1
|
Chen H, Du J, Wang Y, Chao K, Wang Z, Ali S, Zeng H. Transcription factors PHR1 and PHR1-like 1 regulate ABA-mediated inhibition of seed germination and stomatal opening in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112389. [PMID: 39826769 DOI: 10.1016/j.plantsci.2025.112389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/29/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
Low phosphate (LP) availability significantly impacts crop yield and quality. PHOSPHATE STARVATION RESPONSE1 (PHR1) along with PHR1-like 1 (PHL1) act as a key transcriptional regulator in a plant's adaptive response to LP conditions. Abscisic acid (ABA) plays an important role in how plants respond to environmental stresses like salinity and drought. However, the involvement of PHR1 and PHL1 in ABA response and signalling mechanisms remains to be fully understood. Our findings reveal that PHR1 and PHR1/PHL1 knockout mutations enhance the responsiveness of seed germination, early seedling growth, and stomatal opening to ABA in Arabidopsis. Furthermore, these mutations increase sensitivity to combined LP and ABA stress. In contrast, overexpression of PHR1 or PHL1 reduces this sensitivity in Arabidopsis. Knockout mutations of PHR1 and PHR1/PHL1 also increase sensitivity to salt and osmotic stresses, as well as to combined LP and salinity/osmotic stress, while overexpression of PHR1 or PHL1 reduces their sensitivity in seed germination and early seedling development. Knockout mutations of SPX1 and SPX2, negative regulators of PHR1 and PHL1, decrease sensitivity to ABA and salt/osmotic stresses in Arabidopsis. A group of genes related to ABA metabolism and signalling is significantly affected by the knockout or overexpression of PHR1 and PHL1, with a large proportion of these genes containing PHR1 binding site (P1BS) in their promoters. Moreover, the ABA-sensitive phenotype of phr1 or phr1 phl1 mutants can be rescued by PHR1 homologs from chlorophyte algae, liverwort and rice, suggesting their conserved roles in ABA signalling. These results indicate that PHR1 and its homologs negatively regulate plant responses to ABA in seed germination and stomatal aperture. This study provides new insights into the interplay between Pi homeostasis, abiotic stress and ABA signaling. Moderately increasing the expression of PHR1 or its homologs in crops could be a potential strategy to enhance plant resistance to combined LP and osmotic stress.
Collapse
Affiliation(s)
- Huiying Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jia Du
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yifan Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Kexin Chao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zitong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Shahid Ali
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
2
|
Zimran G, Shpilman M, Hobson E, Kamisugi Y, Baichman-Kass A, Zhang H, Ruiz-Partida R, González-Bermúdez MR, Azar M, Feuer E, Gal M, Lozano-Juste J, de Vries J, Cuming AC, Mosquna A, Sun Y. Abscisic acid receptors functionally converge across 500 million years of land plant evolution. Curr Biol 2025; 35:818-830.e4. [PMID: 39892384 DOI: 10.1016/j.cub.2024.12.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/24/2024] [Accepted: 12/18/2024] [Indexed: 02/03/2025]
Abstract
Abscisic acid (ABA) functions as a central regulator of dehydration responses in land plants. As such, ABA signaling was pivotal in facilitating the colonization of terrestrial habitats. The conserved ABA signal transduction module consists of 2C-type protein phosphatases (PP2Cs) and their ABA-triggered inhibitors, PYRABACTIN RESISTANCE 1-like proteins (PYLs). Recent evidence indicates that ABA perception emerged from a latent signaling pathway involving a constitutively PP2C-inhibiting PYL homolog. Consequently, ancestral ABA receptors exerted high background signaling, limiting the dynamic range of ABA-dependent signaling. In angiosperms, ABA receptor families are characteristically large and diverse and include a clade-specific subgroup whose members form homodimers, thereby assuming strict ABA dependency. Here, we show that ABA receptors in mosses originate from an independent expansion, giving rise to three subfamilies. Yeast two-hybrid and in vitro PP2C-inhibition assays indicate that moss PYLs feature low basal activities. However, size-exclusion chromatography and additional lines of evidence suggest that moss PYLs are predominantly monomeric. A combination of mutational analysis with biochemical and physiological assays reveals that the reduced basal activities of moss PYLs are achieved through unique sets of amino acid variations. Finally, introducing causal variations to dimeric receptors dramatically compromises their ABA responsiveness, suggesting that the two evolutionary trajectories are mutually exclusive. Hence, mosses appear to have evolved a parallel mechanism to mitigate the ancestrally high background signal of the core ABA perception apparatus. This convergence highlights the shared imperative of expanding the amplitude of a central, highly adaptive signaling pathway.
Collapse
Affiliation(s)
- Gil Zimran
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, the Hebrew University of Jerusalem, 7610000 Rehovot, Israel
| | - Michal Shpilman
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, the Hebrew University of Jerusalem, 7610000 Rehovot, Israel
| | - Eve Hobson
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Yasuko Kamisugi
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Amichai Baichman-Kass
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, the Hebrew University of Jerusalem, 7610000 Rehovot, Israel
| | - Hong Zhang
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Rafa Ruiz-Partida
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV), Consejo Superior de Investigaciones Científicas (CSIC), 46022 Valencia, Spain
| | - María R González-Bermúdez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV), Consejo Superior de Investigaciones Científicas (CSIC), 46022 Valencia, Spain
| | - Matan Azar
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, the Hebrew University of Jerusalem, 7610000 Rehovot, Israel
| | - Erez Feuer
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, the Hebrew University of Jerusalem, 7610000 Rehovot, Israel
| | - Maayan Gal
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Isreal
| | - Jorge Lozano-Juste
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV), Consejo Superior de Investigaciones Científicas (CSIC), 46022 Valencia, Spain
| | - Jan de Vries
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany; University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077 Goettingen, Germany; University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Department of Applied Bioinformatics, Goldschmidtstr, 37077 Goettingen, Germany
| | - Andrew C Cuming
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Assaf Mosquna
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, the Hebrew University of Jerusalem, 7610000 Rehovot, Israel.
| | - Yufei Sun
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
3
|
Mahapatra K, Dwivedi S, Mukherjee A, Pradhan AA, Rao KV, Singh D, Bhagavatula L, Datta S. Interplay of light and abscisic acid signaling to modulate plant development. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:730-745. [PMID: 38660968 DOI: 10.1093/jxb/erae192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024]
Abstract
Exogenous light cues and the phytohormone abscisic acid (ABA) regulate several aspects of plant growth and development. In recent years, the role of crosstalk between the light and ABA signaling pathways in regulating different physiological processes has become increasingly evident. This includes regulation of germination and early seedling development, control of stomatal development and conductance, growth, and development of roots, buds, and branches, and regulation of flowering. Light and ABA signaling cascades have various convergence points at both DNA and protein levels. The molecular crosstalk involves several light signaling factors such as HY5, COP1, PIFs, and BBXs that integrate with ABA signaling components such as the PYL receptors and ABI5. In particular, ABI5 and PIF4 promoters are key 'hotspots' for integrating these two pathways. Plants acquired both light and ABA signaling pathways before they colonized land almost 500 million years ago. In this review, we discuss recent advances in the interplay of light and ABA signaling regulating plant development and provide an overview of the evolution of these two pathways.
Collapse
Affiliation(s)
- Kalyan Mahapatra
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal-462066, Madhya Pradesh, India
| | - Shubhi Dwivedi
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal-462066, Madhya Pradesh, India
| | - Arpan Mukherjee
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal-462066, Madhya Pradesh, India
| | - Ajar Anupam Pradhan
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal-462066, Madhya Pradesh, India
| | - Kavuri Venkateswara Rao
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal-462066, Madhya Pradesh, India
| | - Deeksha Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal-462066, Madhya Pradesh, India
| | | | - Sourav Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal-462066, Madhya Pradesh, India
| |
Collapse
|
4
|
Zhao H, Dong X, Yang D, Ge Q, Lu P, Liu C. New insights into the salt-responsive regulation in eelgrass at transcriptional and post-transcriptional levels. FRONTIERS IN PLANT SCIENCE 2025; 16:1497064. [PMID: 39980478 PMCID: PMC11840677 DOI: 10.3389/fpls.2025.1497064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/17/2025] [Indexed: 02/22/2025]
Abstract
Introduction The adaptation mechanisms of marine plants to the environments have garnered significant attention in recent years. Eelgrass (Zostera marina), a representative marine angiosperm, serves as an ideal model for investigating the mechanisms underlying salt tolerance. Methods This study integrated mRNA, sRNA, and degradome sequencing data to identify key genes associated with salt tolerance in eelgrass. Results The results indicate that a series of genes involved in biological processes such as "in response to water deprivation" and "biosynthesis of secondary metabolites" respond to salt stress. Analysis of cis-regulatory elements and expression similarities suggests that the ABA synthase 9-cis-epoxycarotenoid dioxygenase (NCED) may be regulated by ERF members, while phenylalanine ammonia-lyase (PAL) may be regulated by MYB members. At the post-transcriptional regulation level, miRNA156 and miRNA166 might be involved in the response by regulating potential target genes, such as members of the WRKY and HD-ZIP families. Additionally, eelgrass exhibits unique responses to salt, such as the up-regulation of genes involved in the "fucose biosynthetic process". These findings enhance our understanding of how eelgrass adapts to the marine environment. Discussion As a marine monocotyledon, eelgrass is helpful to find conserved salt tolerance mechanisms by cross-species comparison. By examining the transcriptional responses of homologous genes in eelgrass, rice, and maize, we identified several groups of genes that are conserved in their response to salt stress. These conserved gene resources may provide targets for genetic engineering to improve the salt tolerance of crops.
Collapse
Affiliation(s)
- Huan Zhao
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
- Key Laboratory of Marine Bio-resources Restoration and Habitat Reparation in Liaoning Province, Dalian Ocean University, Dalian, China
| | - Xu Dong
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
- Key Laboratory of Marine Bio-resources Restoration and Habitat Reparation in Liaoning Province, Dalian Ocean University, Dalian, China
| | - Dazuo Yang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
- Key Laboratory of Marine Bio-resources Restoration and Habitat Reparation in Liaoning Province, Dalian Ocean University, Dalian, China
| | - Qingchao Ge
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
- Key Laboratory of Marine Bio-resources Restoration and Habitat Reparation in Liaoning Province, Dalian Ocean University, Dalian, China
| | - Peng Lu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
- Key Laboratory of Marine Bio-resources Restoration and Habitat Reparation in Liaoning Province, Dalian Ocean University, Dalian, China
| | - Chang Liu
- Key Laboratory of Marine Bio-resources Restoration and Habitat Reparation in Liaoning Province, Dalian Ocean University, Dalian, China
- Department of Nursing, Zibo Vocational Institute, Zibo, China
| |
Collapse
|
5
|
Dev W, Sultana F, He S, Waqas M, Hu D, Aminu IM, Geng X, Du X. An insight into heat stress response and adaptive mechanism in cotton. JOURNAL OF PLANT PHYSIOLOGY 2024; 302:154324. [PMID: 39167998 DOI: 10.1016/j.jplph.2024.154324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024]
Abstract
The growing worldwide population is driving up demand for cotton fibers, but production is hampered by unpredictable temperature rises caused by shifting climatic conditions. Numerous research based on breeding and genomics have been conducted to increase the production of cotton in environments with high and low-temperature stress. High temperature (HT) is a major environmental stressor with global consequences, influencing several aspects of cotton plant growth and metabolism. Heat stress-induced physiological and biochemical changes are research topics, and molecular techniques are used to improve cotton plants' heat tolerance. To preserve internal balance, heat stress activates various stress-responsive processes, including repairing damaged proteins and membranes, through various molecular networks. Recent research has investigated the diverse reactions of cotton cultivars to temperature stress, indicating that cotton plant adaptation mechanisms include the accumulation of sugars, proline, phenolics, flavonoids, and heat shock proteins. To overcome the obstacles caused by heat stress, it is crucial to develop and choose heat-tolerant cotton cultivars. Food security and sustainable agriculture depend on the application of genetic, agronomic, and, biotechnological methods to lessen the impacts of heat stress on cotton crops. Cotton producers and the textile industry both benefit from increased heat tolerance. Future studies should examine the developmental responses of cotton at different growth stages, emphasize the significance of breeding heat-tolerant cultivars, and assess the biochemical, physiological, and molecular pathways involved in seed germination under high temperatures. In a nutshell, a concentrated effort is required to raise cotton's heat tolerance due to the rising global temperatures and the rise in the frequency of extreme weather occurrences. Furthermore, emerging advances in sequencing technologies have made major progress toward successfully se sequencing the complex cotton genome.
Collapse
Affiliation(s)
- Washu Dev
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Fahmida Sultana
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Shoupu He
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Muhammad Waqas
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Daowu Hu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, 57202, China
| | - Isah Mansur Aminu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaoli Geng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiongming Du
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, 57202, China.
| |
Collapse
|
6
|
Tolopka JI, Svriz M, Ledesma TM, Lanari E, Scervino JM, Moreno JE. Environmental Pollutant Anthracene Induces ABA-Dependent Transgenerational Effects on Gemmae Dormancy in Marchantia polymorpha. PLANTS (BASEL, SWITZERLAND) 2024; 13:2979. [PMID: 39519898 PMCID: PMC11548294 DOI: 10.3390/plants13212979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Anthracene, a polycyclic aromatic hydrocarbon (PAH) from fossil fuel combustion, poses significant environmental threats. This study investigates the role of abscisic acid (ABA) in the anthracene tolerance of the liverwort Marchantia polymorpha using mutants deficient in ABA perception (Mppyl1) or biosynthesis (Mpaba1). In this study, we monitored the role of ABA in the anthracene tolerance response by tracking two ABA-controlled traits: plant growth inhibition and gemmae dormancy. We found that the anthracene-induced inhibition of plant growth is dose-dependent, similar to the growth-inhibiting effect of ABA, but independent of ABA pathways. However, gemmae dormancy was differentially affected by anthracene in ABA-deficient mutants. We found that gemmae from anthracene-exposed WT plants exhibited reduced germination compared to those from mock-treated plants. This suggests that the anthracene exposure of mother plants induces a transgenerational effect, resulting in prolonged dormancy in their asexual propagules. While Mppyl1 gemmae retained a dormancy delay when derived from anthracene-exposed thalli, the ABA biosynthesis mutant Mpaba1 did not display any significant dormancy delay as a consequence of anthracene exposure. These results, together with the strong induction of ABA marker genes upon anthracene treatment, imply that anthracene-induced germination inhibition relies on ABA synthesis in the mother plant, highlighting the critical role of MpABA1 in the tolerance response. These findings reveal a complex interplay between anthracene stress and ABA signaling, where anthracene triggers ABA-mediated responses, influencing reproductive success and highlighting the potential for leveraging genetic and hormonal pathways to enhance plant resilience in contaminated habitats.
Collapse
Affiliation(s)
- Juan I. Tolopka
- Instituto de Agrobiotecnología del Litoral, Centro Científico Tecnológico CONICET Santa Fe, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Colectora Ruta Nacional No. 168 km. 0, Paraje El Pozo, Santa Fe 3000, Argentina; (J.I.T.); (T.M.L.)
| | - Maya Svriz
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Universidad Nacional del Comahue-CONICET, SC Bariloche, Río Negro 8400, Argentina; (M.S.); (J.M.S.)
| | - Tamara M. Ledesma
- Instituto de Agrobiotecnología del Litoral, Centro Científico Tecnológico CONICET Santa Fe, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Colectora Ruta Nacional No. 168 km. 0, Paraje El Pozo, Santa Fe 3000, Argentina; (J.I.T.); (T.M.L.)
| | - Eugenia Lanari
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Universidad Nacional del Comahue-CONICET, SC Bariloche, Río Negro 8400, Argentina; (M.S.); (J.M.S.)
| | - José M. Scervino
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Universidad Nacional del Comahue-CONICET, SC Bariloche, Río Negro 8400, Argentina; (M.S.); (J.M.S.)
| | - Javier E. Moreno
- Instituto de Agrobiotecnología del Litoral, Centro Científico Tecnológico CONICET Santa Fe, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Colectora Ruta Nacional No. 168 km. 0, Paraje El Pozo, Santa Fe 3000, Argentina; (J.I.T.); (T.M.L.)
| |
Collapse
|
7
|
Villiers F, Suhail Y, Lee J, Hauser F, Hwang J, Bader JS, McKay JK, Peck SC, Schroeder JI, Kwak JM. Transcriptomic dynamics of ABA response in Brassica napus guard cells. STRESS BIOLOGY 2024; 4:43. [PMID: 39400760 PMCID: PMC11473748 DOI: 10.1007/s44154-024-00169-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/22/2024] [Indexed: 10/15/2024]
Abstract
Drought has a significant, negative impact on crop production; and these effects are poised to increase with climate change. Plants acclimate to drought and water stress through diverse physiological responses, primarily mediated by the hormone abscisic acid (ABA). Because plants lose the majority of their water through stomatal pores on aerial surfaces of plants, stomatal closure is one of the rapid responses mediated by ABA to reduce transpirational water loss. The dynamic changes in the transcriptome of stomatal guard cells in response to ABA have been investigated in the model plant Arabidopsis thaliana. However, guard cell transcriptomes have not been analyzed in agronomically valuable crops such as a major oilseed crop, rapeseed. In this study, we investigated the dynamics of ABA-regulated transcriptomes in stomatal guard cells of Brassica napus and conducted comparison analysis with the transcriptomes of A. thaliana. We discovered changes in gene expression indicating alterations in a host of physiological processes, including stomatal movement, metabolic reprogramming, and light responses. Our results suggest the existence of both immediate and delayed responses to ABA in Brassica guard cells. Furthermore, the transcription factors and regulatory networks mediating these responses are compared to those identified in Arabidopsis. Our results imply the continuing evolution of ABA responses in Brassica since its divergence from a common ancestor, involving both protein-coding and non-coding nucleotide sequences. Together, our results will provide a basis for developing strategies for molecular manipulation of drought tolerance in crop plants.
Collapse
Affiliation(s)
- Florent Villiers
- Centre de Recherche de La Dargoire, Bayer CropScience, 69009, Lyon, France.
| | - Yasir Suhail
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Jade Lee
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Felix Hauser
- Division of Biological Sciences, Cell and Developmental Biology Department, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jaeung Hwang
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Joel S Bader
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - John K McKay
- Department of Bioagricultural Sciences, Colorado State University, Fort Collins, CO, 80523-1177, USA
| | - Scott C Peck
- Department of Biochemistry and Christopher S. Bond Life Sciences Center, Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA
| | - Julian I Schroeder
- Division of Biological Sciences, Cell and Developmental Biology Department, University of California San Diego, La Jolla, CA, 92093, USA
| | - June M Kwak
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea.
| |
Collapse
|
8
|
Staps M, Tarnita CE, Kawakatsu M. Ecological principles for the evolution of communication in collective systems. Proc Biol Sci 2024; 291:20241562. [PMID: 39381908 PMCID: PMC11462452 DOI: 10.1098/rspb.2024.1562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 10/10/2024] Open
Abstract
Communication allows members of a collective to share information about their environment. Advanced collective systems, such as multicellular organisms and social insect colonies, vary in whether they use communication at all and, if they do, in what types of signals they use, but the origins of these differences are poorly understood. Here, we develop a theoretical framework to investigate the evolution and diversity of communication strategies under collective-level selection. We find that whether communication can evolve depends on a collective's external environment: communication only evolves in sufficiently stable environments, where the costs of sensing are high enough to disfavour independent sensing but not so high that the optimal strategy is to ignore the environment altogether. Moreover, we find that the evolution of diverse signalling strategies-including those relying on prolonged signalling (e.g. honeybee waggle dance), persistence of signals in the environment (e.g. ant trail pheromones) and brief but frequent communicative interactions (e.g. ant antennal contacts)-can be explained theoretically in terms of the interplay between the demands of the environment and internal constraints on the signal. Altogether, we provide a general framework for comparing communication strategies found in nature and uncover simple ecological principles that may contribute to their diversity.
Collapse
Affiliation(s)
- Merlijn Staps
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ08544, USA
| | - Corina E. Tarnita
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ08544, USA
| | - Mari Kawakatsu
- Department of Biology, University of Pennsylvania, Philadelphia, PA19104, USA
- Center for Mathematical Biology, University of Pennsylvania, Philadelphia, PA19104, USA
| |
Collapse
|
9
|
Mu L, Wang X, Ma Y, Zhao A, Han S, Li R, Lei K, Ji L, Li P. Apple Glycosyltransferase MdUGT73AR4 Glycosylates ABA to Regulate Stomatal Movement Involved in Drought Stress. Int J Mol Sci 2024; 25:5672. [PMID: 38891859 PMCID: PMC11171509 DOI: 10.3390/ijms25115672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Abscisic acid (ABA) is a drought-stress-responsive hormone that plays an important role in the stomatal activity of plant leaves. Currently, ABA glycosides have been identified in apples, but their glycosyltransferases for glycosylation modification of ABA are still unidentified. In this study, the mRNA expression of glycosyltransferase gene MdUGT73AR4 was significantly up-regulated in mature apple leaves which were treated in drought stress by Real-Time PCR. It was hypothesised that MdUGT73AR4 might play an important role in drought stress. In order to further characterise the glycosylation modification substrate of glycosyltransferase MdUGT73AR4, we demonstrated through in vitro and in vivo functional validation that MdUGT73AR4 can glycosylate ABA. Moreover, the overexpression lines of MdUGT73AR4 significantly enhance its drought stress resistance function. We also found that the adversity stress transcription factor AREB1B might be an upstream transcription factor of MdUGT73AR4 by bioinformatics, EMSA, and ChIP experiments. In conclusion, this study found that the adversity stress transcription factor AREB1B was significantly up-regulated at the onset of drought stress, which in turn positively regulated the downstream glycosyltransferase MdUGT73AR4, causing it to modify ABA by mass glycosylation and promoting the ABA synthesis pathway, resulting in the accumulation of ABA content, and displaying a stress-resistant phenotype.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lusha Ji
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China; (L.M.); (X.W.); (Y.M.); (A.Z.); (S.H.); (R.L.); (K.L.)
| | - Pan Li
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China; (L.M.); (X.W.); (Y.M.); (A.Z.); (S.H.); (R.L.); (K.L.)
| |
Collapse
|
10
|
Horvat B, Shikakura Y, Ohtani M, Demura T, Kikuchi A, Watanabe KN, Oguchi T. Heterogeneous Expression of Arabidopsis Subclass II of SNF1-Related Kinase 2 Improves Drought Tolerance via Stomatal Regulation in Poplar. Life (Basel) 2024; 14:161. [PMID: 38276290 PMCID: PMC10817443 DOI: 10.3390/life14010161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/28/2023] [Accepted: 01/20/2024] [Indexed: 01/27/2024] Open
Abstract
Abscisic acid (ABA) is the most important phytohormone involved in the response to drought stress. Subclass II of SNF1-related kinase 2 (SnRK2) is an important signaling kinase related to ABA signal transduction. It regulates the phosphorylation of the target transcription factors controlling the transcription of a wide range of ABA-responsive genes in Arabidopsis thaliana. The transgenic poplars (Populus tremula × P. tremuloides, clone T89) ectopically overexpressing AtSnRK2.8, encoding a subclass II SnRK2 kinase of A. thaliana, have been engineered but almost no change in its transcriptome was observed. In this study, we evaluated osmotic stress tolerance and stomatal behavior of the transgenic poplars maintained in the netted greenhouse. The transgenic poplars, line S22, showed a significantly higher tolerance to 20% PEG treatment than non-transgenic controls. The stomatal conductance of the transgenic poplars tended to be lower than the non-transgenic control. Microscopic observations of leaf imprints revealed that the transgenic poplars had significantly higher stomatal closures under the stress treatment than the non-transgenic control. In addition, the stomatal index was lower in the transgenic poplars than in the non-transgenic controls regardless of the stress treatment. These results suggested that AtSnRK2.8 is involved in the regulation of stomatal behavior. Furthermore, the transgenic poplars overexpressing AtSnRK2.8 might have improved abiotic stress tolerance through this stomatal regulation.
Collapse
Affiliation(s)
- Borislav Horvat
- Degree Program in Life and Earth Science, Graduate School of Science and Technology, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan
| | - Yuhei Shikakura
- Degree Program in Life and Earth Science, Graduate School of Science and Technology, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan
| | - Misato Ohtani
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8562, Chiba, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Kanagawa, Japan
| | - Taku Demura
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Kanagawa, Japan
- Center for Digital Green-Innovation, Nara Institute of Science and Technology, Ikoma 630-0192, Nara, Japan
| | - Akira Kikuchi
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan
| | - Kazuo N. Watanabe
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan
| | - Taichi Oguchi
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan
| |
Collapse
|
11
|
Pirredda M, Fañanás-Pueyo I, Oñate-Sánchez L, Mira S. Seed Longevity and Ageing: A Review on Physiological and Genetic Factors with an Emphasis on Hormonal Regulation. PLANTS (BASEL, SWITZERLAND) 2023; 13:41. [PMID: 38202349 PMCID: PMC10780731 DOI: 10.3390/plants13010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
Upon storage, seeds inevitably age and lose their viability over time, which determines their longevity. Longevity correlates with successful seed germination and enhancing this trait is of fundamental importance for long-term seed storage (germplasm conservation) and crop improvement. Seed longevity is governed by a complex interplay between genetic factors and environmental conditions experienced during seed development and after-ripening that will shape seed physiology. Several factors have been associated with seed ageing such as oxidative stress responses, DNA repair enzymes, and composition of seed layers. Phytohormones, mainly abscisic acid, auxins, and gibberellins, have also emerged as prominent endogenous regulators of seed longevity, and their study has provided new regulators of longevity. Gaining a thorough understanding of how hormonal signalling genes and pathways are integrated with downstream mechanisms related to seed longevity is essential for formulating strategies aimed at preserving seed quality and viability. A relevant aspect related to research in seed longevity is the existence of significant differences between results depending on the seed equilibrium relative humidity conditions used to study seed ageing. Hence, this review delves into the genetic, environmental and experimental factors affecting seed ageing and longevity, with a particular focus on their hormonal regulation. We also provide gene network models underlying hormone signalling aimed to help visualize their integration into seed longevity and ageing. We believe that the format used to present the information bolsters its value as a resource to support seed longevity research for seed conservation and crop improvement.
Collapse
Affiliation(s)
- Michela Pirredda
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Av. Puerta de Hierro 2, 28040 Madrid, Spain;
| | - Iris Fañanás-Pueyo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain;
| | - Luis Oñate-Sánchez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain;
| | - Sara Mira
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Av. Puerta de Hierro 2, 28040 Madrid, Spain;
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain;
| |
Collapse
|
12
|
Russ D, Fitzpatrick CR, Teixeira PJPL, Dangl JL. Deep discovery informs difficult deployment in plant microbiome science. Cell 2023; 186:4496-4513. [PMID: 37832524 DOI: 10.1016/j.cell.2023.08.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 10/15/2023]
Abstract
Plant-associated microbiota can extend plant immune system function, improve nutrient acquisition and availability, and alleviate abiotic stresses. Thus, naturally beneficial microbial therapeutics are enticing tools to improve plant productivity. The basic definition of plant microbiota across species and ecosystems, combined with the development of reductionist experimental models and the manipulation of plant phenotypes with microbes, has fueled interest in its translation to agriculture. However, the great majority of microbes exhibiting plant-productivity traits in the lab and greenhouse fail in the field. Therapeutic microbes must reach détente, the establishment of uneasy homeostasis, with the plant immune system, invade heterogeneous pre-established plant-associated communities, and persist in a new and potentially remodeled community. Environmental conditions can alter community structure and thus impact the engraftment of therapeutic microbes. We survey recent breakthroughs, challenges, and opportunities in translating beneficial microbes from the lab to the field.
Collapse
Affiliation(s)
- Dor Russ
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Connor R Fitzpatrick
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Paulo J P L Teixeira
- Department of Biological Sciences, "Luiz de Queiroz" College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, SP, Brazil
| | - Jeffery L Dangl
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
13
|
Soma F, Takahashi F, Kidokoro S, Kameoka H, Suzuki T, Uga Y, Shinozaki K, Yamaguchi-Shinozaki K. Constitutively active B2 Raf-like kinases are required for drought-responsive gene expression upstream of ABA-activated SnRK2 kinases. Proc Natl Acad Sci U S A 2023; 120:e2221863120. [PMID: 37276398 PMCID: PMC10268249 DOI: 10.1073/pnas.2221863120] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 05/10/2023] [Indexed: 06/07/2023] Open
Abstract
Osmotic stresses, such as drought and high salinity, adversely affect plant growth and productivity. The phytohormone abscisic acid (ABA) accumulates in response to osmotic stress and enhances stress tolerance in plants by triggering multiple physiological responses through ABA signaling. Subclass III SNF1-related protein kinases 2 (SnRK2s) are key regulators of ABA signaling. Although SnRK2s have long been considered to be self-activated by autophosphorylation after release from PP2C-mediated inhibition, they were recently revealed to be activated by two independent subfamilies of group B Raf-like kinases, B2-RAFs and B3-RAFs, under osmotic stress conditions. However, the relationship between SnRK2 phosphorylation by these RAFs and SnRK2 autophosphorylation and the individual physiological roles of each RAF subfamily remain unknown. In this study, we indicated that B2-RAFs are constantly active and activate SnRK2s when released from PP2C-mediated inhibition by ABA-binding ABA receptors, whereas B3-RAFs are activated only under stress conditions in an ABA-independent manner and enhance SnRK2 activity. Autophosphorylation of subclass III SnRK2s is not sufficient for ABA responses, and B2-RAFs are needed to activate SnRK2s in an ABA-dependent manner. Using plants grown in soil, we found that B2-RAFs regulate subclass III SnRK2s at the early stage of drought stress, whereas B3-RAFs regulate SnRK2s at the later stage. Thus, B2-RAFs are essential kinases for the activation of subclass III SnRK2s in response to ABA under mild osmotic stress conditions, and B3-RAFs function as enhancers of SnRK2 activity under severe stress conditions.
Collapse
Affiliation(s)
- Fumiyuki Soma
- Laboratory of Plant Molecular Physiology, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 113-8657, Bunkyo-ku, Tokyo, Japan
- Institute of Crop Science, National Agriculture and Food Research Organization305-8518, Tsukuba, Ibaraki, Japan
| | - Fuminori Takahashi
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science305-0074, Tsukuba, Ibaraki, Japan
| | - Satoshi Kidokoro
- Laboratory of Plant Molecular Physiology, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 113-8657, Bunkyo-ku, Tokyo, Japan
| | - Haruka Kameoka
- Laboratory of Plant Molecular Physiology, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 113-8657, Bunkyo-ku, Tokyo, Japan
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University487-8501, Kasugai, Aichi, Japan
| | - Yusaku Uga
- Institute of Crop Science, National Agriculture and Food Research Organization305-8518, Tsukuba, Ibaraki, Japan
| | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science305-0074, Tsukuba, Ibaraki, Japan
| | - Kazuko Yamaguchi-Shinozaki
- Laboratory of Plant Molecular Physiology, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 113-8657, Bunkyo-ku, Tokyo, Japan
- Research Institute for Agricultural and Life Sciences, Tokyo University of Agriculture156-8502, Tokyo, Japan
| |
Collapse
|
14
|
Khatun N, Shinozawa A, Takahashi K, Matsuura H, Jahan A, Islam M, Karim M, Sk R, Yoshikawa M, Ishizaki K, Sakata Y, Takezawa D. Abscisic acid-mediated sugar responses are essential for vegetative desiccation tolerance in the liverwort Marchantia polymorpha. PHYSIOLOGIA PLANTARUM 2023; 175:e13898. [PMID: 36974502 DOI: 10.1111/ppl.13898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/13/2023] [Accepted: 03/22/2023] [Indexed: 06/18/2023]
Abstract
Low-molecular-weight sugars serve as protectants for cellular membranes and macromolecules under the condition of dehydration caused by environmental stress such as desiccation and freezing. These sugars also affect plant growth and development by provoking internal signaling pathways. We previously showed that both sugars and the stress hormone abscisic acid (ABA) enhance desiccation tolerance of gemma, a dormant propagule of the liverwort Marchantia polymorpha. To determine the role of ABA in sugar responses in liverworts, we generated genome-editing lines of M. polymorpha ABA DEFICIENT 1 (MpABA1) encoding zeaxanthin epoxidase, which catalyzes the initial reaction toward ABA biosynthesis. The generated Mpaba1 lines that accumulated only a trace amount of endogenous ABA showed reduced desiccation tolerance and reduced sugar responses. RNA-seq analysis of sucrose-treated gemmalings of M. polymorpha revealed that expression of a large part of sucrose-induced genes was reduced in Mpaba1 compared to the wild-type. Furthermore, Mpaba1 accumulated smaller amounts of low-molecular-weight sugars in tissues upon sucrose treatment than the wild-type, with reduced expression of genes for sucrose synthesis, sugar transporters, and starch-catabolizing enzymes. These results indicate that endogenous ABA plays a role in the regulation of the positive feedback loop for sugar-induced sugar accumulation in liverworts, enabling the tissue to have desiccation tolerance.
Collapse
Affiliation(s)
- Nobiza Khatun
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Akihisa Shinozawa
- Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo, Japan
| | - Kosaku Takahashi
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Hideyuki Matsuura
- Division of Fundamental, AgriScience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Akida Jahan
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Mousona Islam
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Masudul Karim
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Rahul Sk
- Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo, Japan
| | | | | | - Yoichi Sakata
- Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo, Japan
| | - Daisuke Takezawa
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| |
Collapse
|
15
|
Wu TY, Krishnamoorthi S, Boonyaves K, Al-Darabsah I, Leong R, Jones AM, Ishizaki K, Liao KL, Urano D. G protein controls stress readiness by modulating transcriptional and metabolic homeostasis in Arabidopsis thaliana and Marchantia polymorpha. MOLECULAR PLANT 2022; 15:1889-1907. [PMID: 36321200 DOI: 10.1016/j.molp.2022.10.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/03/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
The core G protein signaling module, which consists of Gα and extra-large Gα (XLG) subunits coupled with the Gβγ dimer, is a master regulator of various stress responses. In this study, we compared the basal and salt stress-induced transcriptomic, metabolomic and phenotypic profiles in Gα, Gβ, and XLG-null mutants of two plant species, Arabidopsis thaliana and Marchantia polymorpha, and showed that G protein mediates the shift of transcriptional and metabolic homeostasis to stress readiness status. We demonstrated that such stress readiness serves as an intrinsic protection mechanism against further stressors through enhancing the phenylpropanoid pathway and abscisic acid responses. Furthermore, WRKY transcription factors were identified as key intermediates of G protein-mediated homeostatic shifts. Statistical and mathematical model comparisons between A. thaliana and M. polymorpha revealed evolutionary conservation of transcriptional and metabolic networks over land plant evolution, whereas divergence has occurred in the function of plant-specific atypical XLG subunit. Taken together, our results indicate that the shifts in transcriptional and metabolic homeostasis at least partially act as the mechanisms of G protein-coupled stress responses that are conserved between two distantly related plants.
Collapse
Affiliation(s)
- Ting-Ying Wu
- Temasek Life Sciences Laboratory, Singapore, Singapore.
| | | | - Kulaporn Boonyaves
- Temasek Life Sciences Laboratory, Singapore, Singapore; Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Isam Al-Darabsah
- Department of Mathematics, University of Manitoba, Winnipeg, MB, Canada
| | - Richalynn Leong
- Temasek Life Sciences Laboratory, Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Alan M Jones
- Departments of Biology and Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Kimitsune Ishizaki
- Graduate School of Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Kang-Ling Liao
- Department of Mathematics, University of Manitoba, Winnipeg, MB, Canada.
| | - Daisuke Urano
- Temasek Life Sciences Laboratory, Singapore, Singapore; Singapore-MIT Alliance for Research and Technology, Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore.
| |
Collapse
|
16
|
Li XM, Wang CY, Guo YT, Guo YX, Du HX, Niu KX, Yan Y, Gou 缑金营 JY. Hormone-response transcriptional landscapes of wheat seedlings and the development of a JA fluorescent reporter. PLANT, CELL & ENVIRONMENT 2022; 45:3604-3610. [PMID: 36131562 DOI: 10.1111/pce.14443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/18/2022] [Accepted: 09/17/2022] [Indexed: 06/15/2023]
Abstract
Wheat is an essential energy and protein source for humans. Climate change brings daunting challenges to wheat yield through environmental stresses, in which phytohormones play critical roles. Nevertheless, the comprehensive understanding of wheat phytohormone responses remains elusive. Here, we investigated the transcriptome response of wheat seedlings to five phytohormones, cytokinin (6-BA), abscisic acid (ABA), gibberellic acid (GA), jasmonate (JA) and salicylic acid (SA). We further selected two JA marker genes and cloned their promoters to drive the expression of 3XEGFP (tandem trimeric enhanced green fluorescent protein) in transgenic lines. The JA fluorescent reporter displayed a fast and stable response to JA treatment as an ideal tool to follow JA dynamics during fungal and cold stresses at a cellular resolution. Overall, this study provided a transcriptional landscape and facilitated generating fluorescent reporters to monitor the dynamics of phytohormones in food crops.
Collapse
Affiliation(s)
- Xiao-Ming Li
- State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Chu-Yang Wang
- State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yue-Ting Guo
- State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yu-Xin Guo
- State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Han-Xiao Du
- State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Ke-Xin Niu
- State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yan Yan
- State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jin-Ying Gou 缑金营
- State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| |
Collapse
|
17
|
Chong L, Hsu CC, Zhu Y. Advances in mass spectrometry-based phosphoproteomics for elucidating abscisic acid signaling and plant responses to abiotic stress. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6547-6557. [PMID: 35959917 DOI: 10.1093/jxb/erac324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Abiotic stresses have significant impacts on crop yield and quality. Even though significant efforts during the past decade have been devoted to uncovering the core signaling pathways associated with the phytohormone abscisic acid (ABA) and abiotic stress in plants, abiotic stress signaling mechanisms in most crops remain largely unclear. The core components of the ABA signaling pathway, including early events in the osmotic stress-induced phosphorylation network, have recently been elucidated in Arabidopsis with the aid of phosphoproteomics technologies. We now know that SNF1-related kinases 2 (SnRK2s) are not only inhibited by the clade A type 2C protein phosphatases (PP2Cs) through dephosphorylation, but also phosphorylated and activated by upstream mitogen-activated protein kinase kinase kinases (MAP3Ks). Through describing the course of studies to elucidate abiotic stress and ABA signaling, we will discuss how we can take advantage of the latest innovations in mass-spectrometry-based phosphoproteomics and structural proteomics to boost our investigation of plant regulation and responses to ABA and abiotic stress.
Collapse
Affiliation(s)
- Leelyn Chong
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Chuan-Chih Hsu
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Yingfang Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- Sanya Institute of Henan University, Sanya, Hainan, China
| |
Collapse
|
18
|
Li X, Cao X, Li J, Niu Q, Mo Y, Xiao L. Genome-wide characterization of C2H2 zinc-finger gene family provides insight into the mechanisms and evolution of the dehydration-rehydration responses in Physcomitrium and Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:953459. [PMID: 36262662 PMCID: PMC9574186 DOI: 10.3389/fpls.2022.953459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Dehydration tolerance is a vital factor for land plant evolution and world agricultural production. Numerous studies enlightened that the plant-specific C2H2-type zinc-finger proteins (C2H2-ZFPs) as master regulators played pivotal roles in the abiotic stress responses of plants. However, a comprehensive understanding of the evolution of C2H2-ZFPs in terrestrial plants and its regulatory mechanism in dehydration and rehydration response remains a mystery. In this study, the genome-wide identification of C2H2-ZFP genes revealed 549 homologs in the representatives of terrestrial plant lineages from liverwort to angiosperms. Based on the characteristics of the conserved C2H2-ZF domains, four major C2H2-ZF types (M-, Z-, Q-, and D-type) were identified in the C2H2-ZFPs, with the dominants of M-type in all selected species and followed by Z-type in non-seed plants and Q-type in seed plants, respectively. Phylogenetic analyses of the identified C2H2-ZFPs supported four major groups in the land plant representatives, among which the members from the desiccation-tolerant Physcomitrium patens and the dehydration-sensitive Arabidopsis thaliana displayed different topological relationships in the phylogenies reconstructed for a single species. C2H2-ZFPs clustered in the same subclades shared similar features in their conserved domains and gene structures. Approximately, 81% of the C2H2-ZFP promoters of all 549 identified C2H2-ZFPs harbored the conserved ABA-responsive elements (ABREs) and/or dehydration-responsive elements (DREs). Comparative transcriptomic analyses showed that 50 PpZFPs and 56 AtZFPs significantly changed their transcripts abundance. Interestingly, most of the dehydration- and rehydration-responsive PpZPFs and AtZFPs had been predicted to contain the ABRE and DRE elements in their promoter regions and with over half of which phylogenetically belonging to group III. The differences in the expression patterns of C2H2-ZFPs in responses to dehydration and rehydration between P. patens and A. thaliana reflected their different strategies to adapt to dehydration. The identified candidate PpZFPs were specifically induced by moderate dehydration and reached the peak transcript abundance in severe dehydration. Our study lays the foundations for further functional investigation of C2H2-ZFPs in dehydration responses from an evolutionary perspective in land plants. The findings will provide us with genetic resources and potential targets for drought tolerance breeding in crops and beyond.
Collapse
|
19
|
The Examination of the Role of Rice Lysophosphatidic Acid Acyltransferase 2 in Response to Salt and Drought Stresses. Int J Mol Sci 2022; 23:ijms23179796. [PMID: 36077191 PMCID: PMC9456497 DOI: 10.3390/ijms23179796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Phosphatidic acid (PA) is an important signal molecule in various biological processes including osmotic stress. Lysophosphatidic acid acyltransferase (LPAT) acylates the sn-2 position of the glycerol backbone of lysophosphatidic acid (LPA) to produce PA. The role of LPAT2 and its PA in osmotic stress response remains elusive in plants. Here we showed that LPAT2-derived PA is important for salt and drought stress tolerance in rice. Rice LPAT2 was localized to the endoplasmic reticulum (ER) to catalyze the PA synthesis. The LPAT2 transcript was induced by osmotic stress such as high salinity and water deficit. To reveal its role in osmotic stress response, an LPAT2 knockdown mutant, designated lpat2, was isolated from rice, which contained a reduced PA level relative to wild type (WT) plants under salt stress and water deficit. The lpat2 mutant was more susceptible to osmotic stress and less sensitive to abscisic acid (ABA) than that of WT, which was recovered by either PA supplementation or genetic LPAT2 complementation. Moreover, suppressed LPAT2 also led to a large number of differentially expressed genes (DEGs) involved in diverse processes, particularly, in ABA response, kinase signaling, and ion homeostasis in response to salt stress. Together, LPAT2-produced PA plays a positive role in osmotic tolerance through mediating ABA response, which leads to transcriptional alteration of genes related to ABA response, protein kinase signaling, and ion homeostasis.
Collapse
|
20
|
Reboledo G, Agorio A, Ponce De León I. Moss transcription factors regulating development and defense responses to stress. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4546-4561. [PMID: 35167679 DOI: 10.1093/jxb/erac055] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Transcription factors control gene expression, leading to regulation of biological processes that determine plant development and adaptation to the environment. Land colonization by plants occurred 450-470 million years ago and was accompanied by an increase in the complexity of transcriptional regulation associated to transcription factor gene expansions. AP2/ERF, bHLH, MYB, NAC, GRAS, and WRKY transcription factor families increased in land plants compared with algae. In angiosperms, they play crucial roles in regulating plant growth and responses to environmental stressors. However, less information is available in bryophytes and only in a few cases is the functional role of moss transcription factors in stress mechanisms known. In this review, we discuss current knowledge of the transcription factor families involved in development and defense responses to stress in mosses and other bryophytes. By exploring and analysing the Physcomitrium patens public database and published transcriptional profiles, we show that a high number of AP2/ERF, bHLH, MYB, NAC, GRAS, and WRKY genes are differentially expressed in response to abiotic stresses and during biotic interactions. Expression profiles together with a comprehensive analysis provide insights into relevant transcription factors involved in moss defenses, and hint at distinct and conserved biological roles between bryophytes and angiosperms.
Collapse
Affiliation(s)
- Guillermo Reboledo
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Astrid Agorio
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Inés Ponce De León
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| |
Collapse
|
21
|
Wu M, Yin C, Jiang X, Sun Q, Xu X, Ma Y, Liu X, Niu N, Chen L. Biocompatible Abscisic Acid-Sensing Supramolecular Hybridization Probe for Spatiotemporal Fluorescence Imaging in Plant Tissues. Anal Chem 2022; 94:8999-9008. [PMID: 35707963 DOI: 10.1021/acs.analchem.2c01050] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Achieving detection of the phytohormone abscisic acid (ABA) is of critical importance for understanding plant growth and development. We report a hybrid supramolecular fluorescent probe that uses bovine serum albumin (BSA) as a host. Aggregation-induced emission of fluorescent chromophores (AIEgens) enables luminescence in the presence of BSA. ABA and its aptamer act as a switch to trigger this fluorescent system, the strategy that exhibits high sensitivity to abscisic acid with a detection limit of 0.098 nM. The probe test strip also enables visualization of ABA content from plants by colorimetric observation with the naked eye. In particular, the high biocompatibility and small molecular size of the prepared fluorescent probe allow for effective monitoring of ABA in plant tissues by fluorescence imaging. This strategy provides a new perspective to achieve the detection of endogenous and exogenous ABA in plants and has important implications for plant biology research.
Collapse
Affiliation(s)
- Meng Wu
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Chenhui Yin
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Xinxin Jiang
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Qijun Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Xiaoyu Xu
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Yanmei Ma
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Xinjian Liu
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Na Niu
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Ligang Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| |
Collapse
|
22
|
Li Q, Song J, Zhou Y, Chen Y, Zhang L, Pang Y, Zhang B. Full-Length Transcriptomics Reveals Complex Molecular Mechanism of Salt Tolerance in Bromus inermis L. FRONTIERS IN PLANT SCIENCE 2022; 13:917338. [PMID: 35755679 PMCID: PMC9219601 DOI: 10.3389/fpls.2022.917338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/09/2022] [Indexed: 05/31/2023]
Abstract
Bromus inermis L. (commonly known as smooth bromegrass) is a grass species with high nutritional value, great palatability, cold tolerance, and grazing resistance, which has been widely cultivated for pasture and sand fixation in northern and northwestern China. Salt stress is a main environmental factor limiting growth and production of smooth bromegrass. In this study, we performed PacBio Iso-Seq to construct the first full-length transcriptome database for smooth bromegrass under 300 mM NaCl treatment at different time points. Third-generation full-length transcriptome sequencing yielded 19.67 G polymerase read bases, which were assembled into 355,836 full-length transcripts with an average length of 2,542 bp. A total of 116,578 differentially expressed genes were obtained by comparing the results of third-generation sequencing and second-generation sequencing. GO and KEGG enrichment analyses revealed that multiple pathways were differently activated in leaves and roots. In particular, a number of genes participating in the molecular network of plant signal perception, signal transduction, transcription regulation, antioxidant defense, and ion regulation were affected by NaCl treatment. In particular, the CBL-CIPK, MAPK, ABA signaling network, and SOS core regulatory pathways of Ca2+ signal transduction were activated to regulate salt stress response. In addition, the expression patterns of 10 salt-responsive genes were validated by quantitative real-time PCR, which were consistent with those detected by RNA-Seq. Our results reveal the molecular regulation of smooth bromegrass in response to salt stress, which are important for further investigation of critical salt responsive genes and molecular breeding of salt-tolerant smooth bromegrass.
Collapse
Affiliation(s)
- Qian Li
- Key Laboratory of Grassland Resources and Ecology of Western Arid Region, Ministry of Education, College of Grassland Science, Xinjiang Agricultural University, Urumqi, China
- Key Laboratory of Grassland Resources and Ecology of Xinjiang, College of Grassland Science, Xinjiang Agricultural University, Urumqi, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiaxing Song
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Yi Zhou
- School of Agriculture Food and Wine, The University of Adelaide, Urrbrae, SA, Australia
| | - Yingxia Chen
- Key Laboratory of Grassland Resources and Ecology of Western Arid Region, Ministry of Education, College of Grassland Science, Xinjiang Agricultural University, Urumqi, China
- Key Laboratory of Grassland Resources and Ecology of Xinjiang, College of Grassland Science, Xinjiang Agricultural University, Urumqi, China
| | - Lei Zhang
- Key Laboratory of Grassland Resources and Ecology of Western Arid Region, Ministry of Education, College of Grassland Science, Xinjiang Agricultural University, Urumqi, China
- Key Laboratory of Grassland Resources and Ecology of Xinjiang, College of Grassland Science, Xinjiang Agricultural University, Urumqi, China
| | - Yongzhen Pang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bo Zhang
- Key Laboratory of Grassland Resources and Ecology of Western Arid Region, Ministry of Education, College of Grassland Science, Xinjiang Agricultural University, Urumqi, China
- Key Laboratory of Grassland Resources and Ecology of Xinjiang, College of Grassland Science, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
23
|
Phosphorylation of DUF1639 protein by osmotic stress/ABA-activated protein kinase 10 regulates abscisic acid-induced antioxidant defense in rice. Biochem Biophys Res Commun 2022; 604:30-36. [DOI: 10.1016/j.bbrc.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 11/21/2022]
|
24
|
Hiroguchi A, Nakamura K, Fujita T. Abscisic acid switches cell division modes of asymmetric cell division and symmetric cell division in stem cells of protonemal filaments in the moss Physcomitrium patens. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2022; 39:13-17. [PMID: 35800966 PMCID: PMC9200082 DOI: 10.5511/plantbiotechnology.22.0107a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/07/2022] [Indexed: 06/15/2023]
Abstract
Multicellular organisms regulate cell numbers and cell fate by using asymmetric cell division (ACD) and symmetric cell division (SCD) during their development and to adapt to unfavorable environmental conditions. A stem cell self-renews and generates differentiated cells. In plants, various types of cells are produced by ACD or SCD; however, the molecular mechanisms of ACD or SCD and the cell division mode switch are largely unknown. The moss Physcomitrium (Physcomitrella) patens is a suitable model to study plant stem cells due to its simple anatomy. Here, we report the cell division mode switch induced by abscisic acid (ABA) in P. patens. ABA is synthesized in response to abiotic stresses and induces round-shape cells, called brood cells, from cylindrical protonemal cells. Although two daughter cells with distinct sizes were produced by ACD in a protonemal stem cell on ABA-free media, the sizes of two daughter cells became similar with ABA treatment. Actin microfilaments were spatially localized on the apices of apical stem cells in protonemata on ABA-free media, but the polar accumulation was lost under the condition of ABA treatment. Moreover, ABA treatment conferred an identical cell fate to the daughter cells in terms of cell division activity. Collectively, the results indicate ABA may suppress the ACD characteristics but evoke SCD in cells. We also noticed that ABA-induced brood cells not only self-renewed but regenerated protonemal cells when ABA was removed from the media, suggesting that brood cells are novel stem cells that are induced by environmental signals in P. patens.
Collapse
Affiliation(s)
- Akihiko Hiroguchi
- Faculty of Science, Hokkaido University, Kita 10 Nishi 8 Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Kohei Nakamura
- Faculty of Science, Hokkaido University, Kita 10 Nishi 8 Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Tomomichi Fujita
- Faculty of Science, Hokkaido University, Kita 10 Nishi 8 Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
25
|
Yang J, Gu W, Feng Z, Yu B, Niu J, Wang G. Synthesis of Abscisic Acid in Neopyropia yezoensis and Its Regulation of Antioxidase Genes Expressions Under Hypersaline Stress. Front Microbiol 2022; 12:775710. [PMID: 35082766 PMCID: PMC8784606 DOI: 10.3389/fmicb.2021.775710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022] Open
Abstract
Abscisic acid (ABA) is regarded as crucial for plant adaptation to water-limited conditions and it functions evolutionarily conserved. Thus, insights into the synthesis of ABA and its regulation on downstream stress-responsive genes in Neopyropia yezoensis, a typical Archaeplastida distributed in intertidal zone, will improve the knowledge about how ABA signaling evolved in plants. Here, the variations in ABA contents, antioxidant enzyme activities and expression of the target genes were determined under the presence of exogenous ABA and two specific inhibitors of the ABA precursor synthesis. ABA content was down-regulated under the treatments of each or the combination of the two inhibitors. Antioxidant enzyme activities like SOD, CAT and APX were decreased slightly with inhibitors, but up-regulated when the addition of exogenous ABA. The quantitative assays using real-time PCR (qRT-PCR) results were consistent with the enzyme activities. All the results suggested that ABA can also alleviate oxidative stress in N. yezoensis as it in terrestrial plant. Combined with the transcriptome assay, it was hypothesized that ABA is synthesized in N. yezoensis via a pathway that is similar to the carotenoid pathway in higher plants, and both the MVA and that the MEP pathways for isoprenyl pyrophosphate (IPP) synthesis likely exist simultaneously. The ABA signaling pathway in N. yezoensis was also analyzed from an evolutionary standpoint and it was illustrated that the emergence of the ABA signaling pathway in this alga is an ancestral one. In addition, the presence of the ABRE motif in the promoter region of antioxidase genes suggested that the antioxidase system is regulated by the ABA signaling pathway.
Collapse
Affiliation(s)
- Jiali Yang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences (IOCAS), Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wenhui Gu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences (IOCAS), Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao, China
| | - Zezhong Feng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences (IOCAS), Qingdao, China.,Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, China
| | - Bin Yu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences (IOCAS), Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jianfeng Niu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences (IOCAS), Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao, China
| | - Guangce Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences (IOCAS), Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao, China
| |
Collapse
|
26
|
Bacete L, Schulz J, Engelsdorf T, Bartosova Z, Vaahtera L, Yan G, Gerhold JM, Tichá T, Øvstebø C, Gigli-Bisceglia N, Johannessen-Starheim S, Margueritat J, Kollist H, Dehoux T, McAdam SAM, Hamann T. THESEUS1 modulates cell wall stiffness and abscisic acid production in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2022; 119:e2119258119. [PMID: 34949719 PMCID: PMC8740707 DOI: 10.1073/pnas.2119258119] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2021] [Indexed: 01/23/2023] Open
Abstract
Plant cells can be distinguished from animal cells by their cell walls and high-turgor pressure. Although changes in turgor and the stiffness of cell walls seem coordinated, we know little about the mechanism responsible for coordination. Evidence has accumulated that plants, like yeast, have a dedicated cell wall integrity maintenance mechanism. It monitors the functional integrity of the wall and maintains integrity through adaptive responses induced by cell wall damage arising during growth, development, and interactions with the environment. These adaptive responses include osmosensitive induction of phytohormone production, defense responses, as well as changes in cell wall composition and structure. Here, we investigate how the cell wall integrity maintenance mechanism coordinates changes in cell wall stiffness and turgor in Arabidopsis thaliana We show that the production of abscisic acid (ABA), the phytohormone-modulating turgor pressure, and responses to drought depend on the presence of a functional cell wall. We find that the cell wall integrity sensor THESEUS1 modulates mechanical properties of walls, turgor loss point, ABA biosynthesis, and ABA-controlled processes. We identify RECEPTOR-LIKE PROTEIN 12 as a component of cell wall integrity maintenance-controlling, cell wall damage-induced jasmonic acid (JA) production. We propose that THE1 is responsible for coordinating changes in turgor pressure and cell wall stiffness.
Collapse
Affiliation(s)
- Laura Bacete
- Institute for Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Julia Schulz
- Institute for Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Timo Engelsdorf
- Division of Plant Physiology, Department of Biology, Philipps University of Marburg, 35043 Marburg, Germany
| | - Zdenka Bartosova
- Institute for Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Lauri Vaahtera
- Institute for Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Guqi Yan
- Institut Lumière Matière, UMR5306, Université Lyon, 1-CNRS 69622 Villeurbanne, France
| | | | - Tereza Tichá
- Institute for Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Camilla Øvstebø
- Institute for Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Nora Gigli-Bisceglia
- Institute for Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Svanhild Johannessen-Starheim
- Institute for Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Jeremie Margueritat
- Institut Lumière Matière, UMR5306, Université Lyon, 1-CNRS 69622 Villeurbanne, France
| | - Hannes Kollist
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Thomas Dehoux
- Institut Lumière Matière, UMR5306, Université Lyon, 1-CNRS 69622 Villeurbanne, France
| | - Scott A M McAdam
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
| | - Thorsten Hamann
- Institute for Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway;
| |
Collapse
|
27
|
Jahan A, Yamazaki Y, Islam M, Ghosh TK, Yoshimura N, Kato H, Ishizaki K, Shinozawa A, Sakata Y, Takezawa D. Differential regulations of abscisic acid-induced desiccation tolerance and vegetative dormancy by group B3 Raf kinases in liverworts. FRONTIERS IN PLANT SCIENCE 2022; 13:952820. [PMID: 35968153 PMCID: PMC9370073 DOI: 10.3389/fpls.2022.952820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/04/2022] [Indexed: 05/10/2023]
Abstract
Phytohormone abscisic acid (ABA) plays a key role in stomata closure, osmostress acclimation, and vegetative and embryonic dormancy. Group B3 Raf protein kinases (B3-Rafs) serve as positive regulators of ABA and osmostress signaling in the moss Physcomitrium patens and the angiosperm Arabidopsis thaliana. While P. patens has a single B3-Raf called ARK, specific members of B3-Rafs among six paralogs regulate ABA and osmostress signaling in A. thaliana, indicating functional diversification of B3-Rafs in angiosperms. However, we found that the liverwort Marchantia polymorpha, belonging to another class of bryophytes, has three paralogs of B3-Rafs, MpARK1, MpARK2, and MpARK3, with structural variations in the regulatory domains of the polypeptides. By reporter assays of the P. patens ark line and analysis of genome-editing lines of M. polymorpha, we found that these B3-Rafs are functionally redundant in ABA response, with respect to inhibition of growth, tolerance to desiccation and expression of stress-associated transcripts, the majority of which are under the control of the PYR/PYL/RCAR-like receptor MpPYL1. Interestingly, gemmae in gemma cups were germinating only in mutant lines associated with MpARK1, indicating that dormancy in the gametophyte is controlled by a specific B3-Raf paralog. These results indicated not only conservation of the role of B3-Rafs in ABA and osmostress response in liverworts but also functional diversification of B3-Rafs, which is likely to have occurred in the early stages of land plant evolution.
Collapse
Affiliation(s)
- Akida Jahan
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Yuto Yamazaki
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Mousona Islam
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
- Biological Research Division, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Totan Kumar Ghosh
- Department of Crop Botany, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Nami Yoshimura
- Graduate School of Science, Kobe University, Kobe, Japan
| | - Hirotaka Kato
- Graduate School of Science, Kobe University, Kobe, Japan
| | | | - Akihisa Shinozawa
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Yoichi Sakata
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Daisuke Takezawa
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
- *Correspondence: Daisuke Takezawa,
| |
Collapse
|
28
|
Tang J, Bassham DC. Autophagy during drought: function, regulation, and potential application. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:390-401. [PMID: 34469611 DOI: 10.1111/tpj.15481] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
Drought is a major challenge for agricultural production since it causes substantial yield reduction and economic loss. Autophagy is a subcellular degradation and recycling pathway that functions in plant development and responses to many stresses, including drought. In this review, we summarize the current understanding of the function of autophagy and how autophagy is upregulated during drought stress. Autophagy helps plants to survive drought stress, and the mechanistic basis for this is beginning to be elucidated. Autophagy can selectively degrade aquaporins to adjust water permeability, and also degrades excess heme and damaged proteins to reduce their toxicity. In addition, autophagy can degrade regulators or components of hormone signaling pathways to promote stress responses. During drought recovery, autophagy degrades drought-induced proteins to reset the cell status. Autophagy is activated by multiple mechanisms during drought stress. Several transcription factors are induced by drought to upregulate autophagy-related gene expression, and autophagy is also regulated post-translationally through protein modification and stability. Based on these observations, manipulation of autophagy activity may be a promising approach for conferring drought tolerance in plants.
Collapse
Affiliation(s)
- Jie Tang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
29
|
SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. Functional genomics in plant abiotic stress responses and tolerance: From gene discovery to complex regulatory networks and their application in breeding. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2022; 98:470-492. [PMID: 36216536 PMCID: PMC9614206 DOI: 10.2183/pjab.98.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/08/2022] [Indexed: 06/16/2023]
Abstract
Land plants have developed sophisticated systems to cope with severe stressful environmental conditions during evolution. Plants have complex molecular systems to respond and adapt to abiotic stress, including drought, cold, and heat stress. Since 1989, we have been working to understand the complex molecular mechanisms of plant responses to severe environmental stress conditions based on functional genomics approaches with Arabidopsis thaliana as a model plant. We focused on the function of drought-inducible genes and the regulation of their stress-inducible transcription, perception and cellular signal transduction of stress signals to describe plant stress responses and adaptation at the molecular and cellular levels. We have identified key genes and factors in the regulation of complex responses and tolerance of plants in response to dehydration and temperature stresses. In this review article, we describe our 30-year experience in research and development based on functional genomics to understand sophisticated systems in plant response and adaptation to environmental stress conditions.
Collapse
Affiliation(s)
- Kazuo SHINOZAKI
- RIKEN Center for Sustainable Resource Science, Tsukuba, Ibaraki, Japan
| | - Kazuko YAMAGUCHI-SHINOZAKI
- Research Institute for Agricultural and Life Sciences, Tokyo University of Agriculture, Tokyo, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
30
|
Arif MA, Top O, Csicsely E, Lichtenstern M, Beheshti H, Adjabi K, Frank W. DICER-LIKE1a autoregulation based on intronic microRNA processing is required for stress adaptation in Physcomitrium patens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:227-240. [PMID: 34743365 DOI: 10.1111/tpj.15570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/27/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
The Physcomitrium patens DICER-LIKE1a (PpDCL1a) mRNA encoding the essential Dicer protein for microRNA (miRNA) biogenesis harbors an intronic miRNA (miR1047). An autoregulatory mechanism to control PpDCL1a abundance that is based on competitive processing of the intronic miRNA and proper PpDCL1a mRNA splicing has previously been proposed. If intron splicing occurs first the mRNA can be translated into the functional PpDCL1a protein, whereas the processing of the intronic miRNA catalyzed by PpDCL1a itself, prior to pre-mRNA splicing, generates a truncated transcript unable to produce a functional protein. This proposed autoregulation of DCL1 has not been functionally analyzed in any plant species, and the existence of this autoregulatory control is expected to have a general impact on the overall miRNA biogenesis pathway and the transcriptome that is under miRNA control. We abolished PpDCL1a autoregulatory feedback control by the precise deletion of the MIR1047-containing intron. The generated line displayed hypersensitivity to salt stress and hyposensitivity to the plant hormone ABA, accompanied by the disturbed expression of miRNAs and mRNAs, revealed by transcriptome analyses. The feedback control together with the phenotypic abnormalities and molecular changes in the intron-less line can be rescued by the re-insertion of a modified intron harboring a sequence-unrelated artificial miRNA. Our findings indicate the physiological importance of miR1047-based feedback control of PpDCL1a transcript abundance, which controls the expression of miRNAs, and their cognate target RNAs during salt stress adaptation, and suggests a key role for this autoregulation in the molecular adaptation of land plants to terrestrial habitats.
Collapse
Affiliation(s)
- M Asif Arif
- Plant Molecular Cell Biology, Department Biology I, Ludwig-Maximilians-Universität München, LMU Biocenter, Großhaderner Straße 2-4, Planegg-Martinsried, 82152, Germany
| | - Oguz Top
- Plant Molecular Cell Biology, Department Biology I, Ludwig-Maximilians-Universität München, LMU Biocenter, Großhaderner Straße 2-4, Planegg-Martinsried, 82152, Germany
| | - Erika Csicsely
- Plant Molecular Cell Biology, Department Biology I, Ludwig-Maximilians-Universität München, LMU Biocenter, Großhaderner Straße 2-4, Planegg-Martinsried, 82152, Germany
| | - Myriam Lichtenstern
- Plant Molecular Cell Biology, Department Biology I, Ludwig-Maximilians-Universität München, LMU Biocenter, Großhaderner Straße 2-4, Planegg-Martinsried, 82152, Germany
| | - Hossein Beheshti
- Plant Molecular Cell Biology, Department Biology I, Ludwig-Maximilians-Universität München, LMU Biocenter, Großhaderner Straße 2-4, Planegg-Martinsried, 82152, Germany
| | - Kaoutar Adjabi
- Plant Molecular Cell Biology, Department Biology I, Ludwig-Maximilians-Universität München, LMU Biocenter, Großhaderner Straße 2-4, Planegg-Martinsried, 82152, Germany
| | - Wolfgang Frank
- Plant Molecular Cell Biology, Department Biology I, Ludwig-Maximilians-Universität München, LMU Biocenter, Großhaderner Straße 2-4, Planegg-Martinsried, 82152, Germany
| |
Collapse
|
31
|
Ríos-Meléndez S, Valadez-Hernández E, Delgadillo C, Luna-Guevara ML, Martínez-Núñez MA, Sánchez-Pérez M, Martínez-Y-Pérez JL, Arroyo-Becerra A, Cárdenas L, Bibbins-Martínez M, Maldonado-Mendoza IE, Villalobos-López MA. Pseudocrossidium replicatum (Taylor) R.H. Zander is a fully desiccation-tolerant moss that expresses an inducible molecular mechanism in response to severe abiotic stress. PLANT MOLECULAR BIOLOGY 2021; 107:387-404. [PMID: 34189708 PMCID: PMC8648698 DOI: 10.1007/s11103-021-01167-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 06/10/2021] [Indexed: 05/04/2023]
Abstract
KEY MESSAGE The moss Pseudocrossidium replicatum is a desiccation-tolerant species that uses an inducible system to withstand severe abiotic stress in both protonemal and gametophore tissues. Desiccation tolerance (DT) is the ability of cells to recover from an air-dried state. Here, the moss Pseudocrossidium replicatum was identified as a fully desiccation-tolerant (FDT) species. Its gametophores rapidly lost more than 90% of their water content when exposed to a low-humidity atmosphere [23% relative humidity (RH)], but abscisic acid (ABA) pretreatment diminished the final water loss after equilibrium was reached. P. replicatum gametophores maintained good maximum photosystem II (PSII) efficiency (Fv/Fm) for up to two hours during slow dehydration; however, ABA pretreatment induced a faster decrease in the Fv/Fm. ABA also induced a faster recovery of the Fv/Fm after rehydration. Protein synthesis inhibitor treatment before dehydration hampered the recovery of the Fv/Fm when the gametophores were rehydrated after desiccation, suggesting the presence of an inducible protective mechanism that is activated in response to abiotic stress. This observation was also supported by accumulation of soluble sugars in gametophores exposed to ABA or NaCl. Exogenous ABA treatment delayed the germination of P. replicatum spores and induced morphological changes in protonemal cells that resembled brachycytes. Transcriptome analyses revealed the presence of an inducible molecular mechanism in P. replicatum protonemata that was activated in response to dehydration. This study is the first RNA-Seq study of the protonemal tissues of an FDT moss. Our results suggest that P. replicatum is an FDT moss equipped with an inducible molecular response that prepares this species for severe abiotic stress and that ABA plays an important role in this response.
Collapse
Affiliation(s)
- Selma Ríos-Meléndez
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, C.P. 90700, Tepetitla de Lardizábal, Tlaxcala, México
| | - Emmanuel Valadez-Hernández
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, C.P. 90700, Tepetitla de Lardizábal, Tlaxcala, México
| | - Claudio Delgadillo
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Maria L Luna-Guevara
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, C.P. 72000, Puebla, Puebla, México
| | - Mario A Martínez-Núñez
- UMDI-Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, C.P. 97302, Mérida, Yucatán, México
| | - Mishael Sánchez-Pérez
- Unidad de Análisis Bioinformáticos, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, C.P. 62210, Cuernavaca, Morelos, México
| | - José L Martínez-Y-Pérez
- Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, C.P. 90210, Ixtacuixtla, Tlaxcala, México
| | - Analilia Arroyo-Becerra
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, C.P. 90700, Tepetitla de Lardizábal, Tlaxcala, México
| | - Luis Cárdenas
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, C.P. 62210, Cuernavaca, Morelos, México
| | - Martha Bibbins-Martínez
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, C.P. 90700, Tepetitla de Lardizábal, Tlaxcala, México
| | - Ignacio E Maldonado-Mendoza
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Sinaloa, Instituto Politécnico Nacional, C.P. 81049, Guasave, Sinaloa, México
| | - Miguel Angel Villalobos-López
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, C.P. 90700, Tepetitla de Lardizábal, Tlaxcala, México.
| |
Collapse
|
32
|
Maszkowska J, Szymańska KP, Kasztelan A, Krzywińska E, Sztatelman O, Dobrowolska G. The Multifaceted Regulation of SnRK2 Kinases. Cells 2021; 10:cells10092180. [PMID: 34571829 PMCID: PMC8465348 DOI: 10.3390/cells10092180] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/12/2021] [Accepted: 08/23/2021] [Indexed: 12/16/2022] Open
Abstract
SNF1-related kinases 2 (SnRK2s) are central regulators of plant responses to environmental cues simultaneously playing a pivotal role in the plant development and growth in favorable conditions. They are activated in response to osmotic stress and some of them also to abscisic acid (ABA), the latter being key in ABA signaling. The SnRK2s can be viewed as molecular switches between growth and stress response; therefore, their activity is tightly regulated; needed only for a short time to trigger the response, it has to be induced transiently and otherwise kept at a very low level. This implies a strict and multifaceted control of SnRK2s in plant cells. Despite emerging new information concerning the regulation of SnRK2s, especially those involved in ABA signaling, a lot remains to be uncovered, the regulation of SnRK2s in an ABA-independent manner being particularly understudied. Here, we present an overview of available data, discuss some controversial issues, and provide our perspective on SnRK2 regulation.
Collapse
Affiliation(s)
- Justyna Maszkowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (J.M.); (A.K.); (E.K.)
| | - Katarzyna Patrycja Szymańska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (J.M.); (A.K.); (E.K.)
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, ul. Noakowskiego 3, 00-664 Warsaw, Poland;
| | - Adrian Kasztelan
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (J.M.); (A.K.); (E.K.)
| | - Ewa Krzywińska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (J.M.); (A.K.); (E.K.)
| | - Olga Sztatelman
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (J.M.); (A.K.); (E.K.)
- Correspondence: (O.S.); (G.D.); Tel.: +48-22-5925718 (G.D.)
| | - Grażyna Dobrowolska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (J.M.); (A.K.); (E.K.)
- Correspondence: (O.S.); (G.D.); Tel.: +48-22-5925718 (G.D.)
| |
Collapse
|
33
|
Kamiyama Y, Katagiri S, Umezawa T. Growth Promotion or Osmotic Stress Response: How SNF1-Related Protein Kinase 2 (SnRK2) Kinases Are Activated and Manage Intracellular Signaling in Plants. PLANTS 2021; 10:plants10071443. [PMID: 34371646 PMCID: PMC8309267 DOI: 10.3390/plants10071443] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022]
Abstract
Reversible phosphorylation is a major mechanism for regulating protein function and controls a wide range of cellular functions including responses to external stimuli. The plant-specific SNF1-related protein kinase 2s (SnRK2s) function as central regulators of plant growth and development, as well as tolerance to multiple abiotic stresses. Although the activity of SnRK2s is tightly regulated in a phytohormone abscisic acid (ABA)-dependent manner, recent investigations have revealed that SnRK2s can be activated by group B Raf-like protein kinases independently of ABA. Furthermore, evidence is accumulating that SnRK2s modulate plant growth through regulation of target of rapamycin (TOR) signaling. Here, we summarize recent advances in knowledge of how SnRK2s mediate plant growth and osmotic stress signaling and discuss future challenges in this research field.
Collapse
Affiliation(s)
- Yoshiaki Kamiyama
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan; (Y.K.); (S.K.)
| | - Sotaro Katagiri
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan; (Y.K.); (S.K.)
| | - Taishi Umezawa
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan; (Y.K.); (S.K.)
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8538, Japan
- Correspondence:
| |
Collapse
|
34
|
Cellular Phosphorylation Signaling and Gene Expression in Drought Stress Responses: ABA-Dependent and ABA-Independent Regulatory Systems. PLANTS 2021; 10:plants10040756. [PMID: 33924307 PMCID: PMC8068880 DOI: 10.3390/plants10040756] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/29/2021] [Accepted: 04/08/2021] [Indexed: 12/11/2022]
Abstract
Drought is a severe and complex abiotic stress that negatively affects plant growth and crop yields. Numerous genes with various functions are induced in response to drought stress to acquire drought stress tolerance. The phytohormone abscisic acid (ABA) accumulates mainly in the leaves in response to drought stress and then activates subclass III SNF1-related protein kinases 2 (SnRK2s), which are key phosphoregulators of ABA signaling. ABA mediates a wide variety of gene expression processes through stress-responsive transcription factors, including ABA-RESPONSIVE ELEMENT BINDING PROTEINS (AREBs)/ABRE-BINDING FACTORS (ABFs) and several other transcription factors. Seed plants have another type of SnRK2s, ABA-unresponsive subclass I SnRK2s, that mediates the stability of gene expression through the mRNA decay pathway and plant growth under drought stress in an ABA-independent manner. Recent research has elucidated the upstream regulators of SnRK2s, RAF-like protein kinases, involved in early responses to drought stress. ABA-independent transcriptional regulatory systems and ABA-responsive regulation function in drought-responsive gene expression. DEHYDRATION RESPONSIVE ELEMENT (DRE) is an important cis-acting element in ABA-independent transcription, whereas ABA-RESPONSIVE ELEMENT (ABRE) cis-acting element functions in ABA-responsive transcription. In this review article, we summarize recent advances in research on cellular and molecular drought stress responses and focus on phosphorylation signaling and transcription networks in Arabidopsis and crops. We also highlight gene networks of transcriptional regulation through two major regulatory pathways, ABA-dependent and ABA-independent pathways, that ABA-responsive subclass III SnRK2s and ABA-unresponsive subclass I SnRK2s mediate, respectively. We also discuss crosstalk in these regulatory systems under drought stress.
Collapse
|
35
|
Giri J, Parida SK, Raghuvanshi S, Tyagi AK. Emerging Molecular Strategies for Improving Rice Drought Tolerance. Curr Genomics 2021; 22:16-25. [PMID: 34045921 PMCID: PMC8142347 DOI: 10.2174/1389202921999201231205024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/27/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
Rice occupies a pre-eminent position as a food crop in the world. Its production, how- ever, entails up to 3000 liters of water per kilogram of grain produced. Such high demand makes rice prone to drought easily. Sustainable rice cultivation with limited water resources requires the deployment of a suitable strategy for better water use efficiency and improved drought tolerance. Several drought-related genes have been evaluated in rice for their mode of action in conferring drought tolerance. Manipulation of components of abscisic acid signal transduction, stomatal density, deposition of cuticular wax, and protein modification pathways are emerging as priority targets. Gene reprogramming by microRNAs is also being explored to achieve drought tolerance. Genetically dissected Quantitative Trait Loci (QTLs) and their constituent genes are being deployed to develop drought-tolerant rice varieties. Progressive research and challenges include a better understanding of crucial components of drought response and search for new targets and the deployment of improved varieties in the field.
Collapse
Affiliation(s)
- Jitender Giri
- 1National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India; 2Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Swarup K Parida
- 1National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India; 2Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Saurabh Raghuvanshi
- 1National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India; 2Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Akhilesh K Tyagi
- 1National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India; 2Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| |
Collapse
|
36
|
Žárský J, Žárský V, Hanáček M, Žárský V. Cryogenian Glacial Habitats as a Plant Terrestrialisation Cradle - The Origin of the Anydrophytes and Zygnematophyceae Split. FRONTIERS IN PLANT SCIENCE 2021; 12:735020. [PMID: 35154170 PMCID: PMC8829067 DOI: 10.3389/fpls.2021.735020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/17/2021] [Indexed: 05/05/2023]
Abstract
For tens of millions of years (Ma), the terrestrial habitats of Snowball Earth during the Cryogenian period (between 720 and 635 Ma before present-Neoproterozoic Era) were possibly dominated by global snow and ice cover up to the equatorial sublimative desert. The most recent time-calibrated phylogenies calibrated not only on plants but on a comprehensive set of eukaryotes indicate that within the Streptophyta, multicellular charophytes (Phragmoplastophyta) evolved in the Mesoproterozoic to the early Neoproterozoic. At the same time, Cryogenian is the time of the likely origin of the common ancestor of Zygnematophyceae and Embryophyta and later, also of the Zygnematophyceae-Embryophyta split. This common ancestor is proposed to be called Anydrophyta; here, we use anydrophytes. Based on the combination of published phylogenomic studies and estimated diversification time comparisons, we deem it highly likely that anydrophytes evolved in response to Cryogenian cooling. Also, later in the Cryogenian, secondary simplification of multicellular anydrophytes and loss of flagella resulted in Zygnematophyceae diversification as an adaptation to the extended cold glacial environment. We propose that the Marinoan geochemically documented expansion of first terrestrial flora has been represented not only by Chlorophyta but also by Streptophyta, including the anydrophytes, and later by Zygnematophyceae, thriving on glacial surfaces until today. It is possible that multicellular early Embryophyta survived in less abundant (possibly relatively warmer) refugia, relying more on mineral substrates, allowing the retention of flagella-based sexuality. The loss of flagella and sexual reproduction by conjugation evolved in Zygnematophyceae and zygomycetous fungi during the Cryogenian in a remarkably convergent way. Thus, we support the concept that the important basal cellular adaptations to terrestrial environments were exapted in streptophyte algae for terrestrialization and propose that this was stimulated by the adaptation to glacial habitats dominating the Cryogenian Snowball Earth. Including the glacial lifestyle when considering the rise of land plants increases the parsimony of connecting different ecological, phylogenetic, and physiological puzzles of the journey from aquatic algae to terrestrial floras.
Collapse
Affiliation(s)
- Jakub Žárský
- CryoEco Research Group, Department of Ecology, Faculty of Science, Charles University, Prague, Czechia
- *Correspondence: Jakub Žárský,
| | - Vojtěch Žárský
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia
| | - Martin Hanáček
- Polar-Geo-Lab, Department of Geography, Faculty of Science, Masaryk University, Brno, Czechia
- Regional Museum in Jeseník, Jeseník, Czechia
| | - Viktor Žárský
- Laboratory of Cell Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
37
|
Chen ZH, Soltis DE. Evolution of environmental stress responses in plants. PLANT, CELL & ENVIRONMENT 2020; 43:2827-2831. [PMID: 33103798 DOI: 10.1111/pce.13922] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, New South Wales, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
- Department of Biology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|