1
|
Zhang H, Rundle C, Winter N, Miricescu A, Mooney BC, Bachmair A, Graciet E, Theodoulou FL. BIG enhances Arg/N-degron pathway-mediated protein degradation to regulate Arabidopsis hypoxia responses and suberin deposition. THE PLANT CELL 2024; 36:3177-3200. [PMID: 38608155 PMCID: PMC11371152 DOI: 10.1093/plcell/koae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024]
Abstract
BIG/DARK OVEREXPRESSION OF CAB1/TRANSPORT INHIBITOR RESPONSE3 is a 0.5 MDa protein associated with multiple functions in Arabidopsis (Arabidopsis thaliana) signaling and development. However, the biochemical functions of BIG are unknown. We investigated a role for BIG in the Arg/N-degron pathways, in which substrate protein fate is influenced by the N-terminal residue. We crossed a big loss-of-function allele to 2 N-degron pathway E3 ligase mutants, proteolysis6 (prt6) and prt1, and examined the stability of protein substrates. Stability of model substrates was enhanced in prt6-1 big-2 and prt1-1 big-2 relative to the respective single mutants, and the abundance of the PRT6 physiological substrates, HYPOXIA-RESPONSIVE ERF2 (HRE2) and VERNALIZATION2 (VRN2), was similarly increased in prt6 big double mutants. Hypoxia marker expression was enhanced in prt6 big double mutants; this constitutive response required arginyl transferase activity and RAP-type Group VII ethylene response factor (ERFVII) transcription factors. Transcriptomic analysis of roots not only demonstrated increased expression of multiple hypoxia-responsive genes in the double mutant relative to prt6, but also revealed other roles for PRT6 and BIG, including regulation of suberin deposition through both ERFVII-dependent and independent mechanisms, respectively. Our results show that BIG acts together with PRT6 to regulate the hypoxia-response and broader processes in Arabidopsis.
Collapse
Affiliation(s)
- Hongtao Zhang
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Chelsea Rundle
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Nikola Winter
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | | | - Brian C Mooney
- Department of Biology, Maynooth University, Maynooth, Ireland
| | - Andreas Bachmair
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
2
|
Triozzi PM, Brunello L, Novi G, Ferri G, Cardarelli F, Loreti E, Perales M, Perata P. Spatiotemporal oxygen dynamics in young leaves reveal cyclic hypoxia in plants. MOLECULAR PLANT 2024; 17:377-394. [PMID: 38243593 DOI: 10.1016/j.molp.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
Oxygen is essential for plant growth and development. Hypoxia occurs in plants due to limited oxygen availability following adverse environmental conditions as well in hypoxic niches in otherwise normoxic environments. However, the existence and functional integration of spatiotemporal oxygen dynamics with plant development remains unknown. In animal systems dynamic fluctuations in oxygen availability are known as cyclic hypoxia. In this study, we demonstrate that cyclic fluctuations in internal oxygen levels occur in young emerging leaves of Arabidopsis plants. Cyclic hypoxia in plants is based on a mechanism requiring the ETHYLENE RESPONSE FACTORS type VII (ERFVII) that are central components of the oxygen-sensing machinery in plants. The ERFVII-dependent mechanism allows precise adjustment of leaf growth in response to carbon status and oxygen availability within plant cells. This study thus establishes a functional connection between internal spatiotemporal oxygen dynamics and developmental processes of plants.
Collapse
Affiliation(s)
- Paolo M Triozzi
- PlantLab, Center of Plant Sciences, Sant'Anna School of Advanced Studies, 56010 Pisa, Italy; Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Luca Brunello
- PlantLab, Center of Plant Sciences, Sant'Anna School of Advanced Studies, 56010 Pisa, Italy
| | - Giacomo Novi
- PlantLab, Center of Plant Sciences, Sant'Anna School of Advanced Studies, 56010 Pisa, Italy
| | | | - Francesco Cardarelli
- Laboratorio NEST, Scuola Normale Superiore, Istituto Nanoscienze-CNR, Piazza S. Silvestro, 12, 56127 Pisa, Italy
| | - Elena Loreti
- Institute of Agricultural Biology and Biotechnology, National Research Council, 56124 Pisa, Italy
| | - Mariano Perales
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| | - Pierdomenico Perata
- PlantLab, Center of Plant Sciences, Sant'Anna School of Advanced Studies, 56010 Pisa, Italy.
| |
Collapse
|
3
|
Peláez-Vico MÁ, Tukuli A, Singh P, Mendoza-Cózatl DG, Joshi T, Mittler R. Rapid systemic responses of Arabidopsis to waterlogging stress. PLANT PHYSIOLOGY 2023; 193:2215-2231. [PMID: 37534775 DOI: 10.1093/plphys/kiad433] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/05/2023] [Indexed: 08/04/2023]
Abstract
Waterlogging stress (WLS) negatively impacts the growth and yield of crops resulting in heavy losses to agricultural production. Previous studies have revealed that WLS induces a systemic response in shoots that is partially dependent on the plant hormones ethylene and abscisic acid. However, the role of rapid cell-to-cell signaling pathways, such as the reactive oxygen species (ROS) and calcium waves, in systemic responses of plants to WLS is unknown at present. Here, we reveal that an abrupt WLS treatment of Arabidopsis (Arabidopsis thaliana) plants growing in peat moss triggers systemic ROS and calcium wave responses and that the WLS-triggered ROS wave response of Arabidopsis is dependent on the ROS-generating RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD), calcium-permeable channels GLUTAMATE-LIKE RECEPTOR 3.3 and 3.6 (GLR3.3 and GLR3.6), and aquaporin PLASMA MEMBRANE INTRINSIC PROTEIN 2;1 (PIP2;1) proteins. We further show that WLS is accompanied by a rapid systemic transcriptomic response that is evident as early as 10 min following waterlogging initiation, includes many hypoxia-response transcripts, and is partially dependent on RBOHD. Interestingly, the abrupt WLS of Arabidopsis resulted in the triggering of a rapid hydraulic wave response and the transient opening of stomata on leaves. In addition, it induced in plants a heightened state of tolerance to a subsequent submergence stress. Taken together, our findings reveal that the initiation of WLS in plants is accompanied by rapid systemic physiological and transcriptomic responses that involve the ROS, calcium, and hydraulic waves, as well as the induction of hypoxia acclimation mechanisms in systemic tissues.
Collapse
Affiliation(s)
- María Ángeles Peláez-Vico
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| | - Adama Tukuli
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Pallav Singh
- Institute for Data Science and Informatics and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| | - David G Mendoza-Cózatl
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Trupti Joshi
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Institute for Data Science and Informatics and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
- Department of Health Management and Informatics, University of Missouri, Columbia, MO 65211, USA
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA
| | - Ron Mittler
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
- Department of Surgery, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65201, USA
| |
Collapse
|
4
|
Zubrycka A, Dambire C, Dalle Carbonare L, Sharma G, Boeckx T, Swarup K, Sturrock CJ, Atkinson BS, Swarup R, Corbineau F, Oldham NJ, Holdsworth MJ. ERFVII action and modulation through oxygen-sensing in Arabidopsis thaliana. Nat Commun 2023; 14:4665. [PMID: 37537157 PMCID: PMC10400637 DOI: 10.1038/s41467-023-40366-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023] Open
Abstract
Oxygen is a key signalling component of plant biology, and whilst an oxygen-sensing mechanism was previously described in Arabidopsis thaliana, key features of the associated PLANT CYSTEINE OXIDASE (PCO) N-degron pathway and Group VII ETHYLENE RESPONSE FACTOR (ERFVII) transcription factor substrates remain untested or unknown. We demonstrate that ERFVIIs show non-autonomous activation of root hypoxia tolerance and are essential for root development and survival under oxygen limiting conditions in soil. We determine the combined effects of ERFVIIs in controlling gene expression and define genetic and environmental components required for proteasome-dependent oxygen-regulated stability of ERFVIIs through the PCO N-degron pathway. Using a plant extract, unexpected amino-terminal cysteine sulphonic acid oxidation level of ERFVIIs was observed, suggesting a requirement for additional enzymatic activity within the pathway. Our results provide a holistic understanding of the properties, functions and readouts of this oxygen-sensing mechanism defined through its role in modulating ERFVII stability.
Collapse
Affiliation(s)
- Agata Zubrycka
- School of Biosciences, University of Nottingham, LE12 5RD, Loughborough, UK
| | - Charlene Dambire
- School of Biosciences, University of Nottingham, LE12 5RD, Loughborough, UK
| | - Laura Dalle Carbonare
- School of Biosciences, University of Nottingham, LE12 5RD, Loughborough, UK
- Department of Biology, University of Oxford, OX1 3RB, Oxford, UK
| | - Gunjan Sharma
- School of Biosciences, University of Nottingham, LE12 5RD, Loughborough, UK
| | - Tinne Boeckx
- School of Biosciences, University of Nottingham, LE12 5RD, Loughborough, UK
| | - Kamal Swarup
- School of Biosciences, University of Nottingham, LE12 5RD, Loughborough, UK
| | - Craig J Sturrock
- School of Biosciences, University of Nottingham, LE12 5RD, Loughborough, UK
| | - Brian S Atkinson
- School of Biosciences, University of Nottingham, LE12 5RD, Loughborough, UK
| | - Ranjan Swarup
- School of Biosciences, University of Nottingham, LE12 5RD, Loughborough, UK
| | - Françoise Corbineau
- UMR 7622 CNRS-UPMC, Biologie du développement, Institut de Biologie Paris Seine, Sorbonne Université, Paris, France
| | - Neil J Oldham
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | | |
Collapse
|
5
|
Yuan L, Chen M, Wang L, Sasidharan R, Voesenek LACJ, Xiao S. Multi-stress resilience in plants recovering from submergence. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:466-481. [PMID: 36217562 PMCID: PMC9946147 DOI: 10.1111/pbi.13944] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/14/2022] [Accepted: 10/04/2022] [Indexed: 05/03/2023]
Abstract
Submergence limits plants' access to oxygen and light, causing massive changes in metabolism; after submergence, plants experience additional stresses, including reoxygenation, dehydration, photoinhibition and accelerated senescence. Plant responses to waterlogging and partial or complete submergence have been well studied, but our understanding of plant responses during post-submergence recovery remains limited. During post-submergence recovery, whether a plant can repair the damage caused by submergence and reoxygenation and re-activate key processes to continue to grow, determines whether the plant survives. Here, we summarize the challenges plants face when recovering from submergence, primarily focusing on studies of Arabidopsis thaliana and rice (Oryza sativa). We also highlight recent progress in elucidating the interplay among various regulatory pathways, compare post-hypoxia reoxygenation between plants and animals and provide new perspectives for future studies.
Collapse
Affiliation(s)
- Li‐Bing Yuan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Mo‐Xian Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Lin‐Na Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Rashmi Sasidharan
- Plant Stress Resilience, Institute of Environmental BiologyUtrecht UniversityUtrechtThe Netherlands
| | | | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
6
|
Weits DA, Zhou L, Giuntoli B, Carbonare LD, Iacopino S, Piccinini L, Lombardi L, Shukla V, Bui LT, Novi G, van Dongen JT, Licausi F. Acquisition of hypoxia inducibility by oxygen sensing N-terminal cysteine oxidase in spermatophytes. PLANT, CELL & ENVIRONMENT 2023; 46:322-338. [PMID: 36120894 PMCID: PMC10092093 DOI: 10.1111/pce.14440] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
N-terminal cysteine oxidases (NCOs) use molecular oxygen to oxidise the amino-terminal cysteine of specific proteins, thereby initiating the proteolytic N-degron pathway. To expand the characterisation of the plant family of NCOs (plant cysteine oxidases [PCOs]), we performed a phylogenetic analysis across different taxa in terms of sequence similarity and transcriptional regulation. Based on this survey, we propose a distinction of PCOs into two main groups. A-type PCOs are conserved across all plant species and are generally unaffected at the messenger RNA level by oxygen availability. Instead, B-type PCOs appeared in spermatophytes to acquire transcriptional regulation in response to hypoxia. The inactivation of two A-type PCOs in Arabidopsis thaliana, PCO4 and PCO5, is sufficient to activate the anaerobic response in young seedlings, whereas the additional removal of B-type PCOs leads to a stronger induction of anaerobic genes and impairs plant growth and development. Our results show that both PCO types are required to regulate the anaerobic response in angiosperms. Therefore, while it is possible to distinguish two clades within the PCO family, we conclude that they all contribute to restrain the anaerobic transcriptional programme in normoxic conditions and together generate a molecular switch to toggle the hypoxic response.
Collapse
Affiliation(s)
- Daan A. Weits
- Institute of Biology 1, Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
- Institute of Life SciencesScuola Superiore Sant'AnnaPisaItaly
- Plant‐Environment Signaling, Institute of Environmental BiologyUtrecht UniversityUtrechtThe Netherlands
| | - Lina Zhou
- Institute of Biology 1, Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
- School of Life SciencesLanzhou UniversityLanzhouChina
- School of Ecology and EnvironmentNorthwestern Polytechnical UniversityXi'anChina
| | - Beatrice Giuntoli
- Institute of Life SciencesScuola Superiore Sant'AnnaPisaItaly
- Department of BiologyUniversity of PisaPisaItaly
| | | | - Sergio Iacopino
- Institute of Life SciencesScuola Superiore Sant'AnnaPisaItaly
- Department of BiologyUniversity of PisaPisaItaly
- Department of Plant SciencesUniversity of OxfordOxfordUK
| | - Luca Piccinini
- Institute of Life SciencesScuola Superiore Sant'AnnaPisaItaly
| | | | - Vinay Shukla
- Institute of Life SciencesScuola Superiore Sant'AnnaPisaItaly
| | - Liem T. Bui
- Institute of Life SciencesScuola Superiore Sant'AnnaPisaItaly
- Biotechnology Research and Development InstituteCan Tho UniversityCan ThoVietnam
| | - Giacomo Novi
- Institute of Life SciencesScuola Superiore Sant'AnnaPisaItaly
| | - Joost T. van Dongen
- Institute of Biology 1, Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Francesco Licausi
- Institute of Life SciencesScuola Superiore Sant'AnnaPisaItaly
- Department of BiologyUniversity of PisaPisaItaly
- Department of Plant SciencesUniversity of OxfordOxfordUK
| |
Collapse
|
7
|
Lasorella C, Fortunato S, Dipierro N, Jeran N, Tadini L, Vita F, Pesaresi P, de Pinto MC. Chloroplast-localized GUN1 contributes to the acquisition of basal thermotolerance in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:1058831. [PMID: 36618674 PMCID: PMC9813751 DOI: 10.3389/fpls.2022.1058831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Heat stress (HS) severely affects different cellular compartments operating in metabolic processes and represents a critical threat to plant growth and yield. Chloroplasts are crucial for heat stress response (HSR), signaling to the nucleus the environmental challenge and adjusting metabolic and biosynthetic functions accordingly. GENOMES UNCOUPLED 1 (GUN1), a chloroplast-localized protein, has been recognized as one of the main players of chloroplast retrograde signaling. Here, we investigate HSR in Arabidopsis wild-type and gun1 plantlets subjected to 2 hours of HS at 45°C. In wild-type plants, Reactive Oxygen Species (ROS) accumulate promptly after HS, contributing to transiently oxidize the cellular environment and acting as signaling molecules. After 3 hours of physiological recovery at growth temperature (22°C), the induction of enzymatic and non-enzymatic antioxidants prevents oxidative damage. On the other hand, gun1 mutants fail to induce the oxidative burst immediately after HS and accumulate ROS and oxidative damage after 3 hours of recovery at 22°C, thus resulting in enhanced sensitivity to HS. These data suggest that GUN1 is required to oxidize the cellular environment, participating in the acquisition of basal thermotolerance through the redox-dependent plastid-to-nucleus communication.
Collapse
Affiliation(s)
- Cecilia Lasorella
- Department of Bioscience, Biotechnology and Environment University of Bari Aldo Moro, Bari, Italy
| | - Stefania Fortunato
- Department of Bioscience, Biotechnology and Environment University of Bari Aldo Moro, Bari, Italy
| | - Nunzio Dipierro
- Department of Bioscience, Biotechnology and Environment University of Bari Aldo Moro, Bari, Italy
| | - Nicolaj Jeran
- Department of Biosciences, University of Milano, Milano, Italy
| | - Luca Tadini
- Department of Biosciences, University of Milano, Milano, Italy
| | - Federico Vita
- Department of Bioscience, Biotechnology and Environment University of Bari Aldo Moro, Bari, Italy
| | - Paolo Pesaresi
- Department of Biosciences, University of Milano, Milano, Italy
| | - Maria Concetta de Pinto
- Department of Bioscience, Biotechnology and Environment University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
8
|
Vielba JM, Rico S, Sevgin N, Castro-Camba R, Covelo P, Vidal N, Sánchez C. Transcriptomics Analysis Reveals a Putative Role for Hormone Signaling and MADS-Box Genes in Mature Chestnut Shoots Rooting Recalcitrance. PLANTS (BASEL, SWITZERLAND) 2022; 11:3486. [PMID: 36559597 PMCID: PMC9786281 DOI: 10.3390/plants11243486] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Maturation imposes several changes in plants, which are particularly drastic in the case of trees. In recalcitrant woody species, such as chestnut (Castanea sativa Mill.), one of the major maturation-related shifts is the loss of the ability to form adventitious roots in response to auxin treatment as the plant ages. To analyze the molecular mechanisms underlying this phenomenon, an in vitro model system of two different lines of microshoots derived from the same field-grown tree was established. While juvenile-like shoots root readily when treated with exogenous auxin, microshoots established from the crown of the tree rarely form roots. In the present study, a transcriptomic analysis was developed to compare the gene expression patterns in both types of shoots 24 h after hormone and wounding treatment, matching the induction phase of the process. Our results support the hypothesis that the inability of adult chestnut tissues to respond to the inductive treatment relies in a deep change of gene expression imposed by maturation that results in a significant transcriptome modification. Differences in phytohormone signaling seem to be the main cause for the recalcitrant behavior of mature shoots, with abscisic acid and ethylene negatively influencing the rooting ability of the chestnut plants. We have identified a set of related MADS-box genes whose expression is modified but not suppressed by the inductive treatment in mature shoots, suggesting a putative link of their activity with the rooting-recalcitrant behavior of this material. Overall, distinct maturation-derived auxin sensibility and homeostasis, and the related modifications in the balance with other phytohormones, seem to govern the outcome of the process in each type of shoots.
Collapse
Affiliation(s)
- Jesús Mª Vielba
- Misión Biológica de Galicia, Consejo Superior de Investigaciones Científicas, 15780 Santiago de Compostela, Spain
| | - Saleta Rico
- Misión Biológica de Galicia, Consejo Superior de Investigaciones Científicas, 15780 Santiago de Compostela, Spain
| | - Nevzat Sevgin
- Misión Biológica de Galicia, Consejo Superior de Investigaciones Científicas, 15780 Santiago de Compostela, Spain
- Department of Horticulture, University of Sirnak, 73100 Sirnak, Turkey
| | - Ricardo Castro-Camba
- Misión Biológica de Galicia, Consejo Superior de Investigaciones Científicas, 15780 Santiago de Compostela, Spain
| | - Purificación Covelo
- Misión Biológica de Galicia, Consejo Superior de Investigaciones Científicas, 15780 Santiago de Compostela, Spain
| | - Nieves Vidal
- Misión Biológica de Galicia, Consejo Superior de Investigaciones Científicas, 15780 Santiago de Compostela, Spain
| | - Conchi Sánchez
- Misión Biológica de Galicia, Consejo Superior de Investigaciones Científicas, 15780 Santiago de Compostela, Spain
| |
Collapse
|
9
|
Barreto P, Koltun A, Nonato J, Yassitepe J, Maia IDG, Arruda P. Metabolism and Signaling of Plant Mitochondria in Adaptation to Environmental Stresses. Int J Mol Sci 2022; 23:ijms231911176. [PMID: 36232478 PMCID: PMC9570015 DOI: 10.3390/ijms231911176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
The interaction of mitochondria with cellular components evolved differently in plants and mammals; in plants, the organelle contains proteins such as ALTERNATIVE OXIDASES (AOXs), which, in conjunction with internal and external ALTERNATIVE NAD(P)H DEHYDROGENASES, allow canonical oxidative phosphorylation (OXPHOS) to be bypassed. Plant mitochondria also contain UNCOUPLING PROTEINS (UCPs) that bypass OXPHOS. Recent work revealed that OXPHOS bypass performed by AOXs and UCPs is linked with new mechanisms of mitochondrial retrograde signaling. AOX is functionally associated with the NO APICAL MERISTEM transcription factors, which mediate mitochondrial retrograde signaling, while UCP1 can regulate the plant oxygen-sensing mechanism via the PRT6 N-Degron. Here, we discuss the crosstalk or the independent action of AOXs and UCPs on mitochondrial retrograde signaling associated with abiotic stress responses. We also discuss how mitochondrial function and retrograde signaling mechanisms affect chloroplast function. Additionally, we discuss how mitochondrial inner membrane transporters can mediate mitochondrial communication with other organelles. Lastly, we review how mitochondrial metabolism can be used to improve crop resilience to environmental stresses. In this respect, we particularly focus on the contribution of Brazilian research groups to advances in the topic of mitochondrial metabolism and signaling.
Collapse
Affiliation(s)
- Pedro Barreto
- Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista, Botucatu 18618-970, Brazil
| | - Alessandra Koltun
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
| | - Juliana Nonato
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
| | - Juliana Yassitepe
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
- Embrapa Agricultura Digital, Campinas 13083-886, Brazil
| | - Ivan de Godoy Maia
- Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista, Botucatu 18618-970, Brazil
| | - Paulo Arruda
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Correspondence:
| |
Collapse
|
10
|
Flooding Tolerance in Sweet Potato (Ipomoea batatas (L.) Lam) Is Mediated by Reactive Oxygen Species and Nitric Oxide. Antioxidants (Basel) 2022; 11:antiox11050878. [PMID: 35624742 PMCID: PMC9138130 DOI: 10.3390/antiox11050878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022] Open
Abstract
Flooding is harmful to almost all higher plants, including crop species. Most cultivars of the root crop sweet potato are able to tolerate environmental stresses such as drought, high temperature, and high salinity. They are, however, relatively sensitive to flooding stress, which greatly reduces yield and commercial value. Previous transcriptomic analysis of flood-sensitive and flood-resistant sweet potato cultivars identified genes that were likely to contribute to protection against flooding stress, including genes related to ethylene (ET), reactive oxygen species (ROS), and nitric oxide (NO) metabolism. Although each sweet potato cultivar can be classified as either tolerant or sensitive to flooding stress, the molecular mechanisms of flooding resistance in ET, ROS, and NO regulation-mediated responses have not yet been reported. Therefore, this study characterized the regulation of ET, ROS, and NO metabolism in two sweet potato cultivars—one flood-tolerant cultivar and one flood-sensitive cultivar—under early flooding treatment conditions. The expression of ERFVII genes, which are involved in low oxygen signaling, was upregulated in leaves during flooding stress treatments. In addition, levels of respiratory burst oxidase homologs and metallothionein-mediated ROS scavenging were greatly increased in the early stage of flooding in the flood-tolerant sweet potato cultivar compared with the flood-sensitive cultivar. The expression of genes involved in NO biosynthesis and scavenging was also upregulated in the tolerant cultivar. Finally, NO scavenging-related MDHAR expressions and enzymatic activity were higher in the flood-tolerant cultivar than in the flood-sensitive cultivar. These results indicate that, in sweet potato, genes involved in ET, ROS, and NO regulation play an important part in response mechanisms against flooding stress.
Collapse
|
11
|
Taylor-Kearney LJ, Flashman E. Targeting plant cysteine oxidase activity for improved submergence tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:779-788. [PMID: 34817108 DOI: 10.1111/tpj.15605] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Plant cysteine oxidases (PCOs) are plant O2 -sensing enzymes. They catalyse the O2 -dependent step which initiates the proteasomal degradation of Group VII ethylene response transcription factors (ERF-VIIs) via the N-degron pathway. When submerged, plants experience a reduction in O2 availability; PCO activity therefore decreases and the consequent ERF-VII stabilisation leads to upregulation of hypoxia-responsive genes which enable adaptation to low O2 conditions. Resulting adaptations include entering an anaerobic quiescent state to maintain energy reserves and rapid growth to escape floodwater and allow O2 transport to submerged tissues. Stabilisation of ERF-VIIs has been linked to improved survival post-submergence in Arabidopsis, rice (Oryza sativa) and barley (Hordeum vulgare). Due to climate change and increasing flooding events, there is an interest in manipulating the PCO/ERF-VII interaction as a method of improving yields in flood-intolerant crops. An effective way of achieving this may be through PCO inhibition; however, complete ablation of PCO activity is detrimental to growth and phenotype, likely due to other PCO-mediated roles. Targeting PCOs will therefore require either temporary chemical inhibition or careful engineering of the enzyme structure to manipulate their O2 sensitivity and/or substrate specificity. Sufficient PCO structural and functional information should make this possible, given the potential to engineer site-directed mutagenesis in vivo using CRISPR-mediated base editing. Here, we discuss the knowledge still required for rational manipulation of PCOs to achieve ERF-VII stabilisation without a yield penalty. We also take inspiration from the biocatalysis field to consider how enzyme engineering could be accelerated as a wider strategy to improve plant stress tolerance and productivity.
Collapse
Affiliation(s)
| | - Emily Flashman
- Department of Chemistry, 12 Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
12
|
León J, Castillo MC, Gayubas B. The hypoxia-reoxygenation stress in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5841-5856. [PMID: 33367851 PMCID: PMC8355755 DOI: 10.1093/jxb/eraa591] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/16/2020] [Indexed: 05/04/2023]
Abstract
Plants are very plastic in adapting growth and development to changing adverse environmental conditions. This feature will be essential for plants to survive climate changes characterized by extreme temperatures and rainfall. Although plants require molecular oxygen (O2) to live, they can overcome transient low-O2 conditions (hypoxia) until return to standard 21% O2 atmospheric conditions (normoxia). After heavy rainfall, submerged plants in flooded lands undergo transient hypoxia until water recedes and normoxia is recovered. The accumulated information on the physiological and molecular events occurring during the hypoxia phase contrasts with the limited knowledge on the reoxygenation process after hypoxia, which has often been overlooked in many studies in plants. Phenotypic alterations during recovery are due to potentiated oxidative stress generated by simultaneous reoxygenation and reillumination leading to cell damage. Besides processes such as N-degron proteolytic pathway-mediated O2 sensing, or mitochondria-driven metabolic alterations, other molecular events controlling gene expression have been recently proposed as key regulators of hypoxia and reoxygenation. RNA regulatory functions, chromatin remodeling, protein synthesis, and post-translational modifications must all be studied in depth in the coming years to improve our knowledge on hypoxia-reoxygenation transition in plants, a topic with relevance in agricultural biotechnology in the context of global climate change.
Collapse
Affiliation(s)
- José León
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas – Universidad Politécnica de Valencia), Valencia, Spain
- Correspondence:
| | - Mari Cruz Castillo
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas – Universidad Politécnica de Valencia), Valencia, Spain
| | - Beatriz Gayubas
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas – Universidad Politécnica de Valencia), Valencia, Spain
| |
Collapse
|
13
|
Rankenberg T, Geldhof B, van Veen H, Holsteens K, Van de Poel B, Sasidharan R. Age-Dependent Abiotic Stress Resilience in Plants. TRENDS IN PLANT SCIENCE 2021; 26:692-705. [PMID: 33509699 DOI: 10.1016/j.tplants.2020.12.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 05/13/2023]
Abstract
Developmental age is a strong determinant of stress responses in plants. Differential susceptibility to various environmental stresses is widely observed at both the organ and whole-plant level. While it is clear that age determines stress susceptibility, the causes, regulatory mechanisms, and functions are only now beginning to emerge. Compared with concepts on age-related biotic stress resilience, advancements in the abiotic stress field are relatively limited. In this review, we focus on current knowledge of ontogenic resistance to abiotic stresses, highlighting examples at the organ (leaf) and plant level, preceded by an overview of the relevant concepts in plant aging. We also discuss age-related abiotic stress resilience mechanisms, speculate on their functional relevance, and outline outstanding questions.
Collapse
Affiliation(s)
- Tom Rankenberg
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Batist Geldhof
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Hans van Veen
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Kristof Holsteens
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Bram Van de Poel
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium.
| | - Rashmi Sasidharan
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
14
|
Shafique Khan F, Zeng RF, Gan ZM, Zhang JZ, Hu CG. Genome-Wide Identification and Expression Profiling of the WOX Gene Family in Citrus sinensis and Functional Analysis of a CsWUS Member. Int J Mol Sci 2021; 22:4919. [PMID: 34066408 PMCID: PMC8124563 DOI: 10.3390/ijms22094919] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 01/23/2023] Open
Abstract
WUSCHEL-related homeobox (WOX) transcription factors (TFs) are well known for their role in plant development but are rarely studied in citrus. In this study, we identified 11 putative genes from the sweet orange genome and divided the citrus WOX genes into three clades (modern/WUSCHEL(WUS), intermediate, and ancient). Subsequently, we performed syntenic relationship, intron-exon organization, motif composition, and cis-element analysis. Co-expression analysis based on RNA-seq and tissue-specific expression patterns revealed that CsWOX gene expression has multiple intrinsic functions. CsWUS homolog of AtWUS functions as a transcriptional activator and binds to specific DNA. Overexpression of CsWUS in tobacco revealed dramatic phenotypic changes, including malformed leaves and reduced gynoecia with no seed development. Silencing of CsWUS in lemon using the virus-induced gene silencing (VIGS) system implied the involvement of CsWUS in cells of the plant stem. In addition, CsWUS was found to interact with CsCYCD3, an ortholog in Arabidopsis (AtCYCD3,1). Yeast one-hybrid screening and dual luciferase activity revealed that two TFs (CsRAP2.12 and CsHB22) bind to the promoter of CsWUS and regulate its expression. Altogether, these results extend our knowledge of the WOX gene family along with CsWUS function and provide valuable findings for future study on development regulation and comprehensive data of WOX members in citrus.
Collapse
Affiliation(s)
| | | | | | - Jin-Zhi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China; (F.S.K.); (R.-F.Z.); (Z.-M.G.)
| | - Chun-Gen Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China; (F.S.K.); (R.-F.Z.); (Z.-M.G.)
| |
Collapse
|
15
|
Pucciariello C, Perata P. The Oxidative Paradox in Low Oxygen Stress in Plants. Antioxidants (Basel) 2021; 10:332. [PMID: 33672303 PMCID: PMC7926446 DOI: 10.3390/antiox10020332] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 01/07/2023] Open
Abstract
Reactive oxygen species (ROS) are part of aerobic environments, and variations in the availability of oxygen (O2) in the environment can lead to altered ROS levels. In plants, the O2 sensing machinery guides the molecular response to low O2, regulating a subset of genes involved in metabolic adaptations to hypoxia, including proteins involved in ROS homeostasis and acclimation. In addition, nitric oxide (NO) participates in signaling events that modulate the low O2 stress response. In this review, we summarize recent findings that highlight the roles of ROS and NO under environmentally or developmentally defined low O2 conditions. We conclude that ROS and NO are emerging regulators during low O2 signalling and key molecules in plant adaptation to flooding conditions.
Collapse
Affiliation(s)
- Chiara Pucciariello
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy;
| | | |
Collapse
|
16
|
Valeri MC, Novi G, Weits DA, Mensuali A, Perata P, Loreti E. Botrytis cinerea induces local hypoxia in Arabidopsis leaves. THE NEW PHYTOLOGIST 2021; 229:173-185. [PMID: 32124454 PMCID: PMC7754360 DOI: 10.1111/nph.16513] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/21/2020] [Indexed: 05/19/2023]
Abstract
Low oxygen availability often is associated with soil waterlogging or submergence, but may occur also as hypoxic niches in otherwise aerobic tissues. Experimental evidence assigns a role in Botrytis cinerea resistance to a group of oxygen-unstable Ethylene Response Factors (ERF-VII). Given that infection by B. cinerea often occurs in aerobic organs such as leaves, where ERF-VII stability should be compromised, we explored the possibility of local leaf hypoxia at the site of infection. We analyzed the expression of hypoxia-responsive genes in infected leaves. Confocal microscopy was utilized to verify the localization of the ERF-VII protein RAP2.12. Oxygen concentration was measured to evaluate the availability of oxygen (O2 ). We discovered that infection by B. cinerea induces increased respiration, leading to a drastic drop in the O2 concentration in an otherwise fully aerobic leaf. The establishment of a local hypoxic area results in stabilization and nuclear relocalization of RAP2.12. The possible roles of defence elicitors, ABA and ethylene were evaluated. Local hypoxia at the site of B. cinerea infection allows the stabilization of ERF-VII proteins. Hypoxia at the site of pathogen infection generates a nearly O2 -free environment that may affect the stability of other N-degron-regulated proteins as well as the metabolism of elicitors.
Collapse
Affiliation(s)
- Maria Cristina Valeri
- PlantLabInstitute of Life SciencesScuola Superiore Sant’AnnaVia Giudiccioni 1056010San Giuliano Terme (Pisa)Italy
| | - Giacomo Novi
- PlantLabInstitute of Life SciencesScuola Superiore Sant’AnnaVia Giudiccioni 1056010San Giuliano Terme (Pisa)Italy
| | - Daan A. Weits
- PlantLabInstitute of Life SciencesScuola Superiore Sant’AnnaVia Giudiccioni 1056010San Giuliano Terme (Pisa)Italy
| | - Anna Mensuali
- PlantLabInstitute of Life SciencesScuola Superiore Sant’AnnaVia Giudiccioni 1056010San Giuliano Terme (Pisa)Italy
| | - Pierdomenico Perata
- PlantLabInstitute of Life SciencesScuola Superiore Sant’AnnaVia Giudiccioni 1056010San Giuliano Terme (Pisa)Italy
| | - Elena Loreti
- Institute of Agricultural Biology and BiotechnologyCNR, National Research CouncilVia Moruzzi56124PisaItaly
| |
Collapse
|
17
|
Labandera A, Tedds HM, Bailey M, Sprigg C, Etherington RD, Akintewe O, Kalleechurn G, Holdsworth MJ, Gibbs DJ. The PRT6 N-degron pathway restricts VERNALIZATION 2 to endogenous hypoxic niches to modulate plant development. THE NEW PHYTOLOGIST 2021; 229:126-139. [PMID: 32043277 PMCID: PMC7754370 DOI: 10.1111/nph.16477] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/04/2020] [Indexed: 05/20/2023]
Abstract
VERNALIZATION2 (VRN2), an angiosperm-specific subunit of the polycomb repressive complex 2 (PRC2), is an oxygen (O2 )-regulated target of the PCO branch of the PRT6 N-degron pathway of ubiquitin-mediated proteolysis. How this post-translational regulation coordinates VRN2 activity remains to be fully established. Here we use Arabidopsis thaliana ecotypes, mutants and transgenic lines to determine how control of VRN2 stability contributes to its functions during plant development. VRN2 localizes to endogenous hypoxic regions in aerial and root tissues. In the shoot apex, VRN2 differentially modulates flowering time dependent on photoperiod, whilst its presence in lateral root primordia and the root apical meristem negatively regulates root system architecture. Ectopic accumulation of VRN2 does not enhance its effects on flowering, but does potentiate its repressive effects on root growth. In late-flowering vernalization-dependent ecotypes, VRN2 is only active outside meristems when its proteolysis is inhibited in response to cold exposure, as its function requires concomitant cold-triggered increases in other PRC2 subunits and cofactors. We conclude that the O2 -sensitive N-degron of VRN2 has a dual function, confining VRN2 to meristems and primordia, where it has specific developmental roles, whilst also permitting broad accumulation outside of meristems in response to environmental cues, leading to other functions.
Collapse
Affiliation(s)
| | - Hannah M. Tedds
- School of BiosciencesUniversity of BirminghamEdgbastonB15 2TTUK
| | - Mark Bailey
- School of BiosciencesUniversity of BirminghamEdgbastonB15 2TTUK
| | - Colleen Sprigg
- School of BiosciencesUniversity of BirminghamEdgbastonB15 2TTUK
| | | | | | | | | | - Daniel J. Gibbs
- School of BiosciencesUniversity of BirminghamEdgbastonB15 2TTUK
| |
Collapse
|
18
|
Hammarlund EU, Flashman E, Mohlin S, Licausi F. Oxygen-sensing mechanisms across eukaryotic kingdoms and their roles in complex multicellularity. Science 2020; 370:370/6515/eaba3512. [PMID: 33093080 DOI: 10.1126/science.aba3512] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/07/2020] [Indexed: 12/17/2022]
Abstract
Oxygen-sensing mechanisms of eukaryotic multicellular organisms coordinate hypoxic cellular responses in a spatiotemporal manner. Although this capacity partly allows animals and plants to acutely adapt to oxygen deprivation, its functional and historical roots in hypoxia emphasize a broader evolutionary role. For multicellular life-forms that persist in settings with variable oxygen concentrations, the capacity to perceive and modulate responses in and between cells is pivotal. Animals and higher plants represent the most complex life-forms that ever diversified on Earth, and their oxygen-sensing mechanisms demonstrate convergent evolution from a functional perspective. Exploring oxygen-sensing mechanisms across eukaryotic kingdoms can inform us on biological innovations to harness ever-changing oxygen availability at the dawn of complex life and its utilization for their organismal development.
Collapse
Affiliation(s)
- Emma U Hammarlund
- Translational Cancer Research, Department of Laboratory Medicine, Lund University, Scheelevägen 8, 223 81 Lund, Sweden. .,Nordic Center for Earth Evolution, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.,Department of Geology, Lund University, Sölvegatan 12, 223 62 Lund, Sweden
| | - Emily Flashman
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Sofie Mohlin
- Translational Cancer Research, Department of Laboratory Medicine, Lund University, Scheelevägen 8, 223 81 Lund, Sweden.,Division of Pediatrics, Department of Clinical Sciences, Lund University, 221 00 Lund, Sweden
| | - Francesco Licausi
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK. .,PlantLab, Institute of Life Sciences, Scuola Superiore, Sant'Anna, 56124 Pisa, Italy.,Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
19
|
Betti F, Ladera-Carmona MJ, Perata P, Loreti E. RNAi Mediated Hypoxia Stress Tolerance in Plants. Int J Mol Sci 2020; 21:E9394. [PMID: 33321742 PMCID: PMC7764064 DOI: 10.3390/ijms21249394] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 11/16/2022] Open
Abstract
Small RNAs regulate various biological process involved in genome stability, development, and adaptive responses to biotic or abiotic stresses. Small RNAs include microRNAs (miRNAs) and small interfering RNAs (siRNAs). MicroRNAs (miRNAs) are regulators of gene expression that affect the transcriptional and post-transcriptional regulation in plants and animals through RNA interference (RNAi). miRNAs are endogenous small RNAs that originate from the processing of non-coding primary miRNA transcripts folding into hairpin-like structures. The mature miRNAs are incorporated into the RNA-induced silencing complex (RISC) and drive the Argonaute (AGO) proteins towards their mRNA targets. siRNAs are generated from a double-stranded RNA (dsRNA) of cellular or exogenous origin. siRNAs are also involved in the adaptive response to biotic or abiotic stresses. The response of plants to hypoxia includes a genome-wide transcription reprogramming. However, little is known about the involvement of RNA signaling in gene regulation under low oxygen availability. Interestingly, miRNAs have been shown to play a role in the responses to hypoxia in animals, and recent evidence suggests that hypoxia modulates the expression of various miRNAs in plant systems. In this review, we describe recent discoveries on the impact of RNAi on plant responses to hypoxic stress in plants.
Collapse
Affiliation(s)
- Federico Betti
- PlantLab, Institute of Life Sciences, Sant’Anna School of Advanced Studies, 56010 Pisa, Italy; (F.B.); (M.J.L.-C.); (P.P.)
| | - Maria José Ladera-Carmona
- PlantLab, Institute of Life Sciences, Sant’Anna School of Advanced Studies, 56010 Pisa, Italy; (F.B.); (M.J.L.-C.); (P.P.)
| | - Pierdomenico Perata
- PlantLab, Institute of Life Sciences, Sant’Anna School of Advanced Studies, 56010 Pisa, Italy; (F.B.); (M.J.L.-C.); (P.P.)
| | - Elena Loreti
- Institute of Agricultural Biology and Biotechnology, National Research Council, 56124 Pisa, Italy
| |
Collapse
|
20
|
Panicucci G, Iacopino S, De Meo E, Perata P, Weits DA. An Improved HRPE-Based Transcriptional Output Reporter to Detect Hypoxia and Anoxia in Plant Tissue. BIOSENSORS-BASEL 2020; 10:bios10120197. [PMID: 33287141 PMCID: PMC7761731 DOI: 10.3390/bios10120197] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 01/22/2023]
Abstract
Oxygen levels in plant tissues may vary, depending on metabolism, diffusion barriers, and environmental availability. Current techniques to assess the oxic status of plant cells rely primarily on invasive microoptodes or Clark-type electrodes, which are not optimally suited for experiments that require high spatial and temporal resolution. In this case, a genetically encoded oxygen biosensor is required instead. This article reports the design, test, and optimization of a hypoxia-signaling reporter, based on five-time repeated hypoxia-responsive promoter elements (HRPE) driving the expression of different reporter proteins. Specifically, this study aimed to improve its performance as a reporter of hypoxic conditions by testing the effect of different untranslated regions (UTRs) at the 5′ end of the reporter coding sequence. Next, we characterized an optimized version of the HRPE promoter (HRPE-Ω) in terms of hypoxia sensitivity and time responsiveness. We also observed that severe oxygen deficiency counteracted the reporter activity due to inhibition of GFP maturation, which requires molecular oxygen. To overcome this limitation, we therefore employed an oxygen-independent UnaG fluorescent protein-coupled to an O2-dependent mCherry fluorophore under the control of the optimized HRPE-Ω promoter. Remarkably, this sensor, provided a different mCherry/UnaG ratiometric output depending on the externally imposed oxygen concentration, providing a solution to distinguish between different degrees of tissue hypoxia. Moreover, a ubiquitously expressed UnaG-mCherry fusion could be used to image oxygen concentrations directly, albeit at a narrow range. The luminescent and fluorescent hypoxia-reporters described here can readily be used to conduct studies that involve anaerobiosis in plants.
Collapse
Affiliation(s)
- Gabriele Panicucci
- Biology Department, University of Pisa, 56126 Pisa, Italy; (G.P.); (S.I.)
| | - Sergio Iacopino
- Biology Department, University of Pisa, 56126 Pisa, Italy; (G.P.); (S.I.)
- Institute of Life Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy;
| | - Elisa De Meo
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | | | - Daan A. Weits
- Institute of Life Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy;
- Correspondence: ; Tel.: +39-050-881913
| |
Collapse
|
21
|
White MD, Dalle Carbonare L, Lavilla Puerta M, Iacopino S, Edwards M, Dunne K, Pires E, Levy C, McDonough MA, Licausi F, Flashman E. Structures of Arabidopsis thaliana oxygen-sensing plant cysteine oxidases 4 and 5 enable targeted manipulation of their activity. Proc Natl Acad Sci U S A 2020; 117:23140-23147. [PMID: 32868422 PMCID: PMC7502726 DOI: 10.1073/pnas.2000206117] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In higher plants, molecular responses to exogenous hypoxia are driven by group VII ethylene response factors (ERF-VIIs). These transcriptional regulators accumulate in the nucleus under hypoxia to activate anaerobic genes but are destabilized in normoxic conditions through the action of oxygen-sensing plant cysteine oxidases (PCOs). The PCOs catalyze the reaction of oxygen with the conserved N-terminal cysteine of ERF-VIIs to form cysteine sulfinic acid, triggering degradation via the Cys/Arg branch of the N-degron pathway. The PCOs are therefore a vital component of the plant oxygen signaling system, connecting environmental stimulus with cellular and physiological response. Rational manipulation of PCO activity could regulate ERF-VII levels and improve flood tolerance, but requires detailed structural information. We report crystal structures of the constitutively expressed PCO4 and PCO5 from Arabidopsis thaliana to 1.24 and 1.91 Å resolution, respectively. The structures reveal that the PCOs comprise a cupin-like scaffold, which supports a central metal cofactor coordinated by three histidines. While this overall structure is consistent with other thiol dioxygenases, closer inspection of the active site indicates that other catalytic features are not conserved, suggesting that the PCOs may use divergent mechanisms to oxidize their substrates. Conservative substitution of two active site residues had dramatic effects on PCO4 function both in vitro and in vivo, through yeast and plant complementation assays. Collectively, our data identify key structural elements that are required for PCO activity and provide a platform for engineering crops with improved hypoxia tolerance.
Collapse
Affiliation(s)
- Mark D White
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
- School of Chemistry, University of Sydney, Sydney NSW 2006, Australia
| | | | - Mikel Lavilla Puerta
- Plantlab, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56010 Pisa, Italy
| | - Sergio Iacopino
- Department of Plant Sciences, University of Oxford, OX1 3RB Oxford, United Kingdom
| | - Martin Edwards
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Kate Dunne
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Elisabete Pires
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Colin Levy
- Manchester Institute of Biotechnology, University of Manchester, M1 7DN Manchester, United Kingdom
| | - Michael A McDonough
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Francesco Licausi
- Plantlab, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56010 Pisa, Italy
- Department of Plant Sciences, University of Oxford, OX1 3RB Oxford, United Kingdom
| | - Emily Flashman
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom;
| |
Collapse
|
22
|
Shukla V, Lombardi L, Pencik A, Novak O, Weits DA, Loreti E, Perata P, Giuntoli B, Licausi F. Jasmonate Signalling Contributes to Primary Root Inhibition Upon Oxygen Deficiency in Arabidopsis thaliana. PLANTS 2020; 9:plants9081046. [PMID: 32824502 PMCID: PMC7464498 DOI: 10.3390/plants9081046] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/01/2022]
Abstract
Plants, including most crops, are intolerant to waterlogging, a stressful condition that limits the oxygen available for roots, thereby inhibiting their growth and functionality. Whether root growth inhibition represents a preventive measure to save energy or is rather a consequence of reduced metabolic rates has yet to be elucidated. In the present study, we gathered evidence for hypoxic repression of root meristem regulators that leads to root growth inhibition. We also explored the contribution of the hormone jasmonic acid (JA) to this process in Arabidopsis thaliana. Analysis of transcriptomic profiles, visualisation of fluorescent reporters and direct hormone quantification confirmed the activation of JA signalling under hypoxia in the roots. Further, root growth assessment in JA-related mutants in aerobic and anaerobic conditions indicated that JA signalling components contribute to active root inhibition under hypoxia. Finally, we show that the oxygen-sensing transcription factor (TF) RAP2.12 can directly induce Jasmonate Zinc-finger proteins (JAZs), repressors of JA signalling, to establish feedback inhibition. In summary, our study sheds new light on active root growth restriction under hypoxic conditions and on the involvement of the JA hormone in this process and its cross talk with the oxygen sensing machinery of higher plants.
Collapse
Affiliation(s)
- Vinay Shukla
- Plantlab, Institute of Life Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy; (V.S.); (D.A.W.); (P.P.); (B.G.)
| | - Lara Lombardi
- Department of Biology, University of Pisa, 56126 Pisa, Italy;
| | - Ales Pencik
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, CZ-783 71 Olomouc, Czech Republic; (A.P.); (O.N.)
| | - Ondrej Novak
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, CZ-783 71 Olomouc, Czech Republic; (A.P.); (O.N.)
| | - Daan A. Weits
- Plantlab, Institute of Life Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy; (V.S.); (D.A.W.); (P.P.); (B.G.)
| | - Elena Loreti
- The Institute of Agricultural Biology and Biotechnology, National Research Council, 20133 Milan, Italy;
| | - Pierdomenico Perata
- Plantlab, Institute of Life Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy; (V.S.); (D.A.W.); (P.P.); (B.G.)
| | - Beatrice Giuntoli
- Plantlab, Institute of Life Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy; (V.S.); (D.A.W.); (P.P.); (B.G.)
- Department of Biology, University of Pisa, 56126 Pisa, Italy;
| | - Francesco Licausi
- Department of Biology, University of Pisa, 56126 Pisa, Italy;
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
- Correspondence:
| |
Collapse
|
23
|
Meng X, Li L, Narsai R, De Clercq I, Whelan J, Berkowitz O. Mitochondrial signalling is critical for acclimation and adaptation to flooding in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:227-247. [PMID: 32064696 DOI: 10.1111/tpj.14724] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 01/23/2020] [Accepted: 02/04/2020] [Indexed: 05/23/2023]
Abstract
Mitochondria have critical functions in the acclimation to abiotic and biotic stresses. Adverse environmental conditions lead to increased demands in energy supply and metabolic intermediates, which are provided by mitochondrial ATP production and the tricarboxylic acid (TCA) cycle. Mitochondria also play a role as stress sensors to adjust nuclear gene expression via retrograde signalling with the transcription factor (TF) ANAC017 and the kinase CDKE1 key components to integrate various signals into this pathway. To determine the importance of mitochondria as sensors of stress and their contribution in the tolerance to adverse growth conditions, a comparative phenotypical, physiological and transcriptomic characterisation of Arabidopsis mitochondrial signalling mutants (cdke1/rao1 and anac017/rao2) and a set of contrasting accessions was performed after applying the complex compound stress of submergence. Our results showed that impaired mitochondrial retrograde signalling leads to increased sensitivity to the stress treatments. The multi-factorial approach identified a network of 702 co-expressed genes, including several WRKY TFs, overlapping in the transcriptional responses in the mitochondrial signalling mutants and stress-sensitive accessions. Functional characterisation of two WRKY TFs (WRKY40 and WRKY45), using both knockout and overexpressing lines, confirmed their role in conferring tolerance to submergence. Together, the results revealed that acclimation to submergence is dependent on mitochondrial retrograde signalling, and underlying transcriptional re-programming is used as an adaptation mechanism.
Collapse
Affiliation(s)
- Xiangxiang Meng
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Lu Li
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Reena Narsai
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Inge De Clercq
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, 9052, Ghent, Belgium
| | - James Whelan
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
| |
Collapse
|
24
|
Tagliani A, Tran AN, Novi G, Di Mambro R, Pesenti M, Sacchi GA, Perata P, Pucciariello C. The calcineurin β-like interacting protein kinase CIPK25 regulates potassium homeostasis under low oxygen in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2678-2689. [PMID: 32053194 PMCID: PMC7210770 DOI: 10.1093/jxb/eraa004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 02/12/2020] [Indexed: 05/24/2023]
Abstract
Hypoxic conditions often arise from waterlogging and flooding, affecting several aspects of plant metabolism, including the uptake of nutrients. We identified a member of the CALCINEURIN β-LIKE INTERACTING PROTEIN KINASE (CIPK) family in Arabidopsis, CIPK25, which is induced in the root endodermis under low-oxygen conditions. A cipk25 mutant exhibited higher sensitivity to anoxia in conditions of potassium limitation, suggesting that this kinase is involved in the regulation of potassium uptake. Interestingly, we found that CIPK25 interacts with AKT1, the major inward rectifying potassium channel in Arabidopsis. Under anoxic conditions, cipk25 mutant seedlings were unable to maintain potassium concentrations at wild-type levels, suggesting that CIPK25 likely plays a role in modulating potassium homeostasis under low-oxygen conditions. In addition, cipk25 and akt1 mutants share similar developmental defects under waterlogging, further supporting an interplay between CIPK25 and AKT1.
Collapse
Affiliation(s)
- Andrea Tagliani
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
- nanoPlant Center @NEST, Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Anh Nguyet Tran
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Giacomo Novi
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Riccardo Di Mambro
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
- Department of Biology, University of Pisa, Pisa, Italy
| | - Michele Pesenti
- Department of Agricultural and Environmental Science, University of Milano, Milano, Italy
| | - Gian Attilio Sacchi
- Department of Agricultural and Environmental Science, University of Milano, Milano, Italy
| | - Pierdomenico Perata
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
- nanoPlant Center @NEST, Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Chiara Pucciariello
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
- nanoPlant Center @NEST, Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
| |
Collapse
|
25
|
Holdsworth MJ, Vicente J, Sharma G, Abbas M, Zubrycka A. The plant N-degron pathways of ubiquitin-mediated proteolysis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:70-89. [PMID: 31638740 DOI: 10.1111/jipb.12882] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 10/20/2019] [Indexed: 05/29/2023]
Abstract
The amino-terminal residue of a protein (or amino-terminus of a peptide following protease cleavage) can be an important determinant of its stability, through the Ubiquitin Proteasome System associated N-degron pathways. Plants contain a unique combination of N-degron pathways (previously called the N-end rule pathways) E3 ligases, PROTEOLYSIS (PRT)6 and PRT1, recognizing non-overlapping sets of amino-terminal residues, and others remain to be identified. Although only very few substrates of PRT1 or PRT6 have been identified, substrates of the oxygen and nitric oxide sensing branch of the PRT6 N-degron pathway include key nuclear-located transcription factors (ETHYLENE RESPONSE FACTOR VIIs and LITTLE ZIPPER 2) and the histone-modifying Polycomb Repressive Complex 2 component VERNALIZATION 2. In response to reduced oxygen or nitric oxide levels (and other mechanisms that reduce pathway activity) these stabilized substrates regulate diverse aspects of growth and development, including response to flooding, salinity, vernalization (cold-induced flowering) and shoot apical meristem function. The N-degron pathways show great promise for use in the improvement of crop performance and for biotechnological applications. Upstream proteases, components of the different pathways and associated substrates still remain to be identified and characterized to fully appreciate how regulation of protein stability through the amino-terminal residue impacts plant biology.
Collapse
Affiliation(s)
| | - Jorge Vicente
- School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Gunjan Sharma
- School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Mohamad Abbas
- School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Agata Zubrycka
- School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| |
Collapse
|
26
|
Zhao MJ, Yin LJ, Liu Y, Ma J, Zheng JC, Lan JH, Fu JD, Chen M, Xu ZS, Ma YZ. The ABA-induced soybean ERF transcription factor gene GmERF75 plays a role in enhancing osmotic stress tolerance in Arabidopsis and soybean. BMC PLANT BIOLOGY 2019; 19:506. [PMID: 31747904 PMCID: PMC6865046 DOI: 10.1186/s12870-019-2066-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 10/02/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND Ethylene-responsive factors (ERFs) play important roles in plant growth and development and the response to adverse environmental factors, including abiotic and biotic stresses. RESULTS In the present study, we identified 160 soybean ERF genes distributed across 20 chromosomes that could be clustered into eight groups based on phylogenetic relationships. A highly ABA-responsive ERF gene, GmERF75, belonging to Group VII was further characterized. Subcellular localization analysis showed that the GmERF75 protein is localized in the nucleus, and qRT-PCR results showed that GmERF75 is responsive to multiple abiotic stresses and exogenous hormones. GmERF75-overexpressing Arabidopsis lines showed higher chlorophyll content compared to WT and mutants under osmotic stress. Two independent Arabidopsis mutations of AtERF71, a gene homologous to GmERF75, displayed shorter hypocotyls, and overexpression of GmERF75 in these mutants could rescue the short hypocotyl phenotypes. Overexpressing GmERF75 in soybean hairy roots improved root growth under exogenous ABA and salt stress. CONCLUSIONS These results suggested that GmERF75 is an important plant transcription factor that plays a critical role in enhancing osmotic tolerance in both Arabidopsis and soybean.
Collapse
Affiliation(s)
- Meng-Jie Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| | - Li-Juan Yin
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| | - Ying Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| | - Jian Ma
- Faculty of Agronomy, Jilin Agricultural University, Changchun, 130118 China
| | - Jia-Cheng Zheng
- Anhui Science and Technology University, Fengyang, 233100 China
| | - Jin-Hao Lan
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109 China
| | - Jin-Dong Fu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| | - Ming Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| | - Zhao-Shi Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
- Faculty of Agronomy, Jilin Agricultural University, Changchun, 130118 China
- Anhui Science and Technology University, Fengyang, 233100 China
| | - You-Zhi Ma
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| |
Collapse
|
27
|
Gil-Monreal M, Giuntoli B, Zabalza A, Licausi F, Royuela M. ERF-VII transcription factors induce ethanol fermentation in response to amino acid biosynthesis-inhibiting herbicides. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5839-5851. [PMID: 31384925 PMCID: PMC6812701 DOI: 10.1093/jxb/erz355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 07/22/2019] [Indexed: 05/17/2023]
Abstract
Herbicides inhibiting either aromatic or branched-chain amino acid biosynthesis trigger similar physiological responses in plants, despite their different mechanism of action. Both types of herbicides are known to activate ethanol fermentation by inducing the expression of fermentative genes; however, the mechanism of such transcriptional regulation has not been investigated so far. In plants exposed to low-oxygen conditions, ethanol fermentation is transcriptionally controlled by the ethylene response factors-VII (ERF-VIIs), whose stability is controlled in an oxygen-dependent manner by the Cys-Arg branch of the N-degron pathway. In this study, we investigated the role of ERF-VIIs in the regulation of the ethanol fermentation pathway in herbicide-treated Arabidopsis plants grown under aerobic conditions. Our results demonstrate that these transcriptional regulators are stabilized in response to herbicide treatment and are required for ethanol fermentation in these conditions. We also observed that mutants with reduced fermentative potential exhibit higher sensitivity to herbicide treatments, thus revealing the existence of a mechanism that mimics oxygen deprivation to activate metabolic pathways that enhance herbicide tolerance. We speculate that this signaling pathway may represent a potential target in agriculture to affect tolerance to herbicides that inhibit amino acid biosynthesis.
Collapse
Affiliation(s)
- Miriam Gil-Monreal
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra, Pamplona, Spain
| | - Beatrice Giuntoli
- Department of Biology, University of Pisa, Via Ghini, Pisa, Italy
- Plantlab, Institute of Life Sciences, Scuola Superiore Sant’Anna, Via Guidiccioni, Pisa, Italy
| | - Ana Zabalza
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra, Pamplona, Spain
| | - Francesco Licausi
- Department of Biology, University of Pisa, Via Ghini, Pisa, Italy
- Plantlab, Institute of Life Sciences, Scuola Superiore Sant’Anna, Via Guidiccioni, Pisa, Italy
| | - Mercedes Royuela
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra, Pamplona, Spain
- Correspondence:
| |
Collapse
|
28
|
Zaffagnini M, Fermani S, Marchand CH, Costa A, Sparla F, Rouhier N, Geigenberger P, Lemaire SD, Trost P. Redox Homeostasis in Photosynthetic Organisms: Novel and Established Thiol-Based Molecular Mechanisms. Antioxid Redox Signal 2019; 31:155-210. [PMID: 30499304 DOI: 10.1089/ars.2018.7617] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Significance: Redox homeostasis consists of an intricate network of reactions in which reactive molecular species, redox modifications, and redox proteins act in concert to allow both physiological responses and adaptation to stress conditions. Recent Advances: This review highlights established and novel thiol-based regulatory pathways underlying the functional facets and significance of redox biology in photosynthetic organisms. In the last decades, the field of redox regulation has largely expanded and this work is aimed at giving the right credit to the importance of thiol-based regulatory and signaling mechanisms in plants. Critical Issues: This cannot be all-encompassing, but is intended to provide a comprehensive overview on the structural/molecular mechanisms governing the most relevant thiol switching modifications with emphasis on the large genetic and functional diversity of redox controllers (i.e., redoxins). We also summarize the different proteomic-based approaches aimed at investigating the dynamics of redox modifications and the recent evidence that extends the possibility to monitor the cellular redox state in vivo. The physiological relevance of redox transitions is discussed based on reverse genetic studies confirming the importance of redox homeostasis in plant growth, development, and stress responses. Future Directions: In conclusion, we can firmly assume that redox biology has acquired an established significance that virtually infiltrates all aspects of plant physiology.
Collapse
Affiliation(s)
- Mirko Zaffagnini
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| | - Simona Fermani
- 2 Department of Chemistry Giacomo Ciamician, University of Bologna, Bologna, Italy
| | - Christophe H Marchand
- 3 Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226, Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Sorbonne Université, Paris, France
| | - Alex Costa
- 4 Department of Biosciences, University of Milan, Milan, Italy
| | - Francesca Sparla
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| | | | - Peter Geigenberger
- 6 Department Biologie I, Ludwig-Maximilians-Universität München, LMU Biozentrum, Martinsried, Germany
| | - Stéphane D Lemaire
- 3 Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226, Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Sorbonne Université, Paris, France
| | - Paolo Trost
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| |
Collapse
|
29
|
Shukla V, Lombardi L, Iacopino S, Pencik A, Novak O, Perata P, Giuntoli B, Licausi F. Endogenous Hypoxia in Lateral Root Primordia Controls Root Architecture by Antagonizing Auxin Signaling in Arabidopsis. MOLECULAR PLANT 2019; 12:538-551. [PMID: 30641154 DOI: 10.1016/j.molp.2019.01.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 05/27/2023]
Abstract
As non-photosynthesizing organs, roots are dependent on diffusion of oxygen from the external environment and, in some instances, from the shoot for their aerobic metabolism. Establishment of hypoxic niches in the developing tissues of plants has been postulated as a consequence of insufficient diffusion of oxygen to satisfy the demands throughout development. Here, we report that such niches are established at specific stages of lateral root primordia development in Arabidopsis thaliana grown under aerobic conditions. Using gain- and loss-of-function mutants, we show that ERF-VII transcription factors, which mediate hypoxic responses, control root architecture by acting in cells with a high level of auxin signaling. ERF-VIIs repress the expression of the auxin-induced genes LBD16, LBD18, and PUCHI, which are essential for lateral root development, by binding to their promoters. Our results support a model in which the establishment of hypoxic niches in the developing lateral root primordia contributes to the shutting down of key auxin-induced genes and regulates the production of lateral roots.
Collapse
Affiliation(s)
- Vinay Shukla
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | - Sergio Iacopino
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Ales Pencik
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS & Faculty of Science, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Ondrej Novak
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS & Faculty of Science, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | | | - Beatrice Giuntoli
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Biology Department, University of Pisa, Pisa, Italy.
| | - Francesco Licausi
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Biology Department, University of Pisa, Pisa, Italy.
| |
Collapse
|
30
|
Riester L, Köster-Hofmann S, Doll J, Berendzen KW, Zentgraf U. Impact of Alternatively Polyadenylated Isoforms of ETHYLENE RESPONSE FACTOR4 with Activator and Repressor Function on Senescence in Arabidopsis thaliana L. Genes (Basel) 2019; 10:genes10020091. [PMID: 30696119 PMCID: PMC6409740 DOI: 10.3390/genes10020091] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 02/07/2023] Open
Abstract
Leaf senescence is highly regulated by transcriptional reprogramming, implying an important role for transcriptional regulators. ETHYLENE RESPONSE FACTOR4 (ERF4) was shown to be involved in senescence regulation and to exist in two different isoforms due to alternative polyadenylation of its pre-mRNA. One of these isoforms, ERF4-R, contains an ERF-associated amphiphilic repression (EAR) motif and acts as repressor, whereas the other form, ERF4-A, is lacking this motif and acts as activator. Here, we analyzed the impact of these isoforms on senescence. Both isoforms were able to complement the delayed senescence phenotype of the erf4 mutant with a tendency of ERF4-A for a slightly better complementation. However, overexpression led to accelerated senescence of 35S:ERF4-R plants but not of 35S:ERF4-A plants. We identified CATALASE3 (CAT3) as direct target gene of ERF4 in a yeast-one-hybrid screen. Both isoforms directly bind to the CAT3 promoter but have antagonistic effects on gene expression. The ratio of ERF4-A to ERF4-R mRNA changed during development, leading to a complex age-dependent regulation of CAT3 activity. The RNA-binding protein FPA shifted the R/A-ratio and fpa mutants are pointing towards a role of alternative polyadenylation regulators in senescence.
Collapse
Affiliation(s)
- Lena Riester
- Center for Plant Molecular Biology (ZMBP), University of Tuebingen, 72076 Tuebingen, Germany.
| | - Siliya Köster-Hofmann
- Center for Plant Molecular Biology (ZMBP), University of Tuebingen, 72076 Tuebingen, Germany.
| | - Jasmin Doll
- Center for Plant Molecular Biology (ZMBP), University of Tuebingen, 72076 Tuebingen, Germany.
| | - Kenneth W Berendzen
- Center for Plant Molecular Biology (ZMBP), University of Tuebingen, 72076 Tuebingen, Germany.
| | - Ulrike Zentgraf
- Center for Plant Molecular Biology (ZMBP), University of Tuebingen, 72076 Tuebingen, Germany.
| |
Collapse
|
31
|
Vicente J, Mendiondo GM, Pauwels J, Pastor V, Izquierdo Y, Naumann C, Movahedi M, Rooney D, Gibbs DJ, Smart K, Bachmair A, Gray JE, Dissmeyer N, Castresana C, Ray RV, Gevaert K, Holdsworth MJ. Distinct branches of the N-end rule pathway modulate the plant immune response. THE NEW PHYTOLOGIST 2019; 221:988-1000. [PMID: 30117535 DOI: 10.1111/nph.15387] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/11/2018] [Indexed: 05/24/2023]
Abstract
The N-end rule pathway is a highly conserved constituent of the ubiquitin proteasome system, yet little is known about its biological roles. Here we explored the role of the N-end rule pathway in the plant immune response. We investigated the genetic influences of components of the pathway and known protein substrates on physiological, biochemical and metabolic responses to pathogen infection. We show that the glutamine (Gln) deamidation and cysteine (Cys) oxidation branches are both components of the plant immune system, through the E3 ligase PROTEOLYSIS (PRT)6. In Arabidopsis thaliana Gln-specific amino-terminal (Nt)-amidase (NTAQ1) controls the expression of specific defence-response genes, activates the synthesis pathway for the phytoalexin camalexin and influences basal resistance to the hemibiotroph pathogen Pseudomonas syringae pv tomato (Pst). The Nt-Cys ETHYLENE RESPONSE FACTOR VII transcription factor substrates enhance pathogen-induced stomatal closure. Transgenic barley with reduced HvPRT6 expression showed enhanced resistance to Ps. japonica and Blumeria graminis f. sp. hordei, indicating a conserved role of the pathway. We propose that that separate branches of the N-end rule pathway act as distinct components of the plant immune response in flowering plants.
Collapse
Affiliation(s)
- Jorge Vicente
- School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | | | - Jarne Pauwels
- VIB-UGent Center for Medical Biotechnology, Albert Baertsoenkaai 3, B-9000, Ghent, Belgium
- Department of Biochemistry, Ghent University, Albert Baertsoenkaai 3, B-9000, Ghent, Belgium
| | - Victoria Pastor
- Área de Fisiología Vegetal, Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castellón, E-12071, Spain
| | - Yovanny Izquierdo
- Centro National de Biotecnología CSIC, C/Darwin, 3, Campus of Cantoblanco, E-28049, Madrid, Spain
| | - Christin Naumann
- Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, D-06120, Halle (Saale), Germany
- Science Campus Halle - Plant-Based Bioeconomy, 06120 Halle (Saale), Germany
| | - Mahsa Movahedi
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Daniel Rooney
- School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Daniel J Gibbs
- School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Katherine Smart
- SABMiller Plc, SABMiller House, Church Street West, Woking, GU21 6HS, UK
| | - Andreas Bachmair
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr Gasse 9, Vienna, A-1030, Austria
| | - Julie E Gray
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Nico Dissmeyer
- Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, D-06120, Halle (Saale), Germany
- Science Campus Halle - Plant-Based Bioeconomy, 06120 Halle (Saale), Germany
| | - Carmen Castresana
- Centro National de Biotecnología CSIC, C/Darwin, 3, Campus of Cantoblanco, E-28049, Madrid, Spain
| | - Rumiana V Ray
- School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, Albert Baertsoenkaai 3, B-9000, Ghent, Belgium
- Department of Biochemistry, Ghent University, Albert Baertsoenkaai 3, B-9000, Ghent, Belgium
| | | |
Collapse
|
32
|
|