2
|
Chakraborty K, Ray S, Vijayan J, Molla KA, Nagar R, Jena P, Mondal S, Panda BB, Shaw BP, Swain P, Chattopadhyay K, Sarkar RK. Preformed aerenchyma determines the differential tolerance response under partial submergence imposed by fresh and saline water flooding in rice. PHYSIOLOGIA PLANTARUM 2021; 173:1597-1615. [PMID: 34431099 DOI: 10.1111/ppl.13536] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/30/2021] [Accepted: 08/20/2021] [Indexed: 05/11/2023]
Abstract
Plant's response to fresh- and saline-water flooding and the resulting partial submergence, seems different due to the added complexities of element toxicity of salinity. We identified a few rice genotypes which can tolerate combined stresses of partial submergence and salinity during saline water flooding. To gain mechanistic insights, we compared two rice genotypes: Varshadhan (freshwater-flooding tolerant) and Rashpanjor (both fresh- and saline-water flooding tolerant). We found greater ethylene production and increased "respiratory burst oxidase homolog" (RBOH)-mediated reactive oxygen species (ROS) production led to well-developed constitutive aerenchyma formation in Rashpanjor, which makes it preadapted to withstand fresh- and saline-water flooding. On the contrary, an induced aerenchyma formation-dependent tolerance mechanism of Varshadhan worked well for freshwater flooding but failed to provide tolerance to saline-water flooding. Additional salt stress was found to significantly inhibit the induced aerenchyma formation process due to the dampening of ROS signaling by the action of metallothionein in Varshadhan. Besides, inconspicuous changes in ionic regulation processes in these two genotypes under saline-water flooding suggest preadapted constitutive aerenchyma formation plays a more significant role than elemental toxicity per se in tolerating combined stresses encountered during saline water flooding in rice. Overall, our study indicated that well-developed constitutive aerenchyma provide an adaptive advantage during partial submergence due to saline water flooding in rice as the key process of induced aerenchyma formation is hampered in the presence of salinity stress coupled with partial submergence.
Collapse
Affiliation(s)
| | - Soham Ray
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Joshitha Vijayan
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | | | - Ramawatar Nagar
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Priyanka Jena
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | | | - Binay B Panda
- Institute of Life Sciences, Bhubaneswar, Odisha, India
| | | | - Padmini Swain
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | | | - Ramani K Sarkar
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
| |
Collapse
|
3
|
Mori Y, Kurokawa Y, Koike M, Malik AI, Colmer TD, Ashikari M, Pedersen O, Nagai K. Diel O2 Dynamics in Partially and Completely Submerged Deepwater Rice: Leaf Gas Films Enhance Internodal O2 Status, Influence Gene Expression and Accelerate Stem Elongation for 'Snorkelling' during Submergence. PLANT & CELL PHYSIOLOGY 2019; 60:973-985. [PMID: 30668838 DOI: 10.1093/pcp/pcz009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/18/2019] [Indexed: 06/09/2023]
Abstract
Deepwater rice has a remarkable shoot elongation response to partial submergence. Shoot elongation to maintain air-contact enables 'snorkelling' of O2 to submerged organs. Previous research has focused on partial submergence of deepwater rice. We tested the hypothesis that leaf gas films enhance internode O2 status and stem elongation of deepwater rice when completely submerged. Diel patterns of O2 partial pressure (pO2) were measured in internodes of deepwater rice when partially or completely submerged, and with or without gas films on leaves, for the completely submerged plants. We also took measurements for paddy rice. Deepwater rice elongated during complete submergence and the shoot tops emerged. Leaf gas films improved O2 entry during the night, preventing anoxia in stems, which is of importance for elongation of the submerged shoots. Expressions of O2 deprivation inducible genes were upregulated in completely submerged plants during the night, and more so when gas films were removed from the leaves. Diel O2 dynamics showed similar patterns in paddy and deepwater rice. We demonstrated that shoot tops in air enabled 'snorkelling' and increased O2 in internodes of both rice ecotypes; however, 'snorkelling' was achieved only by rapid shoot elongation by deepwater rice, but not by paddy rice.
Collapse
Affiliation(s)
- Yoshinao Mori
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi, Japan
| | - Yusuke Kurokawa
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi, Japan
| | - Masaya Koike
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi, Japan
| | - Al Imran Malik
- Centre for Plant Genetics and Breeding, UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA, Australia
| | - Timothy David Colmer
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA, Australia
| | - Motoyuki Ashikari
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi, Japan
| | - Ole Pedersen
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA, Australia
- Department of Biology, University of Copenhagen, Universitetsparken 4, 3rd floor, DK, Copenhagen, Denmark
| | - Keisuke Nagai
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi, Japan
| |
Collapse
|
5
|
Kurokawa Y, Nagai K, Huan PD, Shimazaki K, Qu H, Mori Y, Toda Y, Kuroha T, Hayashi N, Aiga S, Itoh JI, Yoshimura A, Sasaki-Sekimoto Y, Ohta H, Shimojima M, Malik AI, Pedersen O, Colmer TD, Ashikari M. Rice leaf hydrophobicity and gas films are conferred by a wax synthesis gene (LGF1) and contribute to flood tolerance. THE NEW PHYTOLOGIST 2018; 218:1558-1569. [PMID: 29498045 DOI: 10.1111/nph.15070] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/14/2018] [Indexed: 06/08/2023]
Abstract
Floods impede gas (O2 and CO2 ) exchange between plants and the environment. A mechanism to enhance plant gas exchange under water comprises gas films on hydrophobic leaves, but the genetic regulation of this mechanism is unknown. We used a rice mutant (dripping wet leaf 7, drp7) which does not retain gas films on leaves, and its wild-type (Kinmaze), in gene discovery for this trait. Gene complementation was tested in transgenic lines. Functional properties of leaves as related to gas film retention and underwater photosynthesis were evaluated. Leaf Gas Film 1 (LGF1) was identified as the gene determining leaf gas films. LGF1 regulates C30 primary alcohol synthesis, which is necessary for abundant epicuticular wax platelets, leaf hydrophobicity and gas films on submerged leaves. This trait enhanced underwater photosynthesis 8.2-fold and contributes to submergence tolerance. Gene function was verified by a complementation test of LGF1 expressed in the drp7 mutant background, which restored C30 primary alcohol synthesis, wax platelet abundance, leaf hydrophobicity, gas film retention, and underwater photosynthesis. The discovery of LGF1 provides an opportunity to better understand variation amongst rice genotypes for gas film retention ability and to target various alleles in breeding for improved submergence tolerance for yield stability in flood-prone areas.
Collapse
Affiliation(s)
- Yusuke Kurokawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi, 464-8602, Japan
| | - Keisuke Nagai
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Phung Danh Huan
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi, 464-8602, Japan
- Crops Research and Development Institute, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Ha Noi, Vietnam
| | - Kousuke Shimazaki
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama, Kanagawa, 226-8503, Japan
| | - Huangqi Qu
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi, 464-8602, Japan
| | - Yoshinao Mori
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi, 464-8602, Japan
| | - Yosuke Toda
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi, 464-8602, Japan
| | - Takeshi Kuroha
- Graduate School of Life Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba, Sendai, Miyagi, 980-8578, Japan
| | - Nagao Hayashi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Saori Aiga
- Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Jun-Ichi Itoh
- Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Atsushi Yoshimura
- Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi, Fukuoka, 812-8581, Japan
| | - Yuko Sasaki-Sekimoto
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama, Kanagawa, 226-8503, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Japan
| | - Hiroyuki Ohta
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama, Kanagawa, 226-8503, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama, Kanagawa, 226-8503, Japan
| | - Mie Shimojima
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama, Kanagawa, 226-8503, Japan
| | - Al Imran Malik
- Centre for Plant Genetics and Breeding, UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Ole Pedersen
- Department of Biology, University of Copenhagen, Universitetsparken 4, 3rd floor, Copenhagen, 2100, Denmark
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Timothy David Colmer
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Motoyuki Ashikari
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| |
Collapse
|
6
|
Dhankher OP, Foyer CH. Climate resilient crops for improving global food security and safety. PLANT, CELL & ENVIRONMENT 2018; 41:877-884. [PMID: 29663504 DOI: 10.1111/pce.13207] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Food security and the protection of the environment are urgent issues for global society, particularly with the uncertainties of climate change. Changing climate is predicted to have a wide range of negative impacts on plant physiology metabolism, soil fertility and carbon sequestration, microbial activity and diversity that will limit plant growth and productivity, and ultimately food production. Ensuring global food security and food safety will require an intensive research effort across the food chain, starting with crop production and the nutritional quality of the food products. Much uncertainty remains concerning the resilience of plants, soils, and associated microbes to climate change. Intensive efforts are currently underway to improve crop yields with lower input requirements and enhance the sustainability of yield through improved biotic and abiotic stress tolerance traits. In addition, significant efforts are focused on gaining a better understanding of the root/soil interface and associated microbiomes, as well as enhancing soil properties.
Collapse
Affiliation(s)
- Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts Amherst MA, Amherst, MA, 01003, USA
| | - Christine H Foyer
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|