500030, India.
| | - Anusree Saha
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Dibyendu Dutta
- Department of Chemical Engineering, Indian Institute of Technology, Bombay, Mumbai, 400076, India
| | - Achala Bakshi
- Biotechnology Division, Indian Institute of Rice Research, Hyderabad, 500030, India
| | - P B Kirti
- Agri Biotech Foundation, PJTS Agricultural University Campus, Hyderabad, 500030, India.
| |
Collapse
|
12
|
Moin M, Saha A, Bakshi A, Madhav MS, Kirti PB. Constitutive expression of Ribosomal Protein L6 modulates salt tolerance in rice transgenic plants. Gene 2021; 789:145670. [PMID: 33892070 DOI: 10.1016/j.gene.2021.145670] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/14/2021] [Accepted: 04/15/2021] [Indexed: 12/17/2022]
Abstract
We have functionally characterized the RPL6, a Ribosomal Protein Large subunit gene for salt stress tolerance in rice. The overexpression of RPL6 resulted in tolerance to moderate (150 mM) to high (200 mM) levels of salt (NaCl). The transgenic rice plants expressing RPL6 constitutively showed better phenotypic and physiological responses with high quantum efficiency, accumulation of higher chlorophyll and proline contents, and an overall increase in seed yield compared with the wild type in salt stress treatments. An iTRAQ-based comparative proteomic analysis revealed the high expression of about 333 proteins among the 4378 DAPs in a selected overexpression line of RPL6 treated with 200 mM of NaCl. The functional analysis showed that these highly accumulated proteins (HAPs) are involved in photosynthesis, ribosome and chloroplast biogenesis, ion transportation, transcription and translation regulation, phytohormone and secondary metabolite signal transduction. An in silico network analysis of HAPs predicted that RPL6 binds with translation-related proteins and helicases, which coordinately affect the activities of a comprehensive signaling network, thereby inducing tolerance and promoting growth and productivity in response to salt stress. Our overall findings identified a novel candidate, RPL6, whose characterization contributed to the existing knowledge on the complexity of salt tolerance mechanism in plants.
Collapse
Affiliation(s)
- Mazahar Moin
- Biotechnology Division, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad 500030, India.
| | - Anusree Saha
- Department of Plant Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Achala Bakshi
- Biotechnology Division, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad 500030, India
| | - M S Madhav
- Biotechnology Division, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad 500030, India
| | - P B Kirti
- Department of Plant Sciences, University of Hyderabad, Hyderabad 500046, India; Agri-Biotech Foundation, PJTS Agricultural University, Hyderabad 500030, India
| |
Collapse
|
13
|
Dash M, Somvanshi VS, Budhwar R, Godwin J, Shukla RN, Rao U. A rice root-knot nematode Meloidogyne graminicola-resistant mutant rice line shows early expression of plant-defence genes. PLANTA 2021; 253:108. [PMID: 33866432 DOI: 10.1007/s00425-021-03625-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Resistance to rice root-knot nematode Meloidogyne graminicola in a mutant rice line is suggested to be conferred by higher expression of several genes putatively involved in damage-associated molecular pattern recognition, secondary metabolite biosynthesis including phytoalexins, and defence-related genes. Meloidogyne graminicola has emerged as the most destructive plant-parasitic nematode disease of rice (Oryza sativa L.). Genetic resistance to M. graminicola is one of the most effective methods for its management. A M. graminicola-resistant O. sativa ssp. indica mutant line-9 was previously identified through a forward genetic screen (Hatzade et al. Biologia 74:1197-1217, 2019). In the present study, we used RNA-Sequencing to investigate the molecular mechanisms conferring nematode resistance to the mutant line-9 compared to the susceptible parent JBT 36/14 at 24 h post-infection. A total of 674 transcripts were differentially expressed in line-9. Early regulation of genes putatively related to nematode damage-associated molecular pattern recognition (e.g., wall-associated receptor kinases), signalling [Nucleotide-binding, Leucine-Rich Repeat (NLRs)], pathogenesis-related (PR) genes (PR1, PR10a), defence-related genes (NB-ARC domain-containing genes), as well as a large number of genes involved in secondary metabolites including diterpenoid biosynthesis (CPS2, OsKSL4, OsKSL10, Oscyp71Z2, oryzalexin synthase, and momilactone A synthase) was observed in M. graminicola-resistant mutant line-9. It may be suggested that after the nematode juveniles penetrate the roots of line-9, early recognition of invading nematodes triggers plant immune responses mediated by phytoalexins, and other defence proteins such as PR proteins inhibit nematode growth and reproduction. Our study provides the first transcriptomic comparison of nematode-resistant and susceptible rice plants in the same genetic background and adds to the understanding of mechanisms underlying plant-nematode resistance in rice.
Collapse
Affiliation(s)
- Manoranjan Dash
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Vishal Singh Somvanshi
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Roli Budhwar
- Bionivid Technology Private Limited, 209, 4th Cross, Kasturi Nagar, Bangalore, 560043, India
| | - Jeffrey Godwin
- Bionivid Technology Private Limited, 209, 4th Cross, Kasturi Nagar, Bangalore, 560043, India
| | - Rohit N Shukla
- Bionivid Technology Private Limited, 209, 4th Cross, Kasturi Nagar, Bangalore, 560043, India
| | - Uma Rao
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
14
|
Gorripati S, Konka R, Panditi SK, Velagapudi K, Jeevigunta NLL. Overexpression of the ascorbate peroxidase through enhancer-trapped pSB111 bar vector for alleviating drought stress in rice. J Basic Microbiol 2021; 61:315-329. [PMID: 33616231 DOI: 10.1002/jobm.202000725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/21/2021] [Accepted: 02/02/2021] [Indexed: 11/11/2022]
Abstract
Rice (Oryza sativa L.) plant growth and productivity is adversely affected by various stress factors. Overexpression of drought tolerance-related genes is one of the best approaches for developing drought-resistant transgenics. Agrobacterium tumefaciens has been widely used in generating transgenic plants through plasmid vector to obtain desired characteristics and to know the specific expression profiles of genes in the plant. The enhancer trap method was developed to know the specific expression of genes at different stages of growth by entrapping the genes of an organism. In the present study, we designed a vector molecule with a feature of promoting the expression of a specific gene more than four times than its normal expression and it is useful for efficient transformation to higher plants by utilizing the trans configuration of vir genes of the plasmid A. tumefaciens, to transfer right and left sequence bordered of transferred DNA (T-DNA) into the nuclear genome of plants. We developed a binary vector consisting of 1.8-kb green fluorescent protein (GFP) cassette as a reporter gene and 1.4-kb tetramer of CaMv35S enhancer (4XEn) were cloned at HindIII site of pSB11 bar intermediate vector to tag and know the genes and their expression profiles, then mobilized into A. tumefaciens to produce a super-binary vector pSB111-bar-4XEn-GFP. The resultant construct was confirmed by polymerase chain reaction and restriction digestion methods. Finally, we discuss the role of overexpressed ascorbate peroxidase in drought stress.
Collapse
Affiliation(s)
- Srinivas Gorripati
- Department of Biotechnology, Krishna University, Machilipatnam, Andhra Pradesh, India
| | - Rajasekhar Konka
- Department of Biochemistry, Chaitanya Postgraduate College, Waranagal, Telangana, India
| | - Shravana Kumar Panditi
- Department of Biotechnology, Krishna University, Machilipatnam, Andhra Pradesh, India.,Department of Zoology, Vikrama Simhapuri University, Nellore, Andhra Pradesh, India
| | - Kavitha Velagapudi
- Department of Biotechnology, Krishna University, Machilipatnam, Andhra Pradesh, India.,Department of Biotechnology, Andhra Loyola College, Vijayawada, Andhra Pradesh, India
| | | |
Collapse
|
15
|
Jaiswal SK, Mahajan S, Chakraborty A, Kumar S, Sharma VK. The genome sequence of Aloe vera reveals adaptive evolution of drought tolerance mechanisms. iScience 2021; 24:102079. [PMID: 33644713 PMCID: PMC7889978 DOI: 10.1016/j.isci.2021.102079] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/18/2020] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Aloe vera is a species from Asphodelaceae family having characteristics like drought resistance and numerous medicinal properties. However, the genetic basis of these phenotypes is yet unknown primarily due to unavailability of its genome sequence. Thus, we report the first Aloe vera genome sequence comprising of 12.93 Gbp and harboring 86,177 protein-coding genes. It is the first genome from Asphodelaceae family and the largest angiosperm genome sequenced and assembled till date. We also report the first genome-wide phylogeny of monocots including Aloe vera to resolve its phylogenetic position. The comprehensive comparative analysis of Aloe vera with other available high-quality monocot genomes revealed adaptive evolution in several genes of drought stress response, CAM pathway, and circadian rhythm and positive selection in DNA damage response genes in Aloe vera. This study provides clues on the genetic basis of evolution of drought stress tolerance capabilities of Aloe vera.
Collapse
Affiliation(s)
- Shubham K. Jaiswal
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| | - Shruti Mahajan
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| | - Abhisek Chakraborty
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| | - Sudhir Kumar
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| | - Vineet K. Sharma
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| |
Collapse
|
16
|
Moin M, Saha A, Bakshi A, D. D, M.S. M, P.B. K. Study on Transcriptional Responses and Identification of Ribosomal Protein Genes for Potential Resistance against Brown Planthopper and Gall Midge Pests in Rice. Curr Genomics 2021; 22:98-110. [PMID: 34220297 PMCID: PMC8188583 DOI: 10.2174/1389202922666210219113220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/04/2020] [Accepted: 01/02/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Our previous studies have revealed the roles of ribosomal protein (RP) genes in the abiotic stress responses of rice. METHODS In the current investigation, we examine the possible involvement of these genes in insect stress responses. We have characterized the RP genes that included both Ribosomal Protein Large (RPL) and Ribosomal Protein Small (RPS) subunit genes in response to infestation by two economically important insect pests, the brown planthopper (BPH) and the Asian rice gall midge (GM) in rice. Differential transcript patterns of seventy selected RP genes were studied in a susceptible and a resistant genotype of indica rice: BPT5204 and RPNF05, respectively. An in silico analyses of the upstream regions of these genes also revealed the presence of cis-elements that are associated with wound signaling. RESULTS We identified the genes that were up or downregulated in either one of the genotypes, or both of them after pest infestation. The transcript patterns of a majority of the genes were found to be temporally-regulated by both the pests. In the resistant RPNF05, BPH infestation activated RPL15, L51 and RPS5a genes while GM infestation induced RPL15, L18a, L22, L36.2, L38, RPS5, S9.2 and S25a at a certain point of time. These genes that were particularly upregulated in the resistant genotype, RPNF05, but not in BPT5204 suggest their potential involvement in plant resistance against either of the two pests studied. CONCLUSION Taken together, RPL15, L51, L18a, RPS5, S5a, S9.2, and S25a appear to be the genes with possible roles in insect resistance in rice.
Collapse
Affiliation(s)
- Mazahar Moin
- Biotechnology Division, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad-500030, India
| | - Anusree Saha
- Department of Plant Sciences, University of Hyderabad, Hyderabad-500046, India
| | - Achala Bakshi
- Biotechnology Division, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad-500030, India
| | - Divya D.
- Agri-Biotech Foundation, PJTS Agricultural University, Hyderabad-500030, India
| | - Madhav M.S.
- Biotechnology Division, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad-500030, India
| | - Kirti P.B.
- Department of Plant Sciences, University of Hyderabad, Hyderabad-500046, India
- Agri-Biotech Foundation, PJTS Agricultural University, Hyderabad-500030, India
| |
Collapse
|
17
|
Liu W, Yin T, Zhao Y, Wang X, Wang K, Shen Y, Ding Y, Tang S. Effects of High Temperature on Rice Grain Development and Quality Formation Based on Proteomics Comparative Analysis Under Field Warming. FRONTIERS IN PLANT SCIENCE 2021; 12:746180. [PMID: 34745178 PMCID: PMC8566943 DOI: 10.3389/fpls.2021.746180] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/23/2021] [Indexed: 05/14/2023]
Abstract
With the intensification of global warming, rice production is facing new challenges. Field evidence indicates that elevated temperature during rice grain-filling leads to the further deterioration of grain quality. In order to clarify the potential regulatory mechanism of elevated temperature on the formation of rice quality, the DIA mass spectrometry method under the background of field warming was conducted to investigate the regulatory effects of high temperature on grain development and material accumulation pathways. The results showed that a total of 840 differentially expressed proteins were identified during the grain-filling process under elevated temperature. These differentially expressed proteins participated in carbon metabolism, amino acid biosynthesis, signal transduction, protein synthesis, and alternately affected the material accumulation of rice grains. The significant up-regulation of PPROL 14E, PSB28, granule-bound starch synthase I, and the significant down-regulation of 26.7 kDa heat shock protein would lead to the component difference in grain starch and storage proteins, and that could be responsible for the degradation of rice quality under elevated temperature. Results suggested that proteins specifically expressed under elevated temperature could be the key candidates for elucidating the potential regulatory mechanism of warming on rice development and quality formation. In-depth study on the metabolism of storage compounds would be contributed in further proposing high-quality cultivation control measures suitable for climate warming.
Collapse
Affiliation(s)
- Wenzhe Liu
- College of Agronomy, Nanjing Agricultural University, Nanjing, China
| | - Tongyang Yin
- College of Agronomy, Nanjing Agricultural University, Nanjing, China
| | - Yufei Zhao
- College of Agronomy, Nanjing Agricultural University, Nanjing, China
| | - Xueqin Wang
- College of Agronomy, Nanjing Agricultural University, Nanjing, China
| | - Kailu Wang
- College of Agronomy, Nanjing Agricultural University, Nanjing, China
| | - Yingying Shen
- College of Agronomy, Nanjing Agricultural University, Nanjing, China
| | - Yanfeng Ding
- College of Agronomy, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
| | - She Tang
- College of Agronomy, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
- *Correspondence: She Tang
| |
Collapse
|
18
|
Das RR, Pradhan S, Parida A. De-novo transcriptome analysis unveils differentially expressed genes regulating drought and salt stress response in Panicum sumatrense. Sci Rep 2020; 10:21251. [PMID: 33277539 PMCID: PMC7718891 DOI: 10.1038/s41598-020-78118-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022] Open
Abstract
Screening the transcriptome of drought tolerant variety of little millet (Panicum sumatrense), a marginally cultivated, nutritionally rich, susbsistent crop, can identify genes responsible for its hardiness and enable identification of new sources of genetic variation which can be used for crop improvement. RNA-Seq generated ~ 230 million reads from control and treated tissues, which were assembled into 86,614 unigenes. In silico differential gene expression analysis created an overview of patterns of gene expression during exposure to drought and salt stress. Separate gene expression profiles for leaf and root tissue revealed the differences in regulatory mechanisms operating in these tissues during exposure to abiotic stress. Several transcription factors were identified and studied for differential expression. 61 differentially expressed genes were found to be common to both tissues under drought and salinity stress and were further validated using qRT-PCR. Transcriptome of P. sumatrense was also used to mine for genic SSR markers relevant to abiotic stress tolerance. This study is first report on a detailed analysis of molecular mechanisms of drought and salinity stress tolerance in a little millet variety. Resources generated in this study can be used as potential candidates for further characterization and to improve abiotic stress tolerance in food crops.
Collapse
Affiliation(s)
- Rasmita Rani Das
- Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, 751023, India
| | - Seema Pradhan
- Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, 751023, India
| | - Ajay Parida
- Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, 751023, India.
| |
Collapse
|
19
|
Martin RC, Kronmiller BA, Dombrowski JE. Transcriptome analysis of responses in Brachypodium distachyon overexpressing the BdbZIP26 transcription factor. BMC PLANT BIOLOGY 2020; 20:174. [PMID: 32312226 PMCID: PMC7171782 DOI: 10.1186/s12870-020-02341-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/12/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Biotic and abiotic stresses are the major cause of reduced growth, persistence, and yield in agriculture. Over the past decade, RNA-Sequencing and the use of transgenics with altered expression of stress related genes have been utilized to gain a better understanding of the molecular mechanisms leading to salt tolerance in a variety of species. Identification of transcription factors that, when overexpressed in plants, improve multiple stress tolerance may be valuable for crop improvement, but sometimes overexpression leads to deleterious effects during normal plant growth. RESULTS Brachypodium constitutively expressing the BdbZIP26:GFP gene showed reduced stature compared to wild type plants (WT). RNA-Seq analysis comparing WT and bZIP26 transgenic plants revealed 7772 differentially expressed genes (DEGs). Of these DEGs, 987 of the DEGs were differentially expressed in all three transgenic lines. Many of these DEGs are similar to those often observed in response to abiotic and biotic stress, including signaling proteins such as kinases/phosphatases, calcium/calmodulin related proteins, oxidases/reductases, hormone production and signaling, transcription factors, as well as disease responsive proteins. Interestingly, there were many DEGs associated with protein turnover including ubiquitin-related proteins, F-Box and U-box related proteins, membrane proteins, and ribosomal synthesis proteins. Transgenic and control plants were exposed to salinity stress. Many of the DEGs between the WT and transgenic lines under control conditions were also found to be differentially expressed in WT in response to salinity stress. This suggests that the over-expression of the transcription factor is placing the plant in a state of stress, which may contribute to the plants diminished stature. CONCLUSION The constitutive expression of BdbZIP26:GFP had an overall negative effect on plant growth and resulted in stunted plants compared to WT plants under control conditions, and a similar response to WT plants under salt stress conditions. The results of gene expression analysis suggest that the transgenic plants are in a constant state of stress, and that they are trying to allocate resources to survive.
Collapse
Affiliation(s)
- Ruth C. Martin
- United States Department of Agriculture, Agricultural Research Service, National Forage Seed Production Research Center, 3450 SW Campus Way, Corvallis, OR 97331 USA
| | - Brent A. Kronmiller
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR 97331 USA
| | - James E. Dombrowski
- United States Department of Agriculture, Agricultural Research Service, National Forage Seed Production Research Center, 3450 SW Campus Way, Corvallis, OR 97331 USA
| |
Collapse
|
20
|
Ramos RS, Casati P, Spampinato CP, Falcone Ferreyra ML. Ribosomal Protein RPL10A Contributes to Early Plant Development and Abscisic Acid-Dependent Responses in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 11:582353. [PMID: 33250910 PMCID: PMC7674962 DOI: 10.3389/fpls.2020.582353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/01/2020] [Indexed: 05/17/2023]
Abstract
Plant ribosomal proteins play universal roles in translation, although they are also involved in developmental processes and hormone signaling pathways. Among Arabidopsis RPL10 family members, RPL10A exhibits the highest expression during germination and early development, suggesting that RPL10A is the main contributor to these processes. In this work, we first analyzed RPL10A expression pattern in Arabidopsis thaliana using transgenic RPL10Apro:GUS plants. The gene exhibits a ubiquitous expression pattern throughout the plant, but it is most strongly expressed in undifferentiated tissues. Interestingly, gene expression was also detected in stomatal cells. We then examined protein function during seedling establishment and abscisic acid (ABA) response. Heterozygous rpl10A mutant plants show decreased ABA-sensitivity during seed germination, are impaired in early seedling and root development, and exhibit reduced ABA-inhibition of stomatal aperture under light conditions. Overexpression of RPL10A does not affect the germination and seedling growth, but RPL10A-overexpressing lines are more sensitive to ABA during early plant development and exhibit higher stomatal closure under light condition both with and without ABA treatment than wild type plants. Interestingly, RPL10A expression is induced by ABA. Together, we conclude that RPL10A could act as a positive regulator for ABA-dependent responses in Arabidopsis plants.
Collapse
|
21
|
T-DNA activation tagging in rice results in a variable response to Meloidogyne graminicola infection. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00281-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
22
|
Moin M, Bakshi A, Madhav MS, Kirti PB. Cas9/sgRNA-based genome editing and other reverse genetic approaches for functional genomic studies in rice. Brief Funct Genomics 2018; 17:339-351. [PMID: 29579147 DOI: 10.1093/bfgp/ely010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
One of the important and direct ways of investigating the function of a gene is to characterize the phenotypic consequences associated with loss or gain-of-function of the corresponding gene. These mutagenesis strategies have been successfully deployed in Arabidopsis, and subsequently extended to crop species including rice. Researchers have made vast advancements in the area of rice genomics and functional genomics, as it is a diploid plant with a relatively smaller genome size unlike other cereals. The advent of rice genome research and the annotation of high-quality genome sequencing along with the developments in databases and computer searches have enabled the functional characterization of unknown genes in rice. Further, with the improvements in the efficiency of regeneration and transformation protocols, it has now become feasible to produce sizable mutant populations in indica rice varieties also. In this review, various mutagenesis methods, the current status of the mutant resources, limitations and strengths of insertional mutagenesis approaches and also results obtained with suitable screens for stress tolerance in rice are discussed. In addition, targeted genome editing using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) or Cas9/single-guide RNA system and its potential applications in generating transgene-free rice plants through genome engineering as an efficient alternative to classical transgenic technology are also discussed.
Collapse
Affiliation(s)
- Mazahar Moin
- Department of Biotechnology, ICAR-Indian Institute of Rice Research (IIRR), India
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - Achala Bakshi
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - M S Madhav
- Department of Biotechnology, ICAR-Indian Institute of Rice Research (IIRR), India
| | - P B Kirti
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
23
|
Moin M, Bakshi A, Saha A, Dutta M, Kirti PB. Gain-of-function mutagenesis approaches in rice for functional genomics and improvement of crop productivity. Brief Funct Genomics 2018; 16:238-247. [PMID: 28137760 DOI: 10.1093/bfgp/elw041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The epitome of any genome research is to identify all the existing genes in a genome and investigate their roles. Various techniques have been applied to unveil the functions either by silencing or over-expressing the genes by targeted expression or random mutagenesis. Rice is the most appropriate model crop for generating a mutant resource for functional genomic studies because of the availability of high-quality genome sequence and relatively smaller genome size. Rice has syntenic relationships with members of other cereals. Hence, characterization of functionally unknown genes in rice will possibly provide key genetic insights and can lead to comparative genomics involving other cereals. The current review attempts to discuss the available gain-of-function mutagenesis techniques for functional genomics, emphasizing the contemporary approach, activation tagging and alterations to this method for the enhancement of yield and productivity of rice.
Collapse
|
24
|
Moin M, Bakshi A, Madhav MS, Kirti PB. Expression Profiling of Ribosomal Protein Gene Family in Dehydration Stress Responses and Characterization of Transgenic Rice Plants Overexpressing RPL23A for Water-Use Efficiency and Tolerance to Drought and Salt Stresses. Front Chem 2017; 5:97. [PMID: 29184886 PMCID: PMC5694489 DOI: 10.3389/fchem.2017.00097] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/27/2017] [Indexed: 11/13/2022] Open
Abstract
Our previous findings on the screening of a large-pool of activation tagged rice plants grown under limited water conditions revealed the activation of Ribosomal Protein Large (RPL) subunit genes, RPL6 and RPL23A in two mutants that exhibited high water-use efficiency (WUE) with the genes getting activated by the integrated 4x enhancers (Moin et al., 2016a). In continuation of these findings, we have comprehensively characterized the Ribosomal Protein (RP) gene family including both small (RPS) and large (RPL) subunits, which have been identified to be encoded by at least 70 representative genes; RP-genes exist as multiple expressed copies with high nucleotide and amino acid sequence similarity. The differential expression of all the representative genes in rice was performed under limited water and drought conditions at progressive time intervals in the present study. More than 50% of the RP genes were upregulated in both shoot and root tissues. Some of them exhibited an overlap in upregulation under both the treatments indicating that they might have a common role in inducing tolerance under limited water and drought conditions. Among the genes that became significantly upregulated in both the tissues and under both the treatments are RPL6, 7, 23A, 24, and 31 and RPS4, 10 and 18a. To further validate the role of RP genes in WUE and inducing tolerance to other stresses, we have raised transgenic plants overexpressing RPL23A in rice. The high expression lines of RPL23A exhibited low Δ13C, increased quantum efficiency along with suitable growth and yield parameters with respect to negative control under the conditions of limited water availability. The constitutive expression of RPL23A was also associated with transcriptional upregulation of many other RPL and RPS genes. The seedlings of RPL23A high expression lines also showed a significant increase in fresh weight, root length, proline and chlorophyll contents under simulated drought and salt stresses. Taken together, our findings provide a secure basis for the RPL gene family expression as a potential resource for exploring abiotic stress tolerant properties in rice.
Collapse
Affiliation(s)
- Mazahar Moin
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India.,Department of Biotechnology, Indian Institute of Rice Research, Hyderabad, India
| | - Achala Bakshi
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - M S Madhav
- Department of Biotechnology, Indian Institute of Rice Research, Hyderabad, India
| | - P B Kirti
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
25
|
Park SH, Chung MS, Lee S, Lee KH, Kim CS. Loss of Ribosomal Protein L24A (RPL24A) suppresses proline accumulation of Arabidopsis thaliana ring zinc finger 1 (atrzf1) mutant in response to osmotic stress. Biochem Biophys Res Commun 2017; 494:499-503. [PMID: 29066352 DOI: 10.1016/j.bbrc.2017.10.092] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 10/17/2017] [Indexed: 11/19/2022]
Abstract
Proline (Pro) metabolism in plants is involved in various cellular processes mediated during abiotic stress. However, the Pro-regulatory mechanisms are unclear. We used a suppressor mutation technique to isolate novel genes involved in the regulation of Pro metabolism in Arabidopsis. Using atrzf1 as a parental plant for T-DNA tagging mutagenesis, we identified a suppressor mutant, termed proline content alterative 21 (pca21), that displayed reduced Pro contents compared with the atrzf1 under osmotic stress conditions. Genomic Thermal Asymmetric Interlaced (TAIL)-PCR revealed pca21 harbored an inserted T-DNA in the region of At2g36620 that encodes Ribosomal Protein L24A. In general, the pca21 mutant partially suppressed the insensitivity of atrzf1 to osmotic stress and abscisic acid during seed germination and early seedling stage. Additionally, the pca21 mutant had increased MDA content and lower expression of several Pro biosynthesis-related genes than the atrzf1 mutant during drought condition. These results suggest that pca21 acts as partial suppressor of atrzf1 in the osmotic stress response through the Pro-mediated pathway.
Collapse
Affiliation(s)
- Seung-Hyeon Park
- Department of Plant Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Moon-Soo Chung
- Korea Atomic Energy Research Institute, Jeollabuk-do 56212, Republic of Korea
| | - Sungbeom Lee
- Korea Atomic Energy Research Institute, Jeollabuk-do 56212, Republic of Korea
| | - Kyeong-Hwan Lee
- Department of Rural and Biosystems Engineering, Agricultural Robotics and Automation Research Center, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Cheol Soo Kim
- Department of Plant Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
26
|
Saha A, Das S, Moin M, Dutta M, Bakshi A, Madhav MS, Kirti PB. Genome-Wide Identification and Comprehensive Expression Profiling of Ribosomal Protein Small Subunit (RPS) Genes and their Comparative Analysis with the Large Subunit (RPL) Genes in Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:1553. [PMID: 28966624 PMCID: PMC5605565 DOI: 10.3389/fpls.2017.01553] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/25/2017] [Indexed: 05/07/2023]
Abstract
Ribosomal proteins (RPs) are indispensable in ribosome biogenesis and protein synthesis, and play a crucial role in diverse developmental processes. Our previous studies on Ribosomal Protein Large subunit (RPL) genes provided insights into their stress responsive roles in rice. In the present study, we have explored the developmental and stress regulated expression patterns of Ribosomal Protein Small (RPS) subunit genes for their differential expression in a spatiotemporal and stress dependent manner. We have also performed an in silico analysis of gene structure, cis-elements in upstream regulatory regions, protein properties and phylogeny. Expression studies of the 34 RPS genes in 13 different tissues of rice covering major growth and developmental stages revealed that their expression was substantially elevated, mostly in shoots and leaves indicating their possible involvement in the development of vegetative organs. The majority of the RPS genes have manifested significant expression under all abiotic stress treatments with ABA, PEG, NaCl, and H2O2. Infection with important rice pathogens, Xanthomonas oryzae pv. oryzae (Xoo) and Rhizoctonia solani also induced the up-regulation of several of the RPS genes. RPS4, 13a, 18a, and 4a have shown higher transcript levels under all the abiotic stresses, whereas, RPS4 is up-regulated in both the biotic stress treatments. The information obtained from the present investigation would be useful in appreciating the possible stress-regulatory attributes of the genes coding for rice ribosomal small subunit proteins apart from their functions as house-keeping proteins. A detailed functional analysis of independent genes is required to study their roles in stress tolerance and generating stress- tolerant crops.
Collapse
Affiliation(s)
- Anusree Saha
- Department of Plant Sciences, University of HyderabadHyderabad, India
| | - Shubhajit Das
- Department of Plant Sciences, University of HyderabadHyderabad, India
| | - Mazahar Moin
- Department of Plant Sciences, University of HyderabadHyderabad, India
| | - Mouboni Dutta
- Department of Plant Sciences, University of HyderabadHyderabad, India
| | - Achala Bakshi
- Department of Plant Sciences, University of HyderabadHyderabad, India
| | - M. S. Madhav
- Department of Biotechnology, Indian Institute of Rice ResearchHyderabad, India
| | - P. B. Kirti
- Department of Plant Sciences, University of HyderabadHyderabad, India
| |
Collapse
|
27
|
Manimaran P, Venkata Reddy S, Moin M, Raghurami Reddy M, Yugandhar P, Mohanraj SS, Balachandran SM, Kirti PB. Activation-tagging in indica rice identifies a novel transcription factor subunit, NF-YC13 associated with salt tolerance. Sci Rep 2017; 7:9341. [PMID: 28839256 PMCID: PMC5570948 DOI: 10.1038/s41598-017-10022-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/02/2017] [Indexed: 12/19/2022] Open
Abstract
Nuclear factor Y (NF-Y) is a heterotrimeric transcription factor with three distinct NF-YA, NF-YB and NF-YC subunits. It plays important roles in plant growth, development and stress responses. We have reported earlier on development of gain-of-function mutants in an indica rice cultivar, BPT-5204. Now, we screened 927 seeds from 70 Ac/Ds plants for salinity tolerance and identified one activation-tagged salt tolerant DS plant (DS-16, T3 generation) that showed enhanced expression of a novel 'histone-like transcription factor' belonging to rice NF-Y subfamily C and was named as OsNF-YC13. Localization studies using GFP-fusion showed that the protein is localized to nucleus and cytoplasm. Real time expression analysis confirmed upregulation of transcript levels of OsNF-YC13 during salt treatment in a tissue specific manner. Biochemical and physiological characterization of the DS-16 revealed enhanced K+/Na+ ratio, proline content, chlorophyll content, enzymes with antioxidant activity etc. DS-16 also showed transcriptional up-regulation of genes that are involved in salinity tolerance. In-silico analysis of OsNF-YC13 promoter region evidenced the presence of various key stress-responsive cis-regulatory elements. OsNF-YC13 subunit alone does not appear to have the capacity for direct transcription activation, but appears to interact with the B- subunits in the process of transactivation.
Collapse
Affiliation(s)
- P Manimaran
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 5000046, India.
| | - S Venkata Reddy
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 5000046, India
| | - Mazahar Moin
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 5000046, India
| | - M Raghurami Reddy
- Indian Institute of Rice Research, Rajendranagar, Hyderabad, 500030, India
| | - Poli Yugandhar
- Indian Institute of Rice Research, Rajendranagar, Hyderabad, 500030, India
| | - S S Mohanraj
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 5000046, India
| | - S M Balachandran
- Indian Institute of Rice Research, Rajendranagar, Hyderabad, 500030, India
| | - P B Kirti
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 5000046, India.
| |
Collapse
|
28
|
Moin M, Bakshi A, Saha A, Dutta M, Madhav SM, Kirti PB. Rice Ribosomal Protein Large Subunit Genes and Their Spatio-temporal and Stress Regulation. FRONTIERS IN PLANT SCIENCE 2016; 7:1284. [PMID: 27605933 PMCID: PMC4995216 DOI: 10.3389/fpls.2016.01284] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/11/2016] [Indexed: 05/22/2023]
Abstract
Ribosomal proteins (RPs) are well-known for their role in mediating protein synthesis and maintaining the stability of the ribosomal complex, which includes small and large subunits. In the present investigation, in a genome-wide survey, we predicted that the large subunit of rice ribosomes is encoded by at least 123 genes including individual gene copies, distributed throughout the 12 chromosomes. We selected 34 candidate genes, each having 2-3 identical copies, for a detailed characterization of their gene structures, protein properties, cis-regulatory elements and comprehensive expression analysis. RPL proteins appear to be involved in interactions with other RP and non-RP proteins and their encoded RNAs have a higher content of alpha-helices in their predicted secondary structures. The majority of RPs have binding sites for metal and non-metal ligands. Native expression profiling of 34 ribosomal protein large (RPL) subunit genes in tissues covering the major stages of rice growth shows that they are predominantly expressed in vegetative tissues and seedlings followed by meiotically active tissues like flowers. The putative promoter regions of these genes also carry cis-elements that respond specifically to stress and signaling molecules. All the 34 genes responded differentially to the abiotic stress treatments. Phytohormone and cold treatments induced significant up-regulation of several RPL genes, while heat and H2O2 treatments down-regulated a majority of them. Furthermore, infection with a bacterial pathogen, Xanthomonas oryzae, which causes leaf blight also induced the expression of 80% of the RPL genes in leaves. Although the expression of RPL genes was detected in all the tissues studied, they are highly responsive to stress and signaling molecules indicating that their encoded proteins appear to have roles in stress amelioration besides house-keeping. This shows that the RPL gene family is a valuable resource for manipulation of stress tolerance in rice and other crops, which may be achieved by overexpressing and raising independent transgenic plants carrying the genes that became up-regulated significantly and instantaneously.
Collapse
Affiliation(s)
- Mazahar Moin
- Department of Plant Sciences, University of HyderabadHyderabad, India
| | - Achala Bakshi
- Department of Plant Sciences, University of HyderabadHyderabad, India
| | - Anusree Saha
- Department of Plant Sciences, University of HyderabadHyderabad, India
| | - Mouboni Dutta
- Department of Plant Sciences, University of HyderabadHyderabad, India
| | - Sheshu M. Madhav
- Department of Biotechnology, Indian Institute of Rice ResearchHyderabad, India
| | - P. B. Kirti
- Department of Plant Sciences, University of HyderabadHyderabad, India
- *Correspondence: P. B. Kirti,
| |
Collapse
|