1
|
Song K, Li H, Yang K, Ma T, Hu Y, Chen J, Zhu S, Liu W. Exogenous sodium nitroprusside exhibits multiple positive roles in alleviating cadmium toxicity in tobacco (Nicotiana tabacum L.). Nitric Oxide 2025; 154:8-18. [PMID: 39547540 DOI: 10.1016/j.niox.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
As a donor of the gaseous signaling molecule nitric oxide (NO), sodium nitroprusside (SNP) has been shown to play a positive role in enhancing plant resistance to abiotic stress. However, its role in alleviating cadmium (Cd) toxicity in tobacco (Nicotiana tabacum L.) is not fully understood. This study found that Cd stress significantly inhibited tobacco growth. At the same time, 150 μM SNP was the most effective concentration in alleviating Cd toxicity in seedlings, restoring three stress tolerance indicators-MDA, H2O2, and proline-to control levels. Exogenous SNP mitigated Cd-induced oxidative stress by promoting the accumulation of non-enzymatic antioxidants (total phenolics and flavonoids) and activating key antioxidant enzymes (SOD, CAT, POD, APX, and GR) along with their gene expression. SNP also facilitated Cd accumulation in the root cell wall and prevented Cd translocation from roots to shoots. Additionally, SNP altered Cd's subcellular distribution, promoting its sequestration in vacuoles and cell walls, which may be related to the NO-mediated upregulation of the metallothionein gene NtMT2F and the phytochelatin gene NtPCS2. The addition of SNP significantly increased the proportion of Cd in less toxic chemical forms, with the residual Cd fraction in the Cd + SNP group reaching 7.30 %, higher than the 4.86 % in the Cd-only group. Furthermore, exogenous SNP counteracted Cd's inhibition of nitrate reductase (NR) activity, promoting endogenous NO production. This study systematically reveals the positive roles of exogenous SNP in mitigating Cd toxicity in tobacco, offering valuable insights for producing low-Cd tobacco.
Collapse
Affiliation(s)
- Kejin Song
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Hongwei Li
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Kunjian Yang
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Tengfei Ma
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Yingying Hu
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Ji Chen
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Shunqin Zhu
- School of Life Science, Southwest University, Chongqing, 400715, China
| | - Wanhong Liu
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China.
| |
Collapse
|
2
|
Liu W, Yang Y, Hu Y, Peng X, He L, Ma T, Zhu S, Xiang L, Chen N. Overexpression of SQUAMOSA promoter binding protein-like 4a (NtSPL4a) alleviates Cd toxicity in Nicotiana tabacum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108656. [PMID: 38685151 DOI: 10.1016/j.plaphy.2024.108656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Squamosa Promoter Binding Protein-Like (SPL) plays a crucial role in regulating plant development and combating stress, yet its mechanism in regulating resistance to Cd toxicity remains unclear. In this study, we cloned a nuclear-localized transcription factor, NtSPL4a, from the tobacco cultivar TN90. Transient co-expression results showed that miR156 significantly reduced the expression of NtSPL4a by binding to the 3'-UTR of its transcript. We obtained transgenic tobacco overexpressing NtSPL4a (including the 3'-UTR) and NtSPL4aΔ (lacking the 3'-UTR) through Agrobacterium-mediated genetic transformation. Compared to the wild type (WT), overexpression of NtSPL4a/NtSPL4aΔ shortened the flowering time and exhibited a more developed root system. The transgenic tobacco showed significantly reduced Cd content, being 85.1% (OE-NtSPL4a) and 46.7% (OE-NtSPL4aΔ) of WT, respectively. Moreover, the upregulation of NtSPL4a affected the mineral nutrient homeostasis in transgenic tobacco. Additionally, overexpression of NtSPL4a/NtSPL4aΔ effectively alleviated leaf chlorosis and oxidative stress induced by Cd toxicity. One possible reason is that the overexpression of NtSPL4a/NtSPL4aΔ can effectively promote the accumulation of non-enzymatic antioxidants. A comparative transcriptomic analysis was performed between transgenic tobacco and WT to further unravel the global impacts brought by NtSPL4a. The tobacco overexpressing NtSPL4a had 183 differentially expressed genes (77 upregulated, 106 downregulated), while the tobacco overexpressing NtSPL4aΔ had 594 differentially expressed genes (244 upregulated, 350 downregulated) compared to WT. These differentially expressed genes mainly included transcription factors, metal transport proteins, flavonoid biosynthesis pathway genes, and plant stress-related genes. Our study provides new insights into the role of the transcript factor SPL in regulating Cd tolerance.
Collapse
Affiliation(s)
- Wanhong Liu
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Ya Yang
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Yingying Hu
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Xiang Peng
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Linshen He
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Tengfei Ma
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Shunqin Zhu
- School of Life Science, Southwest University, Chongqing, 400715, China
| | - Lien Xiang
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, China
| | - Nan Chen
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China.
| |
Collapse
|
3
|
Yang JS, Ahmed RI, Liu H, Sheng S, Xiao W, Hu R, Dai Y. Differential absorption of cadmium and zinc by tobacco plants: Role of apoplastic pathway. Biochem Biophys Rep 2024; 37:101641. [PMID: 38288283 PMCID: PMC10823060 DOI: 10.1016/j.bbrep.2024.101641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/19/2023] [Accepted: 01/06/2024] [Indexed: 01/31/2024] Open
Abstract
Cadmium (Cd) contamination presents a significant challenge in global agriculture. This study explores the efficacy of chemical induction, specifically using sodium chloride (NaCl), to limit Cd uptake in tobacco (Nicotiana tabacum) and assesses its impact on essential divalent metal ions (DMIs). We conducted a comprehensive analysis encompassing ion absorption, root histology, and biochemistry to understand the influence of this method. Our results revealed that NaCl induction led to a notable 30 % decrease in Cd absorption, while maintaining minimal impact on zinc (Zn) uptake. Intriguingly, the absence of essential DMIs, such as calcium (Ca), magnesium (Mg), and Zn, was found to diminish the plant's capacity to absorb Cd. Furthermore, moderate NaCl induction resulted in an increased diameter of the root stele and enhanced lignin content, indicating a restriction of Cd absorption through the apoplastic pathway. Conversely, a compensatory absorption mechanism via the symplastic pathway appeared to be activated in the absence of essential elements. These findings highlight the potential of chemical induction as a strategy to mitigate agricultural Cd risks, offering insights into the complex interplay between plant ion transport pathways and metal uptake regulation.
Collapse
Affiliation(s)
- Jia-Shuo Yang
- China Tobacco Central South Agricultural Experimental Station, Furong Road No. 628, Changsha, 410004, China
| | - Rana Imtiaz Ahmed
- Chinese Academy of Agricultural Sciences, Institute of Tobacco Research, Keyuanjingsi Road No. 11, Qingdao, 266101, China
| | - Haiwei Liu
- Chinese Academy of Agricultural Sciences, Institute of Tobacco Research, Keyuanjingsi Road No. 11, Qingdao, 266101, China
| | - Song Sheng
- Central South University of Forestry and Technology, Shaoshan Road No. 498, Changsha, 410004, China
| | - Wenfeng Xiao
- China Tobacco Central South Agricultural Experimental Station, Furong Road No. 628, Changsha, 410004, China
| | - Risheng Hu
- China Tobacco Central South Agricultural Experimental Station, Furong Road No. 628, Changsha, 410004, China
| | - Yanjiao Dai
- Hunan Academy of Agricultural Science, Yuanda Road No. 892, Changsha, 410125, China
| |
Collapse
|
4
|
Szurman-Zubrzycka M, Kurowska M, Till BJ, Szarejko I. Is it the end of TILLING era in plant science? FRONTIERS IN PLANT SCIENCE 2023; 14:1160695. [PMID: 37674734 PMCID: PMC10477672 DOI: 10.3389/fpls.2023.1160695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/19/2023] [Indexed: 09/08/2023]
Abstract
Since its introduction in 2000, the TILLING strategy has been widely used in plant research to create novel genetic diversity. TILLING is based on chemical or physical mutagenesis followed by the rapid identification of mutations within genes of interest. TILLING mutants may be used for functional analysis of genes and being nontransgenic, they may be directly used in pre-breeding programs. Nevertheless, classical mutagenesis is a random process, giving rise to mutations all over the genome. Therefore TILLING mutants carry background mutations, some of which may affect the phenotype and should be eliminated, which is often time-consuming. Recently, new strategies of targeted genome editing, including CRISPR/Cas9-based methods, have been developed and optimized for many plant species. These methods precisely target only genes of interest and produce very few off-targets. Thus, the question arises: is it the end of TILLING era in plant studies? In this review, we recap the basics of the TILLING strategy, summarize the current status of plant TILLING research and present recent TILLING achievements. Based on these reports, we conclude that TILLING still plays an important role in plant research as a valuable tool for generating genetic variation for genomics and breeding projects.
Collapse
Affiliation(s)
- Miriam Szurman-Zubrzycka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Marzena Kurowska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Bradley J. Till
- Veterinary Genetics Laboratory, University of California, Davis, Davis, United States
| | - Iwona Szarejko
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
5
|
Abstract
Tobacco (Nicotiana tabacum L.) is an important industrial crop plant. However, it efficiently accumulates metals, primarily cadmium (Cd) and also zinc (Zn), in its leaves. Therefore, it could be a source of cadmium intake by smokers. On the other hand, as a high leaf metal accumulator, it is widely used for phytoremediation of metal-contaminated soil. Both issues provide an important rationale for investigating the processes regulating metal homeostasis in tobacco. This work summarizes the results of research to date on the understanding of the molecular mechanisms determining the effective uptake of Zn and Cd, their translocation into shoots and accumulation in leaves. It also discusses the current state of research to improve the phytoremediation properties of tobacco through genetic modification and to limit leaf Cd content for the tobacco industry.
Collapse
Affiliation(s)
- Katarzyna Kozak
- Department of Plant Metal Homeostasis, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, 1 Miecznikowa Str, 02-096, Warszawa, Poland
| | - Danuta Maria Antosiewicz
- Department of Plant Metal Homeostasis, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, 1 Miecznikowa Str, 02-096, Warszawa, Poland.
| |
Collapse
|
6
|
Hao H, Li P, Li Y, Lv Y, Chen W, Xu J, Ge D. Driving effects and transfer prediction of heavy metal(loid)s in contaminated courtyard gardens using redundancy analysis and multilayer perceptron. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:46. [PMID: 36308616 DOI: 10.1007/s10661-022-10683-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The distribution and migration of heavy metal(loid)s in the soil-vegetable systems of courtyard gardens near mining areas have rarely been investigated, leading to potential food safety risks for residents. Moreover, the existing research is mainly focused on the total content of heavy metal(loid)s (tMetals) rather than the bioavailable contents (aMetals). In this study, 26 and 28 pairs of soil and vegetable samples were collected from the courtyard gardens near the Realgar mine in Baiyun Town and the lead-zinc (Pb-Zn) mine in Shuikoushan Town, respectively. The tMetal and aMetal of cadmium (Cd), mercury (Hg), arsenic (As), Pb, chromium (Cr), nickel (Ni), copper (Cu), Zn, manganese (Mn), iron (Fe), and calcium (Ca) in the samples were analyzed in this study. The results showed that courtyard gardens were polluted by various heavy metal(loid)s at varying degrees. The bioavailabilities of different metals varied significantly, among which Cd has the highest bioavailability (> 30%). In the transfer process of heavy metal(loid)s, the transfer rate (Tf) was ranked as soil-roots (1.50) > stems-leaves (1.07) > roots-stems (0.46) > stems-fruits (0.33). Redundancy analysis was used to evaluate the driving effects, and the results revealed that aCa, aZn, and aFe in soil could inhibit the absorption of aCd by plant roots. Soil organic matter was the inhibiting factor regarding the transfer of aAs and aCu, whereas it was also the promoting factor for transferring aPb, aNi, and aCr. Furthermore, the multilayer perceptron (MLP) could effectively predict the Tf of heavy metal(loid)s based on the aMetal. The R2 values of the MLP were ranked as follows: 0.91 for As, 0.88 for Zn, 0.85 for Hg, 0.83 for Cu, 0.79 for Cr, 0.66 for Cd, 0.65 for Pb, and 0.52 for Ni. This study emphasizes the aMetal-based ecological characteristics and prediction ability. The study results are significant for guiding residents to strategize appropriate crop planting and ensure the safe production and consumption of vegetables.
Collapse
Affiliation(s)
- Huijuan Hao
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
- Risk Assessment Laboratory for Environmental Factors of Agro-Product Quality Safety, Ministry of Agriculture and Villages, Changsha, 410005, People's Republic of China
| | - Panpan Li
- College of Computer, National University of Defense Technology, Changsha, 410005, People's Republic of China
| | - Yuanyuan Li
- Hunan Pinbiao Huace Testing Technology Co., Ltd, Changsha, 410005, People's Republic of China
| | - Yuntao Lv
- Risk Assessment Laboratory for Environmental Factors of Agro-Product Quality Safety, Ministry of Agriculture and Villages, Changsha, 410005, People's Republic of China
| | - Wanming Chen
- Risk Assessment Laboratory for Environmental Factors of Agro-Product Quality Safety, Ministry of Agriculture and Villages, Changsha, 410005, People's Republic of China
| | - Jianjun Xu
- College of Computer, National University of Defense Technology, Changsha, 410005, People's Republic of China
| | - Dabing Ge
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China.
| |
Collapse
|
7
|
Jiang J, Wang Z, Kong X, Chen Y, Li J. Exogenous tryptophan application improves cadmium tolerance and inhibits cadmium upward transport in broccoli ( Brassica oleracea var. italica). FRONTIERS IN PLANT SCIENCE 2022; 13:969675. [PMID: 36035682 PMCID: PMC9403758 DOI: 10.3389/fpls.2022.969675] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) pollution not only reduces crop yields, but also threatens human health and food safety. It is of great significance for agricultural production to improve plant Cd resistance and reduce Cd accumulation. In Arabidopsis, tryptophan (Trp) has been found to play a role in Cd resistance. However, studies on the role of exogenous Trp on Cd tolerance in crops are limited. Here, we report that exogenous Trp application can effectively alleviate biomass decline induced by Cd stress and inhibit Cd transport from roots to shoots in Brassica oleracea var. italica (broccoli). Compared to Cd stress alone, the fresh weight of shoots and roots of B. oleracea seedlings treated with Cd and Trp increased by 25 and 120%, respectively, and the Cd content in shoots decreased by 51.6%. In combination with physiological indices and transcriptome analysis, we preliminarily explored the mechanism of Trp alleviating Cd stress and affecting Cd transport. Trp inhibited Cd-induced indole-3-acetic acid (IAA) conjugation, thereby providing enough free IAA to sustain growth under Cd stress; Trp inhibited the indolic glucosinolate (IGS) biosynthesis induced by Cd. Considering that the synthesis of IGS consumes glutathione (GSH) as a sulfur donor, the inhibition of Trp in IGS synthesis may be conducive to maintaining a high GSH content to be against Cd stress. Consistent with this, we found that GSH content under Cd stress with Trp application was higher than that of Cd alone. In addition to alleviating the damage caused by Cd, Trp can also inhibit the upward transport of Cd from roots to shoots, possibly by repressing the expression of HMA4, which encodes a transporter responsible for the xylem loading and Cd upward transport.
Collapse
Affiliation(s)
- Jia Jiang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Ze Wang
- College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Xiangzhou Kong
- College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Yajun Chen
- College of Horticulture, Northeast Agricultural University, Harbin, China
| | - Jing Li
- College of Life Sciences, Northeast Agricultural University, Harbin, China
| |
Collapse
|
8
|
Wang L, Gao J, Wang C, Xu Y, Li X, Yang J, Chen K, Kang Y, Wang Y, Cao P, Xie X. Comprehensive Analysis of Long Non-coding RNA Modulates Axillary Bud Development in Tobacco ( Nicotiana tabacum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:809435. [PMID: 35237286 PMCID: PMC8884251 DOI: 10.3389/fpls.2022.809435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Long non-coding RNAs (lncRNAs) regulate gene expression and are crucial for plant growth and development. However, the mechanisms underlying the effects of activated lncRNAs on axillary bud development remain largely unknown. By lncRNA transcriptomes of axillary buds in topped and untopped tobacco plants, we identified a total of 13,694 lncRNAs. LncRNA analysis indicated that the promoted growth of axillary bud by topping might be partially ascribed to the genes related to hormone signal transduction and glycometabolism, trans-regulated by differentially expressed lncRNAs, such as MSTRG.52498.1, MSTRG.60026.1, MSTRG.17770.1, and MSTRG.32431.1. Metabolite profiling indicated that auxin, abscisic acid and gibberellin were decreased in axillary buds of topped tobacco lines, while cytokinin was increased, consistent with the expression levels of related lncRNAs. MSTRG.52498.1, MSTRG.60026.1, MSTRG.17770.1, and MSTRG.32431.1 were shown to be influenced by hormones and sucrose treatments, and were associated with changes of axillary bud growth in the overexpression of NtCCD8 plants (with reduced axillary buds) and RNA interference of NtTB1 plants (with increased axillary buds). Moreover, MSTRG.28151.1 was identified as the antisense lncRNA of NtTB1. Silencing of MSTRG.28151.1 in tobacco significantly attenuated the expression of NtTB1 and resulted in larger axillary buds, suggesting the vital function of MSTRG.28151.1 axillary bud developmen by NtTB1. Our findings shed light on lncRNA-mRNA interactions and their functional roles in axillary bud growth, which would improve our understanding of lncRNAs as important regulators of axillary bud development and plant architecture.
Collapse
Affiliation(s)
- Lin Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Junping Gao
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Chen Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Yalong Xu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Xiaoxu Li
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Jun Yang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Kai Chen
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Yile Kang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Yaofu Wang
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Peijian Cao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Xiaodong Xie
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| |
Collapse
|
9
|
Li X, Li Y, Zhu X, Gui X, Ma C, Peng W, Li Y, Zhang Y, Huang W, Hua D, Jia S, Wu M. Evaluation of the cadmium phytoextraction potential of tobacco (Nicotiana tabacum) and rhizosphere micro-characteristics under different cadmium levels. CHEMOSPHERE 2022; 286:131714. [PMID: 34426125 DOI: 10.1016/j.chemosphere.2021.131714] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/10/2021] [Accepted: 07/27/2021] [Indexed: 05/12/2023]
Abstract
In this study, a field-scale and pot experiment were performed to evaluate the remedial efficiency of Cd contaminated soil by tobacco and explore rhizosphere micro-characteristics under different cadmium levels, respectively. The results indicated that tobacco could remove 12.9 % of Cd from soil within a short growing period of 80 d. The pot experiment revealed that tobacco could tolerate soil Cd concentrations up to 5.8 mg kg-1 and bioaccumulate 68.1 and 40.8 mg kg-1 Cd in shoots and roots, respectively. The high Cd bioaccumulation in tobacco might be attributed to strong acidification in the rhizosphere soil and the increase in Cd bioavailability. Rhizobacteria did not appear to be involved in Cd mobilization. In contrast, tobacco tended to enrich sulfate-reducing bacteria (such as Desulfarculaceae) under high Cd treatment (5.8 mg kg-1) but enrich plant growth-promoting bacteria (such as Bacillus, Dyadobacter, Virgibacillus and Lysobacter) to improve growth under low Cd treatment (0.2 mg kg-1), suggesting that tobacco employed different microbes for responding to Cd stress. Our results demonstrate the advantages of using tobacco for bioremediating Cd contaminated soil and clarify the rhizosphere mechanisms underlying Cd mobilization and tolerance.
Collapse
Affiliation(s)
- Xuanzhen Li
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yilun Li
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiuhong Zhu
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xin Gui
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Chuang Ma
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou, 450000, China
| | - Wanxi Peng
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yongsheng Li
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yanyan Zhang
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wuxing Huang
- College of Tobacco, Henan Agricultural University, Zhengzhou, 450002, China
| | - Dangling Hua
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shengyong Jia
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Mingzuo Wu
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
10
|
Liedschulte V, Duncan Battey JN, Laparra H, Kleinhans S, Bovet L, Goepfert S. Zinc uptake and HMA4 activity are required for micro- and macroelement balance in tobacco (Nicotiana tabacum). PHYTOCHEMISTRY 2021; 191:112911. [PMID: 34418773 DOI: 10.1016/j.phytochem.2021.112911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 08/02/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
The pleiotropic effects of zinc deficiency on ion homeostasis have already been described in several plants. Tobacco (Nicotiana tabacum) heavy metal ATPases HMA4.1 and HMA4.2 are involved in zinc and cadmium root-to-shoot translocation. In previous research, we have shown that N. tabacum HMA4 RNAi plants and HMA4 double-nonsense mutants exhibit strongly reduced zinc and cadmium levels in leaves as well as stunted growth. In this study, the ionome and transcriptome of these lines were investigated to better characterize the effect of reduced zinc levels and to understand the impaired growth phenotype. We found that, under standard greenhouse fertilization rates, these lines accumulated up to 4- to 6-fold more phosphorus, iron, manganese, and copper than their respective controls. Under field conditions, HMA4 double-mutant plants also exhibited similar accumulation phenotypes, albeit to a lower extent. In both HMA4 RNAi plants and HMA4 mutants, transcription analysis showed a local zinc-deficiency response in leaves as well as an FIT1-mediated iron-deficiency response in roots, likely contributing to iron and manganese uptake at the root level. A phosphate-starvation response involving HHO2 was also observed in HMA4-impaired plant leaves. The high level of phosphorus observed in HMA4-impaired plants is correlated with leaf swelling and necrosis. The upregulation of aquaporin genes is in line with cellular water influx and the observed leaf swelling phenotype. These results highlight the involvement of HMA4 in zinc homeostasis and related regulatory processes that balance the micro- and macroelements in above-ground organs.
Collapse
Affiliation(s)
- Verena Liedschulte
- Philip Morris International, Philip Morris Products SA, Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | | | - Hélène Laparra
- Philip Morris International, Philip Morris Products SA, Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Samuel Kleinhans
- Philip Morris International, Philip Morris Products SA, Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Lucien Bovet
- Philip Morris International, Philip Morris Products SA, Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland.
| | - Simon Goepfert
- Philip Morris International, Philip Morris Products SA, Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| |
Collapse
|
11
|
Kailasam S, Peiter E. A path toward concurrent biofortification and cadmium mitigation in plant-based foods. THE NEW PHYTOLOGIST 2021; 232:17-24. [PMID: 34143526 DOI: 10.1111/nph.17566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/15/2021] [Indexed: 06/12/2023]
Abstract
Millions of people are anemic due to inadequate consumption of foods rich in iron and zinc. Plant-based foods provide most of our dietary nutrients but may also contain the toxic heavy metal cadmium (Cd). A low level of Cd silently enters the body through the diet. Once ingested, Cd may remain for decades. Hence, prolonged intake of Cd-containing foods endangers human health. Research that leads towards micronutrient enrichment and mitigation of Cd in foods has therefore dual significance for human health. The breeding of Cd-tolerant cultivars may enable them to grow on Cd-polluted soils; however, they may not yield Cd-free foods. Conversely, sequestration of Cd in roots can prevent its accumulation in grains, but this mechanism also retains nutrients, hence counteracting biofortification efforts. A specific restriction of the Cd absorption capacity of crops would prevent Cd entry into the plant system while maintaining micronutrient accumulation and may thus be a solution to the dilemma. After recapitulating existing strategies employed for the development of Cd-tolerant and biofortified cultivars, this Viewpoint elaborates alternative approaches based on directed evolution and genome editing strategies for excluding Cd while enriching micronutrients in plant foods, which will concurrently help to eradicate malnutrition and prevent Cd intoxication.
Collapse
Affiliation(s)
- Sakthivel Kailasam
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Edgar Peiter
- Plant Nutrition Laboratory, Faculty of Natural Sciences III, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), D-06099, Germany
| |
Collapse
|
12
|
Huang WX, Zhang DM, Cao YQ, Dang BJ, Jia W, Xu ZC, Han D. Differential cadmium translocation and accumulation between Nicotiana tabacum L. and Nicotiana rustica L. by transcriptome combined with chemical form analyses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111412. [PMID: 33039872 DOI: 10.1016/j.ecoenv.2020.111412] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 05/17/2023]
Abstract
Cadmium (Cd) is a severely toxic and carcinogenic heavy metal. Cigarette smoking is one of the major source of Cd exposure in humans. Nicotiana tabacum is primarily a leaf Cd accumulator, while Nicotiana rustica is a root Cd accumulator among Nicotiana species. However, little is known about the mechanisms of differential Cd translocation and accumulation in Nicotiana. To find the key factors, Cd concentration, Cd chemical forms, and transcriptome analysis were comparatively studied between N. tabacum and N. rustica under control or 10 μM Cd stress. The leaf/root Cd concentration ratio of N. tabacum was 2.26 and that of N. rustica was 0.14. The Cd concentration in xylem sap of N. tabacum was significantly higher than that of N. rustica. The root of N. tabacum had obviously higher proportion of ethanol extractable Cd (40%) and water extractable Cd (16%) than those of N. rustica (16% and 6%). Meanwhile the proportion of sodium chloride extracted Cd in N. rustica (71%) was significantly higher than that in N. tabacum (30%). A total of 30710 genes expressed differentially between the two species at control, while this value was 30,294 under Cd stress, among which 27,018 were collective genes, manifesting the two species existed enormous genetic differences. KEGG pathway analysis showed the phenylpropanoid biosynthesis pathway was overrepresented between the two species under Cd stress. Several genes associated with pectin methylesterase, suberin and lignin synthesis, and heavy metal transport were discovered to be differential expressed genes between two species. The results suggested that the higher accumulation of Cd in the leaf of N. tabacum depends on a comprehensive coordination of Cd transport, including less cell wall binding, weaker impediment by the Casparian strip, and efficient xylem loading.
Collapse
Affiliation(s)
- Wu-Xing Huang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan 450002, People's Republic of China
| | - Duo-Min Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan 450002, People's Republic of China
| | - Yu-Qiao Cao
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan 450002, People's Republic of China
| | - Bing-Jun Dang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan 450002, People's Republic of China
| | - Wei Jia
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan 450002, People's Republic of China
| | - Zi-Cheng Xu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan 450002, People's Republic of China
| | - Dan Han
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan 450002, People's Republic of China.
| |
Collapse
|
13
|
Yang JS, Dai Y, Liu Y, Duan S, Li YY, Hu R, Zhou Z, Shi Y, Liu H, Wang S. Reduced cadmium accumulation in tobacco by sodium chloride priming. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:37410-37418. [PMID: 32399872 DOI: 10.1007/s11356-020-09134-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd) pollution threatens agricultural security worldwide. This study tested the efficacy of priming chemicals to decrease Cd uptake by tobacco plants (Nicotiana tabacum). After initial screening from nine different chemicals (NaCl, Cd(CH3COO)2, Cd(NO3)2, CdCl2, KHNO3, polyethylene glycol 6000 (PEG-6000), indole-3-acetic acid (IAA), ß-aminobutyric acid (BABA), and glutathione (GSH)), NaCl and PEG-6000 were further investigated because of their low risks to plant growth and efficiency to Cd reduction. Priming procedures (concentrations) were optimized for both chemicals and the best one (100 mM NaCl) was used to test both soil and hydroponic media. The results showed 31.3% lower Cd concentrations in shoots after priming with 100 mM NaCl. Phenotype parameters of the plants were also measured and showed no significant impacts of the priming procedures on the shoot biomass and the uptakes of nitrogen (N), phosphorus (P), and potassium (K), nor the photosynthetic capacity (net photosynthesis rate (Pn) and chlorophyll concentration (SPAD)). Histological observations of the roots showed a significant increase of the stele diameter after NaCl priming and a subsequent negative correlation between shoot Cd concentration and stele diameter was found after NaCl priming at different levels. This study confirmed 100 mM NaCl as an efficient priming treatment to decrease Cd uptake and the coarsening of the root stele was identified as a potential explanation for the observed decrease of Cd in tobacco shoots.
Collapse
Affiliation(s)
- Jia-Shuo Yang
- Institute of Tobacco Research, Chinese Academy of Agricultural Sciences, 11 Keyuanjingsi Road, Qingdao, 266101, People's Republic of China.
- Central-South Agricultural Experiment Station of China Tobacco, 628 Furong Road, Changsha, 410004, People's Republic of China.
| | - Yanjiao Dai
- Hunan Academy of Agricultural Science, 892 Yuanda Road, Changsha, 410125, People's Republic of China
| | - Yongjun Liu
- Central-South Agricultural Experiment Station of China Tobacco, 628 Furong Road, Changsha, 410004, People's Republic of China
| | - Shuhui Duan
- Central-South Agricultural Experiment Station of China Tobacco, 628 Furong Road, Changsha, 410004, People's Republic of China
| | - Yang-Yang Li
- Central-South Agricultural Experiment Station of China Tobacco, 628 Furong Road, Changsha, 410004, People's Republic of China
| | - Risheng Hu
- Central-South Agricultural Experiment Station of China Tobacco, 628 Furong Road, Changsha, 410004, People's Republic of China
| | - Zhicheng Zhou
- Central-South Agricultural Experiment Station of China Tobacco, 628 Furong Road, Changsha, 410004, People's Republic of China
| | - Yi Shi
- Institute of Tobacco Research, Chinese Academy of Agricultural Sciences, 11 Keyuanjingsi Road, Qingdao, 266101, People's Republic of China
| | - Haiwei Liu
- Institute of Tobacco Research, Chinese Academy of Agricultural Sciences, 11 Keyuanjingsi Road, Qingdao, 266101, People's Republic of China
| | - Shusheng Wang
- Institute of Tobacco Research, Chinese Academy of Agricultural Sciences, 11 Keyuanjingsi Road, Qingdao, 266101, People's Republic of China.
| |
Collapse
|
14
|
Xu L, Zhang F, Tang M, Wang Y, Dong J, Ying J, Chen Y, Hu B, Li C, Liu L. Melatonin confers cadmium tolerance by modulating critical heavy metal chelators and transporters in radish plants. J Pineal Res 2020; 69:e12659. [PMID: 32323337 DOI: 10.1111/jpi.12659] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/02/2020] [Accepted: 04/18/2020] [Indexed: 12/18/2022]
Abstract
Cadmium (Cd) is an environmental pollutant that causes health hazard to living organisms. Melatonin (MT) has emerged as a ubiquitous pleiotropic molecule capable of coordinating heavy metal (HM) stresses in plants. However, it remains unclear how melatonin mediates Cd homeostasis and detoxification at transcriptional and/or post-transcriptional levels in radish. Herein, the activities of five key antioxidant enzymes were increased, while root and shoot Cd contents were dramatically decreased by melatonin. A combined small RNA and transcriptome sequencing analysis showed that 14 differentially expressed microRNAs (DEMs) and 966 differentially expressed genes (DEGs) were shared between the Cd and Cd + MT conditions. In all, 23 and ten correlated miRNA-DEG pairs were identified in Con vs. Cd and Con vs. Cd + MT comparisons, respectively. Several DEGs encoding yellow stripe 1-like (YSL), heavy metal ATPases (HMA), and ATP-binding cassette (ABC) transporters were involved in Cd transportation and sequestration in radish. Root exposure to Cd2+ induced several specific signaling molecules, which consequently trigger some HM chelators, transporters, and antioxidants to achieve reactive oxygen species (ROS) scavenging and detoxification and eliminate Cd toxicity in radish plants. Notably, transgenic analysis revealed that overexpression of the RsMT1 (Metallothionein 1) gene could enhance Cd tolerance of tobacco plants, indicating that the exogenous melatonin confers Cd tolerance, which might be attributable to melatonin-mediated upregulation of RsMT1 gene in radish plants. These results could contribute to dissecting the molecular basis governing melatonin-mediated Cd stress response in plants and pave the way for high-efficient genetically engineering low-Cd-content cultivars in radish breeding programs.
Collapse
Affiliation(s)
- Liang Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Fei Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Mingjia Tang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yan Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Junhui Dong
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jiali Ying
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yinglong Chen
- School of Agriculture and Environment, The UWA's Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Bing Hu
- College of Life Science, Nanjing Agricultural University, Nanjing, China
| | - Cui Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
15
|
Moore RET, Ullah I, de Oliveira VH, Hammond SJ, Strekopytov S, Tibbett M, Dunwell JM, Rehkämper M. Cadmium isotope fractionation reveals genetic variation in Cd uptake and translocation by Theobroma cacao and role of natural resistance-associated macrophage protein 5 and heavy metal ATPase-family transporters. HORTICULTURE RESEARCH 2020; 7:71. [PMID: 32377361 PMCID: PMC7193571 DOI: 10.1038/s41438-020-0292-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/16/2020] [Accepted: 03/20/2020] [Indexed: 05/18/2023]
Abstract
In response to new European Union regulations, studies are underway to mitigate accumulation of toxic cadmium (Cd) in cacao (Theobroma cacao, Tc). This study advances such research with Cd isotope analyses of 19 genetically diverse cacao clones and yeast transformed to express cacao natural resistance-associated macrophage protein (NRAMP5) and heavy metal ATPases (HMAs). The plants were enriched in light Cd isotopes relative to the hydroponic solution with Δ114/110Cdtot-sol = -0.22 ± 0.08‰. Leaves show a systematic enrichment of isotopically heavy Cd relative to total plants, in accord with closed-system isotope fractionation of Δ114/110Cdseq-mob = -0.13‰, by sequestering isotopically light Cd in roots/stems and mobilisation of remaining Cd to leaves. The findings demonstrate that (i) transfer of Cd between roots and leaves is primarily unidirectional; (ii) different clones utilise similar pathways for Cd sequestration, which differ from those of other studied plants; (iii) clones differ in their efficiency of Cd sequestration. Transgenic yeast that expresses TcNRAMP5 (T. cacao natural resistance-associated macrophage gene) had isotopically lighter Cd than did cacao. This suggests that NRAMP5 transporters constitute an important pathway for uptake of Cd by cacao. Cd isotope signatures of transgenic yeast expressing HMA-family proteins suggest that they may contribute to Cd sequestration. The data are the first to record isotope fractionation induced by transporter proteins in vivo.
Collapse
Affiliation(s)
- Rebekah E. T. Moore
- Department of Earth Science and Engineering, Imperial College, London, SW7 2BP UK
| | - Ihsan Ullah
- School of Agriculture, Policy and Development, University of Reading, Reading, RG6 6BZ UK
| | - Vinicius H. de Oliveira
- School of Agriculture, Policy and Development, University of Reading, Reading, RG6 6BZ UK
- Present Address: Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, Sao Paulo 13083-970 Brazil
| | - Samantha J. Hammond
- School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes, MK7 6AA UK
| | - Stanislav Strekopytov
- Imaging and Analysis Centre, The Natural History Museum, London, SW7 5BD UK
- Present Address: National Measurement Laboratory, LGC, Queen’s Road, Teddington, TW11 0LY UK
| | - Mark Tibbett
- School of Agriculture, Policy and Development, University of Reading, Reading, RG6 6BZ UK
| | - Jim M. Dunwell
- School of Agriculture, Policy and Development, University of Reading, Reading, RG6 6BZ UK
| | - Mark Rehkämper
- Department of Earth Science and Engineering, Imperial College, London, SW7 2BP UK
| |
Collapse
|
16
|
Ceasar SA, Lekeux G, Motte P, Xiao Z, Galleni M, Hanikenne M. di-Cysteine Residues of the Arabidopsis thaliana HMA4 C-Terminus Are Only Partially Required for Cadmium Transport. FRONTIERS IN PLANT SCIENCE 2020; 11:560. [PMID: 32528485 PMCID: PMC7264368 DOI: 10.3389/fpls.2020.00560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/15/2020] [Indexed: 05/12/2023]
Abstract
Cadmium (Cd) is highly toxic to the environment and humans. Plants are capable of absorbing Cd from the soil and of transporting part of this Cd to their shoot tissues. In Arabidopsis, the plasma membrane Heavy Metal ATPase 4 (HMA4) transporter mediates Cd xylem loading for export to shoots, in addition to zinc (Zn). A recent study showed that di-Cys motifs present in the HMA4 C-terminal extension (AtHMA4c) are essential for high-affinity Zn binding and transport in planta. In this study, we have characterized the role of the AtHMA4c di-Cys motifs in Cd transport in planta and in Cd-binding in vitro. In contrast to the case for Zn, the di-Cys motifs seem to be partly dispensable for Cd transport as evidenced by limited variation in Cd accumulation in shoot tissues of hma2hma4 double mutant plants expressing native or di-Cys mutated variants of AtHMA4. Expression analysis of metal homeostasis marker genes, such as AtIRT1, excluded that maintained Cd accumulation in shoot tissues was the result of increased Cd uptake by roots. In vitro Cd-binding assays further revealed that mutating di-Cys motifs in AtHMA4c had a more limited impact on Cd-binding than it has on Zn-binding. The contributions of the AtHMA4 C-terminal domain to metal transport and binding therefore differ for Zn and Cd. Our data suggest that it is possible to identify HMA4 variants that discriminate Zn and Cd for transport.
Collapse
Affiliation(s)
- Stanislaus Antony Ceasar
- InBioS – PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, Belgium
- InBioS – Center for Protein Engineering, Biological Macromolecules, University of Liège, Liège, Belgium
| | - Gilles Lekeux
- InBioS – PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, Belgium
- InBioS – Center for Protein Engineering, Biological Macromolecules, University of Liège, Liège, Belgium
| | - Patrick Motte
- InBioS – PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, Belgium
| | - Zhiguang Xiao
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Moreno Galleni
- InBioS – Center for Protein Engineering, Biological Macromolecules, University of Liège, Liège, Belgium
| | - Marc Hanikenne
- InBioS – PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, Belgium
- *Correspondence: Marc Hanikenne,
| |
Collapse
|
17
|
Blasco B, Navarro-León E, Ruiz JM. Study of Zn accumulation and tolerance of HMA4 TILLING mutants of Brassica rapa grown under Zn deficiency and Zn toxicity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 287:110201. [PMID: 31481218 DOI: 10.1016/j.plantsci.2019.110201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/20/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Nowadays, Zinc (Zn) deficiency is the most widespread micronutrient deficiency but simultaneously Zn toxicity is produced due to environmental pollution. A potential method to alleviate Zn deficiency and to reduce Zn concentration in soils is through the generation of plants with enhanced capacity for Zn accumulation and higher tolerance. This could be achieved through the modification of HMA4 transporter. BraA.hma4a-3 is a TILLING mutant plant that presents one modification in HMA4 transporter. Thus, in this study we analyzed the potential of BraA.hma4a-3 for Zn accumulation and Zn deficiency and toxicity tolerance. BraA.hma4a-3 and parental R-o-18 plants were grown with different Zn doses: 1 μM ZnSO4 (Control), 0.01 μM ZnSO4 (Zn deficiency) and 100 μM ZnSO4 (Zn toxicity). Parameters of biomass, Zn concentration, photosynthesis, oxidative stress, N metabolism and amino acids (AAs) were measured. BraA.hma4a-3 did not affect plant biomass but did increase Zn accumulation in leaves under an adequate Zn supply and Fe under control and Zn deficiency doses. Regarding stress tolerance parameters and N metabolism, BraA.hma4a did not produce alterations under control conditions. In addition, under Zn toxicity, parameters suggest a greater tolerance. Briefly, the obtained results point to BraA.hma4a-3 as a useful mutant to increase Zn accumulation.
Collapse
Affiliation(s)
- Begoña Blasco
- Department of Plant Physiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain.
| | - Eloy Navarro-León
- Department of Plant Physiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain.
| | - Juan Manuel Ruiz
- Department of Plant Physiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain.
| |
Collapse
|
18
|
Navarro-León E, Oviedo-Silva J, Ruiz JM, Blasco B. Possible role of HMA4a TILLING mutants of Brassica rapa in cadmium phytoremediation programs. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:88-94. [PMID: 31078020 DOI: 10.1016/j.ecoenv.2019.04.081] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 05/15/2023]
Abstract
Cadmium (Cd) is a dangerous transition element that causes environmental and health problems due to its high mobility in the soil-plant system. In plants, Cd causes serious alterations in physiological processes, affecting different vital functions such as photosynthesis. Species such as Brassica juncea and Brassica rapa have been selected as suitable plants for phytoremediation purposes due to their ability to tolerate the toxic effect of heavy metals. In order to improve this strategy, techniques of plant mutagenesis such as TILLING (Targeting Induced Local Lessions in Genomes) have been employed. In the present work we studied the role of the HMA4 gene in the tolerance to Cd toxicity (100 μM CdCl2) using a TILLING mutant of B. rapa (BraA.hma4a-3). These mutant plants presented a lower biomass reduction and a higher Cd concentration in leaves. An increase in the GSH/GSSG ratio, in the content of photosynthetic pigments and a reduction of oxidative stress was observed, as well as a better photosynthetic index, confirming that BraA.hma4a-3 plants showed a higher tolerance to Cd. In conclusion, according to the results obtained in this work, BraA.hma4a-3 plants could be used for phytoremediation purposes of Cd contaminated soils.
Collapse
Affiliation(s)
- Eloy Navarro-León
- Department of Plant Physiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain.
| | - Jhonnatan Oviedo-Silva
- Department of Plant Physiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain.
| | - Juan Manuel Ruiz
- Department of Plant Physiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain.
| | - Begoña Blasco
- Department of Plant Physiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain.
| |
Collapse
|
19
|
Qiao K, Wang F, Liang S, Wang H, Hu Z, Chai T. Improved Cd, Zn and Mn tolerance and reduced Cd accumulation in grains with wheat-based cell number regulator TaCNR2. Sci Rep 2019; 9:870. [PMID: 30696904 PMCID: PMC6351596 DOI: 10.1038/s41598-018-37352-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/07/2018] [Indexed: 02/01/2023] Open
Abstract
Soil microelement deficiency and heavy metal contamination affects plant growth and development, but improving trace element uptake and reducing heavy metal accumulation by genetic breeding can help alleviate this. Cell number regulator 2 (TaCNR2) from common wheat (Triticum aestivum) are similar to plant cadmium resistance proteins, involved with regulating heavy metal translocation. Our aim was to understand the effect of TaCNR2 on heavy metal tolerance and translocation. In this study, real-time quantitative PCR indicated TaCNR2 expression in the wheat seedlings increased under Cd, Zn and Mn treatment. Overexpression of TaCNR2 in Arabidopsis and rice enhanced its stress tolerance to Cd, Zn and Mn, and overexpression in rice improved Cd, Zn and Mn translocation from roots to shoots. The grain husks in overexpressed rice had higher Cd, Zn and Mn concentrations, but the brown rice accumulated less Cd but higher Mn than wild rice. The results showed that TaCNR2 can transport heavy metal ions. Thus, this study provides a novel gene resource for increasing nutrition uptake and reducing toxic metal accumulation in crops.
Collapse
Affiliation(s)
- Kun Qiao
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China.,Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Fanhong Wang
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Shuang Liang
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Hong Wang
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China.
| | - Tuanyao Chai
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China. .,Southeast Asia Biodiversity Research Institute, Chinese Academy of Science, Yezin, Nay Pyi Taw, 05282, Myanmar. .,The Innovative Academy of Seed Design (INASEED), Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
20
|
Lekeux G, Crowet JM, Nouet C, Joris M, Jadoul A, Bosman B, Carnol M, Motte P, Lins L, Galleni M, Hanikenne M. Homology modeling and in vivo functional characterization of the zinc permeation pathway in a heavy metal P-type ATPase. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:329-341. [PMID: 30418580 PMCID: PMC6305203 DOI: 10.1093/jxb/ery353] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/01/2018] [Indexed: 05/26/2023]
Abstract
The P1B ATPase heavy metal ATPase 4 (HMA4) is responsible for zinc and cadmium translocation from roots to shoots in Arabidopsis thaliana. It couples ATP hydrolysis to cytosolic domain movements, enabling metal transport across the membrane. The detailed mechanism of metal permeation by HMA4 through the membrane remains elusive. Here, homology modeling of the HMA4 transmembrane region was conducted based on the crystal structure of a ZntA bacterial homolog. The analysis highlighted amino acids forming a metal permeation pathway, whose importance was subsequently investigated functionally through mutagenesis and complementation experiments in plants. Although the zinc pathway displayed overall conservation among the two proteins, significant differences were observed, especially in the entrance area with altered electronegativity and the presence of a ionic interaction/hydrogen bond network. The analysis also newly identified amino acids whose mutation results in total or partial loss of the protein function. In addition, comparison of zinc and cadmium accumulation in shoots of A. thaliana complemented lines revealed a number of HMA4 mutants exhibiting different abilities in zinc and cadmium translocation. These observations could be instrumental to design low cadmium-accumulating crops, hence decreasing human cadmium exposure.
Collapse
Affiliation(s)
- Gilles Lekeux
- InBioS - Center for Protein Engineering (CIP), Biological Macromolecules, University of Liège, Liège, Belgium
- InBioS - PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, Belgium
| | - Jean-Marc Crowet
- Laboratory of Molecular Biophysics at Interfaces, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Cécile Nouet
- InBioS - PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, Belgium
| | - Marine Joris
- InBioS - PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, Belgium
| | - Alice Jadoul
- InBioS - PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, Belgium
| | - Bernard Bosman
- InBioS - PhytoSystems, Laboratory of Plant and Microbial Ecology, Department of Biology, Ecology, Evolution, University of Liège, Liège, Belgium
| | - Monique Carnol
- InBioS - PhytoSystems, Laboratory of Plant and Microbial Ecology, Department of Biology, Ecology, Evolution, University of Liège, Liège, Belgium
| | - Patrick Motte
- InBioS - PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, Belgium
| | - Laurence Lins
- Laboratory of Molecular Biophysics at Interfaces, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Moreno Galleni
- InBioS - Center for Protein Engineering (CIP), Biological Macromolecules, University of Liège, Liège, Belgium
| | - Marc Hanikenne
- InBioS - PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, Belgium
| |
Collapse
|
21
|
Papierniak A, Kozak K, Kendziorek M, Barabasz A, Palusińska M, Tiuryn J, Paterczyk B, Williams LE, Antosiewicz DM. Contribution of NtZIP1-Like to the Regulation of Zn Homeostasis. FRONTIERS IN PLANT SCIENCE 2018; 9:185. [PMID: 29503658 PMCID: PMC5820362 DOI: 10.3389/fpls.2018.00185] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/31/2018] [Indexed: 05/20/2023]
Abstract
Tobacco has frequently been suggested as a candidate plant species for use in phytoremediation of metal contaminated soil but knowledge on the regulation of its metal-homeostasis is still in the infancy. To identify new tobacco metal transport genes that are involved in Zn homeostasis a bioinformatics study using the tobacco genome information together with expression analysis was performed. Ten new tobacco metal transport genes from the ZIP, NRAMP, MTP, and MRP/ABCC families were identified with expression levels in leaves that were modified by exposure to Zn excess. Following exposure to high Zn there was upregulation of NtZIP11-like, NtNRAMP3, three isoforms of NtMTP2, three MRP/ABCC genes (NtMRP5-like, NtMRP10-like, and NtMRP14 like) and downregulation of NtZIP1-like and NtZIP4. This suggests their involvement in several processes governing the response to Zn-related stress and in the efficiency of Zn accumulation (uptake, sequestration, and redistribution). Further detailed analysis of NtZIP1-like provided evidence that it is localized at the plasma membrane and is involved in Zn but not Fe and Cd transport. NtZIP1-like is expressed in the roots and shoots, and is regulated developmentally and in a tissue-specific manner. It is highly upregulated by Zn deficiency in the leaves and the root basal region but not in the root apical zone (region of maturation and absorption containing root hairs). Thus NtZIP1-like is unlikely to be responsible for Zn uptake by the root apical region but rather in the uptake by root cells within the already mature basal zone. It is downregulated by Zn excess suggesting it is involved in a mechanism to protect the root and leaf cells from accumulating excess Zn.
Collapse
Affiliation(s)
- Anna Papierniak
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Katarzyna Kozak
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Maria Kendziorek
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Anna Barabasz
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Małgorzata Palusińska
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Jerzy Tiuryn
- Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, Warsaw, Poland
| | - Bohdan Paterczyk
- Laboratory of Electron and Confocal Microscopy, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Danuta M. Antosiewicz
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- *Correspondence: Danuta M. Antosiewicz,
| |
Collapse
|
22
|
Tang Z, Cai H, Li J, Lv Y, Zhang W, Zhao FJ. Allelic Variation of NtNramp5 Associated with Cultivar Variation in Cadmium Accumulation in Tobacco. PLANT & CELL PHYSIOLOGY 2017; 58:1583-1593. [PMID: 28922747 DOI: 10.1093/pcp/pcx087] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/13/2017] [Indexed: 05/15/2023]
Abstract
Tobacco (Nicotiana tabacum) is a cadmium (Cd) accumulator, and smoking is a major source of Cd exposure. In the present study, we identified two tobacco cultivars with contrasting phenotypes of Cd and manganese (Mn) accumulation in both hydroponic and soil pot experiments. Physiological experiments showed that the two cultivars differed in Cd uptake, but not in Cd translocation from roots to shoots. A homolog of OsNramp5 (natural resistance-associated macrophage protein 5), NtNramp5, was isolated from both cultivars. There was no significant difference in the expression level of NtNramp5 in the roots between the two cultivars. Sequence analysis revealed that the low Cd/Mn-accumulating cultivar possesses an NtNramp5 allele with a predicted mutation for early translation termination, resulting in a truncated protein missing 104 amino acids in the C-terminus of the full-length NtNramp5 found in the high Cd/Mn-accumulating cultivar. Both proteins were found to be localized to the plasma membrane. Heterologous expression of the two alleles of NtNramp5 in yeast showed that the full-length protein had transport activities for both Mn and Cd, whereas the truncated protein had no transport activity for Mn and a weak transport activity for Cd. These results suggest that NtNramp5 is a transporter for Mn and Cd, and the allelic variation in the coding region of NtNramp5 probaby explains the cultivar difference in Cd and Mn accumulation.
Collapse
Affiliation(s)
- Zhong Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hailin Cai
- Tobacco Production Technology Center, Changsha Branch of Hunan Tobacco Company, Changsha 410001, China
| | - Jie Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanling Lv
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenwen Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|