1
|
Luan W, Lu X, Peng H, Shen X, Rao M, Ruan H. Exosomal miR-19a derived from melanoma cell promotes the vemurafenib resistance of malignant melanoma through directly targeting LRIG1 to reactivate AKT and MAPK pathway. Pathol Res Pract 2024; 260:155410. [PMID: 38955119 DOI: 10.1016/j.prp.2024.155410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 04/04/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024]
Abstract
Exosomes derived from neighboring v-raf murine sarcoma viral oncogene homolog B1 inhibitor (BRAFi)-resistant melanoma cells mediate the formation of resistance in melanoma cells sensitive to BRAFi. The function and molecular mechanisms of exosomal miRNA in BRAFi resistance of melanoma have not been studied. We found that the expression of miR-19a in BRAFi resistant melanoma cells was significantly higher than that in sensitive cells, and miR-19a contributes to the resistance of melanoma cells to BRAFi by targeting immunoglobulin-like domains protein 1 (LRIG1). miR-19a was highly enriched in exosomes secreted from BRAFi resistant melanoma cells, and these exosomal miR-19a promote the spread of BRAFi resistant. The reactivation of Protein kinase B (AKT) and mitogen-activated protein kinase (MAPK) pathways is the main reason for the BRAFi resistant of melanoma cells. We demonstrated that exosomal miR-19a derived from melanoma cell promotes the formation and spread of BRAFi resistant in melanoma through targeting LRIG1 to reactivate AKT and MAPK pathway. Therefore, miR-19a may serve as a potential therapeutic target in melanoma patients with acquired drug resistance.
Collapse
Affiliation(s)
- Wenkang Luan
- Department of Plastic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xu Lu
- Department of Plastic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Huiyong Peng
- Department of Laboratory Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang Medical School of Nanjing Medical University, Zhenjiang, Jiangsu, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuanlin Shen
- Department of Rehabilitation, Changshu No. 2 People's Hospital (Changshu Hospital affiliated the NanTong University), Changshu, Jiangsu 215500, China
| | - Min Rao
- Hepatobiliary surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Hongru Ruan
- Department of Plastic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
2
|
Tsanov KM, Barriga FM, Ho YJ, Alonso-Curbelo D, Livshits G, Koche RP, Baslan T, Simon J, Tian S, Wuest AN, Luan W, Wilkinson JE, Masilionis I, Dimitrova N, Iacobuzio-Donahue CA, Chaligné R, Pe’er D, Massagué J, Lowe SW. Metastatic site influences driver gene function in pancreatic cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.17.585402. [PMID: 38562717 PMCID: PMC10983983 DOI: 10.1101/2024.03.17.585402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Driver gene mutations can increase the metastatic potential of the primary tumor1-3, but their role in sustaining tumor growth at metastatic sites is poorly understood. A paradigm of such mutations is inactivation of SMAD4 - a transcriptional effector of TGFβ signaling - which is a hallmark of multiple gastrointestinal malignancies4,5. SMAD4 inactivation mediates TGFβ's remarkable anti- to pro-tumorigenic switch during cancer progression and can thus influence both tumor initiation and metastasis6-14. To determine whether metastatic tumors remain dependent on SMAD4 inactivation, we developed a mouse model of pancreatic ductal adenocarcinoma (PDAC) that enables Smad4 depletion in the pre-malignant pancreas and subsequent Smad4 reactivation in established metastases. As expected, Smad4 inactivation facilitated the formation of primary tumors that eventually colonized the liver and lungs. By contrast, Smad4 reactivation in metastatic disease had strikingly opposite effects depending on the tumor's organ of residence: suppression of liver metastases and promotion of lung metastases. Integrative multiomic analysis revealed organ-specific differences in the tumor cells' epigenomic state, whereby the liver and lungs harbored chromatin programs respectively dominated by the KLF and RUNX developmental transcription factors, with Klf4 depletion being sufficient to reverse Smad4's tumor-suppressive activity in liver metastases. Our results show how epigenetic states favored by the organ of residence can influence the function of driver genes in metastatic tumors. This organ-specific gene-chromatin interplay invites consideration of anatomical site in the interpretation of tumor genetics, with implications for the therapeutic targeting of metastatic disease.
Collapse
Affiliation(s)
- Kaloyan M. Tsanov
- Cancer Biology & Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Francisco M. Barriga
- Cancer Biology & Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Yu-Jui Ho
- Cancer Biology & Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Direna Alonso-Curbelo
- Cancer Biology & Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Geulah Livshits
- Cancer Biology & Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Richard P. Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Timour Baslan
- Cancer Biology & Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Biomedical Sciences, School of Veterinary Medicine, The University of Pennsylvania, Philadelphia, PA, USA
| | - Janelle Simon
- Cancer Biology & Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sha Tian
- Cancer Biology & Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexandra N. Wuest
- Cancer Biology & Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wei Luan
- Cancer Biology & Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John E. Wilkinson
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Ignas Masilionis
- Computational & Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nevenka Dimitrova
- Cancer Biology & Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christine A. Iacobuzio-Donahue
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ronan Chaligné
- Computational & Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dana Pe’er
- Computational & Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Joan Massagué
- Cancer Biology & Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Scott W. Lowe
- Cancer Biology & Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
3
|
Bao Y, Xu S, Zhou J, Zhao C, Dai S, Zhang Y, Rao M. Exosomal miR-93 derived from hepatocellular carcinoma cell promotes the sorafenib resistance of hepatocellular carcinoma through PTEN/PI3K/Akt pathway. J Biochem Mol Toxicol 2024; 38:e23666. [PMID: 38375688 DOI: 10.1002/jbt.23666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/21/2024]
Abstract
Exosomal microRNAs (miRNAs) derived from cancer cell is an important regulatory molecule that mediates the formation of tumor drug resistance, but function and mechanisms of exosomal miRNA in sorafenib resistance of hepatocellular carcinoma (HCC) have not been studied. We detected the level and prognosis of miR-93 in HCC by using TCGA HCC database. For confirming the extracted exosome, transmission electron microscopy was used. Cy3-labeled miR-93 and quantitative reverse transcription-polymerase chain reaction were used to prove that exosomal miR-93 derived from HCC cell can be transferred to sensitive HCC cells. CCK8, EdU, and flow cytometer assay were used to confirm the function of exosomal miR-93 in sorafenib resistance of HCC. Bioinformatics software and luciferase reporter assay was used to confirm the direct targeting relationship between PTEN and miR-93. Western blot was used to validate downstream pathways. We found that miR-93 is overexpressed and a prognostic risk factor for the HCC patients. miR-93 was overexpressed in sorafenib resistant HCC cells compared with sensitive cells, and miR-93 contributed to sorafenib resistance of HCC cells through targeting PTEN. miR-93 was enriched in exosomes that secreted from sorafenib resistant cells, and these exosomal miR-93 promote the spread of sorafenib resistant through targeting PTEN to reactivate PI3K/AKT pathway. Therefore, miR-93 can act as a potential therapeutic target for advanced patients with acquired sorafenib resistance.
Collapse
Affiliation(s)
- Yuanpeng Bao
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Song Xu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Junjing Zhou
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Chongyong Zhao
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Saimin Dai
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Yong Zhang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Min Rao
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
4
|
Haist M, Stege H, Kuske M, Bauer J, Klumpp A, Grabbe S, Bros M. Combination of immune-checkpoint inhibitors and targeted therapies for melanoma therapy: The more, the better? Cancer Metastasis Rev 2023; 42:481-505. [PMID: 37022618 PMCID: PMC10348973 DOI: 10.1007/s10555-023-10097-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/27/2023] [Indexed: 04/07/2023]
Abstract
The approval of immune-checkpoint inhibitors (CPI) and mitogen activated protein kinase inhibitors (MAPKi) in recent years significantly improved the treatment management and survival of patients with advanced malignant melanoma. CPI aim to counter-act receptor-mediated inhibitory effects of tumor cells and immunomodulatory cell types on effector T cells, whereas MAPKi are intended to inhibit tumor cell survival. In agreement with these complementary modes of action preclinical data indicated that the combined application of CPI and MAPKi or their optimal sequencing might provide additional clinical benefit. In this review the rationale and preclinical evidence that support the combined application of MAPKi and CPI either in concurrent or consecutive regimens are presented. Further, we will discuss the results from clinical trials investigating the sequential or combined application of MAPKi and CPI for advanced melanoma patients and their implications for clinical practice. Finally, we outline mechanisms of MAPKi and CPI cross-resistance which limit the efficacy of currently available treatments, as well as combination regimens.
Collapse
Affiliation(s)
- Maximilian Haist
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany.
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Henner Stege
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Michael Kuske
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Julia Bauer
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Annika Klumpp
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| |
Collapse
|
5
|
Padilla CS, Ho VKY, Mooijenkind TWAN, Louwman MWJ, de Vos FYFL, Bekkenk MW, Minnaard WA, Loef C, van Zanten SEMV. Brain metastases in adult patients with melanoma of unknown primary in the Netherlands (2011-2020). J Neurooncol 2023; 163:239-248. [PMID: 37169949 DOI: 10.1007/s11060-023-04335-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Although patients with melanoma of unknown primary (MUP) have a better prognosis than similar-staged melanoma patients with known primary, the occurrence of brain metastases (BM) entails a serious complication. This study provides an overview of the incidence, treatment patterns, and overall survival (OS) of adult patients with BM-MUP in the Netherlands. METHODS BM-MUP cases were retrieved from the Netherlands Cancer Registry. Patient, disease and treatment-related characteristics were summarised using descriptive statistics. Overall survival (OS) was calculated by the Kaplan-Meier method, and the impact of prognostic factors on OS was assessed using Cox proportional hazard regression analyses. RESULTS Among 1779 MUP patients, 450 were identified as BM-MUP (25.3%). Of these patients, 381 (84.7%) presented with BM along with other metastases, while 69 (15.3%) had BM only. BM-MUP patients were predominantly male (68.2%), and had a median age of 64 years at diagnosis (interquartile range 54-71 years). Over time, the proportion of BM along other metastatic sites increased, and the occurrence of BM decreased (p = 0.01). 1-Year OS improved for the total population, from 30.0% (95% confidence interval (CI): 19.8-40.9%) in 2011-2012 to 43.6% (95%CI: 34.5-52.3%) in 2019-2020, and median OS more than doubled from 4.2 months (95%CI: 3.3-6.2 months) to 9.8 months (95%CI: 7.0-13.2 months). Patient's age, localisation of BM, presence of synchronous liver metastasis and treatment were identified as independent predictors of OS. CONCLUSION Notwithstanding the progress made in OS for patients with BM-MUP in the past decade, their overall prognosis remains poor, and further efforts are needed to improve outcomes.
Collapse
Affiliation(s)
- C S Padilla
- Department of Medical Oncology, Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands.
- Department of Research & Development, Netherlands Comprehensive Cancer Organisation (IKNL), Utrecht, The Netherlands.
| | - V K Y Ho
- Department of Research & Development, Netherlands Comprehensive Cancer Organisation (IKNL), Utrecht, The Netherlands
| | - T W A N Mooijenkind
- Department of Research & Development, Netherlands Comprehensive Cancer Organisation (IKNL), Utrecht, The Netherlands
- Department of Urology, Erasmus MC, Rotterdam, The Netherlands
| | - M W J Louwman
- Department of Research & Development, Netherlands Comprehensive Cancer Organisation (IKNL), Utrecht, The Netherlands
| | - F Y F L de Vos
- Department of Medical Oncology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - M W Bekkenk
- Department of Dermatology, Cancer Centre Amsterdam / Amsterdam UMC, Amsterdam, The Netherlands
| | - W A Minnaard
- Missie Tumor Onbekend, Patient Organisation, Amsterdam, The Netherlands
| | - C Loef
- Department of Research & Development, Netherlands Comprehensive Cancer Organisation (IKNL), Utrecht, The Netherlands
| | | |
Collapse
|
6
|
Franklin C, Mohr P, Bluhm L, Meier F, Garzarolli M, Weichenthal M, Kähler K, Grimmelmann I, Gutzmer R, Utikal J, Terheyden P, Herbst R, Haferkamp S, Pfoehler C, Forschner A, Leiter U, Ziller F, Meiss F, Ulrich J, Kreuter A, Gebhardt C, Welzel J, Schilling B, Kaatz M, Scharfetter-Kochanek K, Dippel E, Nashan D, Sachse M, Weishaupt C, Löffler H, Gambichler T, Loquai C, Heinzerling L, Grabbe S, Debus D, Schley G, Hassel JC, Weyandt G, Trommer M, Lodde G, Placke JM, Zimmer L, Livingstone E, Becker JC, Horn S, Schadendorf D, Ugurel S. Brain metastasis and survival outcomes after first-line therapy in metastatic melanoma: a multicenter DeCOG study on 1704 patients from the prospective skin cancer registry ADOREG. J Immunother Cancer 2023; 11:e005828. [PMID: 37028819 PMCID: PMC10083858 DOI: 10.1136/jitc-2022-005828] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 04/09/2023] Open
Abstract
BACKGROUND Despite the availability of effective systemic therapies, a significant number of advanced melanoma patients develops brain metastases. This study investigated differences in incidence and time to diagnosis of brain metastasis and survival outcomes dependent on the type of first-line therapy. METHODS Patients with metastatic, non-resectable melanoma (AJCCv8 stage IIIC-V) without brain metastasis at start of first-line therapy (1L-therapy) were identified from the prospective multicenter real-world skin cancer registry ADOREG. Study endpoints were incidence of brain metastasis, brain metastasis-free survival (BMFS), progression-free survival (PFS), and overall survival (OS). RESULTS Of 1704 patients, 916 were BRAF wild-type (BRAFwt) and 788 were BRAF V600 mutant (BRAFmut). Median follow-up time after start of 1L-therapy was 40.4 months. BRAFwt patients received 1L-therapy with immune checkpoint inhibitors (ICI) against CTLA-4+PD-1 (n=281) or PD-1 (n=544). In BRAFmut patients, 1L-therapy was ICI in 415 patients (CTLA-4+PD-1, n=108; PD-1, n=264), and BRAF+MEK targeted therapy (TT) in 373 patients. After 24 months, 1L-therapy with BRAF+MEK resulted in a higher incidence of brain metastasis compared with PD-1±CTLA-4 (BRAF+MEK, 30.3%; CTLA-4+PD-1, 22.2%; PD-1, 14.0%). In multivariate analysis, BRAFmut patients developed brain metastases earlier on 1L-therapy with BRAF+MEK than with PD-1±CTLA-4 (CTLA-4+PD-1: HR 0.560, 95% CI 0.332 to 0.945, p=0.030; PD-1: HR 0.575, 95% CI 0.372 to 0.888, p=0.013). Type of 1L-therapy, tumor stage, and age were independent prognostic factors for BMFS in BRAFmut patients. In BRAFwt patients, tumor stage was independently associated with longer BMFS; ECOG Performance status (ECOG-PS), lactate dehydrogenase (LDH), and tumor stage with OS. CTLA-4+PD-1 did not result in better BMFS, PFS, or OS than PD-1 in BRAFwt patients. For BRAFmut patients, multivariate Cox regression revealed ECOG-PS, type of 1L-therapy, tumor stage, and LDH as independent prognostic factors for PFS and OS. 1L-therapy with CTLA-4+PD-1 led to longer OS than PD-1 (HR 1.97, 95% CI 1.122 to 3.455, p=0.018) or BRAF+MEK (HR 2.41, 95% CI 1.432 to 4.054, p=0.001), without PD-1 being superior to BRAF+MEK. CONCLUSIONS In BRAFmut patients 1L-therapy with PD-1±CTLA-4 ICI resulted in a delayed and less frequent development of brain metastasis compared with BRAF+MEK TT. 1L-therapy with CTLA-4+PD-1 showed superior OS compared with PD-1 and BRAF+MEK. In BRAFwt patients, no differences in brain metastasis and survival outcomes were detected for CTLA-4+PD-1 compared with PD-1.
Collapse
Affiliation(s)
- Cindy Franklin
- Department of Dermatology and Venereology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIO ABCD), Cologne, Germany
| | - Peter Mohr
- Department of Dermatology, Elbe-Kliniken Buxtehude, Buxtehude, Germany
| | - Leonie Bluhm
- Department of Dermatology, Elbe-Kliniken Buxtehude, Buxtehude, Germany
| | - Friedegund Meier
- Department of Dermatology, University Hospital Carl Gustav Carus, TU Dresden and, Skin Cancer Center at the University Cancer Center Dresden and National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Marlene Garzarolli
- Department of Dermatology, University Hospital Carl Gustav Carus, TU Dresden and, Skin Cancer Center at the University Cancer Center Dresden and National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Michael Weichenthal
- Department of Dermatology, Skin Cancer Center, Schleswig-Holstein University Hospital, Campus Kiel, Kiel, Germany
| | - Katharina Kähler
- Department of Dermatology, Skin Cancer Center, Schleswig-Holstein University Hospital, Campus Kiel, Kiel, Germany
| | - Imke Grimmelmann
- Skin Cancer Center Hannover, Department of Dermatology, Hannover Medical School, Hanover, Germany
| | - Ralf Gutzmer
- Department of Dermatology, Muehlenkreiskliniken Minden and Ruhr University Bochum, Minden, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ) and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Patrick Terheyden
- Department of Dermatology, University of Lübeck and Schleswig-Holstein University Hospital, Campus Lübeck, Lübeck, Germany
| | - Rudolf Herbst
- Department of Dermatology, HELIOS Klinikum Erfurt, Erfurt, Germany
| | - Sebastian Haferkamp
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | - Claudia Pfoehler
- Department of Dermatology, Saarland University Medical School, Homburg, Homburg/Saar, Germany
| | - Andrea Forschner
- Department of Dermatology, University Hospital Tübingen, Tübingen, Germany
| | - Ulrike Leiter
- Department of Dermatology, University Hospital Tübingen, Tübingen, Germany
| | - Fabian Ziller
- Department of Dermatology, DRK Hospital Chemnitz-Rabenstein, Chemnitz, Germany
| | - Frank Meiss
- Department of Dermatology and Venereology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Jens Ulrich
- Department of Dermatology and Skin Cancer Center, Harzklinikum Dorothea Christiane Erxleben, Quedlinburg, Germany
| | - Alexander Kreuter
- Department of Dermatology, Venereology and Allergology, Helios St. Elisabeth Klinik Oberhausen, University Witten-Herdecke, Oberhausen, Germany
| | - Christoffer Gebhardt
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Welzel
- Department of Dermatology and Allergology, University Hospital Augsburg, Augsburg, Germany
| | - Bastian Schilling
- Department of Dermatology and Venereology, University Hospital Würzburg, Würzburg, Germany
| | - Martin Kaatz
- Department of Dermatology, SRH Wald-Klinikum Gera, Gera, Germany
| | | | - Edgar Dippel
- Department of Dermatology, Ludwigshafen Medical Center, Ludwigshafen, Germany
| | - Dorothee Nashan
- Department of Dermatology, Hospital of Dortmund, Dortmund, Germany
| | - Michael Sachse
- Skin Cancer Center, Department of Dermatology, Klinikum Bremerhaven Reinkenheide, Bremerhaven, Germany
| | - Carsten Weishaupt
- Department of Dermatology, University Hospital of Muenster, Muenster, Germany
| | - Harald Löffler
- Department of Dermatology, SLK-Kliniken Heilbronn, Heilbronn, Germany
| | - Thilo Gambichler
- Department of Dermatology, Ruhr-University Bochum, Bochum, Germany
| | - Carmen Loquai
- Department of Dermatology, Klinikum Bremen-Ost, Gesundheit Nord gGmbH, Bremen, Germany
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Lucie Heinzerling
- Department of Dermatology and Allergology, Ludwig-Maximilian University, Munich, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Dirk Debus
- Department of Dermatology, Nuremberg General Hospital, Paracelsus Medical University, Nuremberg, Germany
| | - Gaston Schley
- Department of Dermatology and Venereology, Helios Klinikum Schwerin, Schwerin, Germany
| | - Jessica C Hassel
- National Center for Tumor Diseases (NCT), Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Gerhard Weyandt
- Department of Dermatology and Allergology, Hospital Bayreuth, Bayreuth, Germany
| | - Maike Trommer
- Department of Radiation Oncology and Cyberknife Center, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Georg Lodde
- Department of Dermatology, Venereology and Allergology, University Hospital Essen and German Cancer Consortium (DKTK) Partner Site Essen, Essen, Germany
| | - Jan-Malte Placke
- Department of Dermatology, Venereology and Allergology, University Hospital Essen and German Cancer Consortium (DKTK) Partner Site Essen, Essen, Germany
| | - Lisa Zimmer
- Department of Dermatology, Venereology and Allergology, University Hospital Essen and German Cancer Consortium (DKTK) Partner Site Essen, Essen, Germany
| | - Elisabeth Livingstone
- Department of Dermatology, Venereology and Allergology, University Hospital Essen and German Cancer Consortium (DKTK) Partner Site Essen, Essen, Germany
| | - Jürgen Christian Becker
- Department of Dermatology, Venereology and Allergology, University Hospital Essen and German Cancer Consortium (DKTK) Partner Site Essen, Essen, Germany
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Susanne Horn
- Department of Dermatology, Venereology and Allergology, University Hospital Essen and German Cancer Consortium (DKTK) Partner Site Essen, Essen, Germany
- Rudolf-Schönheimer-Institute of Biochemistry, Medical Faculty of the University Leipzig, Leipzig, Germany
| | - Dirk Schadendorf
- Department of Dermatology, Venereology and Allergology, University Hospital Essen and German Cancer Consortium (DKTK) Partner Site Essen, Essen, Germany
| | - Selma Ugurel
- Department of Dermatology, Venereology and Allergology, University Hospital Essen and German Cancer Consortium (DKTK) Partner Site Essen, Essen, Germany
| |
Collapse
|
7
|
Kluszczynska K, Czyz M. Extracellular Vesicles-Based Cell-Cell Communication in Melanoma: New Perspectives in Diagnostics and Therapy. Int J Mol Sci 2023; 24:ijms24020965. [PMID: 36674479 PMCID: PMC9865538 DOI: 10.3390/ijms24020965] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023] Open
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of cell-secreted particles that carry cargo of functional biomolecules crucial for cell-to-cell communication with both physiological and pathophysiological consequences. In this review, we focus on evidence demonstrating that the EV-mediated crosstalk between melanoma cells within tumor, between melanoma cells and immune and stromal cells, promotes immune evasion and influences all steps of melanoma development from local progression, pre-metastatic niche formation, to metastatic colonization of distant organs. We also discuss the role of EVs in the development of resistance to immunotherapy and therapy with BRAFV600/MEK inhibitors, and shortly summarize the recent advances on the potential applications of EVs in melanoma diagnostics and therapy.
Collapse
|
8
|
Saberian C, Davies MA. Re-thinking therapeutic development for CNS metastatic disease. Exp Dermatol 2022; 31:74-81. [PMID: 34152638 PMCID: PMC11373440 DOI: 10.1111/exd.14413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/11/2021] [Accepted: 06/11/2021] [Indexed: 11/26/2022]
Abstract
There has been unprecedented progress in the development of systemic therapies for patients with metastatic melanoma over the last decade. There is now tremendous potential and momentum to further and markedly reduce the impact of this disease. However, developing more effective treatments for metastases to the CNS remains a critical challenge for patients with melanoma. Melanoma patients with active CNS metastases have largely been excluded from both early-phase and registration trials for all currently approved targeted and immune therapies for this disease. While this exclusion has generally been justified in clinical research due to concerns about poor prognosis, lack of CNS penetration of agents and/or risk of toxicities, recent post-approval trials have shown the feasibility, safety and clinical benefit of clinical investigation in these patients. These trials have also identified key areas for which more effective strategies are needed. In parallel, recent translational and preclinical research has provided insights into novel immune, molecular and metabolic features of melanoma brain metastases that may mediate the aggressive biology and therapeutic resistance of these tumors. Together, these advances suggest the need for new paradigms for therapeutic development for melanoma patients with CNS metastasis.
Collapse
Affiliation(s)
- Chantal Saberian
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
9
|
Saberian C, Sperduto P, Davies MA. Targeted therapy strategies for melanoma brain metastasis. Neurooncol Adv 2021; 3:v75-v85. [PMID: 34859235 PMCID: PMC8633745 DOI: 10.1093/noajnl/vdab131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Melanoma is the most aggressive of the common forms of skin cancer. Metastasis to the central nervous system is one of the most common and deadly complications of this disease. Historically, melanoma patients with brain metastases had a median survival of less than 6 months. However, outcomes of melanoma patients have markedly improved over the last decade due to new therapeutic approaches, including immune and targeted therapies. Targeted therapies leverage the high rate of driver mutations in this disease, which result in the activation of multiple key signaling pathways. The RAS-RAF-MEK-ERK pathway is activated in the majority of cutaneous melanomas, most commonly by point mutations in the Braf serine-threonine kinase. While most early targeted therapy studies excluded melanoma patients with brain metastases, subsequent studies have shown that BRAF inhibitors, now generally given concurrently with MEK inhibitors, achieve high rates of tumor response and disease control in Braf-mutant melanoma brain metastases (MBMs). Unfortunately, the duration of these responses is generally relatively short- and shorter than is observed in extracranial metastases. This review will summarize current data regarding the safety and efficacy of targeted therapies for MBMs and discuss rational combinatorial strategies that may improve outcomes further.
Collapse
Affiliation(s)
- Chantal Saberian
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Paul Sperduto
- Minneapolis Radiation Oncology, Minneapolis, Minnesota, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
10
|
Wang Y, Liu S, Yang Z, Algazi AP, Lomeli SH, Wang Y, Othus M, Hong A, Wang X, Randolph CE, Jones AM, Bosenberg MW, Byrum SD, Tackett AJ, Lopez H, Yates C, Solit DB, Ribas A, Piva M, Moriceau G, Lo RS. Anti-PD-1/L1 lead-in before MAPK inhibitor combination maximizes antitumor immunity and efficacy. Cancer Cell 2021; 39:1375-1387.e6. [PMID: 34416167 PMCID: PMC9126729 DOI: 10.1016/j.ccell.2021.07.023] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/22/2021] [Accepted: 07/29/2021] [Indexed: 12/20/2022]
Abstract
Rationally sequencing and combining PD-1/L1-and MAPK-targeted therapies may overcome innate and acquired resistance. Since increased clinical benefit of MAPK inhibitors (MAPKi) is associated with previous immune checkpoint therapy, we compare the efficacies of sequential and/or combinatorial regimens in subcutaneous murine models of melanoma driven by BrafV600, Nras, or Nf1 mutations as well as colorectal and pancreatic carcinoma driven by KrasG12C. Anti-PD-1/L1 lead-in preceding MAPKi combination optimizes response durability by promoting pro-inflammatory polarization of macrophages and clonal expansion of interferon-γhi, and CD8+ cytotoxic and proliferative (versus CD4+ regulatory) T cells that highly express activation genes. Since therapeutic resistance of melanoma brain metastasis (MBM) limits patient survival, we demonstrate that sequencing anti-PD-1/L1 therapy before MAPKi combination suppresses MBM and improves mouse survival with robust T cell clonal expansion in both intracranial and extracranial metastatic sites. We propose clinically testing brief anti-PD-1/L1 (± anti-CTLA-4) dosing before MAPKi co-treatment to suppress therapeutic resistance.
Collapse
Affiliation(s)
- Yujue Wang
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Sixue Liu
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Zhentao Yang
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Alain P Algazi
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Shirley H Lomeli
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Yan Wang
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Megan Othus
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Aayoung Hong
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Xiaoyan Wang
- Division of General Internal Medicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Chris E Randolph
- Arkansas Children's Research Institute, Little Rock, AR 72202, USA
| | - Alexis M Jones
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Marcus W Bosenberg
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | - Clayton Yates
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - David B Solit
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Antoni Ribas
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Marco Piva
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| | - Gatien Moriceau
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| | - Roger S Lo
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
11
|
Oncolytic Virotherapy for Melanoma Brain Metastases, a Potential New Treatment Paradigm? Brain Sci 2021; 11:brainsci11101260. [PMID: 34679325 PMCID: PMC8534242 DOI: 10.3390/brainsci11101260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Melanoma brain metastases remain a devastating disease process with poor prognosis. Recently, there has been a surge in studies demonstrating the efficacy of oncolytic virotherapy for brain tumor treatment. Given their specificity and amenability to genetic modification, the authors explore the possible role of oncolytic virotherapy as a potential treatment option for patients with melanoma brain metastases. METHODS A comprehensive literature review including both preclinical and clinical evidence of oncolytic virotherapy for the treatment of melanoma brain metastasis was performed. RESULTS Oncolytic virotherapy, specifically T-VEC (Imlygic™), was approved for the treatment of melanoma in 2015. Recent clinical trials demonstrate promising anti-tumor changes in patients who have received T-VEC; however, there is little evidence for its use in metastatic brain disease based on the existing literature. To date, only two single cases utilizing virotherapy in patients with metastatic brain melanoma have been reported, specifically in patients with treatment refractory disease. Currently, there is not sufficient data to support the use of T-VEC or other viruses for intracranial metastatic melanoma. In developing a virotherapy treatment paradigm for melanoma brain metastases, several factors must be considered, including route of administration, need to bypass the blood-brain barrier, viral tumor infectivity, and risk of adverse events. CONCLUSIONS Evidence for oncolytic virotherapy treatment of melanoma is limited primarily to T-VEC, with a noticeable paucity of data in the literature with respect to brain tumor metastasis. Given the promising findings of virotherapy for other brain tumor types, oncolytic virotherapy has great potential to offer benefits to patients afflicted with melanoma brain metastases and warrants further investigation.
Collapse
|
12
|
Smalley I, Chen Z, Phadke M, Li J, Yu X, Wyatt C, Evernden B, Messina JL, Sarnaik A, Sondak VK, Zhang C, Law V, Tran N, Etame A, Macaulay RJB, Eroglu Z, Forsyth PA, Rodriguez PC, Chen YA, Smalley KSM. Single-Cell Characterization of the Immune Microenvironment of Melanoma Brain and Leptomeningeal Metastases. Clin Cancer Res 2021; 27:4109-4125. [PMID: 34035069 DOI: 10.1158/1078-0432.ccr-21-1694] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE Melanoma brain metastases (MBM) and leptomeningeal melanoma metastases (LMM) are two different manifestations of melanoma CNS metastasis. Here, we used single-cell RNA sequencing (scRNA-seq) to define the immune landscape of MBM, LMM, and melanoma skin metastases. EXPERIMENTAL DESIGN scRNA-seq was undertaken on 43 patient specimens, including 8 skin metastases, 14 MBM, and 19 serial LMM specimens. Detailed cell type curation was performed, the immune landscapes were mapped, and key results were validated by IHC and flow cytometry. Association analyses were undertaken to identify immune cell subsets correlated with overall survival. RESULTS The LMM microenvironment was characterized by an immune-suppressed T-cell landscape distinct from that of brain and skin metastases. An LMM patient with long-term survival demonstrated an immune repertoire distinct from that of poor survivors and more similar to normal cerebrospinal fluid (CSF). Upon response to PD-1 therapy, this extreme responder showed increased levels of T cells and dendritic cells in their CSF, whereas poor survivors showed little improvement in their T-cell responses. In MBM patients, therapy led to increased immune infiltrate, with similar T-cell transcriptional diversity noted between skin metastases and MBM. A correlation analysis across the entire immune landscape identified the presence of a rare population of dendritic cells (DC3) that was associated with increased overall survival and positively regulated the immune environment through modulation of activated T cells and MHC expression. CONCLUSIONS Our study provides the first atlas of two distinct sites of melanoma CNS metastases and defines the immune cell landscape that underlies the biology of this devastating disease.
Collapse
Affiliation(s)
- Inna Smalley
- The Department of Tumor Biology, The Moffitt Cancer Center and Research Institute, Tampa, Florida.
| | - Zhihua Chen
- Department of Bioinformatics and Biostatistics, The Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Manali Phadke
- The Department of Tumor Biology, The Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jiannong Li
- Department of Bioinformatics and Biostatistics, The Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Xiaoqing Yu
- Department of Bioinformatics and Biostatistics, The Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Clayton Wyatt
- The Department of Tumor Biology, The Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Brittany Evernden
- Department of Neurooncology, The Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jane L Messina
- Department of Cutaneous Oncology, The Moffitt Cancer Center and Research Institute, Tampa, Florida.,Department of Pathology, The Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Amod Sarnaik
- Department of Cutaneous Oncology, The Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Vernon K Sondak
- Department of Cutaneous Oncology, The Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Chaomei Zhang
- Molecular Genomics Core, The Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Vincent Law
- Department of Neurooncology, The Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Nam Tran
- Department of Neurooncology, The Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Arnold Etame
- Department of Neurooncology, The Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Robert J B Macaulay
- Department of Neurooncology, The Moffitt Cancer Center and Research Institute, Tampa, Florida.,Department of Pathology, The Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Zeynep Eroglu
- Department of Cutaneous Oncology, The Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Peter A Forsyth
- Department of Neurooncology, The Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Paulo C Rodriguez
- Department of Immunology, The Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Y Ann Chen
- Department of Bioinformatics and Biostatistics, The Moffitt Cancer Center and Research Institute, Tampa, Florida.
| | - Keiran S M Smalley
- The Department of Tumor Biology, The Moffitt Cancer Center and Research Institute, Tampa, Florida. .,Department of Cutaneous Oncology, The Moffitt Cancer Center and Research Institute, Tampa, Florida
| |
Collapse
|
13
|
Phadke M, Ozgun A, Eroglu Z, Smalley KSM. Melanoma brain metastases: Biological basis and novel therapeutic strategies. Exp Dermatol 2021; 31:31-42. [PMID: 33455008 DOI: 10.1111/exd.14286] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/21/2020] [Accepted: 01/13/2021] [Indexed: 01/09/2023]
Abstract
The development of brain metastases is the deadliest complication of advanced melanoma and has long been associated with a dismal prognosis. The recent years have seen incredible progress in the development of therapies for melanoma brain metastases (MBM), with both targeted therapies (the BRAF-MEK inhibitor combination) and immune checkpoint inhibitors (the anti-CTLA-4, anti-PD-1 combination) showing impressive levels of activity. Despite this, durations of response for these therapies remain lower at intracranial sites of metastasis compared to extracranial metastases and it has been suggested that there are unique features of the brain microenvironment that contribute to therapeutic escape. In this review, we outline the latest research into the biology and pathophysiology of melanoma brain metastasis development and progression. We then discuss the current status of clinical trial that are open to patients with MBM and end by describing the ongoing challenges for the field.
Collapse
Affiliation(s)
- Manali Phadke
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Alpaslan Ozgun
- The Department of Cutaneous Oncology, The Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Zeynep Eroglu
- The Department of Cutaneous Oncology, The Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Keiran S M Smalley
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, Tampa, FL, USA.,The Department of Cutaneous Oncology, The Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| |
Collapse
|
14
|
Hirata E, Ishibashi K, Kohsaka S, Shinjo K, Kojima S, Kondo Y, Mano H, Yano S, Kiyokawa E, Sahai E. The Brain Microenvironment Induces DNMT1 Suppression and Indolence of Metastatic Cancer Cells. iScience 2020; 23:101480. [PMID: 32891059 PMCID: PMC7479628 DOI: 10.1016/j.isci.2020.101480] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/27/2020] [Accepted: 08/17/2020] [Indexed: 12/24/2022] Open
Abstract
Brain metastasis is an ineffective process, and many cancer cells enter into an indolent state following extravasation in the brain. Single cell RNA sequencing of melanoma brain metastases reveals that non-proliferating brain metastatic melanoma cells exhibit a pattern of gene expression associated with inhibition of DNA methyltransferase 1 (DNMT1). The brain microenvironment, specifically the combination of reactive astrocytes and mechanically soft surroundings, suppressed DNMT1 expression in various cancer types and caused cell cycle delay. Somewhat unexpectedly, we find that DNMT1 suppression not only induces cell cycle delay but also activates pro-survival signals in brain metastatic cancer cells, including L1CAM and CRYAB. Our results demonstrate that transcriptional changes triggered by DNMT1 suppression is a key step for cancer cells to survive in the brain microenvironment and that they also restrict cancer cell proliferation. The dual consequences of DNMT1 suppression can explain the persistence of indolent cancer cells in the brain microenvironment.
Collapse
Affiliation(s)
- Eishu Hirata
- Division of Tumor Cell Biology and Bioimaging, Cancer Research Institute of Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
| | - Kojiro Ishibashi
- Division of Tumor Cell Biology and Bioimaging, Cancer Research Institute of Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Shinji Kohsaka
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Keiko Shinjo
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Shinya Kojima
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Yutaka Kondo
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Seiji Yano
- Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
- Division of Medical Oncology, Cancer Research Institute of Kanazawa University, Kanazawa 920-0934, Japan
| | - Etsuko Kiyokawa
- Department of Oncologic Pathology, Kanazawa Medical University, Uchinada 920-0293, Japan
| | - Erik Sahai
- Tumour Cell Biology Laboratory, Francis Crick Institute, London NW1 1AT, UK
| |
Collapse
|
15
|
Lee RJ, Khandelwal G, Baenke F, Cannistraci A, Macleod K, Mundra P, Ashton G, Mandal A, Viros A, Gremel G, Galvani E, Smith M, Carragher N, Dhomen N, Miller C, Lorigan P, Marais R. Brain microenvironment-driven resistance to immune and targeted therapies in acral melanoma. ESMO Open 2020; 5:e000707. [PMID: 32817058 PMCID: PMC7437885 DOI: 10.1136/esmoopen-2020-000707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Combination treatments targeting the MEK-ERK pathway and checkpoint inhibitors have improved overall survival in melanoma. Resistance to treatment especially in the brain remains challenging, and rare disease subtypes such as acral melanoma are not typically included in trials. Here we present analyses from longitudinal sampling of a patient with metastatic acral melanoma that became resistant to successive immune and targeted therapies. METHODS We performed whole-exome sequencing and RNA sequencing on an acral melanoma that progressed on successive immune (nivolumab) and targeted (dabrafenib) therapy in the brain to identify resistance mechanisms. In addition, we performed growth inhibition assays, reverse phase protein arrays and immunoblotting on patient-derived cell lines using dabrafenib in the presence or absence of cerebrospinal fluid (CSF) in vitro. Patient-derived xenografts were also developed to analyse response to dabrafenib. RESULTS Immune escape following checkpoint blockade was not due to loss of tumour cell recognition by the immune system or low neoantigen burden, but was associated with distinct changes in the microenvironment. Similarly, resistance to targeted therapy was not associated with acquired mutations but upregulation of the AKT/phospho-inositide 3-kinase pathway in the presence of CSF. CONCLUSION Heterogeneous tumour interactions within the brain microenvironment enable progression on immune and targeted therapies and should be targeted in salvage treatments.
Collapse
Affiliation(s)
- Rebecca Jane Lee
- Molecular Oncology Group, CRUK Manchester Institute, The University of Manchester, Nether Alderley, Macclesfield, UK
| | - Garima Khandelwal
- RNA Biology Group, CRUK Manchester Institute, The University of Manchester, Nether Alderley, Macclesfield, UK
| | - Franziska Baenke
- Molecular Oncology Group, CRUK Manchester Institute, The University of Manchester, Nether Alderley, Macclesfield, UK
- Department of Visceral, Thoracic and Vascular Surgery, German Cancer Consortium (DKTK) German Cancer Research Centre, Dresden, Germany
| | - Alessio Cannistraci
- Molecular Oncology Group, CRUK Manchester Institute, The University of Manchester, Nether Alderley, Macclesfield, UK
| | | | - Piyushkumar Mundra
- Molecular Oncology Group, CRUK Manchester Institute, The University of Manchester, Nether Alderley, Macclesfield, UK
| | - Garry Ashton
- Histology Department, CRUK Manchester Institute, The University of Manchester, Nether Alderley, Macclesfield, UK
| | - Amit Mandal
- Molecular Oncology Group, CRUK Manchester Institute, The University of Manchester, Nether Alderley, Macclesfield, UK
| | - Amaya Viros
- Molecular Oncology Group, CRUK Manchester Institute, The University of Manchester, Nether Alderley, Macclesfield, UK
- Skin Cancer and Aging Group, CRUK Manchester Institute, The University of Manchester, Nether Alderley, Macclesfield, UK
| | - Gabriela Gremel
- Molecular Oncology Group, CRUK Manchester Institute, The University of Manchester, Nether Alderley, Macclesfield, UK
- Boehringer Ingelheim International GmbH, Ingelheim, Rheinland-Pfalz, Germany
| | - Elena Galvani
- Molecular Oncology Group, CRUK Manchester Institute, The University of Manchester, Nether Alderley, Macclesfield, UK
| | - Matthew Smith
- Molecular Oncology Group, CRUK Manchester Institute, The University of Manchester, Nether Alderley, Macclesfield, UK
| | | | - Nathalie Dhomen
- Molecular Oncology Group, CRUK Manchester Institute, The University of Manchester, Nether Alderley, Macclesfield, UK
| | - Crispin Miller
- RNA Biology Group, CRUK Manchester Institute, The University of Manchester, Nether Alderley, Macclesfield, UK
| | - Paul Lorigan
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
- Institute of Cancer Sciences, The University of Manchester, Manchester, UK
| | - Richard Marais
- Molecular Oncology Group, CRUK Manchester Institute, The University of Manchester, Nether Alderley, Macclesfield, UK
| |
Collapse
|
16
|
Glitza IC, Smalley KSM, Brastianos PK, Davies MA, McCutcheon I, Liu JKC, Ahmed KA, Arrington JA, Evernden BR, Smalley I, Eroglu Z, Khushalani N, Margolin K, Kluger H, Atkins MB, Tawbi H, Boire A, Forsyth P. Leptomeningeal disease in melanoma patients: An update to treatment, challenges, and future directions. Pigment Cell Melanoma Res 2020; 33:527-541. [PMID: 31916400 PMCID: PMC10126834 DOI: 10.1111/pcmr.12861] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/26/2019] [Accepted: 01/03/2020] [Indexed: 01/31/2023]
Abstract
In February 2018, the Melanoma Research Foundation and the Moffitt Cancer Center hosted the Second Summit on Melanoma Central Nervous System Metastases in Tampa, Florida. The meeting included investigators from multiple academic centers and disciplines. A consensus summary of the progress and challenges in melanoma parenchymal brain metastases was published (Eroglu et al., Pigment Cell & Melanoma Research, 2019, 32, 458). Here, we will describe the current state of basic, translational, clinical research, and therapeutic management, for melanoma patients with leptomeningeal disease. We also outline key challenges and barriers to be overcome to make progress in this deadly disease.
Collapse
Affiliation(s)
- Isabella C. Glitza
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Keiran S. M. Smalley
- Melanoma Research Center of Excellence, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | - Michael A. Davies
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Ian McCutcheon
- Department of Neurosurgery, UT MD Anderson Cancer Center, Houston, TX, USA
| | - James K. C. Liu
- Department of Neuro-Oncology & Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Kamran A. Ahmed
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - John A. Arrington
- Head of Neuroradiology Section, Department of Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Brittany R. Evernden
- Department of Neuro-Oncology & Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Inna Smalley
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Zeynep Eroglu
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Nikhil Khushalani
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Kim Margolin
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Harriet Kluger
- Department of Medical Oncology, Yale Cancer Center, New Haven, CT, USA
| | - Michael B. Atkins
- Department of Medical Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Hussein Tawbi
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Adrienne Boire
- Department of Neuro-Oncology, Memorial Sloan Kettering, New York, NY, USA
| | - Peter Forsyth
- Department of Neuro-Oncology & Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
17
|
Nakamura Y, Ishitsuka Y, Tanaka R, Okiyama N, Watanabe R, Saito A, Furuta J, Fujisawa Y. Frequent brain metastases during treatment with BRAF/MEK inhibitors: A retrospective single institutional study. J Dermatol 2020; 47:1191-1194. [DOI: 10.1111/1346-8138.15479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 05/29/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Yoshiyuki Nakamura
- Department of Dermatology Faculty of Medicine University of Tsukuba Tsukuba Japan
| | - Yosuke Ishitsuka
- Department of Dermatology Faculty of Medicine University of Tsukuba Tsukuba Japan
| | - Ryota Tanaka
- Department of Dermatology Faculty of Medicine University of Tsukuba Tsukuba Japan
| | - Naoko Okiyama
- Department of Dermatology Faculty of Medicine University of Tsukuba Tsukuba Japan
| | - Rei Watanabe
- Department of Dermatology Faculty of Medicine University of Tsukuba Tsukuba Japan
| | - Akimasa Saito
- Department of Dermatology Faculty of Medicine University of Tsukuba Tsukuba Japan
| | - Junichi Furuta
- Department of Dermatology Faculty of Medicine University of Tsukuba Tsukuba Japan
| | - Yasuhiro Fujisawa
- Department of Dermatology Faculty of Medicine University of Tsukuba Tsukuba Japan
| |
Collapse
|
18
|
Ferguson J, Wilcock DJ, McEntegart S, Badrock AP, Levesque M, Dummer R, Wellbrock C, Smith MP. Osteoblasts contribute to a protective niche that supports melanoma cell proliferation and survival. Pigment Cell Melanoma Res 2020; 33:74-85. [PMID: 31323160 PMCID: PMC6972519 DOI: 10.1111/pcmr.12812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 06/17/2019] [Accepted: 07/04/2019] [Indexed: 12/19/2022]
Abstract
Melanoma is the deadliest form of skin cancer; a primary driver of this high level of morbidity is the propensity of melanoma cells to metastasize. When malignant tumours develop distant metastatic lesions the new local tissue niche is known to impact on the biology of the cancer cells. However, little is known about how different metastatic tissue sites impact on frontline targeted therapies. Intriguingly, melanoma bone lesions have significantly lower response to BRAF or MEK inhibitor therapies. Here, we have investigated how the cellular niche of the bone can support melanoma cells by stimulating growth and survival via paracrine signalling between osteoblasts and cancer cells. Melanoma cells can enhance the differentiation of osteoblasts leading to increased production of secreted ligands, including RANKL. Differentiated osteoblasts in turn can support melanoma cell proliferation and survival via the secretion of RANKL that elevates the levels of the transcription factor MITF, even in the presence of BRAF inhibitor. By blocking RANKL signalling, either via neutralizing antibodies, genetic alterations or the RANKL receptor inhibitor SPD304, the survival advantage provided by osteoblasts could be overcome.
Collapse
Affiliation(s)
- Jennifer Ferguson
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
| | - Daniel J. Wilcock
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
| | - Sophie McEntegart
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
| | - Andrew P. Badrock
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
| | - Mitch Levesque
- Department of Dermatology, Universitäts Spital ZürichUniversity of ZürichZurichSwitzerland
| | - Reinhard Dummer
- Department of Dermatology, Universitäts Spital ZürichUniversity of ZürichZurichSwitzerland
| | - Claudia Wellbrock
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
| | - Michael P. Smith
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
| |
Collapse
|
19
|
van Opijnen MP, Dirven L, Coremans IEM, Taphoorn MJB, Kapiteijn EHW. The impact of current treatment modalities on the outcomes of patients with melanoma brain metastases: A systematic review. Int J Cancer 2019; 146:1479-1489. [PMID: 31583684 PMCID: PMC7004107 DOI: 10.1002/ijc.32696] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/30/2019] [Accepted: 09/11/2019] [Indexed: 12/19/2022]
Abstract
Patients with melanoma brain metastases (MBM) still have a very poor prognosis. Several treatment modalities have been investigated in an attempt to improve the management of MBM. This review aimed to evaluate the impact of current treatments for MBM on patient‐ and tumor‐related outcomes, and to provide treatment recommendations for this patient population. A literature search in the databases PubMed, Embase, Web of Science and Cochrane was conducted up to January 8, 2019. Original articles published since 2010 describing patient‐ and tumor‐related outcomes of adult MBM patients treated with clearly defined systemic therapy were included. Information on basic trial demographics, treatment under investigation and outcomes (overall and progression‐free survival, local and distant control and toxicity) were extracted. We identified 96 eligible articles, comprising 95 studies. A large variety of treatment options for MBM were investigated, either used alone or as combined modality therapy. Combined modality therapy was investigated in 71% of the studies and resulted in increased survival and better distant/local control than monotherapy, especially with targeted therapy or immunotherapy. However, neurotoxic side‐effects also occurred more frequently. Timing appeared to be an important determinant, with the best results when radiotherapy was given before or during systemic therapy. Improved tumor control and prolonged survival can be achieved by combining radiotherapy with immunotherapy or targeted therapy. However, more randomized controlled trials or prospective studies are warranted to generate proper evidence that can be used to change the standard of care for patients with MBM.
Collapse
Affiliation(s)
- Mark P van Opijnen
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Linda Dirven
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Neurology, Haaglanden Medical Center, The Hague, The Netherlands.,Department of Radiation Oncology, Leiden University Medical Center, The Netherlands
| | - Ida E M Coremans
- Department of Radiation Oncology, Leiden University Medical Center, The Netherlands
| | - Martin J B Taphoorn
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Neurology, Haaglanden Medical Center, The Hague, The Netherlands
| | - Ellen H W Kapiteijn
- Leiden University Medical Center, Department of Clinical Oncology, Leiden, The Netherlands
| |
Collapse
|
20
|
Zhang H, Xie T, Shui Y, Qi Y. Knockdown of PLCB2 expression reduces melanoma cell viability and promotes melanoma cell apoptosis by altering Ras/Raf/MAPK signals. Mol Med Rep 2019; 21:420-428. [PMID: 31746389 DOI: 10.3892/mmr.2019.10798] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/29/2019] [Indexed: 11/05/2022] Open
Abstract
Malignant melanoma has the highest malignancy rate among all skin cancer and is characterized by an insidious onset, high invasion and poor patient prognosis. Yet, the mechanisms involved remain unclear and warrant further investigation. Based on bioinformatic analysis, phospholipase C β2 (PLCB2) has been found to be correlated with melanoma growth. The present study was the first to demonstrate that PLCB2 is a key factor affecting melanoma proliferation and apoptosis. Here, microarray datasets from the publicly available Gene Expression Omnibus (GEO) database were employed, and gene set enrichment analysis (GSEA) was introduced to identify candidate transcription factors. PLCB2 was identified as a crucial gene in the protein‑protein interaction (PPI) network. The expression of PLCB2 mRNA in various cancer lines was analyzed by reverse transcription‑polymerase chain reaction (RT‑PCR). In addition, the proliferation ability and apoptosis rate in human melanoma cells overexpressing or not overexpressing PLCB2 were assessed using colony formation assay, flow cytometry and the Cell Counting Kit‑8 (CCK‑8) assay. Cell viability and apoptosis‑related factors, such as p53, Bcl‑2, Bax and caspase‑3 were significantly regulated. Knockdown of PLCB2 suppressed the activation of the Ras/Raf/MAPK signaling pathway. In conclusion, knockdown of PLCB2 suppressed cell viability and promoted cell apoptosis by activating the Ras/Raf/MAPK pathway. Thus, PLCB2 may utilized as a potential therapeutic target in patients with melanoma.
Collapse
Affiliation(s)
- Huahui Zhang
- Department of Plastic Surgery, Zhejiang Hospital, Hangzhou, Zhejiang 310007, P.R. China
| | - Tao Xie
- Department of Orthopedics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Yongjie Shui
- Department of Radiotherapy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yiying Qi
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
21
|
Sundstrøm T, Prestegarden L, Azuaje F, Aasen SN, Røsland GV, Varughese JK, Bahador M, Bernatz S, Braun Y, Harter PN, Skaftnesmo KO, Ingham ES, Mahakian LM, Tam S, Tepper CG, Petersen K, Ferrara KW, Tronstad KJ, Lund-Johansen M, Beschorner R, Bjerkvig R, Thorsen F. Inhibition of mitochondrial respiration prevents BRAF-mutant melanoma brain metastasis. Acta Neuropathol Commun 2019; 7:55. [PMID: 30971321 PMCID: PMC6456988 DOI: 10.1186/s40478-019-0712-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 03/27/2019] [Indexed: 01/12/2023] Open
Abstract
Melanoma patients carry a high risk of developing brain metastases, and improvements in survival are still measured in weeks or months. Durable disease control within the brain is impeded by poor drug penetration across the blood-brain barrier, as well as intrinsic and acquired drug resistance. Augmented mitochondrial respiration is a key resistance mechanism in BRAF-mutant melanomas but, as we show in this study, this dependence on mitochondrial respiration may also be exploited therapeutically. We first used high-throughput pharmacogenomic profiling to identify potentially repurposable compounds against BRAF-mutant melanoma brain metastases. One of the compounds identified was β-sitosterol, a well-tolerated and brain-penetrable phytosterol. Here we show that β-sitosterol attenuates melanoma cell growth in vitro and also inhibits brain metastasis formation in vivo. Functional analyses indicated that the therapeutic potential of β-sitosterol was linked to mitochondrial interference. Mechanistically, β-sitosterol effectively reduced mitochondrial respiratory capacity, mediated by an inhibition of mitochondrial complex I. The net result of this action was increased oxidative stress that led to apoptosis. This effect was only seen in tumor cells, and not in normal cells. Large-scale analyses of human melanoma brain metastases indicated a significant role of mitochondrial complex I compared to brain metastases from other cancers. Finally, we observed completely abrogated BRAF inhibitor resistance when vemurafenib was combined with either β-sitosterol or a functional knockdown of mitochondrial complex I. In conclusion, based on its favorable tolerability, excellent brain bioavailability, and capacity to inhibit mitochondrial respiration, β-sitosterol represents a promising adjuvant to BRAF inhibitor therapy in patients with, or at risk for, melanoma brain metastases.
Collapse
|
22
|
Redmer T. Deciphering mechanisms of brain metastasis in melanoma - the gist of the matter. Mol Cancer 2018; 17:106. [PMID: 30053879 PMCID: PMC6064184 DOI: 10.1186/s12943-018-0854-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 07/09/2018] [Indexed: 12/18/2022] Open
Abstract
Metastasis to distant organs and particularly the brain still represents the most serious obstacle in melanoma therapies. Melanoma cells acquire a phenotype to metastasize to the brain and successfully grow there through complex mechanisms determined by microenvironmental than rather genetic cues. There do appear to be some prerequisites, including the presence of oncogenic BRAF or NRAS mutations and a loss of PTEN. Further mediators of the brain metastatic phenotype appear to be the high activation of the PI3K/AKT or STAT3 pathway or high levels of PLEKHA5 and MMP2 in metastatic cells. A yet undefined subset of brain metastases exhibit a high level of expression of CD271 that is associated with stemness, migration and survival. Hence, CD271 expression may determine specific properties of brain metastatic melanoma cells. Environmental cues - in particular those provided by brain parenchymal cells such as astrocytes - seem to help specifically guide melanoma cells that express CCR4 or CD271, potential "homing receptors". Upon entering the brain, these cells interact with brain parenchyma cells and are thereby reprogrammed to adopt a neurological phenotype. Several lines of evidence suggest that current therapies may have a negative effect by activating a program that drives tumor cells toward stemness and metastasis. Yet significant improvements have expanded the therapeutic options for treating brain metastases from melanoma, by combining potent BRAF inhibitors such as dabrafenib with checkpoint inhibitors or stereotactic surgery. Further progress toward developing new therapeutic strategies will require a more profound understanding of the mechanisms that underlie brain metastasis in melanoma.
Collapse
Affiliation(s)
- Torben Redmer
- Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, D-10117, Berlin, Germany. .,Department of Medical Biochemistry, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria.
| |
Collapse
|
23
|
Glitza Oliva I, Schvartsman G, Tawbi H. Advances in the systemic treatment of melanoma brain metastases. Ann Oncol 2018; 29:1509-1520. [DOI: 10.1093/annonc/mdy185] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
24
|
Herraiz C, Jiménez-Cervantes C, Sánchez-Laorden B, García-Borrón JC. Functional interplay between secreted ligands and receptors in melanoma. Semin Cell Dev Biol 2018; 78:73-84. [PMID: 28676423 DOI: 10.1016/j.semcdb.2017.06.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 06/26/2017] [Indexed: 12/11/2022]
Abstract
Melanoma, the most aggressive form of skin cancer, results from the malignant transformation of melanocytes located in the basement membrane separating the epidermal and dermal skin compartments. Cutaneous melanoma is often initiated by solar ultraviolet radiation (UVR)-induced mutations. Melanocytes intimately interact with keratinocytes, which provide growth factors and melanocortin peptides acting as paracrine regulators of proliferation and differentiation. Keratinocyte-derived melanocortins activate melanocortin-1 receptor (MC1R) to protect melanocytes from the carcinogenic effect of UVR. Accordingly, MC1R is a major determinant of susceptibility to melanoma. Despite extensive phenotypic heterogeneity and high mutation loads, the molecular basis of melanomagenesis and the molecules mediating the crosstalk between melanoma and stromal cells are relatively well understood. Mutations of intracellular effectors of receptor tyrosine kinase (RTK) signalling, notably NRAS and BRAF, are major driver events more frequent than mutations in RTKs. Nevertheless, melanomas often display aberrant signalling from RTKs such as KIT, ERRB1-4, FGFR, MET and PDGFR, which contribute to disease progression and resistance to targeted therapies. Progress has also been made to unravel the role of the tumour secretome in preparing the metastatic niche. However, key aspects of the melanoma-stroma interplay, such as the molecular determinants of dormancy, remain poorly understood.
Collapse
Affiliation(s)
- Cecilia Herraiz
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Murcia, and Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, El Palmar, Murcia, Spain
| | - Celia Jiménez-Cervantes
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Murcia, and Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, El Palmar, Murcia, Spain
| | - Berta Sánchez-Laorden
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - José C García-Borrón
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Murcia, and Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, El Palmar, Murcia, Spain.
| |
Collapse
|
25
|
Does the distribution pattern of brain metastases during BRAF inhibitor therapy reflect phenotype switching? Melanoma Res 2018; 27:231-237. [PMID: 28099366 DOI: 10.1097/cmr.0000000000000338] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Brain metastases (brain mets) are frequent in metastatic melanoma patients. The aim of this study was to investigate the morphology and progression pattern of brain mets in melanoma patients treated with BRAF inhibitors (BRAFi) compared with patients who did not receive targeted therapy (BRAFi group and control group). The number and size of brain mets were compared between a baseline and a comparative MRI at progression. The number of brain mets was grouped into seven number classes (N=1-4, N=5-10, N=11-20, N=21-30, N=31-40, N=41-50, and N>50) and its difference was reported as the change of class that occurred. The mean size of the newly developed lesions was determined by representative measurements and the evolution of three persisting target lesions was assessed on the basis of modified RECIST criteria. Of 96 patients studied, 42 were in the BRAFi group and 54 were in the control group. Patients under BRAFi treatment had a significantly greater increase in the number of brain mets, where the median change of class for the BRAFi compared with the control group was 2 versus 0 (P<0.01). The mean size of the new lesions was smaller in the BRAFi group. Pre-existing target lesions did not show any prominent or different patterns of how they evolved in either group. Brain mets in patients treated with BRAFi showed a progression pattern characterized by a high propensity to disseminate, which might reflect an in-vivo manifestation of phenotype switching in response to targeted therapy, with a predominance of the invasive/migratory tumor cell phenotype. Drivers of invasiveness may present promising targets for therapeutic interventions.
Collapse
|
26
|
The biology and therapeutic management of melanoma brain metastases. Biochem Pharmacol 2017; 153:35-45. [PMID: 29278675 DOI: 10.1016/j.bcp.2017.12.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 12/21/2017] [Indexed: 01/01/2023]
Abstract
The recent years have seen significant progress in the development of systemic therapies to treat patients with advanced melanoma. Use of these new treatment modalities, which include immune checkpoint inhibitors and small molecule BRAF inhibitors, lead to increased overall survival and better outcomes. Although revolutionary, these therapies are often less effective against melanoma brain metastases, and frequently the CNS is the major site of treatment failure. The development of brain metastases remains a serious complication of advanced melanoma that is associated with significant morbidity and mortality. New approaches to both prevent the development of brain metastases and treat established disease are urgently needed. In this review we will outline the mechanisms underlying the development of melanoma brain metastases and will discuss how new insights into metastasis biology are driving the development of new therapeutic strategies. Finally, we will describe the latest data from the ongoing clinical trials for patients with melanoma brain metastases.
Collapse
|
27
|
Arozarena I, Wellbrock C. Overcoming resistance to BRAF inhibitors. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:387. [PMID: 29114545 PMCID: PMC5653517 DOI: 10.21037/atm.2017.06.09] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 05/25/2017] [Indexed: 12/14/2022]
Abstract
The discovery of activating mutations in the serine/threonine (S/T) kinase BRAF followed by a wave of follow-up research manifested that the MAPK-pathway plays a critical role in melanoma initiation and progression. BRAF and MEK inhibitors produce an unparalleled response rate in melanoma, but it is now clear that most responses are transient, and while some patients show long lasting responses the majority progress within 1 year. In accordance with the key role played by the MAPK-pathway in BRAF mutant melanomas, disease progression is mostly due to the appearance of drug-resistance mechanisms leading to restoration of MAPK-pathway activity. In the present article we will review the development, application and clinical effects of BRAF and MEK inhibitors both, as single agent and in combination in the context of targeted therapy in melanoma. We will then describe the most prominent mechanisms of resistance found in patients progressed on these targeted therapies. Finally we will discuss strategies for further optimizing the use of MAPK inhibitors and will describe the potential of alternative combination therapies to either delay the onset of resistance to MAPK inhibitors or directly target specific mechanisms of resistance to BRAF/MEK inhibitors.
Collapse
Affiliation(s)
- Imanol Arozarena
- Navarrabiomed-Fundación Miguel Servet-Idisna, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Claudia Wellbrock
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
28
|
Intercellular Resistance to BRAF Inhibition Can Be Mediated by Extracellular Vesicle-Associated PDGFRβ. Neoplasia 2017; 19:932-940. [PMID: 28963969 PMCID: PMC5678363 DOI: 10.1016/j.neo.2017.07.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 07/11/2017] [Accepted: 07/18/2017] [Indexed: 12/17/2022] Open
Abstract
Treatment of BRAF mutant melanoma with kinase inhibitors has been associated with rapid tumor regression; however, this clinical benefit is short-lived, and most patients relapse. A number of studies suggest that the extracellular environment promotes BRAF inhibitor resistance and tumor progression. Extracellular vesicles, such as exosomes, are functional mediators in the extracellular environment. They are small vesicles known to carry a concentrated group of functional cargo and serve as intercellular communicators not only locally but also systemically. Increasingly, it is reported that extracellular vesicles facilitate the development of drug resistance in cancer; however, their role in BRAF inhibitor resistance in melanoma is unclear. Here we investigated if extracellular vesicles from BRAF inhibitor–resistant melanoma could influence drug sensitivity in recipient melanoma cells. We demonstrate that the resistance driver, PDGFRβ, can be transferred to recipient melanoma cells via extracellular vesicles, resulting in a dose-dependent activation of PI3K/AKT signaling and escape from MAPK pathway BRAF inhibition. These data suggest that the BRAF inhibitor–sensitive phenotype of metastatic melanoma can be altered by delivery of PDGFRβ by extracellular vesicles derived from neighboring drug-resistant melanoma cells.
Collapse
|
29
|
Abstract
Metastases to the central nervous system (CNS) are one of the most common and lethal complications of metastatic melanoma. Historically, melanoma patients with CNS metastases have had dismal outcomes and very limited treatment options. However, the development of more effective targeted, immune, and radiation therapies is now leading to promising new investigations and strategies. Optimizing the development and testing of such strategies will benefit from an improved understanding of the unique molecular features of these tumors and the influence of the brain microenvironment. Accounting for unique clinical features and challenges of CNS metastases will also be critical to making significant clinical impact in patients.
Collapse
|
30
|
Westphal D, Glitza Oliva IC, Niessner H. Molecular insights into melanoma brain metastases. Cancer 2017; 123:2163-2175. [PMID: 28543697 DOI: 10.1002/cncr.30594] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/19/2016] [Accepted: 12/28/2016] [Indexed: 01/26/2023]
Abstract
Substantial proportions of patients with metastatic melanoma develop brain metastases during the course of their disease, often resulting in significant morbidity and death. Despite recent advances with BRAF/MEK and immune-checkpoint inhibitors in the treatment of patients who have melanoma with extracerebral metastases, patients who have melanoma brain metastases still have poor overall survival, highlighting the need for further therapy options. A deeper understanding of the molecular pathways involved in the development of melanoma brain metastases is required to develop more brain-specific therapies. Here, the authors summarize the currently known preclinical data and describe steps involved in the development of melanoma brain metastases. Only by knowing the molecular background is it possible to design new therapeutic agents that can be used to improve the outcome of patients with melanoma brain metastases. Cancer 2017;123:2163-75. © 2017 American Cancer Society.
Collapse
Affiliation(s)
- Dana Westphal
- Department of Dermatology, Carl Gustav Carus Medical Center, Technical University of Dresden, Dresden, Germany.,Center for Regenerative Therapies, Technical University of Dresden, Dresden, Germany
| | - Isabella C Glitza Oliva
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Heike Niessner
- Department of Dermatology, University Hospital Tübingen, Eberhard Karls University, Tübingen, Germany
| |
Collapse
|
31
|
Hirata E, Sahai E. Tumor Microenvironment and Differential Responses to Therapy. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a026781. [PMID: 28213438 DOI: 10.1101/cshperspect.a026781] [Citation(s) in RCA: 263] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cancer evolution plays a key role in both the development of tumors and their response to therapy. Like all evolutionary processes, tumor evolution is shaped by the environment. In tumors, this consists of a complex mixture of nontransformed cell types and extracellular matrix. Chemotherapy or radiotherapy imposes further strong selective pressures on cancer cells during cancer treatment. Here, we review how different components of the tumor microenvironment can modulate the response to chemo- and radiotherapy. We further describe how therapeutic strategies directly alter the composition, or function, of the tumor microenvironment, thereby further altering the selective pressures to which cancer cells are exposed. Last, we explore the consequences of these interactions for therapy outcomes and how to exploit our increasing understanding of the tumor microenvironment for therapeutic benefit.
Collapse
Affiliation(s)
- Eishu Hirata
- Department of Oncologic Pathology, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Erik Sahai
- Tumor Cell Biology Laboratory, Francis Crick Institute, London WC2A 3LY, United Kingdom
| |
Collapse
|
32
|
Abstract
Brain metastases are a major clinical challenge occurring in up to 60% of patients suffering from metastatic melanoma. They cause significant clinical symptoms and impair the overall survival prognosis. The introduction of targeted therapies including BRAF and MEK inhibitors as well as CTLA-4 and PD-1 axis targeting immune checkpoint inhibitors have dramatically improved the treatment and prognosis of patients with extracranial metastatic melanoma. Although, similar response rates for extra- and intracranial metastases have been reported, only few data from brain metastasis specific trails are available so far. The following review will provide an overview on the currently available data on targeted therapies, remaining questions and the most important side effects in the special clinical situation of melanoma brain metastases.
Collapse
Affiliation(s)
- Anna S Berghoff
- Department of Medicine I and Comprehensive Cancer Center CNS Unit (CCC-CNS), Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Matthias Preusser
- Department of Medicine I and Comprehensive Cancer Center CNS Unit (CCC-CNS), Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
33
|
Cohen JV, Tawbi H, Margolin KA, Amravadi R, Bosenberg M, Brastianos PK, Chiang VL, de Groot J, Glitza IC, Herlyn M, Holmen SL, Jilaveanu LB, Lassman A, Moschos S, Postow MA, Thomas R, Tsiouris JA, Wen P, White RM, Turnham T, Davies MA, Kluger HM. Melanoma central nervous system metastases: current approaches, challenges, and opportunities. Pigment Cell Melanoma Res 2016; 29:627-642. [PMID: 27615400 DOI: 10.1111/pcmr.12538] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/06/2016] [Indexed: 12/17/2022]
Abstract
Melanoma central nervous system metastases are increasing, and the challenges presented by this patient population remain complex. In December 2015, the Melanoma Research Foundation and the Wistar Institute hosted the First Summit on Melanoma Central Nervous System (CNS) Metastases in Philadelphia, Pennsylvania. Here, we provide a review of the current status of the field of melanoma brain metastasis research; identify key challenges and opportunities for improving the outcomes in patients with melanoma brain metastases; and set a framework to optimize future research in this critical area.
Collapse
Affiliation(s)
- Justine V Cohen
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Hussain Tawbi
- Department of Melanoma, Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kim A Margolin
- Department of Medical Oncology & Therapeutics Research, City of Hope Cancer Center, Duarte, CA, USA
| | - Ravi Amravadi
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | - John de Groot
- Division of Neuro-Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Isabella C Glitza
- Department of Melanoma, Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Meenhard Herlyn
- Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Sheri L Holmen
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | | | - Andrew Lassman
- Department of Neurology & Herbert Irving Comprehensive, Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Stergios Moschos
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael A Postow
- Department of Oncology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, NY, USA
| | - Reena Thomas
- Division of Neuro-Oncology, Department of Neurology, Stanford University, Stanford, CA, USA
| | - John A Tsiouris
- Department of Radiology, New York-Presbyterian Hospital - Weill Cornell Medicine, New York, NY, USA
| | - Patrick Wen
- Department of Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Richard M White
- Department of Cancer Biology & Genetics, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, NY, USA
| | | | - Michael A Davies
- Department of Melanoma, Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
34
|
Smalley KSM, Fedorenko IV, Kenchappa RS, Sahebjam S, Forsyth PA. Managing leptomeningeal melanoma metastases in the era of immune and targeted therapy. Int J Cancer 2016; 139:1195-201. [PMID: 27084046 DOI: 10.1002/ijc.30147] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/24/2016] [Accepted: 04/08/2016] [Indexed: 12/11/2022]
Abstract
Melanoma frequently metastasizes to the brain, with CNS involvement being clinically evident in ∼30% of patients (as high as 75% at autopsy). In ∼5% cases melanoma cells also metastasize to the leptomeninges, the sub-arachnoid space and cerebrospinal fluid (CSF). Patients with leptomeningeal melanoma metastases (LMM) have the worst prognosis and are characterized by rapid disease progression (mean survival 8-10 weeks) and a death from neurological causes. The recent years have seen tremendous progress in the development of targeted and immune therapies for melanoma that has translated into an increased survival benefit. Despite these gains, the majority of patients fail therapy and there is a suspicion that the brain and the leptomeninges are a "sanctuary" sites for melanoma cells that escape both targeted therapy and immunologic therapies. Emerging evidence suggests that (1) Cancer cells migrating to the CNS may have unique molecular properties and (2) the CNS/leptomeningeal microenvironment represents a pro-survival niche that influences therapeutic response. In this Mini-Review, we will outline the clinical course of LMM development and will describe how the intracranial immune and cellular microenvironments offer both opportunities and challenges for the successful management of this disease. We will further discuss the latest data demonstrating the potential use of BRAF inhibitors and immune therapy in the management of LMM, and will review future potential therapeutic strategies for the management of this most devastating complication of advanced melanoma.
Collapse
Affiliation(s)
- Keiran S M Smalley
- The Department of Tumor Biology, Moffitt Cancer Center & Research Institute, Tampa, FL.,Department of Cutaneous Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Inna V Fedorenko
- The Department of Tumor Biology, Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Rajappa S Kenchappa
- The Department of Tumor Biology, Moffitt Cancer Center & Research Institute, Tampa, FL.,Department of NeuroOncology, Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Solmaz Sahebjam
- Department of NeuroOncology, Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Peter A Forsyth
- The Department of Tumor Biology, Moffitt Cancer Center & Research Institute, Tampa, FL.,Department of NeuroOncology, Moffitt Cancer Center & Research Institute, Tampa, FL.,Department of Oncology, Tom Baker Cancer Center & University of Calgary, Calgary, AB, Canada
| |
Collapse
|
35
|
Seip K, Fleten KG, Barkovskaya A, Nygaard V, Haugen MH, Engesæter BØ, Mælandsmo GM, Prasmickaite L. Fibroblast-induced switching to the mesenchymal-like phenotype and PI3K/mTOR signaling protects melanoma cells from BRAF inhibitors. Oncotarget 2016; 7:19997-20015. [PMID: 26918352 PMCID: PMC4991434 DOI: 10.18632/oncotarget.7671] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/16/2016] [Indexed: 12/14/2022] Open
Abstract
The knowledge on how tumor-associated stroma influences efficacy of anti-cancer therapy just started to emerge. Here we show that lung fibroblasts reduce melanoma sensitivity to the BRAF inhibitor (BRAFi) vemurafenib only if the two cell types are in close proximity. In the presence of fibroblasts, the adjacent melanoma cells acquire de-differentiated mesenchymal-like phenotype. Upon treatment with BRAFi, such melanoma cells maintain high levels of phospho ribosomal protein S6 (pS6), i.e. active mTOR signaling, which is suppressed in the BRAFi sensitive cells without stromal contacts. Inhibitors of PI3K/mTOR in combination with BRAFi eradicate pS6high cell subpopulations and potentiate anti-cancer effects in melanoma protected by the fibroblasts. mTOR and BRAF co-inhibition also delayed the development of early-stage lung metastases in vivo. In conclusion, we demonstrate that upon influence from fibroblasts, melanoma cells undergo a phenotype switch to the mesenchymal state, which can support PI3K/mTOR signaling. The lost sensitivity to BRAFi in such cells can be overcome by co-targeting PI3K/mTOR. This knowledge could be explored for designing BRAFi combination therapies aiming to eliminate both stroma-protected and non-protected counterparts of metastases.
Collapse
Affiliation(s)
- Kotryna Seip
- Dept. Tumor Biology, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Karianne G. Fleten
- Dept. Tumor Biology, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Anna Barkovskaya
- Dept. Tumor Biology, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Vigdis Nygaard
- Dept. Tumor Biology, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Mads H. Haugen
- Dept. Tumor Biology, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Birgit Ø. Engesæter
- Dept. Tumor Biology, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Gunhild M. Mælandsmo
- Dept. Tumor Biology, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
- K.G. Jebsen Center for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Dept. Pharmacy, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Lina Prasmickaite
- Dept. Tumor Biology, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| |
Collapse
|
36
|
Hartsough EJ, Aplin AE. Of Mice and Melanoma: PDX System for Modeling Personalized Medicine. Clin Cancer Res 2016; 22:1550-2. [PMID: 26842234 DOI: 10.1158/1078-0432.ccr-15-3054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 01/11/2016] [Indexed: 01/09/2023]
Abstract
Targeted therapies have advanced the treatment options for cutaneous melanoma, but many patients will progress on drug. Patient-derived xenografts (PDX) can be used to recapitulate therapy-resistant tumors. Furthermore, PDX modeling can be utilized in combination with targeted sequencing and phosphoproteomic platforms, providing preclinical basis for second-line targeted inhibitor strategies. See related article by Krepler et al., p. 1592.
Collapse
Affiliation(s)
- Edward J Hartsough
- Department of Cancer Biology and Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Andrew E Aplin
- Department of Cancer Biology and Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|