1
|
Białoskórska M, Rucińska A, Boczkowska M. Molecular Mechanisms Underlying Freezing Tolerance in Plants: Implications for Cryopreservation. Int J Mol Sci 2024; 25:10110. [PMID: 39337593 PMCID: PMC11432106 DOI: 10.3390/ijms251810110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Cryopreservation is a crucial technique for the long-term ex situ conservation of plant genetic resources, particularly in the context of global biodiversity decline. This process entails freezing biological material at ultra-low temperatures using liquid nitrogen, which effectively halts metabolic activities and preserves plant tissues over extended periods. Over the past seven decades, a plethora of techniques for cryopreserving plant materials have been developed. These include slow freezing, vitrification, encapsulation dehydration, encapsulation-vitrification, droplet vitrification, cryo-plates, and cryo-mesh techniques. A key challenge in the advancement of cryopreservation lies in our ability to understand the molecular processes underlying plant freezing tolerance. These mechanisms include cold acclimatization, the activation of cold-responsive genes through pathways such as the ICE-CBF-COR cascade, and the protective roles of transcription factors, non-coding RNAs, and epigenetic modifications. Furthermore, specialized proteins, such as antifreeze proteins (AFPs) and late embryogenesis abundant (LEA) proteins, play crucial roles in protecting plant cells during freezing and thawing. Despite its potential, cryopreservation faces significant challenges, particularly in standardizing protocols for a wide range of plant species, especially those from tropical and subtropical regions. This review highlights the importance of ongoing research and the integration of omics technologies to improve cryopreservation techniques, ensuring their effectiveness across diverse plant species and contributing to global efforts regarding biodiversity conservation.
Collapse
Affiliation(s)
- Magdalena Białoskórska
- Plant Breeding and Acclimatization Institute-National Research Institute in Radzików, 05-870 Błonie, Poland
| | - Anna Rucińska
- Plant Breeding and Acclimatization Institute-National Research Institute in Radzików, 05-870 Błonie, Poland
- Botanical Garden, Center for Biological Diversity Conservation in Powsin, Polish Academy of Science, Prawdziwka 2, 02-976 Warszawa, Poland
| | - Maja Boczkowska
- Plant Breeding and Acclimatization Institute-National Research Institute in Radzików, 05-870 Błonie, Poland
| |
Collapse
|
2
|
Feng X, Chen X, Meng Q, Song Z, Zeng J, He X, Wu F, Ma W, Liu W. Comparative Long Non-Coding Transcriptome Analysis of Three Contrasting Barley Varieties in Response to Aluminum Stress. Int J Mol Sci 2024; 25:9181. [PMID: 39273130 PMCID: PMC11395258 DOI: 10.3390/ijms25179181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Aluminum toxicity is a major abiotic stress on acidic soils, leading to restricted root growth and reduced plant yield. Long non-coding RNAs are crucial signaling molecules regulating the expression of downstream genes, particularly under abiotic stress conditions. However, the extent to which lncRNAs participate in the response to aluminum (Al) stress in barley remains largely unknown. Here, we conducted RNA sequencing of root samples under aluminum stress and compared the lncRNA transcriptomes of two Tibetan wild barley genotypes, XZ16 (Al-tolerant) and XZ61 (Al-sensitive), as well as the aluminum-tolerant cultivar Dayton. In total, 268 lncRNAs were identified as aluminum-responsive genes on the basis of their differential expression profiles under aluminum treatment. Through target gene prediction analysis, we identified 938 candidate lncRNA-messenger RNA (mRNA) pairs that function in a cis-acting manner. Subsequently, enrichment analysis showed that the genes targeted by aluminum-responsive lncRNAs were involved in diterpenoid biosynthesis, peroxisome function, and starch/sucrose metabolism. Further analysis of genotype differences in the transcriptome led to the identification of 15 aluminum-responsive lncRNAs specifically altered by aluminum stress in XZ16. The RNA sequencing data were further validated by RT-qPCR. The functional roles of lncRNA-mRNA interactions demonstrated that these lncRNAs are involved in the signal transduction of secondary messengers, and a disease resistance protein, such as RPP13-like protein 4, is probably involved in aluminum tolerance in XZ16. The current findings significantly contribute to our understanding of the regulatory roles of lncRNAs in aluminum tolerance and extend our knowledge of their importance in plant responses to aluminum stress.
Collapse
Affiliation(s)
- Xue Feng
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Xiaoya Chen
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Quan Meng
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Ziyan Song
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Jianbin Zeng
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Xiaoyan He
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Feibo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Wujun Ma
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Wenxing Liu
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
- The Key Laboratory of the Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| |
Collapse
|
3
|
Shi ZX, Xiang L, Zhao HM, Yang LQ, Chen ZC, Pu YQ, Li YW, Luo B, Cai QY, Liu BL, Feng NX, Li H, Li QX, Tang C, Mo CH. High-throughput single-molecule long-read RNA sequencing analysis of tissue-specific genes and isoforms in lettuce (Lactuca sativa L.). Commun Biol 2024; 7:920. [PMID: 39080448 PMCID: PMC11289301 DOI: 10.1038/s42003-024-06598-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024] Open
Abstract
Lettuce is one of the most widely cultivated and consumed dicotyledonous vegetables globally. Despite the availability of its reference genome sequence, lettuce gene annotation remains incomplete, impeding comprehensive research and the broad application of genomic resources. Long-read RNA isoform sequencing (Iso-Seq) offers substantial advantages for analyzing RNA alternative splicing and aiding gene annotation, yet it faces throughput limitations. We present the HIT-ISOseq method tailored for bulk sample analysis, significantly enhancing RNA sequencing throughput on the PacBio platform by concatenating cDNA. Here we show, HIT-ISOseq generates 3-4 cDNA molecules per CCS read in lettuce, yielding 15.7 million long reads per PacBio Sequel II SMRT Cell 8 M. We validate its effectiveness in analyzing six lettuce tissue samples, including roots, stems, and leaves, revealing tissue-specific gene expression patterns and RNA isoforms. Leveraging diverse tissue long-read RNA sequencing, we refine the transcript annotation of the lettuce reference genome, expanding its GO and KEGG annotation repertoire. Collectively, this study serves as a foundational reference for genome annotation and the analysis of multi-sample isoform expression, utilizing high-throughput long-read transcriptome sequencing.
Collapse
Affiliation(s)
- Zhuo-Xing Shi
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Lang-Qi Yang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | | | - Yu-Qing Pu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Bei Luo
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Bai-Lin Liu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Nai-Xian Feng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Chong Tang
- BGI Genomics, BGI-Shenzhen, Shenzhen, China.
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
4
|
Li Z, Wang W, Yu X, Zhao P, Li W, Zhang X, Peng M, Li S, Ruan M. Integrated analysis of DNA methylome and transcriptome revealing epigenetic regulation of CRIR1-promoted cold tolerance. BMC PLANT BIOLOGY 2024; 24:631. [PMID: 38965467 PMCID: PMC11225538 DOI: 10.1186/s12870-024-05285-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/10/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND DNA methylation contributes to the epigenetic regulation of nuclear gene expression, and is associated with plant growth, development, and stress responses. Compelling evidence has emerged that long non-coding RNA (lncRNA) regulates DNA methylation. Previous genetic and physiological evidence indicates that lncRNA-CRIR1 plays a positive role in the responses of cassava plants to cold stress. However, it is unclear whether global DNA methylation changes with CRIR1-promoted cold tolerance. RESULTS In this study, a comprehensive comparative analysis of DNA methylation and transcriptome profiles was performed to reveal the gene expression and epigenetic dynamics after CRIR1 overexpression. Compared with the wild-type plants, CRIR1-overexpressing plants present gained DNA methylation in over 37,000 genomic regions and lost DNA methylation in about 16,000 genomic regions, indicating a global decrease in DNA methylation after CRIR1 overexpression. Declining DNA methylation is not correlated with decreased/increased expression of the DNA methylase/demethylase genes, but is associated with increased transcripts of a few transcription factors, chlorophyll metabolism and photosynthesis-related genes, which could contribute to the CRIR1-promoted cold tolerance. CONCLUSIONS In summary, a first set of transcriptome and epigenome data was integrated in this study to reveal the gene expression and epigenetic dynamics after CRIR1 overexpression, with the identification of several TFs, chlorophyll metabolism and photosynthesis-related genes that may be involved in CRIR1-promoted cold tolerance. Therefore, our study has provided valuable data for the systematic study of molecular insights for plant cold stress response.
Collapse
Affiliation(s)
- Zhibo Li
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P.R. China
| | - Wenjuan Wang
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P.R. China
- College of Tropical Crops, Hainan University, Haikou, 570228, P.R. China
| | - Xiaoling Yu
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P.R. China
| | - Pingjuan Zhao
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P.R. China
| | - Wenbin Li
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P.R. China
| | - Xiuchun Zhang
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P.R. China
| | - Ming Peng
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P.R. China
| | - Shuxia Li
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P.R. China.
| | - Mengbin Ruan
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P.R. China.
| |
Collapse
|
5
|
Chenna S, Ivanov M, Nielsen TK, Chalenko K, Olsen E, Jørgensen K, Sandelin A, Marquardt S. A data-driven genome annotation approach for cassava. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 38831668 DOI: 10.1111/tpj.16856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/05/2024]
Abstract
Genome annotation files play a critical role in dictating the quality of downstream analyses by providing essential predictions for gene positions and structures. These files are pivotal in decoding the complex information encoded within DNA sequences. Here, we generated experimental data resolving RNA 5'- and 3'-ends as well as full-length RNAs for cassava TME12 sticklings in ambient temperature and cold. We used these data to generate genome annotation files using the TranscriptomeReconstructoR (TR) tool. A careful comparison to high-quality genome annotations suggests that our new TR genome annotations identified additional genes, resolved the transcript boundaries more accurately and identified additional RNA isoforms. We enhanced existing cassava genome annotation files with the information from TR that maintained the different transcript models as RNA isoforms. The resultant merged annotation was subsequently utilized for comprehensive analysis. To examine the effects of genome annotation files on gene expression studies, we compared the detection of differentially expressed genes during cold using the same RNA-seq data but alternative genome annotation files. We found that our merged genome annotation that included cold-specific TR gene models identified about twice as many cold-induced genes. These data indicate that environmentally induced genes may be missing in off-the-shelf genome annotation files. In conclusion, TR offers the opportunity to enhance crop genome annotations with implications for the discovery of differentially expressed candidate genes during plant-environment interactions.
Collapse
Affiliation(s)
- Swetha Chenna
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, Frederiskberg C, 1871, Denmark
| | - Maxim Ivanov
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, Frederiskberg C, 1871, Denmark
| | - Tue Kjærgaard Nielsen
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, Frederiskberg C, 1871, Denmark
| | - Karina Chalenko
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, Frederiskberg C, 1871, Denmark
| | - Evy Olsen
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, Frederiskberg C, 1871, Denmark
| | - Kirsten Jørgensen
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, Frederiskberg C, 1871, Denmark
| | - Albin Sandelin
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen N, DK2200, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen N, DK2200, Denmark
| | - Sebastian Marquardt
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, Frederiskberg C, 1871, Denmark
| |
Collapse
|
6
|
Imaduwage I, Hewadikaram M. Predicted roles of long non-coding RNAs in abiotic stress tolerance responses of plants. MOLECULAR HORTICULTURE 2024; 4:20. [PMID: 38745264 PMCID: PMC11094901 DOI: 10.1186/s43897-024-00094-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/06/2024] [Indexed: 05/16/2024]
Abstract
The plant genome exhibits a significant amount of transcriptional activity, with most of the resulting transcripts lacking protein-coding potential. Non-coding RNAs play a pivotal role in the development and regulatory processes in plants. Long non-coding RNAs (lncRNAs), which exceed 200 nucleotides, may play a significant role in enhancing plant resilience to various abiotic stresses, such as excessive heat, drought, cold, and salinity. In addition, the exogenous application of chemicals, such as abscisic acid and salicylic acid, can augment plant defense responses against abiotic stress. While how lncRNAs play a role in abiotic stress tolerance is relatively well-studied in model plants, this review provides a comprehensive overview of the current understanding of this function in horticultural crop plants. It also delves into the potential role of lncRNAs in chemical priming of plants in order to acquire abiotic stress tolerance, although many limitations exist in proving lncRNA functionality under such conditions.
Collapse
Affiliation(s)
- Iuh Imaduwage
- Department of Biomedical Sciences, Faculty of Science, NSBM Green University, Pitipana, Homagama, Sri Lanka
| | - Madhavi Hewadikaram
- Department of Biomedical Sciences, Faculty of Science, NSBM Green University, Pitipana, Homagama, Sri Lanka.
| |
Collapse
|
7
|
Traubenik S, Charon C, Blein T. From environmental responses to adaptation: the roles of plant lncRNAs. PLANT PHYSIOLOGY 2024; 195:232-244. [PMID: 38246143 DOI: 10.1093/plphys/kiae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024]
Abstract
As sessile organisms, plants are continuously exposed to heterogeneous and changing environments and constantly need to adapt their growth strategies. They have evolved complex mechanisms to recognize various stress factors, activate appropriate signaling pathways, and respond accordingly by reprogramming the expression of multiple genes at the transcriptional, post-transcriptional, and even epigenome levels to tolerate stressful conditions such as drought, high temperature, nutrient deficiency, and pathogenic interactions. Apart from protein-coding genes, long non-coding RNAs (lncRNAs) have emerged as key players in plant adaptation to environmental stresses. They are transcripts larger than 200 nucleotides without protein-coding potential. Still, they appear to regulate a wide range of processes, including epigenetic modifications and chromatin reorganization, as well as transcriptional and post-transcriptional modulation of gene expression, allowing plant adaptation to various environmental stresses. LncRNAs can positively or negatively modulate stress responses, affecting processes such as hormone signaling, temperature tolerance, and nutrient deficiency adaptation. Moreover, they also seem to play a role in stress memory, wherein prior exposure to mild stress enhances plant ability to adapt to subsequent stressful conditions. In this review, we summarize the contribution of lncRNAs in plant adaptation to biotic and abiotic stresses, as well as stress memory. The complex evolutionary conservation of lncRNAs is also discussed and provides insights into future research directions in this field.
Collapse
Affiliation(s)
- Soledad Traubenik
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Céline Charon
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Thomas Blein
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| |
Collapse
|
8
|
Jin X, Wang Z, Li X, Ai Q, Wong DCJ, Zhang F, Yang J, Zhang N, Si H. Current perspectives of lncRNAs in abiotic and biotic stress tolerance in plants. FRONTIERS IN PLANT SCIENCE 2024; 14:1334620. [PMID: 38259924 PMCID: PMC10800568 DOI: 10.3389/fpls.2023.1334620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024]
Abstract
Abiotic/biotic stresses pose a major threat to agriculture and food security by impacting plant growth, productivity and quality. The discovery of extensive transcription of large RNA transcripts that do not code for proteins, termed long non-coding RNAs (lncRNAs) with sizes larger than 200 nucleotides in length, provides an important new perspective on the centrality of RNA in gene regulation. In plants, lncRNAs are widespread and fulfill multiple biological functions in stress response. In this paper, the research advances on the biological function of lncRNA in plant stress response were summarized, like as Natural Antisense Transcripts (NATs), Competing Endogenous RNAs (ceRNAs) and Chromatin Modification etc. And in plants, lncRNAs act as a key regulatory hub of several phytohormone pathways, integrating abscisic acid (ABA), jasmonate (JA), salicylic acid (SA) and redox signaling in response to many abiotic/biotic stresses. Moreover, conserved sequence motifs and structural motifs enriched within stress-responsive lncRNAs may also be responsible for the stress-responsive functions of lncRNAs, it will provide a new focus and strategy for lncRNA research. Taken together, we highlight the unique role of lncRNAs in integrating plant response to adverse environmental conditions with different aspects of plant growth and development. We envisage that an improved understanding of the mechanisms by which lncRNAs regulate plant stress response may further promote the development of unconventional approaches for breeding stress-resistant crops.
Collapse
Affiliation(s)
- Xin Jin
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zemin Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xuan Li
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Qianyi Ai
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Darren Chern Jan Wong
- Division of Ecology and Evolution, Research School Research of Biology, The Australian National University, Acton, ACT, Australia
| | - Feiyan Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiangwei Yang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Ning Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Huaijun Si
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
9
|
Jha UC, Nayyar H, Roychowdhury R, Prasad PVV, Parida SK, Siddique KHM. Non-coding RNAs (ncRNAs) in plant: Master regulators for adapting to extreme temperature conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108164. [PMID: 38008006 DOI: 10.1016/j.plaphy.2023.108164] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/28/2023]
Abstract
Unusual daily temperature fluctuations caused by climate change and climate variability adversely impact agricultural crop production. Since plants are immobile and constantly receive external environmental signals, such as extreme high (heat) and low (cold) temperatures, they have developed complex molecular regulatory mechanisms to cope with stressful situations to sustain their natural growth and development. Among these mechanisms, non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs), small-interfering RNAs (siRNAs), and long-non-coding RNAs (lncRNAs), play a significant role in enhancing heat and cold stress tolerance. This review explores the pivotal findings related to miRNAs, siRNAs, and lncRNAs, elucidating how they functionally regulate plant adaptation to extreme temperatures. In addition, this review addresses the challenges associated with uncovering these non-coding RNAs and understanding their roles in orchestrating heat and cold tolerance in plants.
Collapse
Affiliation(s)
- Uday Chand Jha
- Sustainable Intensification Innovation Lab, Kansas State University, Department of Agronomy, Manhattan, KS 66506, USA; ICAR-Indian Institute of Pulses Research, Kanpur, Uttar Pradesh 208024, India.
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, 160014, India.
| | - Rajib Roychowdhury
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO) - The Volcani Institute, Rishon Lezion 7505101, Israel
| | - P V Vara Prasad
- Sustainable Intensification Innovation Lab, Kansas State University, Department of Agronomy, Manhattan, KS 66506, USA
| | - Swarup K Parida
- National Institute of Plant Genomic Research, New Delhi, 110067, India
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| |
Collapse
|
10
|
Larran AS, Pajoro A, Qüesta JI. Is winter coming? Impact of the changing climate on plant responses to cold temperature. PLANT, CELL & ENVIRONMENT 2023; 46:3175-3193. [PMID: 37438895 DOI: 10.1111/pce.14669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 07/14/2023]
Abstract
Climate change is causing alterations in annual temperature regimes worldwide. Important aspects of this include the reduction of winter chilling temperatures as well as the occurrence of unpredicted frosts, both significantly affecting plant growth and yields. Recent studies advanced the knowledge of the mechanisms underlying cold responses and tolerance in the model plant Arabidopsis thaliana. However, how these cold-responsive pathways will readjust to ongoing seasonal temperature variation caused by global warming remains an open question. In this review, we highlight the plant developmental programmes that depend on cold temperature. We focus on the molecular mechanisms that plants have evolved to adjust their development and stress responses upon exposure to cold. Covering both genetic and epigenetic aspects, we present the latest insights into how alternative splicing, noncoding RNAs and the formation of biomolecular condensates play key roles in the regulation of cold responses. We conclude by commenting on attractive targets to accelerate the breeding of increased cold tolerance, bringing up biotechnological tools that might assist in overcoming current limitations. Our aim is to guide the reflection on the current agricultural challenges imposed by a changing climate and to provide useful information for improving plant resilience to unpredictable cold regimes.
Collapse
Affiliation(s)
- Alvaro Santiago Larran
- Centre for Research in Agricultural Genomics (CRAG) IRTA-CSIC-UAB-UB, Campus UAB, Barcelona, Spain
| | - Alice Pajoro
- National Research Council, Institute of Molecular Biology and Pathology, Rome, Italy
| | - Julia I Qüesta
- Centre for Research in Agricultural Genomics (CRAG) IRTA-CSIC-UAB-UB, Campus UAB, Barcelona, Spain
| |
Collapse
|
11
|
Chorostecki U, Bologna NG, Ariel F. The plant noncoding transcriptome: a versatile environmental sensor. EMBO J 2023; 42:e114400. [PMID: 37735935 PMCID: PMC10577639 DOI: 10.15252/embj.2023114400] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023] Open
Abstract
Plant noncoding RNA transcripts have gained increasing attention in recent years due to growing evidence that they can regulate developmental plasticity. In this review article, we comprehensively analyze the relationship between noncoding RNA transcripts in plants and their response to environmental cues. We first provide an overview of the various noncoding transcript types, including long and small RNAs, and how the environment modulates their performance. We then highlight the importance of noncoding RNA secondary structure for their molecular and biological functions. Finally, we discuss recent studies that have unveiled the functional significance of specific long noncoding transcripts and their molecular partners within ribonucleoprotein complexes during development and in response to biotic and abiotic stress. Overall, this review sheds light on the fascinating and complex relationship between dynamic noncoding transcription and plant environmental responses, and highlights the need for further research to uncover the underlying molecular mechanisms and exploit the potential of noncoding transcripts for crop resilience in the context of global warming.
Collapse
Affiliation(s)
- Uciel Chorostecki
- Faculty of Medicine and Health SciencesUniversitat Internacional de CatalunyaBarcelonaSpain
| | - Nicolas G. Bologna
- Centre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBBarcelonaSpain
| | - Federico Ariel
- Instituto de Agrobiotecnologia del Litoral, CONICET, FBCBUniversidad Nacional del LitoralSanta FeArgentina
| |
Collapse
|
12
|
Suhorukova AV, Sobolev DS, Milovskaya IG, Fadeev VS, Goldenkova-Pavlova IV, Tyurin AA. A Molecular Orchestration of Plant Translation under Abiotic Stress. Cells 2023; 12:2445. [PMID: 37887289 PMCID: PMC10605726 DOI: 10.3390/cells12202445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/12/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
The complexities of translational strategies make this stage of implementing genetic information one of the most challenging to comprehend and, simultaneously, perhaps the most engaging. It is evident that this diverse range of strategies results not only from a long evolutionary history, but is also of paramount importance for refining gene expression and metabolic modulation. This notion is particularly accurate for organisms that predominantly exhibit biochemical and physiological reactions with a lack of behavioural ones. Plants are a group of organisms that exhibit such features. Addressing unfavourable environmental conditions plays a pivotal role in plant physiology. This is particularly evident with the changing conditions of global warming and the irrevocable loss or depletion of natural ecosystems. In conceptual terms, the plant response to abiotic stress comprises a set of elaborate and intricate strategies. This is influenced by a range of abiotic factors that cause stressful conditions, and molecular genetic mechanisms that fine-tune metabolic pathways allowing the plant organism to overcome non-standard and non-optimal conditions. This review aims to focus on the current state of the art in the field of translational regulation in plants under abiotic stress conditions. Different regulatory elements and patterns are being assessed chronologically. We deem it important to focus on significant high-performance techniques for studying the genetic information dynamics during the translation phase.
Collapse
|
13
|
Riyazuddin R, Singh K, Iqbal N, Labhane N, Ramteke P, Singh VP, Gupta R. Unveiling the biosynthesis, mechanisms, and impacts of miRNAs in drought stress resilience in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107978. [PMID: 37660607 DOI: 10.1016/j.plaphy.2023.107978] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023]
Abstract
Drought stress is one of the most serious threats to sustainable agriculture and is predicted to be further intensified in the coming decades. Therefore, understanding the mechanism of drought stress tolerance and the development of drought-resilient crops are the major goals at present. In recent years, noncoding microRNAs (miRNAs) have emerged as key regulators of gene expressions under drought stress conditions and are turning out to be the potential candidates that can be targeted to develop drought-resilient crops in the future. miRNAs are known to target and decrease the expression of various genes to govern the drought stress response in plants. In addition, emerging evidence also suggests a regulatory role of long non-coding RNAs (lncRNAs) in the regulation of miRNAs and the expression of their target genes by a process referred as miRNA sponging. In this review, we present the regulatory roles of miRNAs in the modulation of drought-responsive genes along with discussing their biosynthesis and action mechanisms. Additionally, the interactive roles of miRNAs with phytohormone signaling components have also been highlighted to present the global view of miRNA functioning under drought-stress conditions.
Collapse
Affiliation(s)
- Riyazuddin Riyazuddin
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62, H-6726, Szeged, Hungary.
| | - Kalpita Singh
- Doctoral School of Plant Sciences, Hungarian University of Agriculture and Life Sciences, 2100, Gödöllő, Hungary; Department of Biological Resources, Agricultural Institute, Centre for Agricultural Research, ELKH, Brunszvik u. 2, H-2462, Martonvásár, Hungary.
| | - Nadeem Iqbal
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary; Doctoral School of Environmental Sciences, University of Szeged, Szeged, Hungary.
| | - Nitin Labhane
- Department of Botany, Bhavan's College Andheri West, Mumbai, 400058, India.
| | - Pramod Ramteke
- Department of Biotechnology, Dr. Ambedkar College, Nagpur, India.
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India
| | - Ravi Gupta
- College of General Education, Kookmin University, 02707, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Ezoe A, Iuchi S, Sakurai T, Aso Y, Tokunaga H, Vu AT, Utsumi Y, Takahashi S, Tanaka M, Ishida J, Ishitani M, Seki M. Fully sequencing the cassava full-length cDNA library reveals unannotated transcript structures and alternative splicing events in regions with a high density of single nucleotide variations, insertions-deletions, and heterozygous sequences. PLANT MOLECULAR BIOLOGY 2023; 112:33-45. [PMID: 37014509 DOI: 10.1007/s11103-023-01346-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/27/2023] [Indexed: 05/09/2023]
Abstract
The primary transcript structure provides critical insights into protein diversity, transcriptional modification, and functions. Cassava transcript structures are highly diverse because of alternative splicing (AS) events and high heterozygosity. To precisely determine and characterize transcript structures, fully sequencing cloned transcripts is the most reliable method. However, cassava annotations were mainly determined according to fragmentation-based sequencing analyses (e.g., EST and short-read RNA-seq). In this study, we sequenced the cassava full-length cDNA library, which included rare transcripts. We obtained 8,628 non-redundant fully sequenced transcripts and detected 615 unannotated AS events and 421 unannotated loci. The different protein sequences resulting from the unannotated AS events tended to have diverse functional domains, implying that unannotated AS contributes to the truncation of functional domains. The unannotated loci tended to be derived from orphan genes, implying that the loci may be associated with cassava-specific traits. Unexpectedly, individual cassava transcripts were more likely to have multiple AS events than Arabidopsis transcripts, suggestive of the regulated interactions between cassava splicing-related complexes. We also observed that the unannotated loci and/or AS events were commonly in regions with abundant single nucleotide variations, insertions-deletions, and heterozygous sequences. These findings reflect the utility of completely sequenced FLcDNA clones for overcoming cassava-specific annotation-related problems to elucidate transcript structures. Our work provides researchers with transcript structural details that are useful for annotating highly diverse and unique transcripts and alternative splicing events.
Collapse
Affiliation(s)
- Akihiro Ezoe
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Satoshi Iuchi
- Experimental Plant Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Tetsuya Sakurai
- Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, Nankoku, Kochi, 783-8502, Japan
| | - Yukie Aso
- Experimental Plant Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Hiroki Tokunaga
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
- Tropical Agriculture Research Front, Japan International Research Center for Agricultural Sciences, Ishigaki, Okinawa, 907-0002, Japan
| | - Anh Thu Vu
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Yoshinori Utsumi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Satoshi Takahashi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Maho Tanaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Junko Ishida
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Manabu Ishitani
- International Center for Tropical Agriculture (CIAT), Km 17, Recta Cali-Palmira Apartado Aéreo 6713, Cali, Colombia
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan.
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan.
| |
Collapse
|
15
|
Pradhan UK, Meher PK, Naha S, Rao AR, Gupta A. ASLncR: a novel computational tool for prediction of abiotic stress-responsive long non-coding RNAs in plants. Funct Integr Genomics 2023; 23:113. [PMID: 37000299 DOI: 10.1007/s10142-023-01040-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 04/01/2023]
Abstract
Abiotic stresses are detrimental to plant growth and development and have a major negative impact on crop yields. A growing body of evidence indicates that a large number of long non-coding RNAs (lncRNAs) are key to many abiotic stress responses. Thus, identifying abiotic stress-responsive lncRNAs is essential in crop breeding programs in order to develop crop cultivars resistant to abiotic stresses. In this study, we have developed the first machine learning-based computational model for predicting abiotic stress-responsive lncRNAs. The lncRNA sequences which were responsive and non-responsive to abiotic stresses served as the two classes of the dataset for binary classification using the machine learning algorithms. The training dataset was created using 263 stress-responsive and 263 non-stress-responsive sequences, whereas the independent test set consists of 101 sequences from both classes. As the machine learning model can adopt only the numeric data, the Kmer features ranging from sizes 1 to 6 were utilized to represent lncRNAs in numeric form. To select important features, four different feature selection strategies were utilized. Among the seven learning algorithms, the support vector machine (SVM) achieved the highest cross-validation accuracy with the selected feature sets. The observed 5-fold cross-validation accuracy, AU-ROC, and AU-PRC were found to be 68.84, 72.78, and 75.86%, respectively. Furthermore, the robustness of the developed model (SVM with the selected feature) was evaluated using an independent test dataset, where the overall accuracy, AU-ROC, and AU-PRC were found to be 76.23, 87.71, and 88.49%, respectively. The developed computational approach was also implemented in an online prediction tool ASLncR accessible at https://iasri-sg.icar.gov.in/aslncr/ . The proposed computational model and the developed prediction tool are believed to supplement the existing effort for the identification of abiotic stress-responsive lncRNAs in plants.
Collapse
Affiliation(s)
- Upendra Kumar Pradhan
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi, 110012, India
| | - Prabina Kumar Meher
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi, 110012, India.
| | - Sanchita Naha
- Division of Computer Applications, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi, 110012, India
| | | | - Ajit Gupta
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi, 110012, India
| |
Collapse
|
16
|
Long Non-Coding RNAs of Plants in Response to Abiotic Stresses and Their Regulating Roles in Promoting Environmental Adaption. Cells 2023; 12:cells12050729. [PMID: 36899864 PMCID: PMC10001313 DOI: 10.3390/cells12050729] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Abiotic stresses triggered by climate change and human activity cause substantial agricultural and environmental problems which hamper plant growth. Plants have evolved sophisticated mechanisms in response to abiotic stresses, such as stress perception, epigenetic modification, and regulation of transcription and translation. Over the past decade, a large body of literature has revealed the various regulatory roles of long non-coding RNAs (lncRNAs) in the plant response to abiotic stresses and their irreplaceable functions in environmental adaptation. LncRNAs are recognized as a class of ncRNAs that are longer than 200 nucleotides, influencing a variety of biological processes. In this review, we mainly focused on the recent progress of plant lncRNAs, outlining their features, evolution, and functions of plant lncRNAs in response to drought, low or high temperature, salt, and heavy metal stress. The approaches to characterize the function of lncRNAs and the mechanisms of how they regulate plant responses to abiotic stresses were further reviewed. Moreover, we discuss the accumulating discoveries regarding the biological functions of lncRNAs on plant stress memory as well. The present review provides updated information and directions for us to characterize the potential functions of lncRNAs in abiotic stresses in the future.
Collapse
|
17
|
Jia Y, Zhao H, Niu Y, Wang Y. Identification of birch lncRNAs and mRNAs responding to salt stress and characterization of functions of lncRNA. HORTICULTURE RESEARCH 2023; 10:uhac277. [PMID: 36793758 PMCID: PMC9926155 DOI: 10.1093/hr/uhac277] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/02/2022] [Indexed: 06/18/2023]
Abstract
Long noncoding RNAs (lncRNAs) are important in abiotic stress tolerance. Here, we identified salt-responsive genes and lncRNAs in the roots and leaves of Betula platyphylla Suk. (birch), and characterized their lncRNAs functions. In total, 2660 mRNAs and 539 lncRNAs responding to salt treatment were identified using RNA-seq. The salt-responsive genes were substantially enriched in 'cell wall biogenesis' and 'wood development' in the roots and were enriched in 'photosynthesis' and 'response to stimulus' in the leaves. Meanwhile, the potential target genes of the salt-responsive lncRNAs in roots and leaves were both enriched in 'nitrogen compound metabolic process' and 'response to stimulus'. We further built a method for quickly identifying abiotic stress tolerance of lncRNAs, which employed transient transformation for overexpression and knock-down of the lncRNA, enabling gain- and loss-of-function analysis. Using this method, 11 randomly selected salt-responsive lncRNAs were characterized. Among them, six lncRNAs confer salt tolerance, two lncRNAs confer salt sensitivity, and the other three lncRNAs are not involved in salt tolerance. In addition, a lncRNA, LncY1, was further characterized, which improves salt tolerance by regulating two transcription factors, BpMYB96 and BpCDF3. Taken together, our results suggested that lncRNAs play important roles in the salt response of birch plants.
Collapse
Affiliation(s)
| | | | - Yani Niu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | | |
Collapse
|
18
|
Shi S, Zhang S, Wu J, Liu X, Zhang Z. Identification of long non-coding RNAs involved in floral scent of Rosa hybrida. FRONTIERS IN PLANT SCIENCE 2022; 13:996474. [PMID: 36267940 PMCID: PMC9577252 DOI: 10.3389/fpls.2022.996474] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Long non-coding RNAs (lncRNAs) were found to play important roles in transcriptional, post-transcriptional, and epigenetic gene regulation in various biological processes. However, lncRNAs and their regulatory roles remain poorly studied in horticultural plants. Rose is economically important not only for their wide use as garden and cut flowers but also as important sources of natural fragrance for perfume and cosmetics industry, but presently little was known about the regulatory mechanism of the floral scent production. In this paper, a RNA-Seq analysis with strand-specific libraries, was performed to rose flowers in different flowering stages. The scented variety 'Tianmidemeng' (Rosa hybrida) was used as plant material. A total of 13,957 lncRNAs were identified by mining the RNA-Seq data, including 10,887 annotated lncRNAs and 3070 novel lncRNAs. Among them, 10,075 lncRNAs were predicted to possess a total of 29,622 target genes, including 54 synthase genes and 24 transcription factors related to floral scent synthesis. 425 lncRNAs were differentially expressed during the flowering process, among which 19 were differentially expressed among all the three flowering stages. Using weighted correlation network analysis (WGCNA), we correlate the differentially-expressed lncRNAs to synthesis of individual floral scent compounds. Furthermore, regulatory function of one of candidate lncRNAs for floral scent synthesis was verified using VIGS method in the rose. In this study, we were able to show that lncRNAs may play important roles in floral scent production in the rose. This study also improves our understanding of how plants regulate their secondary metabolism by lncRNAs.
Collapse
Affiliation(s)
- Shaochuan Shi
- Vegetable Research Institute, Shandong Academy of Agricultural Science, Jinan, China
| | - Shiya Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Jie Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Xintong Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Zhao Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
19
|
Zhao Z, Zang S, Zou W, Pan YB, Yao W, You C, Que Y. Long Non-Coding RNAs: New Players in Plants. Int J Mol Sci 2022; 23:ijms23169301. [PMID: 36012566 PMCID: PMC9409372 DOI: 10.3390/ijms23169301] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
During the process of growth and development, plants are prone to various biotic and abiotic stresses. They have evolved a variety of strategies to resist the adverse effects of these stresses. lncRNAs (long non-coding RNAs) are a type of less conserved RNA molecules of more than 200 nt (nucleotides) in length. lncRNAs do not code for any protein, but interact with DNA, RNA, and protein to affect transcriptional, posttranscriptional, and epigenetic modulation events. As a new regulatory element, lncRNAs play a critical role in coping with environmental pressure during plant growth and development. This article presents a comprehensive review on the types of plant lncRNAs, the role and mechanism of lncRNAs at different molecular levels, the coordination between lncRNA and miRNA (microRNA) in plant immune responses, the latest research progress of lncRNAs in plant growth and development, and their response to biotic and abiotic stresses. We conclude with a discussion on future direction for the elaboration of the function and mechanism of lncRNAs.
Collapse
Affiliation(s)
- Zhennan Zhao
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shoujian Zang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenhui Zou
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yong-Bao Pan
- Sugarcane Research Unit, USDA-ARS, Houma, LA 70360, USA
| | - Wei Yao
- Guangxi Key Laboratory for Sugarcane Biology & State Key Laboratory for Conservation and Utilization of Agro Bioresources, Guangxi University, Nanning 530005, China
| | - Cuihuai You
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (C.Y.); (Y.Q.); Tel.: +86-591-8385-2547 (C.Y. & Y.Q.)
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (C.Y.); (Y.Q.); Tel.: +86-591-8385-2547 (C.Y. & Y.Q.)
| |
Collapse
|