1
|
Momayyezi M, Chu C, Stobbs JA, Soolanayakanahally RY, Guy RD, McElrone AJ, Knipfer T. Mapping of drought-induced changes in tissue characteristics across the leaf profile of Populus balsamifera. THE NEW PHYTOLOGIST 2025; 245:534-545. [PMID: 39506187 DOI: 10.1111/nph.20240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024]
Abstract
Leaf architecture impacts gas diffusion, biochemical processes, and photosynthesis. For balsam poplar, a widespread North American species, the influence of water availability on leaf anatomy and subsequent photosynthetic performance remains unknown. To address this shortcoming, we characterized the anatomical changes across the leaf profile in three-dimensional space for saplings subjected to soil drying and rewatering using X-ray microcomputed tomography. Our hypothesis was that higher abundance of bundle sheath extensions (BSE) minimizes drought-induced changes in intercellular airspace volume relative to mesophyll volume (i.e. mesophyll porosity, θIAS) and aids recovery by supporting leaf structural integrity. Leaves of 'Carnduff-9' with less abundant BSEs exhibited greater θIAS, higher spongy mesophyll surface area, reduced palisade mesophyll surface area, and less veins compared with 'Gillam-5'. Under drought conditions, Carnduff-9 showed significant changes in θIAS across leaf profile while that was little for 'Gillam-5'. Under rewatered conditions, drought-induced changes in θIAS were fully reversible in 'Gillam-5' but not in 'Carnduff-9'. Our data suggest that a 'robust' leaf structure with higher abundance of BSEs, reduced θIAS, and relatively large mesophyll surface area provides for improved photosynthetic capacity under drought and supports recovery in leaf architecture after rewatering in balsam poplar.
Collapse
Affiliation(s)
- Mina Momayyezi
- Department of Viticulture and Enology, University of California, Davis, CA, 95616, USA
| | - Cheyenne Chu
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | | | | | - Robert D Guy
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Andrew J McElrone
- Department of Viticulture and Enology, University of California, Davis, CA, 95616, USA
- Crops Pathology and Genetics Research Unit, USDA-ARS, Davis, CA, 95618, USA
| | - Thorsten Knipfer
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
2
|
A Changing Light Environment Induces Significant Lateral CO 2 Diffusion within Maize Leaves. Int J Mol Sci 2022; 23:ijms232314530. [PMID: 36498855 PMCID: PMC9736261 DOI: 10.3390/ijms232314530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
A leaf structure with high porosity is beneficial for lateral CO2 diffusion inside the leaves. However, the leaf structure of maize is compact, and it has long been considered that lateral CO2 diffusion is restricted. Moreover, lateral CO2 diffusion is closely related to CO2 pressure differences (ΔCO2). Therefore, we speculated that enlarging the ΔCO2 between the adjacent regions inside maize leaves may result in lateral diffusion when the diffusion resistance is kept constant. Thus, the leaf structure and gas exchange of maize (C4), cotton (C3), and other species were explored. The results showed that maize and sorghum leaves had a lower mesophyll porosity than cotton and cucumber leaves. Similar to cotton, the local photosynthetic induction resulted in an increase in the ΔCO2 between the local illuminated and the adjacent unilluminated regions, which significantly reduced the respiration rate of the adjacent unilluminated region. Further analysis showed that when the adjacent region in the maize leaves was maintained under a steady high light, the photosynthesis induction in the local regions not only gradually reduced the ΔCO2 between them but also progressively increased the steady photosynthetic rate in the adjacent region. Under field conditions, the ΔCO2, respiration, and photosynthetic rate of the adjacent region were also markedly changed by fluctuating light in local regions in the maize leaves. Consequently, we proposed that enlarging the ΔCO2 between the adjacent regions inside the maize leaves results in the lateral CO2 diffusion and supports photosynthesis in adjacent regions to a certain extent under fluctuating light.
Collapse
|
3
|
Moreira JDR, Rosa BL, Lira BS, Lima JE, Correia LNF, Otoni WC, Figueira A, Freschi L, Sakamoto T, Peres LEP, Rossi M, Zsögön A. Auxin-driven ecophysiological diversification of leaves in domesticated tomato. PLANT PHYSIOLOGY 2022; 190:113-126. [PMID: 35639975 PMCID: PMC9434155 DOI: 10.1093/plphys/kiac251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/22/2022] [Indexed: 05/29/2023]
Abstract
Heterobaric leaves have bundle sheath extensions (BSEs) that compartmentalize the parenchyma, whereas homobaric leaves do not. The presence of BSEs affects leaf hydraulics and photosynthetic rate. The tomato (Solanum lycopersicum) obscuravenosa (obv) mutant lacks BSEs. Here, we identify the obv gene and the causative mutation, a nonsynonymous amino acid change that disrupts a C2H2 zinc finger motif in a putative transcription factor. This mutation exists as a polymorphism in the natural range of wild tomatoes but has increased in frequency in domesticated tomatoes, suggesting that the latter diversified into heterobaric and homobaric leaf types. The obv mutant displays reduced vein density, leaf hydraulic conductance and photosynthetic assimilation rate. We show that these and other pleiotropic effects on plant development, including changes in leaf insertion angle, leaf margin serration, minor vein density, and fruit shape, are controlled by OBV via changes in auxin signaling. Loss of function of the transcriptional regulator AUXIN RESPONSE FACTOR 4 (ARF4) also results in defective BSE development, revealing an additional component of a genetic module controlling aspects of leaf development important for ecological adaptation and subject to breeding selection.
Collapse
Affiliation(s)
- Juliene d R Moreira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
| | - Bruno L Rosa
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
| | - Bruno S Lira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-090 São Paulo, Brazil
| | - Joni E Lima
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Ludmila N F Correia
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
| | - Wagner C Otoni
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
| | - Antonio Figueira
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, 13400-970 Piracicaba, São Paulo, Brazil
| | - Luciano Freschi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-090 São Paulo, Brazil
| | - Tetsu Sakamoto
- Bioinformatics Multidisciplinary Environment, Instituto Metrópole Digital, Universidade Federal Do Rio Grande Do Norte, 59078-400 Natal, Rio Grande do Norte, Brazil
| | - Lázaro E P Peres
- Laboratory of Hormonal Control of Plant Development, Departamento de Ciências Biológicas (LCB), Escola Superior de Agricultura “Luiz de Queiroz,” Universidade de São Paulo, CP 09, 13418-900 Piracicaba, São Paulo, Brazil
| | - Magdalena Rossi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-090 São Paulo, Brazil
| | | |
Collapse
|
4
|
Momayyezi M, Borsuk AM, Brodersen CR, Gilbert ME, Théroux‐Rancourt G, Kluepfel DA, McElrone AJ. Desiccation of the leaf mesophyll and its implications for CO 2 diffusion and light processing. PLANT, CELL & ENVIRONMENT 2022; 45:1362-1381. [PMID: 35141930 PMCID: PMC9314819 DOI: 10.1111/pce.14287] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 05/09/2023]
Abstract
Leaves balance CO2 and radiative absorption while maintaining water transport to maximise photosynthesis. Related species with contrasting leaf anatomy can provide insights into inherent and stress-induced links between structure and function for commonly measured leaf traits for important crops. We used two walnut species with contrasting mesophyll anatomy to evaluate these integrated exchange processes under non-stressed and drought conditions using a combination of light microscopy, X-ray microCT, gas exchange, hydraulic conductance, and chlorophyll distribution profiles through leaves. Juglans regia had thicker palisade mesophyll, higher fluorescence in the palisade, and greater low-mesophyll porosity that were associated with greater gas-phase diffusion (gIAS ), stomatal and mesophyll (gm ) conductances and carboxylation capacity. More and highly-packed mesophyll cells and bundle sheath extensions (BSEs) in Juglans microcarpa led to higher fluorescence in the spongy and in proximity to the BSEs. Both species exhibited drought-induced reductions in mesophyll cell volume, yet the associated increases in porosity and gIAS were obscured by declines in biochemical activity that decreased gm . Inherent differences in leaf anatomy between the species were linked to differences in gas exchange, light absorption and photosynthetic capacity, and drought-induced changes in leaf structure impacted performance via imposing species-specific limitations to light absorption, gas exchange and hydraulics.
Collapse
Affiliation(s)
- Mina Momayyezi
- Department of Viticulture and EnologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Aleca M. Borsuk
- School of the EnvironmentYale UniversityNew HavenConnecticutUSA
| | | | | | | | | | - Andrew J. McElrone
- Department of Viticulture and EnologyUniversity of CaliforniaDavisCaliforniaUSA
- USDA‐ARSCrops Pathology and Genetics Research UnitDavisCaliforniaUSA
| |
Collapse
|
5
|
Lu J, Pan C, Li X, Huang Z, Shu J, Wang X, Lu X, Pan F, Hu J, Zhang H, Su W, Zhang M, Du Y, Liu L, Guo Y, Li J. OBV (obscure vein), a C 2H 2 zinc finger transcription factor, positively regulates chloroplast development and bundle sheath extension formation in tomato (Solanum lycopersicum) leaf veins. HORTICULTURE RESEARCH 2021; 8:230. [PMID: 34719693 PMCID: PMC8558323 DOI: 10.1038/s41438-021-00659-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/07/2021] [Accepted: 07/14/2021] [Indexed: 06/01/2023]
Abstract
Leaf veins play an important role in plant growth and development, and the bundle sheath (BS) is believed to greatly improve the photosynthetic efficiency of C4 plants. The OBV mutation in tomato (Solanum lycopersicum) results in dark veins and has been used widely in processing tomato varieties. However, physiological performance has difficulty explaining fitness in production. In this study, we confirmed that this mutation was caused by both the increased chlorophyll content and the absence of bundle sheath extension (BSE) in the veins. Using genome-wide association analysis and map-based cloning, we revealed that OBV encoded a C2H2L domain class transcription factor. It was localized in the nucleus and presented cell type-specific gene expression in the leaf veins. Furthermore, we verified the gene function by generating CRISPR/Cas9 knockout and overexpression mutants of the tomato gene. RNA sequencing analysis revealed that OBV was involved in regulating chloroplast development and photosynthesis, which greatly supported the change in chlorophyll content by mutation. Taken together, these findings demonstrated that OBV affected the growth and development of tomato by regulating chloroplast development in leaf veins. This study also provides a solid foundation to further decipher the mechanism of BSEs and to understand the evolution of photosynthesis in land plants.
Collapse
Affiliation(s)
- Jinghua Lu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chunyang Pan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xin Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zejun Huang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jinshuai Shu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoxuan Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoxiao Lu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Feng Pan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Junling Hu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hui Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenyue Su
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Min Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yongchen Du
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lei Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yanmei Guo
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Junming Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
6
|
Karabourniotis G, Liakopoulos G, Bresta P, Nikolopoulos D. The Optical Properties of Leaf Structural Elements and Their Contribution to Photosynthetic Performance and Photoprotection. PLANTS (BASEL, SWITZERLAND) 2021; 10:1455. [PMID: 34371656 PMCID: PMC8309337 DOI: 10.3390/plants10071455] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/18/2022]
Abstract
Leaves have evolved to effectively harvest light, and, in parallel, to balance photosynthetic CO2 assimilation with water losses. At times, leaves must operate under light limiting conditions while at other instances (temporally distant or even within seconds), the same leaves must modulate light capture to avoid photoinhibition and achieve a uniform internal light gradient. The light-harvesting capacity and the photosynthetic performance of a given leaf are both determined by the organization and the properties of its structural elements, with some of these having evolved as adaptations to stressful environments. In this respect, the present review focuses on the optical roles of particular leaf structural elements (the light capture module) while integrating their involvement in other important functional modules. Superficial leaf tissues (epidermis including cuticle) and structures (epidermal appendages such as trichomes) play a crucial role against light interception. The epidermis, together with the cuticle, behaves as a reflector, as a selective UV filter and, in some cases, each epidermal cell acts as a lens focusing light to the interior. Non glandular trichomes reflect a considerable part of the solar radiation and absorb mainly in the UV spectral band. Mesophyll photosynthetic tissues and biominerals are involved in the efficient propagation of light within the mesophyll. Bundle sheath extensions and sclereids transfer light to internal layers of the mesophyll, particularly important in thick and compact leaves or in leaves with a flutter habit. All of the aforementioned structural elements have been typically optimized during evolution for multiple functions, thus offering adaptive advantages in challenging environments. Hence, each particular leaf design incorporates suitable optical traits advantageously and cost-effectively with the other fundamental functions of the leaf.
Collapse
Affiliation(s)
- George Karabourniotis
- Laboratory of Plant Physiology and Morphology, Faculty of Crop Science, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece; (G.L.); (D.N.)
| | - Georgios Liakopoulos
- Laboratory of Plant Physiology and Morphology, Faculty of Crop Science, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece; (G.L.); (D.N.)
| | - Panagiota Bresta
- Laboratory of Electron Microscopy, Faculty of Crop Science, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece;
| | - Dimosthenis Nikolopoulos
- Laboratory of Plant Physiology and Morphology, Faculty of Crop Science, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece; (G.L.); (D.N.)
| |
Collapse
|
7
|
Lobato AKDS, Barbosa MAM, Alsahli AA, Lima EJA, Silva BRSD. Exogenous salicylic acid alleviates the negative impacts on production components, biomass and gas exchange in tomato plants under water deficit improving redox status and anatomical responses. PHYSIOLOGIA PLANTARUM 2021; 172:869-884. [PMID: 33421143 DOI: 10.1111/ppl.13329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/30/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
Salicylic acid (SA) is an interesting messenger in plant metabolism that modulates multiple pathways, including the antioxidant defence pathway, and stimulates anatomical structures essential to carbon dioxide fixation during the photosynthetic process. The aim of this research was to determine whether pre-treatment with exogenous SA can alleviate the deleterious effects induced by water deficit on production components, biomass and gas exchange, measuring reactive oxygen species, antioxidant enzymes, variables connected to photosynthetic machinery, anatomical responses, and agro-morphological traits in tomato plants under water deficit. The experiment used a factorial design with four treatments, including two water conditions (control and water deficit) and two salicylic acid concentrations (0 and 0.1 mM salicylic acid). Water deficit negatively impacted the biomass and fruit number of tomato plants. Pre-treatment using 0.1 mM SA in plants submitted to water restriction induced increments in fruit number, weight, and biomass. These results were related to the protective role triggered by this substance, stimulating superoxide dismutase (27.07%), catalase (17.81%), ascorbate peroxidase (50.52%), and peroxidase (10.81%) as well as reducing the cell damage (malondialdehyde and electrolyte leakage) caused by superoxide and hydrogen peroxide. Simultaneously, application of SA improved the net photosynthetic rate (84.55%) and water-use efficiency (65.00%) of stressed plants in which these factors are connected to anatomical benefits, as verified by stomatal density, palisade and spongy parenchyma, combined with improved performance linked to photosystem II.
Collapse
Affiliation(s)
| | | | | | - Emily Juliane Alvino Lima
- Núcleo de Pesquisa Vegetal Básica e Aplicada, Universidade Federal Rural da Amazônia, Paragominas, Brazil
| | | |
Collapse
|
8
|
Down Regulation and Loss of Auxin Response Factor 4 Function Using CRISPR/Cas9 Alters Plant Growth, Stomatal Function and Improves Tomato Tolerance to Salinity and Osmotic Stress. Genes (Basel) 2020; 11:genes11030272. [PMID: 32138192 PMCID: PMC7140898 DOI: 10.3390/genes11030272] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/23/2020] [Accepted: 02/28/2020] [Indexed: 12/25/2022] Open
Abstract
Auxin controls multiple aspects of plant growth and development. However, its role in stress responses remains poorly understood. Auxin acts on the transcriptional regulation of target genes, mainly through Auxin Response Factors (ARF). This study focuses on the involvement of SlARF4 in tomato tolerance to salinity and osmotic stress. Using a reverse genetic approach, we found that the antisense down-regulation of SlARF4 promotes root development and density, increases soluble sugars content and maintains chlorophyll content at high levels under stress conditions. Furthermore, ARF4-as displayed higher tolerance to salt and osmotic stress through reduced stomatal conductance coupled with increased leaf relative water content and Abscisic acid (ABA) content under normal and stressful conditions. This increase in ABA content was correlated with the activation of ABA biosynthesis genes and the repression of ABA catabolism genes. Cu/ZnSOD and mdhar genes were up-regulated in ARF4-as plants which can result in a better tolerance to salt and osmotic stress. A CRISPR/Cas9 induced SlARF4 mutant showed similar growth and stomatal responses as ARF4-as plants, which suggest that arf4-cr can tolerate salt and osmotic stresses. Our data support the involvement of ARF4 as a key factor in tomato tolerance to salt and osmotic stresses and confirm the use of CRISPR technology as an efficient tool for functional reverse genetics studies.
Collapse
|
9
|
Gasparini K, Costa LC, Brito FAL, Pimenta TM, Cardoso FB, Araújo WL, Zsögön A, Ribeiro DM. Elevated CO 2 induces age-dependent restoration of growth and metabolism in gibberellin-deficient plants. PLANTA 2019; 250:1147-1161. [PMID: 31175419 DOI: 10.1007/s00425-019-03208-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
The effect of elevated [CO2] on the growth of tomato plants with reduced gibberellin content is influenced by developmental stage. The impact of increased atmospheric carbon dioxide (CO2) on plants has aroused interest in the last decades. Signaling molecules known as plant hormones are fundamental controllers of plant growth and development. Elevated CO2 concentration ([CO2]) increases plant growth; however, whether plant hormones act as mediators of this effect is still an open question. Here, we show the response to elevated [CO2] in tomato does not require a functional gibberellin (GA) biosynthesis pathway. We compared growth and primary metabolism between wild-type (WT) and GA-deficient mutant (gib-1) plants transferred from ambient (400 ppm) to elevated (750 ppm) [CO2] at two different growth stages (either 21 or 35 days after germination, DAG). Growth, photosynthetic parameters and primary metabolism in the stunted gib-1 plants were restored when they were transferred to elevated [CO2] at 21 DAG. Elevated [CO2] also stimulated growth and photosynthetic parameters in WT plants at 21 DAG; however, only minor changes were observed in the level of primary metabolites. At 35 DAG, on the other hand, elevated [CO2] did not stimulate growth in WT plants and gib-1 mutants showed their characteristic stunted growth phenotype. Taken together, our results reveal that elevated [CO2] enhances growth only within a narrow developmental window, in which GA biosynthesis is dispensable. This finding could be relevant for breeding crops in the face of the expected increases in atmospheric CO2 over the next century.
Collapse
Affiliation(s)
- Karla Gasparini
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brasil
| | - Lucas C Costa
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brasil
| | - Fred A L Brito
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brasil
| | - Thaline M Pimenta
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brasil
| | | | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brasil
| | - Agustín Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brasil.
| | - Dimas M Ribeiro
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brasil
| |
Collapse
|
10
|
Shelef O, Summerfield L, Lev-Yadun S, Villamarin-Cortez S, Sadeh R, Herrmann I, Rachmilevitch S. Thermal Benefits From White Variegation of Silybum marianum Leaves. FRONTIERS IN PLANT SCIENCE 2019; 10:688. [PMID: 31178888 PMCID: PMC6543541 DOI: 10.3389/fpls.2019.00688] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 05/07/2019] [Indexed: 05/24/2023]
Abstract
Leaves of the spiny winter annual Silybum marianum express white patches (variegation) that can cover significant surface areas, the outcome of air spaces formed between the epidermis and the green chlorenchyma. We asked: (1) what characterizes the white patches in S. marianum and what differs them from green patches? (2) Do white patches differ from green patches in photosynthetic efficiency under lower temperatures? We predicted that the air spaces in white patches have physiological benefits, elevating photosynthetic rates under low temperatures. To test our hypotheses we used both a variegated wild type and entirely green mutants. We grew the plants under moderate temperatures (20°C/10°C d/n) and compared them to plants grown under lower temperatures (15°C/5°C d/n). The developed plants were exposed to different temperatures for 1 h and their photosynthetic activity was measured. In addition, we compared in green vs. white patches, the reflectance spectra, patch structure, chlorophyll and dehydrin content, stomatal structure, plant growth, and leaf temperature. White patches were not significantly different from green patches in their biochemistry and photosynthesis. However, under lower temperatures, variegated wild-type leaves were significantly warmer than all-green mutants - possible explanations for that are discussed These findings support our hypothesis, that white variegation of S. marianum leaves has a physiological role, elevating leaf temperature during cold winter days.
Collapse
Affiliation(s)
- Oren Shelef
- Department of Natural Resources, Institute of Plant Sciences, Agricultural Research Organization, Rishon LeZion, Israel
| | - Liron Summerfield
- French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Simcha Lev-Yadun
- Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa–Oranim, Tivon, Israel
| | | | - Roy Sadeh
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ittai Herrmann
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shimon Rachmilevitch
- French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| |
Collapse
|