1
|
Fan H, Liao H, Shen Y, Sani MNH, Yong JWH, Song J. Unravelling the physiological and molecular mechanisms of leaf color change in Acer griseum through multi-omics analysis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109198. [PMID: 39427360 DOI: 10.1016/j.plaphy.2024.109198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/29/2024] [Accepted: 10/12/2024] [Indexed: 10/22/2024]
Abstract
Paperbark maple (Acer griseum), an endemic and endangered wild plant in China, has red-colored autumn leaves of high ornamental and garden application value. Leaf color change serves as a crucial indicator for evaluating garden tree aesthetics; however, research on A. griseum's leaf color change remains limited. This study aims to elucidate the physiological and molecular mechanisms underlying leaf color change in maple leaves through physiological, transcriptional, and metabolic assays. Data analysis encompasses gene expression levels and metabolite changes in three distinct states of maple leaves: green, half-red, and red. The progessive decrease of chlorophyll and carotenoids and the continuous accumulation of anthocyanidins caused a sharp change in leaf coloration, which was most drastic in the green to half-red period. Subsequently, targeted metabolomics analysis was performed, and a total of 71 anthocyanidins were detected, and the content of eight types of anthocyanidins increased significantly in the half-red and red periods, compared with that in the green period; of which the multiplicative difference was the largest for cyanidin-3,5-O diglucoside, delivering the largest multiplicative difference. Thus, it was plausible that cyanidin-3,5-O-diglucoside-dominated compoundswere likely to be the main metabolites associated with leaf reddening. Correlation analysis revealed that 12 key transcription factors (TFs) were significantly correlated with the anthocyanin-related metabolites and structural genes, which play important regulatory roles during the biosynthesis of anthocyanosides in A. griseum. These findings offered useful insights into the molecular basis of leaf color variation in A. griseum; providing valuable information to guide targeted genetic breeding and varietal improvement strategies.
Collapse
Affiliation(s)
- Huizhen Fan
- College of Landscape Architecture and Art, Northwest A&F University (NWAFU), 712100, Yangling, China
| | - Huimin Liao
- College of Landscape Architecture and Art, Northwest A&F University (NWAFU), 712100, Yangling, China
| | - Yingxue Shen
- College of Landscape Architecture and Art, Northwest A&F University (NWAFU), 712100, Yangling, China
| | - Md Nasir Hossain Sani
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences (SLU), 234 56, Alnarp, Sweden.
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences (SLU), 234 56, Alnarp, Sweden
| | - Junyang Song
- College of Landscape Architecture and Art, Northwest A&F University (NWAFU), 712100, Yangling, China; Department of Biosystems and Technology, Swedish University of Agricultural Sciences (SLU), 234 56, Alnarp, Sweden.
| |
Collapse
|
2
|
Li C, Jiao M, Zhao X, Ma J, Cui Y, Kou X, Long Y, Xing Z. bZIP transcription factor responds to changes in light quality and affects saponins synthesis in Eleutherococcus senticosus. Int J Biol Macromol 2024; 279:135273. [PMID: 39226980 DOI: 10.1016/j.ijbiomac.2024.135273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/19/2024] [Accepted: 08/31/2024] [Indexed: 09/05/2024]
Abstract
Light quality considerably influences plant secondary metabolism, yet the precise mechanism underlying its impact on Eleutherococcus senticosus remains elusive. Comprehensive metabolomic and transcriptomic analyses revealed that varying light quality alters the biosynthesis of triterpene saponins by modulating the expression of genes involved in the process in E. senticosus. Through correlation analysis of gene expression and saponin biosynthesis, we identified four light-responsive transcription factors, namely EsbZIP1, EsbZIP2, EsbZIP4, and EsbZIP5. EsbZIP transcription factors function in the nucleus, with light quality-dependent promoter activity. Except for EsbZIP2, the other EsbZIP transcription factors exhibit transcriptional self-activation. Furthermore, EsbZIP can bind to the promoter areas of genes that encode important enzymes (EsFPS, EsSS, and EsSE) involved in triterpene saponin biosynthesis, thereby regulating their expression. Overexpression of EsbZIP resultes in significant down-regulation of most downstream target genes,which leads to a decrease in saponin content. Overall, varying light quality enhances the content of triterpene saponins by suppressing the expression of EsbZIP. This study thus elucidates the molecular mechanism by which E. senticosus adjusts triterpene saponin levels in response to changes in light quality.
Collapse
Affiliation(s)
- Chang Li
- College of Life Sciences, North China University of Science and Technology, 063210, China
| | - Mengying Jiao
- College of Life Sciences, North China University of Science and Technology, 063210, China
| | - Xueying Zhao
- College of Life Sciences, North China University of Science and Technology, 063210, China
| | - Jiacheng Ma
- College of Life Sciences, North China University of Science and Technology, 063210, China
| | - Yaqi Cui
- College of Life Sciences, North China University of Science and Technology, 063210, China
| | - Xuekun Kou
- College of Life Sciences, North China University of Science and Technology, 063210, China
| | - Yuehong Long
- College of Life Sciences, North China University of Science and Technology, 063210, China.
| | - Zhaobin Xing
- College of Life Sciences, North China University of Science and Technology, 063210, China.
| |
Collapse
|
3
|
Yu X, Li S, Xiao T, Qi X, Fang H, Li L, Bai Y, Liu D, Liu Q, Chen Z, Xue Z, Liang C. Transcriptional regulation and functional validation analysis of the McbZIP1 in Mentha canadensis L. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 348:112212. [PMID: 39134122 DOI: 10.1016/j.plantsci.2024.112212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/21/2024] [Accepted: 08/04/2024] [Indexed: 08/16/2024]
Abstract
Monoterpenoids are the main components of Mentha canadensis essential oil. Monoterpene biosynthetic pathways have been explored, but the regulatory mechanisms remain unclarified. We identified an abscisic acid (ABA)-inducible A-type basic leucine zipper (bZIP) transcription factor McbZIP1 that was localized in the nucleus and positively regulates monoterpene synthesis. McbZIP1 was expressed in most M. canadensis tissues and was induced under ABA, mannitol, and NaCl treatments. McbZIP1 had transcriptional activity in yeast and the N terminus (amino acids 75-117) was sufficient for transactivation. Yeast one-hybrid and Dual-Luciferase assays showed that McbZIP1 binds to ABA-responsive elements in the promoter region of limonene synthase gene. Yeast two-hybrid and biomolecular fluorescence complementation assays revealed that McbZIP1 interacts with McSnRK2.4. Overexpression of McbZIP1 in peppermint resulted in dramatically up-regulated monoterpene biosynthesis gene levels and increased menthol contents. The results support a transcriptional regulation mechanism in which McbZIP1 serves as a positive regulator of menthol biogenesis. These findings contribute to the molecular mechanism of monoterpenoid biogenesis, which may have uses in genetic engineering and menthol production.
Collapse
Affiliation(s)
- Xu Yu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Shumin Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Taolan Xiao
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Xiwu Qi
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Hailing Fang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Li Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Yang Bai
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Dongmei Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Qun Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Zequn Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Zhichao Xue
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Chengyuan Liang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
4
|
Zhang M, Liu Y, Li J, Zhou B, Chen Y, Tang H, Cui Y, Liu J, Tang J. Evolutionary and Expression Analyses of the bZIP Family in Tea Plants ( Camellia sinensis) and Functional Characterization of CsbZIP3/42/6 in Response to Environmental Stresses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39425658 DOI: 10.1021/acs.jafc.4c06725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Basic leucine zipper (bZIP) transcription factors play crucial roles in various biological processes and responses to environmental stresses. However, the functions of the bZIP family in tea plants remain largely unexplored. Here, we identified 74 bZIP genes in tea plants (Camellia sinensis) and classified them into 12 phylogenetic groups, supported by analyses of conserved motifs and gene structures. Cis-element analysis provided insights into the potential roles of CsbZIP genes in phytohormone signaling and stress responses. Tissue-specific expression analysis demonstrated differential expression profiles of CsbZIP genes, suggesting their tissue- and stage-specific functions. Additionally, varying expression levels under different abiotic stresses indicated functional divergence of the CsbZIP family during the long-term evolution. Notably, CsbZIP3/42/6 were identified as positive regulators of drought and salt stress responses but negative regulators in response to pathogen infection, and CsbZIP42 could interact with CsbZIP3 and CsbZIP6 in regulating these environmental stresses. This study provides valuable information on potential applications for improving stress tolerance and overall plant health of tea plants.
Collapse
Affiliation(s)
- Man Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China
| | - Yanhui Liu
- College of Life Sciences, Longyan University, Longyan 361000, China
| | - Jianlong Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China
| | - Bo Zhou
- Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China
| | - Yiyong Chen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China
| | - Hao Tang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China
| | - Yingying Cui
- Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China
| | - Jiayu Liu
- Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China
| | - Jinchi Tang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China
| |
Collapse
|
5
|
Rahman S, Ikram AR, AlHusnain L, Fiaz S, Rafique MU, Ali MA, AlKahtani MDF, Attia KA, Azeem F. Genome-wide profiling of bZIP transcription factors in Camelina sativa: implications for development and stress response. BMC Genom Data 2024; 25:88. [PMID: 39402491 PMCID: PMC11479404 DOI: 10.1186/s12863-024-01270-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND The bZIP transcription factor family, characterized by a bZIP domain, plays vital roles in plant stress responses and development. While this family has been extensively studied in various plant species, its specific functions in Camelina sativa (False Flax) remain underexplored. METHODS AND RESULTS This study identified 71 bZIP transcription factors in C. sativa, classified into nine distinct groups based on phylogenetic analysis. Subcellular localization predicted a nucleus-specific expression for these bZIPs. Analysis of GRAVY scores revealed a range from 0.469 to -1.256, indicating a spectrum from hydrophobic to hydrophilic properties. Motif analysis uncovered 10 distinct motifs, with one motif being universally present in all CsbZIPs. Conserved domain analysis highlighted several domains beyond the core bZIP domain. Protein-protein interaction predictions suggested a robust network involving CsbZIPs. Moreover, promoter analysis revealed over 60 types of cis-elements, including those responsive to stress. Expression studies through RNA-seq and Real-time RT-qPCR demonstrated high expression of CsbZIPs in roots, leaves, flowers, and stems. Specifically, CsbZIP01, CsbZIP02, CsbZIP44, and CsbZIP60 were consistently up-regulated under cold, salt, and drought stresses, whereas CsbZIP34 and CsbZIP35 were down-regulated. CONCLUSION This study presents the first comprehensive genome-wide profiling of bZIP transcription factors in Camelina sativa, providing novel insights into their roles in plant development and stress response mechanisms. By identifying and characterizing the bZIP gene family in C. sativa, this research offers new opportunities for improving stress tolerance and crop resilience through targeted genetic approaches, addressing key challenges in agriculture under changing environmental conditions.
Collapse
Affiliation(s)
- Shahroz Rahman
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Abdul Rehman Ikram
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Latifa AlHusnain
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Sajid Fiaz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, 54590, Pakistan.
| | - Muhammad Umar Rafique
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Muhammad Amjad Ali
- Department of Plant Pathology, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Muneera D F AlKahtani
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Kotb A Attia
- Center of Excellence in Biotechnology Research, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan.
| |
Collapse
|
6
|
Ma D, Guo Y, Ali I, Lin J, Xu Y, Yang M. Accumulation characteristics of plant flavonoids and effects of cultivation measures on their biosynthesis: A review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108960. [PMID: 39079230 DOI: 10.1016/j.plaphy.2024.108960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/01/2024] [Accepted: 07/22/2024] [Indexed: 09/15/2024]
Abstract
Flavonoids, a kind of secondary metabolites with both edible, medicinal and antioxidant purposes, could be widely used in food, drug processing, forest products, chemical industry and many other fields. Flavonoid production in plant organs were influenced by numerous internal and external factors at various stages, leading to differential gene expression and transcription factors activity. This study reviews the characteristics of major flavonoids categories, their distribution and accumulation in different plant parts and analyzing their molecular mechanisms. The results showed that: (1) Flavonoids exhibited wide distribution in all parts of the plants, with higher concentrations found in shoots system compared to roots sytem, across most species (predominantly accumulated in leaves and flowers). Plant sex, specific growth and development stages are both impacting indicators; (2) Cultivation methods and abiotic stress could affect plants flavonoid biosynthesis, while inappropriate physical treatments and cultivation methods induced stress in plants, prompting the activation of antioxidant mechanisms for flavonoid synthesis as a defence strategy via indirect pathways; (3) Various key genes and transcription factors collaboratively influenced key enzymes activities and regulate flavonoid biosynthesis, forming a complex regulatory network among these genes and transcription factors; (4) Further studies are required to elucidate whether flavonoid synthesis under various cultivation measures follows direct or indirect pathways. Furthermore, exploring methods for flavonoid biosynthesis and accumulation in specific organs or tissues, as well as identifying plant tissues and microorganisms with high efficiency in flavonoid biosynthesis, is essential for achieving targeted cultivation of plants and quantitative flavonoid production.
Collapse
Affiliation(s)
- Daocheng Ma
- Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Yanmei Guo
- Guangxi State-Owned Qipo Forest Farm, Nanning, Guangxi, 530225, China
| | - Izhar Ali
- Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Jireng Lin
- Guangxi State-Owned Qipo Forest Farm, Nanning, Guangxi, 530225, China
| | - Yuanyuan Xu
- Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China.
| | - Mei Yang
- Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
7
|
Muhammad N, Liu Z, Wang L, Yang M, Liu M. The underlying molecular mechanisms of hormonal regulation of fruit color in fruit-bearing plants. PLANT MOLECULAR BIOLOGY 2024; 114:104. [PMID: 39316226 DOI: 10.1007/s11103-024-01494-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/01/2024] [Indexed: 09/25/2024]
Abstract
Fruit color is a key feature of fruit quality, primarily influenced by anthocyanin or carotenoid accumulation or chlorophyll degradation. Adapting the pigment content is crucial to improve the fruit's nutritional and commercial value. Genetic factors along with other environmental components (i.e., light, temperature, nutrition, etc.) regulate fruit coloration. The fruit coloration process is influenced by plant hormones, which also play a vital role in various physiological and biochemical metabolic processes. Additionally, phytohormones play a role in the regulation of a highly conserved transcription factor complex, called MBW (MYB-bHLH-WD40). The MBW complex, which consists of myeloblastosis (MYB), basic helix-loop-helix (bHLH), and WD40 repeat (WDR) proteins, coordinates the expression of downstream structural genes associated with anthocyanin formation. In fruit production, the application of plant hormones may be important for promoting coloration. However, concerns such as improper concentration or application time must be addressed. This article explores the molecular processes underlying pigment formation and how they are influenced by various plant hormones. The ABA, jasmonate, and brassinosteroid increase anthocyanin and carotenoid formation, but ethylene, auxin, cytokinin, and gibberellin have positive as well as negative effects on anthocyanin formation. This article establishes the necessary groundwork for future studies into the molecular mechanisms of plant hormones regulating fruit color, ultimately aiding in their effective and scientific application towards fruit coloration.
Collapse
Grants
- (HBCT2024190201) Hebei Provincial Program, China Agriculture Research System, Hebei Agricultural University, and the programs under "National Key R&D Program Project Funding.
- (CARS-30-2-07) Hebei Provincial Program, China Agriculture Research System, Hebei Agricultural University, and the programs under "National Key R&D Program Project Funding.
- (2020YFD1000705 Hebei Provincial Program, China Agriculture Research System, Hebei Agricultural University, and the programs under "National Key R&D Program Project Funding.
- 2019YFD1001605 Hebei Provincial Program, China Agriculture Research System, Hebei Agricultural University, and the programs under "National Key R&D Program Project Funding.
- 2018YFD1000607) Hebei Provincial Program, China Agriculture Research System, Hebei Agricultural University, and the programs under "National Key R&D Program Project Funding.
Collapse
Affiliation(s)
- Noor Muhammad
- College of Forestry, Hebei Agricultural University, Baoding, 071001, Hebei, China.
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, 071001, Hebei, China.
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, Hebei, China.
| | - Zhiguo Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, 071001, Hebei, China
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Lixin Wang
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, 071001, Hebei, China
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Minsheng Yang
- College of Forestry, Hebei Agricultural University, Baoding, 071001, Hebei, China.
| | - Mengjun Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, 071001, Hebei, China.
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, Hebei, China.
| |
Collapse
|
8
|
Gai S, Du B, Xiao Y, Zhang X, Turupu M, Yao Q, Wang X, Yan Y, Li T. bZIP Transcription Factor PavbZIP6 Regulates Anthocyanin Accumulation by Increasing Abscisic Acid in Sweet Cherry. Int J Mol Sci 2024; 25:10207. [PMID: 39337692 PMCID: PMC11432629 DOI: 10.3390/ijms251810207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Basic leucine zipper (bZIP) transcription factors (TFs) play a crucial role in anthocyanin accumulation in plants. In addition to bZIP TFs, abscisic acid (ABA) increases anthocyanin biosynthesis. Therefore, this study aimed to investigate whether bZIP TFs are involved in ABA-induced anthocyanin accumulation in sweet cherry and elucidate the underlying molecular mechanisms. Specifically, the BLAST method was used to identify bZIP genes in sweet cherry. Additionally, we examined the expression of ABA- and anthocyanin-related genes in sweet cherry following the overexpression or knockdown of a bZIP candidate gene. In total, we identified 54 bZIP-encoding genes in the sweet cherry genome. Basic leucine zipper 6 (bZIP6) showed significantly increased expression, along with increased anthocyanin accumulation in sweet cherry. Additionally, yeast one-hybrid and dual-luciferase assays indicated that PavbZIP6 enhanced the expression of anthocyanin biosynthetic genes (PavDFR, PavANS, and PavUFGT), thereby increasing anthocyanin accumulation. Moreover, PavbZIP6 interacted directly with the PavBBX6 promoter, thereby regulating PavNCED1 to promote abscisic acid (ABA) synthesis and enhance anthocyanin accumulation in sweet cherry fruit. Conclusively, this study reveals a novel mechanism by which PavbZIP6 mediates anthocyanin biosynthesis in response to ABA and contributes to our understanding of the mechanism of bZIP genes in the regulation of anthocyanin biosynthesis in sweet cherry.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Tianhong Li
- Frontiers Science Center for Molecular Design Breeding, College of Horticulture, China Agricultural University, Beijing 100193, China; (S.G.); (B.D.); (Y.X.); (X.Z.); (M.T.); (Q.Y.); (X.W.); (Y.Y.)
| |
Collapse
|
9
|
Wang C, Liu Y, Li Y, Guo L, Li C. Analysis of bZIP transcription factors in Rhododendron simsii and functional study of RsbZIP6 in regulating anthocyanin biosynthesis. Int J Biol Macromol 2024; 280:135889. [PMID: 39307497 DOI: 10.1016/j.ijbiomac.2024.135889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
The basic leucine zipper (bZIP) transcription factors play a critical role in various plant biological processes, including anthocyanin biosynthesis. This study focuses on Rhododendron simsii, a notable ornamental species with insufficiently explored bZIP transcription factors. We identified 66 bZIP transcription factors in the R. simsii genome and conducted comprehensive bioinformatics analyses to determine their gene localization, phylogenetic relationships, grouping, gene/protein structure, duplication events, synteny, and expression profiles. Our analysis identified RsbZIP6, a homolog of HY5 known to influence anthocyanin biosynthesis in many plants, as a potential regulator of this pathway. We cloned the complete coding sequence of RsbZIP6, which encodes a 170-amino acid protein spanning 510 bp. Subcellular localization analysis verified the nuclear presence of the RsbZIP6 protein. RT-qPCR analysis revealed the highest expression of RsbZIP6 in petals, which correlated with anthocyanin accumulation. Transgenic experiments indicated that overexpressing RsbZIP6 in Arabidopsis enhanced anthocyanin accumulation by upregulating genes involved in anthocyanin biosynthesis (4CL, CHS, CHI, DFR, F3H, F3'H, ANS and UF3GT). Our findings enhance understanding of the bZIP transcription factor family in R. simsii and underscore the vital role of RsbZIP6 in anthocyanin biosynthesis, providing insights for future genetic enhancement strategies.
Collapse
Affiliation(s)
- Cheng Wang
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China; Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Xiaogan 432000, China
| | - Yilin Liu
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Yan Li
- Department of Biology and Chemical Engineering, Weihai Vocational College, Weihai 264200, China
| | - Lifan Guo
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Changchun Li
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China; Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Xiaogan 432000, China.
| |
Collapse
|
10
|
Elsadek MA, Wang R, Xu K, Wang T, Zhang A, Qi Z, Liu B, Yuan L, Chen L. Tuber quality enhancement via grafting potato onto a wooden goji rootstock through vitalizing multi-pathways. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108927. [PMID: 39067104 DOI: 10.1016/j.plaphy.2024.108927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024]
Abstract
Grafting is applied in Solanaceae to improve growth and quality traits. However, grafting potato onto a wooden goji rootstock is rare. Our study introduces a novel distant grafting technique to investigate potato scion responses, specifically regarding photosynthetic and tuber nutritional quality. The physiological and transcriptomic findings reveal an increase in photosynthesis ratio and carbon fixation in potato leaves after 45 days of grafting due to the upregulation of pivotal genes (PsbA, PPC1, rbcl, and GAPDH). After 95 days of long-term growth, the leaf redox balance was maintained with intensified chlorophyll synthesis, facilitated by the enrichment of crucial genes (GUN4, CHLH, CHLP, CAO) and several light-harvesting proteins (Lhca and Lhcb) in potato leaves. The tubers of grafted plants showed a 6.5% increase in crude protein, 51% in anthocyanin, and lower carbohydrate content. Goji altered the expression of tubers genes involved in assimilatory sulfate reduction, which subsequently affects cysteine-methionine biosynthesis. Furthermore, the tuber transcriptome shows ABA signaling and transcription factors regulate the expression of key biosynthetic genes involved in inducing the secondary metabolites, such as scopoletin and anthocyanin accumulation, which are primary polyphenols in goji. Our innovative grafting approach offers valuable insights into the interactions between woody and herbaceous plants for developing future strategies to modulate growth efficiency and tuber quality in the face of climate challenges and to meet the demand for nutritious food.
Collapse
Affiliation(s)
- Mohamed A Elsadek
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China; Department of Horticulture, Faculty of Agriculture, South Valley University, Qena, 83523, Egypt
| | - Ruiting Wang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Kexin Xu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Tingjin Wang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Aijun Zhang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zhenyu Qi
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Bin Liu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Lu Yuan
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Liping Chen
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
11
|
Zhao J, Zou Q, Bao T, Kong M, Gu T, Jiang L, Wang T, Xu T, Wang N, Zhang Z, Chen X. Transcription factor MdbZIP44 targets the promoter of MdPPO2 to regulate browning in Malus domestica Borkh. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108934. [PMID: 39003974 DOI: 10.1016/j.plaphy.2024.108934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Apple (Malus domestica Borkh.) is among the most widely planted and economically valuable horticultural crops globally. Over time, the apple fruit's cut surface undergoes browning, and the degree of browning varies among different apple varieties. Browning not only affects the appearance of fruits but also adversely affects their taste and flavor. In the present study, we observed browning in different apple varieties over time and analyzed the expression of genes in the polyphenol oxidase gene family. The results indicated a strong correlation between the browning degree of the fruit and the relative expression of the polyphenol oxidase gene MdPPO2. With the MdPPO2 promoter as bait, the basic leucine zipper (bZIP) transcription factor MdbZIP44 was identified using the yeast single-hybrid screening method. Further investigation revealed that the overexpression of MdbZIP44 in 'Orin' callus could enhance the expression of MdPPO2 and promote browning of the callus. However, knocking out MdbZIP44 resulted in a callus with no apparent browning phenotype. In addition, our results confirmed the interaction between MdbZIP44 and MdbZIP11. In conclusion, the results indicated that MdbZIP44 can induce apple fruit browning by activating the MdPPO2 promoter. The results provide a theoretical basis for further clarifying the browning mechanism of apple fruit.
Collapse
Affiliation(s)
- Jianwen Zhao
- College of Horticulture Sciences and Engineering, Shandong Agricultural University, 271018, Tai'an, Shandong, China
| | - Qi Zou
- College of Horticulture Sciences and Engineering, Shandong Agricultural University, 271018, Tai'an, Shandong, China
| | - Tiantian Bao
- Tai'an Academy of Agricultural Sciences, 271000, Tai'an, Shandong, China
| | - Meng Kong
- College of Horticulture Sciences and Engineering, Shandong Agricultural University, 271018, Tai'an, Shandong, China
| | - Tingting Gu
- College of Agricultural Science and Technology, Shandong Agricultural and Engineering University, 250100, Jinan, Shandong, China
| | - Lepu Jiang
- Key Laboratory of Biological Resources Protection and Utilization Corps of Tarim Basin, Tarim University, 843300, Alar, Xinjiang, China
| | - Tong Wang
- College of Horticulture Sciences and Engineering, Shandong Agricultural University, 271018, Tai'an, Shandong, China
| | - Tongyao Xu
- College of Horticulture Sciences and Engineering, Shandong Agricultural University, 271018, Tai'an, Shandong, China
| | - Nan Wang
- College of Horticulture Sciences and Engineering, Shandong Agricultural University, 271018, Tai'an, Shandong, China
| | - Zongying Zhang
- College of Horticulture Sciences and Engineering, Shandong Agricultural University, 271018, Tai'an, Shandong, China.
| | - Xuesen Chen
- College of Horticulture Sciences and Engineering, Shandong Agricultural University, 271018, Tai'an, Shandong, China.
| |
Collapse
|
12
|
Dou F, Phillip FO, Liu H. Combined Metabolome and Transcriptome Analysis Revealed the Accumulation of Anthocyanins in Grape Berry ( Vitis vinifera L.) under High-Temperature Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:2394. [PMID: 39273878 PMCID: PMC11397361 DOI: 10.3390/plants13172394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
In grape (Vitis vinifera L.) cultivation, high temperatures (HTs) usually reduce the accumulation of anthocyanins. In order to elucidate the regulatory mechanism of anthocyanin biosynthesis under high-temperature environments, we investigated the effects of HT stress at veraison (5% coloring of grape ears) on fruit coloration and anthocyanin biosynthesis in 'Summer Black' (XH) and 'Flame seedless' (FL) grapevines. Compared to the control group (35 °C), the total anthocyanin content of XH and FL grapes subjected to a high-temperature (HT) treatment group (40 °C) decreased significantly as the HT treatment continued, but showed an upward trend with fruit development. However, the concentration of procyanidins increased significantly following HT treatment but decreased with fruit development. Nonetheless, FL grapes showed some resistance to the HT condition, producing anthocyanin content at ripeness comparable to the control group, demonstrating a greater adaptability to HT conditions than XH grapes. Based on the CIRG index, at stage S4, the fruit of FL was classified as dark red, while XH was classified as blue-black in the control group. Anthocyanin-targeted metabonomics identified eight different types of anthocyanins accumulating in the peels of XH and FL grapes during ripening, including cyanidins, delphinidins, malvidins, pelargonidins, peonidins, petunidins, procyanidins, and flavonoids. Malvidins were the most abundant in the two grape varieties, with malvidin-3-O-glucoside being more sensitive to high temperatures. HT treatment also down-regulated the expression of structural genes and regulators involved in the anthocyanin synthesis pathways. We used the WGCNA method to identify two modules that were significantly correlated with total anthocyanin and procyanidin contents. Among them, MYBCS1, bHLH137, WRKY65, WRKY75, MYB113-like, bZIP44, and GST3 were predicted to be involved in grape anthocyanin biosynthesis. In conclusion, this study conducted in-depth research on the HT inhibition of the biosynthesis of anthocyanins in XH and FL grapes, for reference.
Collapse
Affiliation(s)
- Feifei Dou
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Agricultural College of Shihezi University, Shihezi 832003, China
| | - Fesobi Olumide Phillip
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Agricultural College of Shihezi University, Shihezi 832003, China
| | - Huaifeng Liu
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Agricultural College of Shihezi University, Shihezi 832003, China
| |
Collapse
|
13
|
Dong H, Chen Q, Fu Y, Xie H, Li T, Li D, Yang Y, Xie Z, Qi K, Zhang S, Huang X. PbGBF3 enhances salt response in pear by upregulating PbAPL2 and PbSDH1 and reducing ABA-mediated salt sensitivity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 39073914 DOI: 10.1111/tpj.16953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/18/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024]
Abstract
Pear is a widely cultivated fruit crop, but its distribution and sustainable production are significantly limited by salt stress. This study used RNA-Seq time-course analysis, WGCNA, and functional enrichment analysis to uncover the molecular mechanisms underlying salt stress tolerance in Pyrus ussuriensis. We identified an ABA-related regulatory module, PbGBF3-PbAPL2-PbSDH1, as crucial in this response. PbGBF3, a bZIP transcription factor, enhances salt tolerance by upregulating PbAPL2 and PbSDH1. Overexpression of PbGBF3 improved salt tolerance in Pyrus communis calli and Arabidopsis, while silencing it reduced tolerance in Pyrus betulifolia. Functional assays showed that PbGBF3 binds to the promoters of PbAPL2 and PbSDH1, increasing their expression. PbAPL2 and PbSDH1, key enzymes in starch synthesis and the sorbitol pathway, respectively, enhance salt tolerance by increasing AGPase activity, soluble sugar content, and SDH activity, improving ROS scavenging and ion balance. Our findings suggest that the PbGBF3-PbAPL2 and PbGBF3-PbSDH1 modules positively regulate salt tolerance by enhancing ABA signaling and reducing ABA-mediated growth inhibition. These insights provide a foundation for developing salt-tolerant pear cultivars.
Collapse
Affiliation(s)
- Huizhen Dong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| | - Qiming Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| | - Yifei Fu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| | - Haoyang Xie
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| | - Tinghan Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| | - Dingli Li
- Centre of Pear Engineering Technology Research, Qingdao Agricultural University, Qingdao, China
| | - Yingjie Yang
- Centre of Pear Engineering Technology Research, Qingdao Agricultural University, Qingdao, China
| | - Zhihua Xie
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| | - Kaijie Qi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| | - Shaoling Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| | - Xiaosan Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
14
|
Wang X, Meng Y, Zhang S, Wang Z, Zhang K, Gao T, Ma Y. Characterization of bZIP Transcription Factors in Transcriptome of Chrysanthemum mongolicum and Roles of CmbZIP9 in Drought Stress Resistance. PLANTS (BASEL, SWITZERLAND) 2024; 13:2064. [PMID: 39124182 PMCID: PMC11314283 DOI: 10.3390/plants13152064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
bZIP transcription factors play important roles in regulating plant development and stress responses. Although bZIPs have been identified in many plant species, there is little information on the bZIPs in Chrysanthemum. In this study, bZIP TFs were identified from the leaf transcriptome of C. mongolicum, a plant naturally tolerant to drought. A total of 28 full-length bZIP family members were identified from the leaf transcriptome of C. mongolicum and were divided into five subfamilies based on their phylogenetic relationships with the bZIPs from Arabidopsis. Ten conserved motifs were detected among the bZIP proteins of C. mongolicum. Subcellular localization assays revealed that most of the CmbZIPs were predicted to be localized in the nucleus. A novel bZIP gene, designated as CmbZIP9, was cloned based on a sequence of the data of the C. mongolicum transcriptome and was overexpressed in tobacco. The results indicated that the overexpression of CmbZIP9 reduced the malondialdehyde (MDA) content and increased the peroxidase (POD) and superoxide dismutase (SOD) activities as well as the expression levels of stress-related genes under drought stress, thus enhancing the drought tolerance of transgenic tobacco lines. These results provide a theoretical basis for further exploring the functions of the bZIP family genes and lay a foundation for stress resistance improvement in chrysanthemums in the future.
Collapse
Affiliation(s)
- Xuan Wang
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China; (X.W.); (Y.M.); (S.Z.); (Z.W.); (T.G.)
| | - Yuan Meng
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China; (X.W.); (Y.M.); (S.Z.); (Z.W.); (T.G.)
| | - Shaowei Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China; (X.W.); (Y.M.); (S.Z.); (Z.W.); (T.G.)
| | - Zihan Wang
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China; (X.W.); (Y.M.); (S.Z.); (Z.W.); (T.G.)
| | - Kaimei Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China;
| | - Tingting Gao
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China; (X.W.); (Y.M.); (S.Z.); (Z.W.); (T.G.)
| | - Yueping Ma
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China; (X.W.); (Y.M.); (S.Z.); (Z.W.); (T.G.)
| |
Collapse
|
15
|
Peng D, Li L, Wei A, Zhou L, Wang B, Liu M, Lei Y, Xie Y, Li X. TaMYB44-5A reduces drought tolerance by repressing transcription of TaRD22-3A in the abscisic acid signaling pathway. PLANTA 2024; 260:52. [PMID: 39003354 DOI: 10.1007/s00425-024-04485-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
MAIN CONCLUSION TaMYB44-5A identified as a transcription factor negatively regulates drought tolerance in transgenic Arabidopsis. Drought can severely reduce yields throughout the wheat-growing season. Many studies have shown that R2R3-MYB transcription factors are involved in drought stress responses. In this study, the R2R3-MYB transcription factor MYB44-5A was identified in wheat (Triticum aestivum L.) and functionally analyzed. Three homologs of TaMYB44 were isolated, all of which localized to the nucleus. Overexpression of TaMYB44-5A reduced drought tolerance in Arabidopsis thaliana. Further analysis showed that TaMYB44-5A reduced the sensitivity of transgenic Arabidopsis to ABA. Genetic and transcriptional regulation analyses demonstrated that the expression levels of drought- and ABA-responsive genes were downregulated by TaMYB44-5A, and TaMYB44-5A directly bound to the MYB-binding site on the promoter to repress the transcription level of TaRD22-3A. Our results provide insights into a novel molecular pathway in which the R2R3-MYB transcription factor negatively regulates ABA signaling in response to drought stress.
Collapse
Affiliation(s)
- De Peng
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, 712100, Shaanxi, China
| | - Liqun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, 712100, Shaanxi, China
| | - Aosong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, 712100, Shaanxi, China
| | - Ling Zhou
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, 712100, Shaanxi, China
| | - Bingxin Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, 712100, Shaanxi, China
| | - Mingliu Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, 712100, Shaanxi, China
| | - Yanhong Lei
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, 712100, Shaanxi, China
| | - Yanzhou Xie
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, 712100, Shaanxi, China
| | - Xuejun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
16
|
Wang C, Yang J, Pan Q, Zhu P, Li J. Integrated transcriptomic and proteomic analysis of exogenous abscisic acid regulation on tuberous root development in Pseudostellaria heterophylla. Front Nutr 2024; 11:1417526. [PMID: 39036490 PMCID: PMC11258014 DOI: 10.3389/fnut.2024.1417526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024] Open
Abstract
Abscisic acid (ABA) significantly regulates plant growth and development, promoting tuberous root formation in various plants. However, the molecular mechanisms of ABA in the tuberous root development of Pseudostellaria heterophylla are not yet fully understood. This study utilized Illumina sequencing and de novo assembly strategies to obtain a reference transcriptome associated with ABA treatment. Subsequently, integrated transcriptomic and proteomic analyses were used to determine gene expression profiles in P. heterophylla tuberous roots. ABA treatment significantly increases the diameter and shortens the length of tuberous roots. Clustering analysis identified 2,256 differentially expressed genes and 679 differentially abundant proteins regulated by ABA. Gene co-expression and protein interaction networks revealed ABA positively induced 30 vital regulators. Furthermore, we identified and assigned putative functions to transcription factors (PhMYB10, PhbZIP2, PhbZIP, PhSBP) that mediate ABA signaling involved in the regulation of tuberous root development, including those related to cell wall metabolism, cell division, starch synthesis, hormone metabolism. Our findings provide valuable insights into the complex signaling networks of tuberous root development modulated by ABA. It provided potential targets for genetic manipulation to improve the yield and quality of P. heterophylla, which could significantly impact its cultivation and medicinal value.
Collapse
Affiliation(s)
| | | | | | - Panpan Zhu
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jun Li
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
17
|
Wang Y, Li S, Shi Y, Lv S, Zhu C, Xu C, Zhang B, Allan AC, Grierson D, Chen K. The R2R3 MYB Ruby1 is activated by two cold responsive ethylene response factors, via the retrotransposon in its promoter, to positively regulate anthocyanin biosynthesis in citrus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 38922743 DOI: 10.1111/tpj.16866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/07/2024] [Accepted: 04/08/2024] [Indexed: 06/28/2024]
Abstract
Anthocyanins are natural pigments and dietary antioxidants that play multiple biological roles in plants and are important in animal and human nutrition. Low temperature (LT) promotes anthocyanin biosynthesis in many species including blood orange. A retrotransposon in the promoter of Ruby1, which encodes an R2R3 MYB transcription factor, controls cold-induced anthocyanin accumulation in blood orange flesh. However, the specific mechanism remains unclear. In this study, we characterized two LT-induced ETHYLENE RESPONSE FACTORS (CsERF054 and CsERF061). Both CsERF054 and CsERF061 can activate the expression of CsRuby1 by directly binding to a DRE/CRT cis-element within the retrotransposon in the promoter of CsRuby1, thereby positively regulating anthocyanin biosynthesis. Further investigation indicated that CsERF061 also forms a protein complex with CsRuby1 to co-activate the expression of anthocyanin biosynthetic genes, providing a dual mechanism for the upregulation of the anthocyanin pathway. These results provide insights into how LT mediates anthocyanin biosynthesis and increase the understanding of the regulatory network of anthocyanin biosynthesis in blood orange.
Collapse
Affiliation(s)
- Yuxin Wang
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Shaojia Li
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Yanna Shi
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Shouzheng Lv
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Changqing Zhu
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Changjie Xu
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Bo Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Andrew C Allan
- New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Donald Grierson
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Nottingham, UK
| | - Kunsong Chen
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| |
Collapse
|
18
|
Pei Z, Huang Y, Ni J, Liu Y, Yang Q. For a Colorful Life: Recent Advances in Anthocyanin Biosynthesis during Leaf Senescence. BIOLOGY 2024; 13:329. [PMID: 38785811 PMCID: PMC11117936 DOI: 10.3390/biology13050329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Leaf senescence is the last stage of leaf development, and it is accompanied by a leaf color change. In some species, anthocyanins are accumulated during leaf senescence, which are vital indicators for both ornamental and commercial value. Therefore, it is essential to understand the molecular mechanism of anthocyanin accumulation during leaf senescence, which would provide new insight into autumn coloration and molecular breeding for more colorful plants. Anthocyanin accumulation is a surprisingly complex process, and significant advances have been made in the past decades. In this review, we focused on leaf coloration during senescence. We emphatically discussed several networks linked to genetic, hormonal, environmental, and nutritional factors in regulating anthocyanin accumulation during leaf senescence. This paper aims to provide a regulatory model for leaf coloration and to put forward some prospects for future development.
Collapse
Affiliation(s)
- Ziqi Pei
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; (Z.P.); (Y.H.); (Y.L.)
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing 100083, China
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Yifei Huang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; (Z.P.); (Y.H.); (Y.L.)
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing 100083, China
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Junbei Ni
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Yong Liu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; (Z.P.); (Y.H.); (Y.L.)
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing 100083, China
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Qinsong Yang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; (Z.P.); (Y.H.); (Y.L.)
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing 100083, China
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
19
|
Zhang TT, Lin YJ, Liu HF, Liu YQ, Zeng ZF, Lu XY, Li XW, Zhang ZL, Zhang S, You CX, Guan QM, Lang ZB, Wang XF. The AP2/ERF transcription factor MdDREB2A regulates nitrogen utilisation and sucrose transport under drought stress. PLANT, CELL & ENVIRONMENT 2024; 47:1668-1684. [PMID: 38282271 DOI: 10.1111/pce.14834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 01/30/2024]
Abstract
Drought stress is one of the main environmental factors limiting plant growth and development. Plants adapt to changing soil moisture by modifying root architecture, inducing stomatal closure, and inhibiting shoot growth. The AP2/ERF transcription factor DREB2A plays a key role in maintaining plant growth in response to drought stress, but the molecular mechanism underlying this process remains to be elucidated. Here, it was found that overexpression of MdDREB2A positively regulated nitrogen utilisation by interacting with DRE cis-elements of the MdNIR1 promoter. Meanwhile, MdDREB2A could also directly bind to the promoter of MdSWEET12, which may enhance root development and nitrogen assimilation, ultimately promoting plant growth. Overall, this regulatory mechanism provides an idea for plants in coordinating with drought tolerance and nitrogen assimilation to maintain optimal plant growth and development under drought stress.
Collapse
Affiliation(s)
- Ting-Ting Zhang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilisation, Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Yu-Jing Lin
- Shanghai Center for Plant Stress Biology, and National Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hao-Feng Liu
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Ya-Qi Liu
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Zhi-Feng Zeng
- Shanghai Center for Plant Stress Biology, and National Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Yan Lu
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilisation, Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Xue-Wei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhen-Lu Zhang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Shuai Zhang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Chun-Xiang You
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Qing-Mei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhao-Bo Lang
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xiao-Fei Wang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
20
|
Chen M, Cao X, Huang Y, Zou W, Liang X, Yang Y, Wang Y, Wei J, Li H. The bZIP transcription factor MpbZIP9 regulates anthocyanin biosynthesis in Malus 'Pinkspire' fruit. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112038. [PMID: 38367821 DOI: 10.1016/j.plantsci.2024.112038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/03/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Malus 'Pinkspire' is regulated by abscisic acid (ABA), which results in a red colour, but the regulatory relationship between ABA and anthocyanin synthesis has not been determined. The key factors affecting the colour change of M. 'Pinkspire' peel were investigated during the periods of significant colour changes during fruit ripening. The results showed that the transcription factor MpbZIP9 associated with ABA was screened by transcriptomic analysis. MpbZIP9 expression was consistent with the trend of structural genes expression for anthocyanin synthesis in the peel during fruit ripening, as well as with changes in the content of ABA, which is a positive regulator. A yeast one-hybrid assay showed that MpbZIP9 can directly bind to the promoter of MpF3'H. Dual luciferase reporter gene assays and GUS staining experiments showed that MpbZIP9 significantly activate MpF3'H expression. In addition, overexpression of the MpbZIP9 significantly enhanced anthocyanin accumulation and the expression of genes involved in anthocyanin synthesis. In contrast, virus-induced silencing of the MpbZIP9 significantly reduced the expression of structural genes involved in anthocyanin synthesis. These results suggest that the MpbZIP9 transcription factor can regulate the synthesis of peel anthocyanin and is a positive regulator that promotes anthocyanin biosynthesis by activating MpF3'H expression.
Collapse
Affiliation(s)
- Mingkun Chen
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoyun Cao
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuanxing Huang
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenting Zou
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaolong Liang
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yue Yang
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yu Wang
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Wei
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Houhua Li
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
21
|
Tang Q, Wang X, Ma S, Fan S, Chi F, Song Y. Molecular mechanism of abscisic acid signaling response factor VcbZIP55 to promote anthocyanin biosynthesis in blueberry (Vaccinium corymbosum). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108611. [PMID: 38615439 DOI: 10.1016/j.plaphy.2024.108611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/16/2024]
Abstract
A high content of anthocyanin in blueberry (Vaccinium corymbosum) is an important indicator to evaluate fruit quality. Abscisic acid (ABA) can promote anthocyanin biosynthesis, but since the molecular mechanism is unclear, clarifying the mechanism will improve for blueberry breeding and cultivation regulation. VcbZIP55 regulating anthocyanin synthesis in blueberry were screened and mined using the published Isoform-sequencing, RNA-Seq and qRT-PCR at different fruit developmental stages. Blueberry genetic transformation and transgenic experiments confirmed that VcbZIP55 could promote anthocyanin biosynthesis in blueberry adventitious buds, tobacco leaves, blueberry leaves and blueberry fruit. VcbZIP55 responded to ABA signals and its expression was upregulated in blueberry fruit. In addition, using VcbZIP55 for Yeast one hybrid assay (Y1H) and transient expression in tobacco leaves demonstrated an interaction between VcbZIP55 and a G-Box motif on the VcMYB1 promoter to activate the expression of VcMYB1. This study will lay the theoretical foundation for the molecular mechanisms of phytohormone regulation responsible for anthocyanin synthesis and provide theoretical support for blueberry quality improvement.
Collapse
Affiliation(s)
- Qi Tang
- Research Institute of Pomology of CAAS, Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Xingcheng, Liaoning, 125100, China.
| | - Xuan Wang
- Research Institute of Pomology of CAAS, Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Xingcheng, Liaoning, 125100, China.
| | - Shurui Ma
- Research Institute of Pomology of CAAS, Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Xingcheng, Liaoning, 125100, China.
| | - Shutian Fan
- Institute of Special Animal and Plant Sciences CAAS, Jilin Changchun, 130122, China.
| | - Fumei Chi
- Research Institute of Pomology of CAAS, Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Xingcheng, Liaoning, 125100, China.
| | - Yang Song
- Research Institute of Pomology of CAAS, Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Xingcheng, Liaoning, 125100, China.
| |
Collapse
|
22
|
Saini RK, Khan MI, Shang X, Kumar V, Kumari V, Kesarwani A, Ko EY. Dietary Sources, Stabilization, Health Benefits, and Industrial Application of Anthocyanins-A Review. Foods 2024; 13:1227. [PMID: 38672900 PMCID: PMC11049351 DOI: 10.3390/foods13081227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/06/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Natural phytochemicals are well known to protect against numerous metabolic disorders. Anthocyanins are vacuolar pigments belonging to the parent class of flavonoids. They are well known for their potent antioxidant and gut microbiome-modulating properties, primarily responsible for minimizing the risk of cardiovascular diseases, diabetes, obesity, neurodegenerative diseases, cancer, and several other diseases associated with metabolic syndromes. Berries are the primary source of anthocyanin in the diet. The color and stability of anthocyanins are substantially influenced by external environmental conditions, constraining their applications in foods. Furthermore, the significantly low bioavailability of anthocyanins greatly diminishes the extent of the actual health benefits linked to these bioactive compounds. Multiple strategies have been successfully developed and utilized to enhance the stability and bioavailability of anthocyanins. This review provides a comprehensive view of the recent advancements in chemistry, biosynthesis, dietary sources, stabilization, bioavailability, industrial applications, and health benefits of anthocyanins. Finally, we summarize the prospects and challenges of applications of anthocyanin in foods.
Collapse
Affiliation(s)
- Ramesh Kumar Saini
- School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India;
| | - Mohammad Imtiyaj Khan
- Biochemistry and Molecular Biology Lab, Department of Biotechnology, Gauhati University, Guwahati 781014, Assam, India;
| | - Xiaomin Shang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, China;
| | - Vikas Kumar
- Department of Food Science and Technology, Punjab Agricultural University, Ludhiana 141004, Punjab, India;
| | - Varsha Kumari
- Department of Plant Breeding and Genetics, Sri Karan Narendra Agriculture University, Jobner, Jaipur 302001, Rajasthan, India;
| | - Amit Kesarwani
- Department of Agronomy, College of Agriculture, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India;
| | - Eun-Young Ko
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
23
|
Sun Q, He Z, Wei R, Zhang Y, Ye J, Chai L, Xie Z, Guo W, Xu J, Cheng Y, Xu Q, Deng X. The transcriptional regulatory module CsHB5-CsbZIP44 positively regulates abscisic acid-mediated carotenoid biosynthesis in citrus (Citrus spp.). PLANT BIOTECHNOLOGY JOURNAL 2024; 22:722-737. [PMID: 37915111 PMCID: PMC10893943 DOI: 10.1111/pbi.14219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/22/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023]
Abstract
Carotenoids contribute to fruit coloration and are valuable sources of provitamin A in the human diet. Abscisic acid (ABA) plays an essential role in fruit coloration during citrus fruit ripening, but little is known about the underlying mechanisms. Here, we identified a novel bZIP transcription activator called CsbZIP44, which serves as a central regulator of ABA-mediated citrus carotenoid biosynthesis. CsbZIP44 directly binds to the promoters of four carotenoid metabolism-related genes (CsDXR, CsGGPPs, CsBCH1 and CsNCED2) and activates their expression. Furthermore, our research indicates that CsHB5, a positive regulator of ABA and carotenoid-driven processes, activates the expression of CsbZIP44 by binding to its promoter. Additionally, CsHB5 interacts with CsbZIP44 to form a transcriptional regulatory module CsHB5-CsbZIP44, which is responsive to ABA induction and promotes carotenoid accumulation in citrus. Interestingly, we also discover a positive feedback regulation loop between the ABA signal and carotenoid biosynthesis mediated by the CsHB5-CsbZIP44 transcriptional regulatory module. Our findings show that CsHB5-CsbZIP44 precisely modulates ABA signal-mediated carotenoid metabolism, providing an effective strategy for quality improvement of citrus fruit and other crops.
Collapse
Affiliation(s)
- Quan Sun
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and EngineeringShandong Agricultural UniversityTaianChina
| | - Zhengchen He
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Ranran Wei
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Yin Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Junli Ye
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Lijun Chai
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Zongzhou Xie
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Wenwu Guo
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Juan Xu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Yunjiang Cheng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Qiang Xu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Xiuxin Deng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| |
Collapse
|
24
|
Huang L, Lin B, Hao P, Yi K, Li X, Hua S. Multi-Omics Analysis Reveals That Anthocyanin Degradation and Phytohormone Changes Regulate Red Color Fading in Rapeseed ( Brassica napus L.) Petals. Int J Mol Sci 2024; 25:2577. [PMID: 38473825 DOI: 10.3390/ijms25052577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Flower color is an important trait for the ornamental value of colored rapeseed (Brassica napus L.), as the plant is becoming more popular. However, the color fading of red petals of rapeseed is a problem for its utilization. Unfortunately, the mechanism for the process of color fading in rapeseed is unknown. In the current study, a red flower line, Zhehuhong, was used as plant material to analyze the alterations in its morphological and physiological characteristics, including pigment and phytohormone content, 2 d before flowering (T1), at flowering (T2), and 2 d after flowering (T3). Further, metabolomics and transcriptomics analyses were also performed to reveal the molecular regulation of petal fading. The results show that epidermal cells changed from spherical and tightly arranged to totally collapsed from T1 to T3, according to both paraffin section and scanning electron microscope observation. The pH value and all pigment content except flavonoids decreased significantly during petal fading. The anthocyanin content was reduced by 60.3% at T3 compared to T1. The content of three phytohormones, 1-aminocyclopropanecarboxylic acid, melatonin, and salicylic acid, increased significantly by 2.2, 1.1, and 30.3 times, respectively, from T1 to T3. However, auxin, abscisic acid, and jasmonic acid content decreased from T1 to T3. The result of metabolomics analysis shows that the content of six detected anthocyanin components (cyanidin, peonidin, pelargonidin, delphinidin, petunidin, and malvidin) and their derivatives mainly exhibited a decreasing trend, which was in accordance with the trend of decreasing anthocyanin. Transcriptomics analysis showed downregulation of genes involved in flavonol, flavonoid, and anthocyanin biosynthesis. Furthermore, genes regulating anthocyanin biosynthesis were preferentially expressed at early stages, indicating that the degradation of anthocyanin is the main issue during color fading. The corresponding gene-encoding phytohormone biosynthesis and signaling, JASMONATE-ZIM-DOMAIN PROTEIN, was deactivated to repress anthocyanin biosynthesis, resulting in fading petal color. The results clearly suggest that anthocyanin degradation and phytohormone regulation play essential roles in petal color fading in rapeseed, which is a useful insight for the breeding of colored rapeseed.
Collapse
Affiliation(s)
- Lan Huang
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou 311300, China
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Baogang Lin
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Pengfei Hao
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Kaige Yi
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xi Li
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shuijin Hua
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
25
|
Cai O, Zhang H, Yang L, Wu H, Qin M, Yao W, Huang F, Li L, Lin S. Integrated Transcriptome and Metabolome Analyses Reveal Bamboo Culm Color Formation Mechanisms Involved in Anthocyanin Biosynthetic in Phyllostachys nigra. Int J Mol Sci 2024; 25:1738. [PMID: 38339012 PMCID: PMC10855043 DOI: 10.3390/ijms25031738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Phyllostachys nigra has green young culms (S1) and purple black mature culms (S4). Anthocyanins are the principal pigment responsible for color presentation in ornamental plants. We employ a multi-omics approach to investigate the regulatory mechanisms of anthocyanins in Ph. nigra. Firstly, we found that the pigments of the culm of Ph. nigra accumulated only in one to four layers of cells below the epidermis. The levels of total anthocyanins and total flavonoids gradually increased during the process of bamboo culm color formation. Metabolomics analysis indicated that the predominant pigment metabolites observed were petunidin 3-O-glucoside and malvidin O-hexoside, exhibiting a significant increase of up to 9.36-fold and 13.23-fold, respectively, during pigmentation of Ph. nigra culm. Transcriptomics sequencing has revealed that genes involved in flavonoid biosynthesis, phenylpropanoid biosynthesis, and starch and sucrose metabolism pathways were significantly enriched, leading to color formation. A total of 62 differentially expressed structural genes associated with anthocyanin synthesis were identified. Notably, PnANS2, PnUFGT2, PnCHI2, and PnCHS1 showed significant correlations with anthocyanin metabolites. Additionally, certain transcription factors such as PnMYB6 and PnMYB1 showed significant positive or negative correlations with anthocyanins. With the accumulation of sucrose, the expression of PnMYB6 is enhanced, which in turn triggers the expression of anthocyanin biosynthesis genes. Based on these findings, we propose that these key genes primarily regulate the anthocyanin synthesis pathway in the culm and contribute to the accumulation of anthocyanin, ultimately resulting in the purple-black coloration of Ph. nigra.
Collapse
Affiliation(s)
- Ou Cai
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (O.C.); (H.Z.); (L.Y.); (H.W.); (M.Q.); (W.Y.); (F.H.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Hanjiao Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (O.C.); (H.Z.); (L.Y.); (H.W.); (M.Q.); (W.Y.); (F.H.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Lu Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (O.C.); (H.Z.); (L.Y.); (H.W.); (M.Q.); (W.Y.); (F.H.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Hongyu Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (O.C.); (H.Z.); (L.Y.); (H.W.); (M.Q.); (W.Y.); (F.H.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Min Qin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (O.C.); (H.Z.); (L.Y.); (H.W.); (M.Q.); (W.Y.); (F.H.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Wenjing Yao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (O.C.); (H.Z.); (L.Y.); (H.W.); (M.Q.); (W.Y.); (F.H.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Feiyi Huang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (O.C.); (H.Z.); (L.Y.); (H.W.); (M.Q.); (W.Y.); (F.H.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Long Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (O.C.); (H.Z.); (L.Y.); (H.W.); (M.Q.); (W.Y.); (F.H.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Shuyan Lin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (O.C.); (H.Z.); (L.Y.); (H.W.); (M.Q.); (W.Y.); (F.H.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
26
|
Zhang L, Zhang J, Wei B, Li Y, Fang X, Zhong Y, Wang L. Transcription factor MdNAC33 is involved in ALA-induced anthocyanin accumulation in apples. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 339:111949. [PMID: 38065304 DOI: 10.1016/j.plantsci.2023.111949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
5-Aminolevulinic acid (ALA), as a new natural plant growth regulator, has a significant function in promoting anthocyanin accumulation in many species of fruits. However, the mechanisms underlying remain obscure. In a transcriptome study of our group, it was found that many transcription factors (TFs) including NACs responsive to ALA treatment during anthocyanin accumulation. In the present study, we found a NAC of apple, MdNAC33 was coordinatively expressed with anthocyanin accumulation after ALA treatment in the apple fruits and leaves, suggesting that this TF may be involved in anthocyanin accumulation induced by ALA. We found that the MdNAC33 protein was localized in the nucleus and exhibited strong transcriptional activity in both yeast cells and plants, where its C-terminal contributed to the transcriptional activity. Functional analysis showed that overexpression of MdNAC33 promoted the accumulation of anthocyanin, while the silencing vector of MdNAC33 (RNAi) significantly impaired the anthocyanin accumulation induced by ALA. Yeast one-hybrid (Y1H), luciferase assay and electrophoretic mobility shift assay (EMSA) indicated that MdNAC33 could bind to promoters of MdbHLH3, MdDFR and MdANS to activate the gene expressions. In addition, MdNAC33 specifically interacts with MdMYB1, a positive regulator of anthocyanin biosynthesis, which was then in turn binding to its target genes MdUFGT and MdGSTF12, to promote anthocyanin accumulation in apples. Taken together, our data indicate that MdNAC33 plays multiple roles in ALA-induced anthocyanin biosynthesis. It provides new insights into the mechanisms of anthocyanin accumulation induced by ALA.
Collapse
Affiliation(s)
- Liuzi Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jiangting Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Bo Wei
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yage Li
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiang Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Zhong
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Liangju Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
27
|
Mao K, Yang J, Sun Y, Guo X, Qiu L, Mei Q, Li N, Ma F. MdbHLH160 is stabilized via reduced MdBT2-mediated degradation to promote MdSOD1 and MdDREB2A-like expression for apple drought tolerance. PLANT PHYSIOLOGY 2024; 194:1181-1203. [PMID: 37930306 DOI: 10.1093/plphys/kiad579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 11/07/2023]
Abstract
Drought stress is a key environmental factor limiting the productivity, quality, and geographic distribution of crops worldwide. Abscisic acid (ABA) plays an important role in plant drought stress responses, but the molecular mechanisms remain unclear. Here, we report an ABA-responsive bHLH transcription factor, MdbHLH160, which promotes drought tolerance in Arabidopsis (Arabidopsis thaliana) and apple (Malus domestica). Under drought conditions, MdbHLH160 is directly bound to the MdSOD1 (superoxide dismutase 1) promoter and activated its transcription, thereby triggering reactive oxygen species (ROS) scavenging and enhancing apple drought tolerance. MdbHLH160 also promoted MdSOD1 enzyme activity and accumulation in the nucleus through direct protein interactions, thus inhibiting excessive nuclear ROS levels. Moreover, MdbHLH160 directly upregulated the expression of MdDREB2A-like, a DREB (dehydration-responsive element binding factor) family gene that promotes apple drought tolerance. Protein degradation and ubiquitination assays showed that drought and ABA treatment stabilized MdbHLH160. The BTB protein MdBT2 was identified as an MdbHLH160-interacting protein that promoted MdbHLH160 ubiquitination and degradation, and ABA treatment substantially inhibited this process. Overall, our findings provide insights into the molecular mechanisms of ABA-modulated drought tolerance at both the transcriptional and post-translational levels via the ABA-MdBT2-MdbHLH160-MdSOD1/MdDREB2A-like cascade.
Collapse
Affiliation(s)
- Ke Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Jie Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Yunxia Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Xin Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Lina Qiu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Quanlin Mei
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Na Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
28
|
Xu J, Fan Y, Han X, Pan H, Dai J, Wei Y, Zhuo R, Liu J. Integrated Transcriptomic and Metabolomic Analysis Reveal the Underlying Mechanism of Anthocyanin Biosynthesis in Toona sinensis Leaves. Int J Mol Sci 2023; 24:15459. [PMID: 37895157 PMCID: PMC10607221 DOI: 10.3390/ijms242015459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/11/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Toona sinensis, commonly known as Chinese Toon, is a plant species that possesses noteworthy value as a tree and vegetable. Its tender young buds exhibit a diverse range of colors, primarily determined by the presence and composition of anthocyanins and flavonoids. However, the underlying mechanisms of anthocyanin biosynthesis in Toona sinensis have been rarely reported. To explore the related genes and metabolites associated with composition of leaf color, we conducted an analysis of the transcriptome and metabolome of five distinct Toona clones. The results showed that differentially expressed genes and metabolites involved in anthocyanin biosynthesis pathway were mainly enriched. A conjoint analysis of transcripts and metabolites was carried out in JFC (red) and LFC (green), resulting in the identification of 510 genes and 23 anthocyanin-related metabolites with a positive correlation coefficient greater than 0.8. Among these genes and metabolites, 23 transcription factors and phytohormone-related genes showed strong coefficients with 13 anthocyanin derivates, which mainly belonged to the stable types of delphinidin, cyanidin, peonidin. The core derivative was found to be Cyanidin-3-O-arabinoside, which was present in JFC at 520.93 times the abundance compared to LFC. Additionally, the regulatory network and relative expression levels of genes revealed that the structural genes DFR, ANS, and UFGT1 might be directly or indirectly regulated by the transcription factors SOC1 (MADS-box), CPC (MYB), and bHLH162 (bHLH) to control the accumulation of anthocyanin. The expression of these genes was significantly higher in red clones compared to green clones. Furthermore, RNA-seq results accurately reflected the true expression levels of genes. Overall, this study provides a foundation for future research aimed at manipulating anthocyanin biosynthesis to improve plant coloration or to derive human health benefits.
Collapse
Affiliation(s)
- Jing Xu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Yanru Fan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Huanhuan Pan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Jianhua Dai
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Yi Wei
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Jun Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| |
Collapse
|
29
|
Zhang H, Ding X, Wang H, Chen H, Dong W, Zhu J, Wang J, Peng S, Dai H, Mei W. Systematic evolution of bZIP transcription factors in Malvales and functional exploration of AsbZIP14 and AsbZIP41 in Aquilaria sinensis. FRONTIERS IN PLANT SCIENCE 2023; 14:1243323. [PMID: 37719219 PMCID: PMC10499555 DOI: 10.3389/fpls.2023.1243323] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/24/2023] [Indexed: 09/19/2023]
Abstract
Introduction Agarwood, the dark-brown resin produced by Aquilaria trees, has been widely used as incense, spice, perfume or traditional medicine and 2-(2-phenethyl) chromones (PECs) are the key markers responsible for agarwood formation. But the biosynthesis and regulatory mechanism of PECs were still not illuminated. The transcription factor of basic leucine zipper (bZIP) presented the pivotal regulatory roles in various secondary metabolites biosynthesis in plants, which might also contribute to regulate PECs biosynthesis. However, molecular evolution and function of bZIP are rarely reported in Malvales plants, especially in Aquilaria trees. Methods and results Here, 1,150 bZIPs were comprehensively identified from twelve Malvales and model species genomes and the evolutionary process were subsequently analyzed. Duplication types and collinearity indicated that bZIP is an ancient or conserved TF family and recent whole genome duplication drove its evolution. Interesting is that fewer bZIPs in A. sinensis than that species also experienced two genome duplication events in Malvales. 62 AsbZIPs were divided into 13 subfamilies and gene structures, conservative domains, motifs, cis-elements, and nearby genes of AsbZIPs were further characterized. Seven AsbZIPs in subfamily D were significantly regulated by ethylene and agarwood inducer. As the typical representation of subfamily D, AsbZIP14 and AsbZIP41 were localized in nuclear and potentially regulated PECs biosynthesis by activating or suppressing type III polyketide synthases (PKSs) genes expression via interaction with the AsPKS promoters. Discussion Our results provide a basis for molecular evolution of bZIP gene family in Malvales and facilitate the understanding the potential functions of AsbZIP in regulating 2-(2-phenethyl) chromone biosynthesis and agarwood formation.
Collapse
Affiliation(s)
- Hao Zhang
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xupo Ding
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Hao Wang
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Huiqin Chen
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wenhua Dong
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jiahong Zhu
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jian Wang
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan, College of Forestry, Hainan University, Haikou, China
| | - Shiqing Peng
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Haofu Dai
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wenli Mei
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
30
|
Deng X, Ahmad B, Deng J, Liu L, Lu X, Fan Z, Zha X, Pan Y. MaABI5 and MaABF1 transcription factors regulate the expression of MaJOINTLESS during fruit abscission in mulberry ( Morus alba L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1229811. [PMID: 37670871 PMCID: PMC10475957 DOI: 10.3389/fpls.2023.1229811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/02/2023] [Indexed: 09/07/2023]
Abstract
Mulberry holds significant economic value. However, during the ripening stage of its fruit, the phenomenon of abscission, resulting in heavy fruit drop, can severely impact the yield. The formation of off-zone structures is a critical factor in the fruit abscission process, and this process is regulated by multiple transcription factors. One such key gene that plays a significant role in the development of the off-zone in the model plant tomato is JOINTLESS, which promotes the expression of abscission-related genes and regulates the differentiation of abscission zone tissue cells. However, there is a lack of information about fruit abscission mechanism in mulberry. Here, we analyzed the MaJOINTLESS promoter and identified the upstream regulators MaABF1 and MaABI5. These two regulators showed binding with MaJOINTLESS promoter MaABF1 (the ABA Binding Factor/ABA-Responsive Element Binding Proteins) activated the expression of MaJOINTLESS, while MaABI5 (ABSCISIC ACID-INSENSITIVE 5) inhibited the expression of MaJOINTLESS. Finally, the differentially expressed genes (DEGs) were analyzed by transcriptome sequencing to investigate the expression and synergistic relationship of endogenous genes in mulberry during abscission. GO classification and KEGG pathway enrichment analysis showed that most of the DEGs were concentrated in MAPK signaling pathway, flavonoid biosynthesis, citric acid cycle, phytohormone signaling, amino acid biosynthesis, and glycolysis. These results provide a theoretical basis for subsequent in-depth study of physiological fruit abscission in mulberry.
Collapse
Affiliation(s)
- Xuan Deng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Bilal Ahmad
- State Key Laboratory of Tropical Crop Breeding, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jing Deng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Lianlian Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Xiuping Lu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Zelin Fan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Xingfu Zha
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Yu Pan
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| |
Collapse
|
31
|
Jiang Q, Jiang W, Hu N, Tang R, Dong Y, Wu H, Liu T, Guan L, Zhang H, Hou J, Chai G, Wang Z. Light-Induced TaHY5-7A and TaBBX-3B Physically Interact to Promote PURPLE PERICARP-MYB 1 Expression in Purple-Grained Wheat. PLANTS (BASEL, SWITZERLAND) 2023; 12:2996. [PMID: 37631208 PMCID: PMC10458647 DOI: 10.3390/plants12162996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/05/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
Purple-grained wheat (Triticum aestivum L.) is an important germplasm source in crop breeding. Anthocyanin biosynthesis in the pericarps of purple-grained wheat is largely light-dependent; however, the regulatory mechanisms underlying light-induced anthocyanin accumulation in the wheat pericarp remain unknown. Here we determined that anthocyanins rapidly accumulate in the pericarps of the purple-grained wheat cultivar Heixiaomai 76 (H76) at 16 days after pollination under light treatment. Using transcriptome sequencing, differential gene expression analysis, and phylogenetic analysis, we identified two key genes involved in light signaling in wheat: ELONGATED HYPOCOTYL 5-7A (TaHY5-7A) and B-BOX-3B (TaBBX-3B). TaHY5-7A and TaBBX-3B were highly expressed in purple-grained wheat pericarps. The heterologous expression of TaHY5-7A partially restored the phenotype of the Arabidopsis (Arabidopsis thaliana) hy5 mutant, resulting in increased anthocyanin accumulation and a shortened hypocotyl. The heterologous expression of TaBBX-3B in wild-type Arabidopsis had similar effects. TaHY5-7A and TaBBX-3B were nucleus-localized, consistent with a function in transcription regulation. However, TaHY5-7A, which lacks a transactivation domain, was not sufficient to activate the expression of PURPLE PERICARP-MYB 1 (TaPpm1), the key anthocyanin biosynthesis regulator in purple pericarps of wheat. TaHY5-7A physically interacted with TaBBX-3B in yeast two-hybrid and bimolecular fluorescence complementation assays. Additionally, TaHY5-7A, together with TaBBX-3B, greatly enhanced the promoter activity of TaPpm1 in a dual luciferase assay. Overall, our results suggest that TaHY5-7A and TaBBX-3B collaboratively activate TaPpm1 expression to promote light-induced anthocyanin biosynthesis in purple-pericarp wheat.
Collapse
Affiliation(s)
- Qinqin Jiang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (Q.J.); (N.H.); (H.W.); (T.L.); (L.G.); (H.Z.); (J.H.)
| | - Wenhui Jiang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China;
| | - Ning Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (Q.J.); (N.H.); (H.W.); (T.L.); (L.G.); (H.Z.); (J.H.)
| | - Rui Tang
- College of Biological Science, Shihezi University, Shihezi 832003, China; (R.T.); (Y.D.)
| | - Yuxuan Dong
- College of Biological Science, Shihezi University, Shihezi 832003, China; (R.T.); (Y.D.)
| | - Hongqi Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (Q.J.); (N.H.); (H.W.); (T.L.); (L.G.); (H.Z.); (J.H.)
| | - Tianxiang Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (Q.J.); (N.H.); (H.W.); (T.L.); (L.G.); (H.Z.); (J.H.)
| | - Lulu Guan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (Q.J.); (N.H.); (H.W.); (T.L.); (L.G.); (H.Z.); (J.H.)
| | - Hanbing Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (Q.J.); (N.H.); (H.W.); (T.L.); (L.G.); (H.Z.); (J.H.)
| | - Junbin Hou
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (Q.J.); (N.H.); (H.W.); (T.L.); (L.G.); (H.Z.); (J.H.)
| | - Guaiqiang Chai
- College of Life Science, Yulin University, Yulin 719000, China
| | - Zhonghua Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (Q.J.); (N.H.); (H.W.); (T.L.); (L.G.); (H.Z.); (J.H.)
| |
Collapse
|
32
|
Zhang Y, Chen C, Cui Y, Du Q, Tang W, Yang W, Kou G, Tang W, Chen H, Gong R. Potential regulatory genes of light induced anthocyanin accumulation in sweet cherry identified by combining transcriptome and metabolome analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1238624. [PMID: 37662172 PMCID: PMC10469515 DOI: 10.3389/fpls.2023.1238624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/26/2023] [Indexed: 09/05/2023]
Abstract
Anthocyanins exist widely in various plant tissues and organs, and they play an important role in plant reproduction, disease resistance, stress resistance, and protection of human vision. Most fruit anthocyanins can be induced to accumulate by light. Here, we shaded the "Hong Deng" sweet cherry and performed an integrated analysis of its transcriptome and metabolome to explore the role of light in anthocyanin accumulation. The total anthocyanin content of the fruit and two of its anthocyanin components were significantly reduced after the shading. Transcriptome and metabolomics analysis revealed that PAL, 4CL, HCT, ANS and other structural genes of the anthocyanin pathway and cyanidin 3-O-glucoside, cyanidin 3-O-rutinoside, and other metabolites were significantly affected by shading. Weighted total gene network analysis and correlation analysis showed that the upstream and middle structural genes 4CL2, 4CL3, and HCT2 of anthocyanin biosynthesis may be the key genes affecting the anthocyanin content variations in fruits after light shading. Their expression levels may be regulated by transcription factors such as LBD, ERF4, NAC2, NAC3, FKF1, LHY, RVE1, and RVE2. This study revealed for the first time the possible role of LBD, FKF1, and other transcription factors in the light-induced anthocyanin accumulation of sweet cherry, thereby laying a preliminary foundation for further research on the role of light in anthocyanin accumulation of deep red fruit varieties and the genetic breeding of sweet cherry.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ronggao Gong
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
33
|
Han H, Dong L, Zhang W, Liao Y, Wang L, Wang Q, Ye J, Xu F. Ginkgo biloba GbbZIP08 transcription factor is involved in the regulation of flavonoid biosynthesis. JOURNAL OF PLANT PHYSIOLOGY 2023; 287:154054. [PMID: 37487356 DOI: 10.1016/j.jplph.2023.154054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/26/2023]
Abstract
Ginkgo biloba is the oldest relict plant on Earth and an economic plant resource derived from China. Flavonoids extracted from G. biloba are beneficial to the prevention and treatment of cardiovascular and cerebrovascular diseases. Basic leucine zipper (bZIP) transcription factors (TFs) have been recognized to play important roles in plant secondary metabolism. In this study, GbbZIP08 was isolated and characterized. It encodes a protein containing 154 amino acids, which belongs to hypocotyl 5 in group H of the bZIP family. Tobacco transient expression assay indicated that GbbZIP08 was localized in the plant nucleus. GbbZIP08 overexpression showed that the contents of total flavonoids, kaempferol, and anthocyanin in transgenic tobacco were significantly higher than those in the wild type. Transcriptome sequencing analysis revealed significant upregulation of structural genes in the flavonoid biosynthesis pathway. In addition, phytohormone signal transduction pathways, such as the abscisic acid, salicylic acid, auxin, and jasmonic acid pathways, were enriched with a large number of differentially expressed genes. TFs such as MYB, AP2, WRKY, NAC, bZIP, and bHLH, were also differentially expressed. The above results indicated that GbbZIP08 overexpression promoted flavonoid accumulation and increased the transcription levels of flavonoid-synthesis-related genes in plants.
Collapse
Affiliation(s)
- Huan Han
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Liwei Dong
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Yongling Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Lina Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Qijian Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Jiabao Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
34
|
Li Z, Ahammed GJ. Hormonal regulation of anthocyanin biosynthesis for improved stress tolerance in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107835. [PMID: 37348389 DOI: 10.1016/j.plaphy.2023.107835] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
Due to unprecedented climate change, rapid industrialization and increasing use of agrochemicals, abiotic stress, such as drought, low temperature, high salinity and heavy metal pollution, has become an increasingly serious problem in global agriculture. Anthocyanins, an important plant pigment, are synthesized through the phenylpropanoid pathway and have a variety of physiological and ecological functions, providing multifunctional and effective protection for plants under stress. Foliar anthocyanin accumulation often occurs under abiotic stress including high light, cold, drought, salinity, nutrient deficiency and heavy metal stress, causing leaf reddening or purpling in many plant species. Anthocyanins are used as sunscreens and antioxidants to scavenge reactive oxygen species (ROS), as metal(loid) chelators to mitigate heavy metal stress, and as crucial molecules with a role in delaying leaf senescence. In addition to environmental factors, anthocyanin synthesis is affected by various endogenous factors. Plant hormones such as abscisic acid, jasmonic acid, ethylene and gibberellin have been shown to be involved in regulating anthocyanin synthesis either positively or negatively. Particularly when plants are under abiotic stress, several plant hormones can induce foliar anthocyanin synthesis to enhance plant stress resistance. In this review, we revisit the role of plant hormones in anthocyanin biosynthesis and the mechanism of plant hormone-mediated anthocyanin accumulation and abiotic stress tolerance. We conclude that enhancing anthocyanin content with plant hormones could be a prospective management strategy for improving plant stress resistance, but extensive further research is essentially needed to provide future guidance for practical crop production.
Collapse
Affiliation(s)
- Zhe Li
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China; Henan International Joint Laboratory of Stress Resistance Regulation and Safe Production of Protected Vegetables, Luoyang, 471023, PR China; Henan Engineering Technology Research Center for Horticultural Crop Safety and Disease Control, Luoyang, 471023, PR China.
| |
Collapse
|
35
|
Zhang L, Wang Y, Yue M, Jiang L, Zhang N, Luo Y, Chen Q, Zhang Y, Wang Y, Li M, Zhang Y, Lin Y, Tang H. FaMYB5 Interacts with FaBBX24 to Regulate Anthocyanin and Proanthocyanidin Biosynthesis in Strawberry ( Fragaria × ananassa). Int J Mol Sci 2023; 24:12185. [PMID: 37569565 PMCID: PMC10418308 DOI: 10.3390/ijms241512185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
MYB and BBX transcription factors play important roles in flavonoid biosynthesis. Here, we obtained transgenic woodland strawberry with stable overexpression of FaMYB5, demonstrating that FaMYB5 can increase anthocyanin and proanthocyanidin content in roots, stems and leaves of woodland strawberry. In addition, bimolecular fluorescence complementation assays and yeast two-hybridization demonstrated that the N-terminal (1-99aa) of FaBBX24 interacts with FaMYB5. Transient co-expression of FaBBX24 and FaMYB5 in cultivated strawberry 'Xiaobai' showed that co-expression strongly promoted the expression of F3'H, 4CL-2, TT12, AHA10 and ANR and then increased the content of anthocyanin and proanthocyanidin in strawberry fruits. We also determined that FaBBX24 is also a positive regulator of anthocyanin and proanthocyanidin biosynthesis in strawberry. The results reveal a novel mechanism by which the FaMYB5-FaBBX24 module collaboratively regulates anthocyanin and proanthocyanidin in strawberry fruit.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (L.Z.); (Y.W.); (M.Y.); (L.J.); (N.Z.); (Y.L.); (Q.C.); (Y.Z.); (Y.W.); (M.L.); (Y.Z.); (Y.L.)
| |
Collapse
|
36
|
Jezek M, Allan AC, Jones JJ, Geilfus CM. Why do plants blush when they are hungry? THE NEW PHYTOLOGIST 2023; 239:494-505. [PMID: 36810736 DOI: 10.1111/nph.18833] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/13/2023] [Indexed: 06/15/2023]
Abstract
Foliar anthocyanins, as well as other secondary metabolites, accumulate transiently under nutritional stress. A misconception that only nitrogen or phosphorus deficiency induces leaf purpling/reddening has led to overuse of fertilizers that burden the environment. Here, we emphasize that several other nutritional imbalances induce anthocyanin accumulation, and nutrient-specific differences in this response have been reported for some deficiencies. A range of ecophysiological functions have been attributed to anthocyanins. We discuss the proposed functions and signalling pathways that elicit anthocyanin synthesis in nutrient-stressed leaves. Knowledge from the fields of genetics, molecular biology, ecophysiology and plant nutrition is combined to deduce how and why anthocyanins accumulate under nutritional stress. Future research to fully understand the mechanisms and nuances of foliar anthocyanin accumulation in nutrient-stressed crops could be utilized to allow these leaf pigments to act as bioindicators for demand-oriented application of fertilizers. This would benefit the environment, being timely due to the increasing impact of the climate crisis on crop performance.
Collapse
Affiliation(s)
- Mareike Jezek
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK
| | - Andrew C Allan
- The New Zealand Institute for Plant & Food Research Ltd (Plant & Food Research), Mt Albert, Private Bag 92169, Auckland, 1142, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Jeffrey J Jones
- Department of Biosystems Engineering, Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-University of Berlin, Albrecht-Thaer-Weg 1, 14195, Berlin, Germany
| | - Christoph-Martin Geilfus
- Department of Soil Science and Plant Nutrition, Hochschule Geisenheim University, Von-Lade-Straße 1, 65366, Geisenheim, Germany
| |
Collapse
|
37
|
Balarynová J, Klčová B, Tarkowská D, Turečková V, Trněný O, Špundová M, Ochatt S, Smýkal P. Domestication has altered the ABA and gibberellin profiles in developing pea seeds. PLANTA 2023; 258:25. [PMID: 37351659 PMCID: PMC10290032 DOI: 10.1007/s00425-023-04184-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
MAIN CONCLUSION We showed that wild pea seeds contained a more diverse combination of bioactive GAs and had higher ABA content than domesticated peas. Although the role of abscisic acid (ABA) and gibberellins (GAs) interplay has been extensively studied in Arabidopsis and cereals models, comparatively little is known about the effect of domestication on the level of phytohormones in legume seeds. In legumes, as in other crops, seed dormancy has been largely or entirely removed during domestication. In this study, we have measured the endogenous levels of ABA and GAs comparatively between wild and domesticated pea seeds during their development. We have shown that wild seeds contained more ABA than domesticated ones, which could be important for preparing the seeds for the period of dormancy. ABA was catabolised particularly by an 8´-hydroxylation pathway, and dihydrophaseic acid was the main catabolite in seed coats as well as embryos. Besides, the seed coats of wild and pigmented cultivated genotypes were characterised by a broader spectrum of bioactive GAs compared to non-pigmented domesticated seeds. GAs in both seed coat and embryo were synthesized mainly by a 13-hydroxylation pathway, with GA29 being the most abundant in the seed coat and GA20 in the embryos. Measuring seed water content and water loss indicated domesticated pea seeds´ desiccation was slower than that of wild pea seeds. Altogether, we showed that pea domestication led to a change in bioactive GA composition and a lower ABA content during seed development.
Collapse
Affiliation(s)
- Jana Balarynová
- Department of Botany, Faculty of Science, Palacky University, 783 71, Olomouc, Czech Republic
| | - Barbora Klčová
- Department of Botany, Faculty of Science, Palacky University, 783 71, Olomouc, Czech Republic
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Palacky University and Institute of Experimental Botany, Czech Academy of Sciences, 783 71, Olomouc, Czech Republic
| | - Veronika Turečková
- Laboratory of Growth Regulators, Palacky University and Institute of Experimental Botany, Czech Academy of Sciences, 783 71, Olomouc, Czech Republic
| | - Oldřich Trněný
- Agriculture Research Ltd., 664 41, Troubsko, Czech Republic
| | - Martina Špundová
- Department of Biophysics, Faculty of Science, Palacky University, 783 71, Olomouc, Czech Republic
| | - Sergio Ochatt
- Agroécologie, InstitutAgro Dijon, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, 21000, Dijon, France
| | - Petr Smýkal
- Department of Botany, Faculty of Science, Palacky University, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
38
|
Anthocyanins distribution, transcriptional regulation, epigenetic and post-translational modification in fruits. Food Chem 2023; 411:135540. [PMID: 36701918 DOI: 10.1016/j.foodchem.2023.135540] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/04/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
Anthocyanins have indispensable functions in plant resistance, human health, and fruit coloring, which arouse people's favorite. It has been reported that anthocyanins are widely found in fruits, and can be affected by numerous factors. In this review, we systematically summarize anthocyanin functions, classifications, distributions, biosynthesis, decoration, transportation, transcriptional regulation, DNA methylation, and post-translational regulation in fruits.
Collapse
|
39
|
Yang Y, Zhu J, Wang H, Guo D, Wang Y, Mei W, Peng S, Dai H. Systematic investigation of the R2R3-MYB gene family in Aquilaria sinensis reveals a transcriptional repressor AsMYB054 involved in 2-(2-phenylethyl)chromone biosynthesis. Int J Biol Macromol 2023:125302. [PMID: 37315664 DOI: 10.1016/j.ijbiomac.2023.125302] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/19/2023] [Accepted: 06/04/2023] [Indexed: 06/16/2023]
Abstract
Trees in the genus Aquilaria produce agarwood, a valuable resin used in medicine, perfumes, and incense. 2-(2-Phenethyl)chromones (PECs) are characteristic components of agarwood; however, molecular mechanisms underlying PEC biosynthesis and regulation remain largely unknown. The R2R3-MYB transcription factors play important regulatory roles in the biosynthesis of various secondary metabolites. In this study, 101 R2R3-MYB genes in Aquilaria sinensis were systematically identified and analyzed at the genome-wide level. Transcriptomic analysis revealed that 19 R2R3-MYB genes were significantly regulated by an agarwood inducer, and showed significant correlations with PEC accumulation. Expression and evolutionary analyses revealed that AsMYB054, a subgroup 4 R2R3-MYB, was negatively correlated with PEC accumulation. AsMYB054 was located in the nucleus and functioned as a transcriptional repressor. Moreover, AsMYB054 could bind to the promoters of the PEC biosynthesis related genes AsPKS02 and AsPKS09, and inhibit their transcriptional activity. These findings suggested that AsMYB054 functions as a negative regulator of PEC biosynthesis via the inhibition of AsPKS02 and AsPKS09 in A. sinensis. Our results provide a comprehensive understanding of the R2R3-MYB subfamily in A. sinensis and lay a foundation for further functional analyses of R2R3-MYB genes in PEC biosynthesis.
Collapse
Affiliation(s)
- Yan Yang
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163000, China; International Joint Research Center of Agarwood, Haikou 571101, China
| | - Jiahong Zhu
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Hao Wang
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; International Joint Research Center of Agarwood, Haikou 571101, China
| | - Dong Guo
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Ying Wang
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Wenli Mei
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; International Joint Research Center of Agarwood, Haikou 571101, China.
| | - Shiqing Peng
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; International Joint Research Center of Agarwood, Haikou 571101, China.
| | - Haofu Dai
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163000, China; International Joint Research Center of Agarwood, Haikou 571101, China.
| |
Collapse
|
40
|
Han H, Wang C, Yang X, Wang L, Ye J, Xu F, Liao Y, Zhang W. Role of bZIP transcription factors in the regulation of plant secondary metabolism. PLANTA 2023; 258:13. [PMID: 37300575 DOI: 10.1007/s00425-023-04174-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
MAIN CONCLUSION This study provides an overview of the structure, classification, regulatory mechanisms, and biological functions of the basic (region) leucine zipper transcription factors and their molecular mechanisms in flavonoid, terpenoid, alkaloid, phenolic acid, and lignin biosynthesis. Basic (region) leucine zippers (bZIPs) are evolutionarily conserved transcription factors (TFs) in eukaryotic organisms. The bZIP TFs are widely distributed in plants and play important roles in plant growth and development, photomorphogenesis, signal transduction, resistance to pathogenic microbes, biotic and abiotic stress, and secondary metabolism. Moreover, the expression of bZIP TFs not only promotes or inhibits the accumulation of secondary metabolites in medicinal plants, but also affects the stress response of plants to the external adverse environment. This paper describes the structure, classification, biological function, and regulatory mechanisms of bZIP TFs. In addition, the molecular mechanism of bZIP TFs regulating the biosynthesis of flavonoids, terpenoids, alkaloids, phenolic acids, and lignin are also elaborated. This review provides a summary for in-depth study of the molecular mechanism of bZIP TFs regulating the synthesis pathway of secondary metabolites and plant molecular breeding, which is of significance for the generation of beneficial secondary metabolites and the improvement of plant varieties.
Collapse
Affiliation(s)
- Huan Han
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Caini Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Xiaoyan Yang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Lina Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Jiabao Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
| | - Yongling Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| |
Collapse
|
41
|
Sun P, Yang C, Zhu W, Wu J, Lin X, Wang Y, Zhu J, Chen C, Zhou K, Qian M, Shen J. Metabolome, Plant Hormone, and Transcriptome Analyses Reveal the Mechanism of Spatial Accumulation Pattern of Anthocyanins in Peach Flesh. Foods 2023; 12:2297. [PMID: 37372513 DOI: 10.3390/foods12122297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Anthocyanins are important secondary metabolites in fruits, and anthocyanin accumulation in the flesh of peach exhibits a spatial pattern, but the relevant mechanism is still unknown. In this study, the yellow-fleshed peach, cv. 'Jinxiu', with anthocyanin accumulation in the mesocarp around the stone was used as the experimental material. Red flesh (RF) and yellow flesh (YF) were sampled separately for flavonoid metabolite (mainly anthocyanins), plant hormone, and transcriptome analyses. The results showed that the red coloration in the mesocarp was due to the accumulation of cyanidin-3-O-glucoside, with an up-regulation of anthocyanin biosynthetic genes (F3H, F3'H, DFR, and ANS), transportation gene GST, and regulatory genes (MYB10.1 and bHLH3). Eleven ERFs, nine WRKYs, and eight NACs were also defined as the candidate regulators of anthocyanin biosynthesis in peach via RNA-seq. Auxin, cytokinin, abscisic acid (ABA), salicylic acid (SA), and 1-aminocyclopropane-1-carboxylic acid (ACC, ethylene precursor) were enriched in the peach flesh, with auxin, cytokinin, ACC, and SA being highly accumulated in the RF, but ABA was mainly distributed in the YF. The activators and repressors in the auxin and cytokinin signaling transduction pathways were mostly up-regulated and down-regulated, respectively. Our results provide new insights into the regulation of spatial accumulation pattern of anthocyanins in peach flesh.
Collapse
Affiliation(s)
- Ping Sun
- Jinhua Academy of Agricultural Sciences (Zhejiang Institute of Agricultural Machinery), Jinhua 321000, China
| | - Chengkun Yang
- Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
- Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, Department of Horticulture, School of Horticulture, Haidian Campus, Hainan University, Haikou 570228, China
| | - Wencan Zhu
- Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
- Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, Department of Horticulture, School of Horticulture, Haidian Campus, Hainan University, Haikou 570228, China
| | - Jiaqi Wu
- Jinhua Academy of Agricultural Sciences (Zhejiang Institute of Agricultural Machinery), Jinhua 321000, China
| | - Xianrui Lin
- Jinhua Academy of Agricultural Sciences (Zhejiang Institute of Agricultural Machinery), Jinhua 321000, China
| | - Yi Wang
- Jinhua Academy of Agricultural Sciences (Zhejiang Institute of Agricultural Machinery), Jinhua 321000, China
| | - Jianxi Zhu
- Jinhua Academy of Agricultural Sciences (Zhejiang Institute of Agricultural Machinery), Jinhua 321000, China
| | - Chenfei Chen
- Jinhua Academy of Agricultural Sciences (Zhejiang Institute of Agricultural Machinery), Jinhua 321000, China
| | - Kaibing Zhou
- Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
- Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, Department of Horticulture, School of Horticulture, Haidian Campus, Hainan University, Haikou 570228, China
| | - Minjie Qian
- Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
- Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, Department of Horticulture, School of Horticulture, Haidian Campus, Hainan University, Haikou 570228, China
| | - Jiansheng Shen
- Jinhua Academy of Agricultural Sciences (Zhejiang Institute of Agricultural Machinery), Jinhua 321000, China
| |
Collapse
|
42
|
Liu W, Wei Y, Sha S, Xu Y, Li H, Yuan H, Wang A. The mechanisms underpinning anthocyanin accumulation in a red-skinned bud sport in pear (Pyrus ussuriensis). PLANT CELL REPORTS 2023; 42:1089-1105. [PMID: 37062789 DOI: 10.1007/s00299-023-03015-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/31/2023] [Indexed: 05/12/2023]
Abstract
KEY MESSAGE In our study, we demonstrated that histone acetylation promotes anthocyanin accumulation in pears by affecting the expression of key genes. Color is an important trait of horticultural plants, and the anthocyanin content directly affects the nutritional value and commercial value of colored fruits. Therefore, it is important for fruit breeding to cultivate new varieties with bright colors. 'Nanhong' (NH) pear (Pyrus ussuriensis) is a bud sport cultivar of 'Nanguo' (NG) pear. The anthocyanin content in NH pear is significantly higher than that in NG pear, but the underlying molecular mechanism remains unclear. Here, we observed that the anthocyanin biosynthesis structural gene PuUFGT (UDP-glucose: flavonoids 3-O-glucosyltransferase) and an anthocyanin transporter gene PuGSTF6 (glutathione S-transferase) had significantly higher expression levels in NH than in NG pears during the late stages of fruit development. Meanwhile, the R2R3-MYB transcription factor PuMYB110a was also highly expressed in NH pears and could positively regulate the transcription of PuUFGT and PuGSTF6. Overexpression of PuMYB110a in pear increased the fruit anthocyanin content. In addition, despite no significant differences in methylation levels being found in the promoters of PuMYB110a, PuUFGT, and PuGSTF6 when comparing the two varieties, the histone acetylation levels of PuMYB110a were significantly higher in NH pear compared with those in NG pear. Our findings suggest a mechanism for anthocyanin accumulation in NH fruit.
Collapse
Affiliation(s)
- Weiting Liu
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Key Laboratory of Protected Horticulture (Ministry of Education), National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yun Wei
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Key Laboratory of Protected Horticulture (Ministry of Education), National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Shoufeng Sha
- Liaoning Institute of Pomology, Xiongyue, 115009, China
| | - Yaxiu Xu
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Key Laboratory of Protected Horticulture (Ministry of Education), National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Hongjian Li
- Liaoning Institute of Pomology, Xiongyue, 115009, China
| | - Hui Yuan
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Key Laboratory of Protected Horticulture (Ministry of Education), National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Aide Wang
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Key Laboratory of Protected Horticulture (Ministry of Education), National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
43
|
Jiang L, Yue M, Liu Y, Zhang N, Lin Y, Zhang Y, Wang Y, Li M, Luo Y, Zhang Y, Wang X, Chen Q, Tang H. A novel R2R3-MYB transcription factor FaMYB5 positively regulates anthocyanin and proanthocyanidin biosynthesis in cultivated strawberries (Fragaria × ananassa). PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1140-1158. [PMID: 36752420 DOI: 10.1111/pbi.14024] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/16/2022] [Accepted: 01/28/2023] [Indexed: 05/27/2023]
Abstract
Flavonoids have a major contribution to the fruit quality in cultivated strawberries and are regulated by MYB, bHLH and WD40 transcriptional factors. We reported here the identification of the FaMYB5, an R2R3-MYB transcription factor, which positively regulated the accumulation of anthocyanins and proanthocyanidins through the trans-activation of the F3'H and LAR. The strawberry FaEGL3 and FaLWD1/FaLWD1-like interact with the R2R3-FaMYB5 to form an MYB-bHLH-WD40 complex (MBW), enhancing the regulatory efficiency. The R2R3-FaMYB5 was constitutively expressed in various tissues and in fruits of different developmental stages, which was strikingly contrasting to the fruit-specific expression patterns of FaMYB10. Meanwhile, R2R3-FaMYB5 failed to promote a stable accumulation of anthocyanin glycosides in the mature fruits of the myb10 mutant, mainly due to the suppressed expression of TT19. The R2R3-FaMYB5 was regulated by an antisense long noncoding RNA lncRNA-myb5. Additionally, the R2R3-FaMYB5 protein could interact with FaBT2 and was degraded through the ubiquitin/26 S proteasome pathway. Transcriptome and metabolome data showed that R2R3-FaMYB5 enhanced the gene expression and the metabolite accumulation involved in the flavonoid, phenylpropanoid and lignin biosynthesis pathways. Collectively, we conclude that the FaMYB5 is an R2R3-MYB activator involved in the composition of MBW, which positively regulates the biosynthesis of anthocyanin and proanthocyanidin. These findings provided new insights into the molecular mechanisms that regulate flavonoids in strawberry fruits.
Collapse
Affiliation(s)
- Leiyu Jiang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Maolan Yue
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yongqiang Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Nating Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yuanxiu Lin
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yunting Zhang
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Wang
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
44
|
Prasad C T M, Kodde J, Angenent GC, Hay FR, McNally KL, Groot SPC. Identification of the rice Rc gene as a main regulator of seed survival under dry storage conditions. PLANT, CELL & ENVIRONMENT 2023; 46:1962-1980. [PMID: 36891587 DOI: 10.1111/pce.14581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 05/04/2023]
Abstract
Seed deterioration during storage results in poor germination, reduced vigour, and non-uniform seedling emergence. The aging rate depends on storage conditions and genetic factors. This study aims to identify these genetic factors determining the longevity of rice (Oryza sativa L.) seeds stored under experimental aging conditions mimicking long-term dry storage. Genetic variation for tolerance to aging was studied in 300 Indica rice accessions by storing dry seeds under an elevated partial pressure of oxygen (EPPO) condition. A genome-wide association analysis identified 11 unique genomic regions for all measured germination parameters after aging, differing from those previously identified in rice under humid experimental aging conditions. The significant single nucleotide polymorphism in the most prominent region was located within the Rc gene, encoding a basic helix-loop-helix transcription factor. Storage experiments using near-isogenic rice lines (SD7-1D (Rc) and SD7-1d (rc) with the same allelic variation confirmed the role of the wildtype Rc gene, providing stronger tolerance to dry EPPO aging. In the seed pericarp, a functional Rc gene results in accumulation of proanthocyanidins, an important sub-class of flavonoids having strong antioxidant activity, which may explain the variation in tolerance to dry EPPO aging.
Collapse
Affiliation(s)
- Manjunath Prasad C T
- Wageningen Plant Research, Wageningen University & Research, Wageningen, The Netherlands
- Laboratory of Molecular Biology, Wageningen University & Research, Wageningen, The Netherlands
- Department of Seed Science and Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Jan Kodde
- Wageningen Plant Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Gerco C Angenent
- Wageningen Plant Research, Wageningen University & Research, Wageningen, The Netherlands
- Laboratory of Molecular Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - Fiona R Hay
- Department of Agroecology, Aarhus University, Slagelse, Denmark
| | | | - Steven P C Groot
- Wageningen Plant Research, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
45
|
Liu X, Bulley SM, Varkonyi-Gasic E, Zhong C, Li D. Kiwifruit bZIP transcription factor AcePosF21 elicits ascorbic acid biosynthesis during cold stress. PLANT PHYSIOLOGY 2023; 192:982-999. [PMID: 36823691 PMCID: PMC10231468 DOI: 10.1093/plphys/kiad121] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/05/2023] [Accepted: 01/27/2023] [Indexed: 06/01/2023]
Abstract
Cold stress seriously affects plant development, resulting in heavy agricultural losses. L-ascorbic acid (AsA, vitamin C) is an antioxidant implicated in abiotic stress tolerance and metabolism of reactive oxygen species (ROS). Understanding whether and how cold stress elicits AsA biosynthesis to reduce oxidative damage is important for developing cold-resistant plants. Here, we show that the accumulation of AsA in response to cold stress is a common mechanism conserved across the plant kingdom, from single-cell algae to angiosperms. We identified a basic leucine zipper domain (bZIP) transcription factor (TF) of kiwifruit (Actinidia eriantha Benth.), AcePosF21, which was triggered by cold and is involved in the regulation of kiwifruit AsA biosynthesis and defense responses against cold stress. AcePosF21 interacted with the R2R3-MYB TF AceMYB102 and directly bound to the promoter of the gene encoding GDP-L-galactose phosphorylase 3 (AceGGP3), a key conduit for regulating AsA biosynthesis, to up-regulate AceGGP3 expression and produce more AsA, which neutralized the excess ROS induced by cold stress. On the contrary, VIGS or CRISPR-Cas9-mediated editing of AcePosF21 decreased AsA content and increased the generation of ROS in kiwifruit under cold stress. Taken together, we illustrated a model for the regulatory mechanism of AcePosF21-mediated regulation of AceGGP3 expression and AsA biosynthesis to reduce oxidative damage by cold stress, which provides valuable clues for manipulating the cold resistance of kiwifruit.
Collapse
Affiliation(s)
- Xiaoying Liu
- Wuhan Botanical Garden, Chinese Academy of Sciences, Jiufeng 1 Road, Wuhan 430074, Hubei, China
- College of Life Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Sean M Bulley
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - Erika Varkonyi-Gasic
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Caihong Zhong
- Wuhan Botanical Garden, Chinese Academy of Sciences, Jiufeng 1 Road, Wuhan 430074, Hubei, China
| | - Dawei Li
- Wuhan Botanical Garden, Chinese Academy of Sciences, Jiufeng 1 Road, Wuhan 430074, Hubei, China
| |
Collapse
|
46
|
Ni J, Wang S, Yu W, Liao Y, Pan C, Zhang M, Tao R, Wei J, Gao Y, Wang D, Bai S, Teng Y. The ethylene-responsive transcription factor PpERF9 represses PpRAP2.4 and PpMYB114 via histone deacetylation to inhibit anthocyanin biosynthesis in pear. THE PLANT CELL 2023; 35:2271-2292. [PMID: 36916511 DOI: 10.1093/plcell/koad077] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 05/30/2023]
Abstract
Ethylene induces anthocyanin biosynthesis in most fruits, including apple (Malus domestica) and plum (Prunus spp.). By contrast, ethylene inhibits anthocyanin biosynthesis in pear (Pyrus spp.), but the underlying molecular mechanism remains unclear. In this study, we identified and characterized an ethylene-induced ETHYLENE RESPONSE FACTOR (ERF) transcription factor, PpETHYLENE RESPONSE FACTOR9 (PpERF9), which functions as a transcriptional repressor. Our analyses indicated PpERF9 can directly inhibit expression of the MYB transcription factor gene PpMYB114 by binding to its promoter. Additionally, PpERF9 inhibits the expression of the transcription factor gene PpRELATED TO APETALA2.4 (PpRAP2.4), which activates PpMYB114 expression, by binding to its promoter, thus forming a PpERF9-PpRAP2.4-PpMYB114 regulatory circuit. Furthermore, PpERF9 interacts with the co-repressor PpTOPLESS1 (PpTPL1) via EAR motifs to form a complex that removes the acetyl group on histone H3 and maintains low levels of acetylated H3 in the PpMYB114 and PpRAP2.4 promoter regions. The resulting suppressed expression of these 2 genes leads to decreased anthocyanin biosynthesis in pear. Collectively, these results indicate that ethylene inhibits anthocyanin biosynthesis by a mechanism that involves PpERF9-PpTPL1 complex-mediated histone deacetylation of PpMYB114 and PpRAP2.4. The data presented herein will be useful for clarifying the relationship between chromatin status and hormone signaling, with implications for plant biology research.
Collapse
Affiliation(s)
- Junbei Ni
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou 310058, People's Republic of China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, the Ministry of Agriculture of China, Hangzhou 310058, People's Republic of China
| | - Simai Wang
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou 310058, People's Republic of China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, the Ministry of Agriculture of China, Hangzhou 310058, People's Republic of China
| | - Wenjie Yu
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou 310058, People's Republic of China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, the Ministry of Agriculture of China, Hangzhou 310058, People's Republic of China
| | - Yifei Liao
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou 310058, People's Republic of China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, the Ministry of Agriculture of China, Hangzhou 310058, People's Republic of China
- Hainan Institute of Zhejiang University, Sanya 572000, People's Republic of China
| | - Chen Pan
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou 310058, People's Republic of China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, the Ministry of Agriculture of China, Hangzhou 310058, People's Republic of China
- Hainan Institute of Zhejiang University, Sanya 572000, People's Republic of China
| | - Manman Zhang
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou 310058, People's Republic of China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, the Ministry of Agriculture of China, Hangzhou 310058, People's Republic of China
- Hainan Institute of Zhejiang University, Sanya 572000, People's Republic of China
| | - Ruiyan Tao
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou 310058, People's Republic of China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, the Ministry of Agriculture of China, Hangzhou 310058, People's Republic of China
| | - Jia Wei
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou 310058, People's Republic of China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, the Ministry of Agriculture of China, Hangzhou 310058, People's Republic of China
| | - Yuhao Gao
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou 310058, People's Republic of China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, the Ministry of Agriculture of China, Hangzhou 310058, People's Republic of China
| | - Dongsheng Wang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China
| | - Songling Bai
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou 310058, People's Republic of China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, the Ministry of Agriculture of China, Hangzhou 310058, People's Republic of China
| | - Yuanwen Teng
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou 310058, People's Republic of China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, the Ministry of Agriculture of China, Hangzhou 310058, People's Republic of China
- Hainan Institute of Zhejiang University, Sanya 572000, People's Republic of China
| |
Collapse
|
47
|
An JP, Zhang XW, Li HL, Wang DR, You CX, Han Y. The E3 ubiquitin ligases SINA1 and SINA2 integrate with the protein kinase CIPK20 to regulate the stability of RGL2a, a positive regulator of anthocyanin biosynthesis. THE NEW PHYTOLOGIST 2023. [PMID: 37235698 DOI: 10.1111/nph.18997] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023]
Abstract
Although DELLA protein destabilization mediated by post-translational modifications is essential for gibberellin (GA) signal transduction and GA-regulated anthocyanin biosynthesis, the related mechanisms remain largely unknown. In this study, we report the ubiquitination and phosphorylation of an apple DELLA protein MdRGL2a in response to GA signaling and its regulatory role in anthocyanin biosynthesis. MdRGL2a could interact with MdWRKY75 to enhance the MdWRKY75-activated transcription of anthocyanin activator MdMYB1 and interfere with the interaction between anthocyanin repressor MdMYB308 and MdbHLH3 or MdbHLH33, thereby promoting anthocyanin accumulation. A protein kinase MdCIPK20 was found to phosphorylate and protect MdRGL2a from degradation, and it was essential for MdRGL2a-promoting anthocyanin accumulation. However, MdRGL2a and MdCIPK20 were ubiquitinated and degraded by E3 ubiquitin ligases MdSINA1 and MdSINA2, respectively, both of which were activated in the presence of GA. Our results display the integration of SINA1/2 with CIPK20 to dynamically regulate GA signaling and will be helpful toward understanding the mechanism of GA signal transduction and GA-inhibited anthocyanin biosynthesis. The discovery of extensive interactions between DELLA and SINA and CIPK proteins in apple will provide reference for the study of ubiquitination and phosphorylation of DELLA proteins in other species.
Collapse
Affiliation(s)
- Jian-Ping An
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xiao-Wei Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Hong-Liang Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Da-Ru Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Chun-Xiang You
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
| |
Collapse
|
48
|
Liu W, Mei Z, Yu L, Gu T, Li Z, Zou Q, Zhang S, Fang H, Wang Y, Zhang Z, Chen X, Wang N. The ABA-induced NAC transcription factor MdNAC1 interacts with a bZIP-type transcription factor to promote anthocyanin synthesis in red-fleshed apples. HORTICULTURE RESEARCH 2023; 10:uhad049. [PMID: 37200839 PMCID: PMC10186271 DOI: 10.1093/hr/uhad049] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/07/2023] [Indexed: 05/20/2023]
Abstract
Anthocyanins are valuable compounds in red-fleshed apples. The MdMYB10 transcription factor is an important regulator of the anthocyanin synthesis pathway. However, other transcription factors are key components of the complex network controlling anthocyanin synthesis and should be more thoroughly characterized. In this study, we used a yeast-based screening technology to identify MdNAC1 as a transcription factor that positively regulates anthocyanin synthesis. The overexpression of MdNAC1 in apple fruits and calli significantly promoted the accumulation of anthocyanins. In binding experiments, we demonstrated that MdNAC1 combines with the bZIP-type transcription factor MdbZIP23 to activate the transcription of MdMYB10 and MdUFGT. Our analyses also indicated that the expression of MdNAC1 is strongly induced by ABA because of the presence of an ABRE cis-acting element in its promoter. Additionally, the accumulation of anthocyanins in apple calli co-transformed with MdNAC1 and MdbZIP23 increased in the presence of ABA. Therefore, we revealed a novel anthocyanin synthesis mechanism involving the ABA-induced transcription factor MdNAC1 in red-fleshed apples.
Collapse
Affiliation(s)
- Wenjun Liu
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Zhuoxin Mei
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Lei Yu
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Tingting Gu
- College of Agricultural Science and Technology, Shandong Agricultural and Engineering University, Jinan, Shandong 250100, China
| | - Zhiqiang Li
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Qi Zou
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Shuhui Zhang
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Hongcheng Fang
- StateForestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Yicheng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Zongying Zhang
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | | | - Nan Wang
- Corresponding authors. E-mails: ;
| |
Collapse
|
49
|
Hong Y, Lv Y, Zhang J, Ahmad N, Li X, Yao N, Liu X, Li H. The safflower MBW complex regulates HYSA accumulation through degradation by the E3 ligase CtBB1. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1277-1296. [PMID: 36598461 DOI: 10.1111/jipb.13444] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/03/2023] [Indexed: 05/13/2023]
Abstract
The regulatory mechanism of the MBW (MYB-bHLH-WD40) complex in safflower (Carthamus tinctorius) remains unclear. In the present study, we show that the separate overexpression of the genes CtbHLH41, CtMYB63, and CtWD40-6 in Arabidopsis thaliana increased anthocyanin and procyanidin contents in the transgenic plants and partially rescued the trichome reduction phenotype of the corresponding bhlh41, myb63, and wd40-6 single mutants. Overexpression of CtbHLH41, CtMYB63, or CtWD40-6 in safflower significantly increased the content of the natural pigment hydroxysafflor yellow A (HYSA) and negatively regulated safflower petal size. Yeast-two-hybrid, functional, and genetic assays demonstrated that the safflower E3 ligase CtBB1 (BIG BROTHER 1) can ubiquitinate CtbHLH41, marking it for degradation through the 26S proteasome and negatively regulating flavonoid accumulation. CtMYB63/CtWD40-6 enhanced the transcriptional activity of CtbHLH41 on the CtDFR (dihydroflavonol 4-reductase) promoter. We propose that the MBW-CtBB1 regulatory module may play an important role in coordinating HYSA accumulation with other response mechanisms.
Collapse
Affiliation(s)
- Yingqi Hong
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China
- College of Tropical Crops, Hainan University, Haikou, 570100, China
| | - Yanxi Lv
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China
| | - Jianyi Zhang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China
| | - Naveed Ahmad
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghaijiaotong University, Shanghai, 200240, China
| | - Xiaokun Li
- Institute of Life Sciences, Wenzhou Medical University, Wenzhou, 325000, China
- Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou Medical University, Wenzhou, 325000, China
| | - Na Yao
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China
| | - Xiuming Liu
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China
- Institute of Life Sciences, Wenzhou Medical University, Wenzhou, 325000, China
- Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou Medical University, Wenzhou, 325000, China
| | - Haiyan Li
- College of Tropical Crops, Hainan University, Haikou, 570100, China
| |
Collapse
|
50
|
Zhao L, Zhang Y, Sun J, Yang Q, Cai Y, Zhao C, Wang F, He H, Han Y. PpHY5 is involved in anthocyanin coloration in the peach flesh surrounding the stone. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:951-964. [PMID: 36919360 DOI: 10.1111/tpj.16189] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 05/27/2023]
Abstract
Red coloration around the stone (Cs) is an important trait of canned peaches (Prunus persica). In this study, an elongated hypocotyl 5 gene in peach termed PpHY5 was identified to participate in the regulation of the Cs trait. The E3 ubiquitin ligase PpCOP1 was expressed in the flesh around the stone and could interact with PpHY5. Although HY5 is known to be degraded by COP1 in darkness, the PpHY5 gene was activated in the flesh tissue surrounding the stone at the ripening stages and its expression was consistent with anthocyanin accumulation. PpHY5 was able to promote the transcription of PpMYB10.1 through interacting with its partner PpBBX10. Silencing of PpHY5 in the flesh around the stone caused a reduction in anthocyanin pigmentation, while transient overexpression of PpHY5 and PpBBX10 resulted in anthocyanin accumulation in peach fruits. Moreover, transgenic Arabidopsis seedlings overexpressing PpHY5 showed increased anthocyanin accumulation in leaves. Our results improve our understanding of the mechanisms of anthocyanin coloration in plants.
Collapse
Affiliation(s)
- Lei Zhao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, Botanical Garden, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yuanqiang Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, Botanical Garden, Wuhan, 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Juanli Sun
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, Botanical Garden, Wuhan, 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Qiurui Yang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, Botanical Garden, Wuhan, 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Yaming Cai
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, Botanical Garden, Wuhan, 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Caiping Zhao
- College of horticulture, Northwest Agriculture and Forestry University, Yangling, 712100, China
| | - Furong Wang
- Institute of Fruit Tree and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430209, China
| | - Huaping He
- Institute of Fruit Tree and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430209, China
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, Botanical Garden, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|