1
|
Vaez M, Montalbano S, Waples R, Krebs MD, Hellberg KLG, Gådin J, Bybjerg-Grauholm J, Mortensen PB, Børglum AD, Nordentoft M, Geschwind DH, Helenius D, Werge T, Schork AJ, Ingason A. Evaluating the Joint Effects of Recurrent Copy Number Variants and Polygenic Scores on the Risk of Psychiatric Disorders in the iPSYCH2015 Case-Cohort Sample. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.23.24314234. [PMID: 39398991 PMCID: PMC11469389 DOI: 10.1101/2024.09.23.24314234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The impact of rare recurrent copy number variants (rCNVs) and polygenic background attributed to common variants, on the risk of psychiatric disorders is well-established in separate studies. However, it remains unclear how polygenic background modulates the effect of rCNVs. Using the population-representative iPSYCH2015 case-cohort sample (N=96,599), we investigated the association between absolute risk of psychiatric disorders and carriage of rCNVs and polygenic scores (PGS), as well as the interaction effect between the two on disease risk. Carriers of rCNVs with higher gene constraint scores had an increased absolute risk for autism, ADHD, and schizophrenia, but not depression, whereas an increase in PGS for each respective disorder was associated with higher absolute risk across all four disorders. Similarly, elevated absolute risks were observed with the increase of both PGS and gene constraints of rCNVs except in the case of depression. In contrast to some previous case-control studies, our joint analysis of rCNV groups and PGS revealed no indication of significant interactive effect between these two factors on disease risk. Also, we found no significant interactions of PGS with any of the most common individual rCNVs, except in the case of 16p13.11 duplication, which was found to attenuate the effect of ADHD-PGS on the absolute risk of ADHD. This study advances our understanding of the interplay between rare and common important genetic risk factors for major psychiatric disorders and sheds light on the importance of population-based samples in implementing precision medicine.
Collapse
|
2
|
Harris L, McDonagh EM, Zhang X, Fawcett K, Foreman A, Daneck P, Sergouniotis PI, Parkinson H, Mazzarotto F, Inouye M, Hollox EJ, Birney E, Fitzgerald T. Genome-wide association testing beyond SNPs. Nat Rev Genet 2024:10.1038/s41576-024-00778-y. [PMID: 39375560 DOI: 10.1038/s41576-024-00778-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2024] [Indexed: 10/09/2024]
Abstract
Decades of genetic association testing in human cohorts have provided important insights into the genetic architecture and biological underpinnings of complex traits and diseases. However, for certain traits, genome-wide association studies (GWAS) for common SNPs are approaching signal saturation, which underscores the need to explore other types of genetic variation to understand the genetic basis of traits and diseases. Copy number variation (CNV) is an important source of heritability that is well known to functionally affect human traits. Recent technological and computational advances enable the large-scale, genome-wide evaluation of CNVs, with implications for downstream applications such as polygenic risk scoring and drug target identification. Here, we review the current state of CNV-GWAS, discuss current limitations in resource infrastructure that need to be overcome to enable the wider uptake of CNV-GWAS results, highlight emerging opportunities and suggest guidelines and standards for future GWAS for genetic variation beyond SNPs at scale.
Collapse
Affiliation(s)
- Laura Harris
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute (EBI), Wellcome Genome Campus, Hinxton, UK
| | - Ellen M McDonagh
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute (EBI), Wellcome Genome Campus, Hinxton, UK
| | - Xiaolei Zhang
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute (EBI), Wellcome Genome Campus, Hinxton, UK
| | - Katherine Fawcett
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute (EBI), Wellcome Genome Campus, Hinxton, UK
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Amy Foreman
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute (EBI), Wellcome Genome Campus, Hinxton, UK
| | - Petr Daneck
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Panagiotis I Sergouniotis
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute (EBI), Wellcome Genome Campus, Hinxton, UK
- Division of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Helen Parkinson
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute (EBI), Wellcome Genome Campus, Hinxton, UK
| | - Francesco Mazzarotto
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Michael Inouye
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Edward J Hollox
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Ewan Birney
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute (EBI), Wellcome Genome Campus, Hinxton, UK
| | - Tomas Fitzgerald
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute (EBI), Wellcome Genome Campus, Hinxton, UK.
| |
Collapse
|
3
|
Mollon J, Schultz LM, Huguet G, Knowles EEM, Mathias SR, Rodrigue A, Alexander-Bloch A, Saci Z, Jean-Louis M, Kumar K, Douard E, Almasy L, Jacquemont S, Glahn DC. Impact of Copy Number Variants and Polygenic Risk Scores on Psychopathology in the UK Biobank. Biol Psychiatry 2023; 94:591-600. [PMID: 36764568 PMCID: PMC10409883 DOI: 10.1016/j.biopsych.2023.01.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023]
Abstract
BACKGROUND Our understanding of the impact of copy number variants (CNVs) on psychopathology and their joint influence with polygenic risk scores (PRSs) remains limited. METHODS The UK Biobank recruited 502,534 individuals ages 37 to 73 years living in the United Kingdom between 2006 and 2010. After quality control, genotype data from 459,855 individuals were available for CNV calling. A total of 61 commonly studied recurrent neuropsychiatric CNVs were selected for analyses and examined individually and in aggregate (any CNV, deletion, or duplication). CNV risk scores were used to quantify intolerance of CNVs to haploinsufficiency. Major depressive disorder and generalized anxiety disorder PRSs were generated for White British individuals (N = 408,870). Mood/anxiety factor scores were generated using item-level questionnaire data (N = 501,289). RESULTS CNV carriers showed higher mood/anxiety scores than noncarriers, with the largest effects seen for intolerant deletions. A total of 11 individual deletions and 8 duplications were associated with higher mood/anxiety. Carriers of the 9p24.3 (DMRT1) duplication showed lower mood/anxiety. Associations remained significant for most CNVs when excluding individuals with psychiatric diagnoses. Nominally significant CNV × PRS interactions provided preliminary evidence that associations between select individual CNVs, but not CNVs in aggregate, and mood/anxiety may be modulated by PRSs. CONCLUSIONS CNVs associated with risk for psychiatric disorders showed small to large effects on dimensional mood/anxiety scores in a general population cohort, even when excluding individuals with psychiatric diagnoses. CNV × PRS interactions showed that associations between select CNVs and mood/anxiety may be modulated by PRSs.
Collapse
Affiliation(s)
- Josephine Mollon
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Laura M Schultz
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Guillaume Huguet
- Department of Pediatrics, Université de Montréal, Montreal, Quebec, Canada; Department of Pediatrics, Center Hospitalier Universitaire Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Emma E M Knowles
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Samuel R Mathias
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Amanda Rodrigue
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Aaron Alexander-Bloch
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Lifespan Brain Institute, The Children's Hospital of Philadelphia and Penn Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Zohra Saci
- Department of Pediatrics, Center Hospitalier Universitaire Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Martineau Jean-Louis
- Department of Pediatrics, Center Hospitalier Universitaire Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Kuldeep Kumar
- Department of Pediatrics, Center Hospitalier Universitaire Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Elise Douard
- Department of Pediatrics, Université de Montréal, Montreal, Quebec, Canada; Department of Pediatrics, Center Hospitalier Universitaire Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Laura Almasy
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Genetics, Perelman School of Medicine, Penn-CHOP Lifespan Brain Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sebastien Jacquemont
- Department of Pediatrics, Université de Montréal, Montreal, Quebec, Canada; Department of Pediatrics, Center Hospitalier Universitaire Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - David C Glahn
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Olin Neuropsychiatry Research Center, Institute of Living, Hartford, Connecticut
| |
Collapse
|
4
|
Kato H, Kimura H, Kushima I, Takahashi N, Aleksic B, Ozaki N. The genetic architecture of schizophrenia: review of large-scale genetic studies. J Hum Genet 2023; 68:175-182. [PMID: 35821406 DOI: 10.1038/s10038-022-01059-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/12/2022] [Accepted: 06/20/2022] [Indexed: 11/09/2022]
Abstract
Schizophrenia is a complex and often chronic psychiatric disorder with high heritability. Diagnosis of schizophrenia is still made clinically based on psychiatric symptoms; no diagnostic tests or biomarkers are available. Pathophysiology-based diagnostic scheme and treatments are also not available. Elucidation of the pathogenesis is needed for development of pathology-based diagnostics and treatments. In the past few decades, genetic research has made substantial advances in our understanding of the genetic architecture of schizophrenia. Rare copy number variations (CNVs) and rare single-nucleotide variants (SNVs) detected by whole-genome CNV analysis and whole-genome/-exome sequencing analysis have provided the great advances. Common single-nucleotide polymorphisms (SNPs) detected by large-scale genome-wide association studies have also provided important information. Large-scale genetic studies have been revealed that both rare and common genetic variants play crucial roles in this disorder. In this review, we focused on CNVs, SNVs, and SNPs, and discuss the latest research findings on the pathogenesis of schizophrenia based on these genetic variants. Rare variants with large effect sizes can provide mechanistic hypotheses. CRISPR-based genetics approaches and induced pluripotent stem cell technology can facilitate the functional analysis of these variants detected in patients with schizophrenia. Recent advances in long-read sequence technology are expected to detect variants that cannot be detected by short-read sequence technology. Various studies that bring together data from common variant and transcriptomic datasets provide biological insight. These new approaches will provide additional insight into the pathophysiology of schizophrenia and facilitate the development of pathology-based therapeutics.
Collapse
Affiliation(s)
- Hidekazu Kato
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Kimura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Nagahide Takahashi
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan.,Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| |
Collapse
|
5
|
Alkelai A, Greenbaum L, Docherty AR, Shabalin AA, Povysil G, Malakar A, Hughes D, Delaney SL, Peabody EP, McNamara J, Gelfman S, Baugh EH, Zoghbi AW, Harms MB, Hwang HS, Grossman-Jonish A, Aggarwal V, Heinzen EL, Jobanputra V, Pulver AE, Lerer B, Goldstein DB. The benefit of diagnostic whole genome sequencing in schizophrenia and other psychotic disorders. Mol Psychiatry 2022; 27:1435-1447. [PMID: 34799694 DOI: 10.1038/s41380-021-01383-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 01/04/2023]
Abstract
Schizophrenia has a multifactorial etiology, involving a polygenic architecture. The potential benefit of whole genome sequencing (WGS) in schizophrenia and other psychotic disorders is not well studied. We investigated the yield of clinical WGS analysis in 251 families with a proband diagnosed with schizophrenia (N = 190), schizoaffective disorder (N = 49), or other conditions involving psychosis (N = 48). Participants were recruited in Israel and USA, mainly of Jewish, Arab, and other European ancestries. Trio (parents and proband) WGS was performed for 228 families (90.8%); in the other families, WGS included parents and at least two affected siblings. In the secondary analyses, we evaluated the contribution of rare variant enrichment in particular gene sets, and calculated polygenic risk score (PRS) for schizophrenia. For the primary outcome, diagnostic rate was 6.4%; we found clinically significant, single nucleotide variants (SNVs) or small insertions or deletions (indels) in 14 probands (5.6%), and copy number variants (CNVs) in 2 (0.8%). Significant enrichment of rare loss-of-function variants was observed in a gene set of top schizophrenia candidate genes in affected individuals, compared with population controls (N = 6,840). The PRS for schizophrenia was significantly increased in the affected individuals group, compared to their unaffected relatives. Last, we were also able to provide pharmacogenomics information based on CYP2D6 genotype data for most participants, and determine their antipsychotic metabolizer status. In conclusion, our findings suggest that WGS may have a role in the setting of both research and genetic counseling for individuals with schizophrenia and other psychotic disorders and their families.
Collapse
Affiliation(s)
- Anna Alkelai
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA.
| | - Lior Greenbaum
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anna R Docherty
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Andrey A Shabalin
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Gundula Povysil
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
| | - Ayan Malakar
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
| | - Daniel Hughes
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
| | - Shannon L Delaney
- New York State Psychiatric Institute, Columbia University, New York City, NY, USA
| | - Emma P Peabody
- Psychology Research Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - James McNamara
- Psychology Research Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Sahar Gelfman
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
| | - Evan H Baugh
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
| | - Anthony W Zoghbi
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
- New York State Psychiatric Institute, Columbia University, New York City, NY, USA
- New York State Psychiatric Institute, Office of Mental Health, New York, NY, USA
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Matthew B Harms
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, NY, USA
| | - Hann-Shyan Hwang
- Department of Medicine, National Taiwan University School of Medicine, Taipei, Taiwan
| | - Anat Grossman-Jonish
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Vimla Aggarwal
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Erin L Heinzen
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Vaidehi Jobanputra
- Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Ann E Pulver
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bernard Lerer
- Biological Psychiatry Laboratory, Department of Psychiatry, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
6
|
Kondratyev NV, Alfimova MV, Golov AK, Golimbet VE. Bench Research Informed by GWAS Results. Cells 2021; 10:3184. [PMID: 34831407 PMCID: PMC8623533 DOI: 10.3390/cells10113184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022] Open
Abstract
Scientifically interesting as well as practically important phenotypes often belong to the realm of complex traits. To the extent that these traits are hereditary, they are usually 'highly polygenic'. The study of such traits presents a challenge for researchers, as the complex genetic architecture of such traits makes it nearly impossible to utilise many of the usual methods of reverse genetics, which often focus on specific genes. In recent years, thousands of genome-wide association studies (GWAS) were undertaken to explore the relationships between complex traits and a large number of genetic factors, most of which are characterised by tiny effects. In this review, we aim to familiarise 'wet biologists' with approaches for the interpretation of GWAS results, to clarify some issues that may seem counterintuitive and to assess the possibility of using GWAS results in experiments on various complex traits.
Collapse
Affiliation(s)
| | | | - Arkadiy K. Golov
- Mental Health Research Center, 115522 Moscow, Russia; (M.V.A.); (A.K.G.); (V.E.G.)
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Vera E. Golimbet
- Mental Health Research Center, 115522 Moscow, Russia; (M.V.A.); (A.K.G.); (V.E.G.)
| |
Collapse
|
7
|
Lencz T, Yu J, Khan RR, Flaherty E, Carmi S, Lam M, Ben-Avraham D, Barzilai N, Bressman S, Darvasi A, Cho JH, Clark LN, Gümüş ZH, Vijai J, Klein RJ, Lipkin S, Offit K, Ostrer H, Ozelius LJ, Peter I, Malhotra AK, Maniatis T, Atzmon G, Pe'er I. Novel ultra-rare exonic variants identified in a founder population implicate cadherins in schizophrenia. Neuron 2021; 109:1465-1478.e4. [PMID: 33756103 DOI: 10.1016/j.neuron.2021.03.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/16/2020] [Accepted: 03/01/2021] [Indexed: 12/12/2022]
Abstract
The identification of rare variants associated with schizophrenia has proven challenging due to genetic heterogeneity, which is reduced in founder populations. In samples from the Ashkenazi Jewish population, we report that schizophrenia cases had a greater frequency of novel missense or loss of function (MisLoF) ultra-rare variants (URVs) compared to controls, and the MisLoF URV burden was inversely correlated with polygenic risk scores in cases. Characterizing 141 "case-only" genes (MisLoF URVs in ≥3 cases with none in controls), the cadherin gene set was associated with schizophrenia. We report a recurrent case mutation in PCDHA3 that results in the formation of cytoplasmic aggregates and failure to engage in homophilic interactions on the plasma membrane in cultured cells. Modeling purifying selection, we demonstrate that deleterious URVs are greatly overrepresented in the Ashkenazi population, yielding enhanced power for association studies. Identification of the cadherin/protocadherin family as risk genes helps specify the synaptic abnormalities central to schizophrenia.
Collapse
Affiliation(s)
- Todd Lencz
- Departments of Psychiatry and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11550, USA; Department of Psychiatry, Division of Research, The Zucker Hillside Hospital Division of Northwell Health, Glen Oaks, NY 11004, USA; Institute for Behavioral Science, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA.
| | - Jin Yu
- Department of Psychiatry, Division of Research, The Zucker Hillside Hospital Division of Northwell Health, Glen Oaks, NY 11004, USA; Institute for Behavioral Science, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Raiyan Rashid Khan
- Department of Computer Science, Columbia University, New York, NY 10027, USA
| | - Erin Flaherty
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Shai Carmi
- Braun School of Public Health and Community Medicine, Faculty of Medicine, Hebrew University of Jerusalem, Ein Kerem, Jerusalem 9112102, Israel
| | - Max Lam
- Department of Psychiatry, Division of Research, The Zucker Hillside Hospital Division of Northwell Health, Glen Oaks, NY 11004, USA; Institute for Behavioral Science, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Danny Ben-Avraham
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Nir Barzilai
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Susan Bressman
- Department of Neurology, Beth Israel Medical Center, New York, NY 10003, USA
| | - Ariel Darvasi
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Judy H Cho
- Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lorraine N Clark
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA; Taub Institute for Research of Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA
| | - Zeynep H Gümüş
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joseph Vijai
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Robert J Klein
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Taub Institute for Research of Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA
| | - Steven Lipkin
- Departments of Medicine, Genetic Medicine and Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Kenneth Offit
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Harry Ostrer
- Departments of Pathology and Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Laurie J Ozelius
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Inga Peter
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anil K Malhotra
- Departments of Psychiatry and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11550, USA; Department of Psychiatry, Division of Research, The Zucker Hillside Hospital Division of Northwell Health, Glen Oaks, NY 11004, USA; Institute for Behavioral Science, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Tom Maniatis
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10027, USA; New York Genome Center, New York, NY 10013, USA
| | - Gil Atzmon
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Human Biology, Haifa University, Haifa, Israel
| | - Itsik Pe'er
- Department of Computer Science, Columbia University, New York, NY 10027, USA; Center for Computational Biology and Bioinformatics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
8
|
Kimura H, Mori D, Aleksic B, Ozaki N. Elucidation of molecular pathogenesis and drug development for psychiatric disorders from rare disease-susceptibility variants. Neurosci Res 2020; 170:24-31. [PMID: 33316300 DOI: 10.1016/j.neures.2020.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/19/2020] [Accepted: 11/26/2020] [Indexed: 10/22/2022]
Abstract
Recent rapid progress in genome analysis and large-scale consortia has made it possible to discover variants with a variety of allele frequencies and effect sizes associated with psychiatric disorders. Among psychiatric disorder-susceptibility variants, rare variants with large effect sizes detected by sequencing analysis or array comparative genomic hybridization would be particularly useful for elucidating pathophysiology by developing disease models, such as genome-edited mouse or induced pluripotent stem cells. In the last decade, investigations of rare variants with large effect size have revealed an important role of neurodevelopment in the pathogenesis of psychiatric disorders. In future research, integration of recent evidence concerning the contribution of the immune system or gut microbiota will enhance our understanding of psychiatric disorders and facilitate novel drug development.
Collapse
Affiliation(s)
- Hiroki Kimura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Daisuke Mori
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Brain & Mind Research Center, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Brain & Mind Research Center, Nagoya University Graduate School of Medicine, Nagoya, Japan; Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| |
Collapse
|
9
|
Ohi K, Nishizawa D, Muto Y, Sugiyama S, Hasegawa J, Soda M, Kitaichi K, Hashimoto R, Shioiri T, Ikeda K. Polygenic risk scores for late smoking initiation associated with the risk of schizophrenia. NPJ SCHIZOPHRENIA 2020; 6:36. [PMID: 33230172 PMCID: PMC7684279 DOI: 10.1038/s41537-020-00126-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023]
Abstract
Patients with schizophrenia display characteristic smoking-related behaviors and genetic correlations between smoking behaviors and schizophrenia have been identified in European individuals. However, the genetic etiology of the association remains to be clarified. The present study investigated transethnic genetic overlaps between European-based smoking behaviors and the risk of Japanese schizophrenia by conducting polygenic risk score (PRS) analyses. Large-scale European genome-wide association study (GWAS) datasets (n = 24,114-74,035) related to four smoking-related intermediate phenotypes [(i) smoking initiation, (ii) age at smoking initiation, (iii) smoking quantity, and (iv) smoking cessation] were utilized as discovery samples. PRSs derived from these discovery GWASs were calculated for 332 Japanese subjects [schizophrenia patients, their unaffected first-degree relatives (FRs), and healthy controls (HCs)] as a target sample. Based on GWASs of European smoking phenotypes, we investigated the effects of PRSs on smoking phenotypes and the risk of schizophrenia in the Japanese population. Of the four smoking-related behaviors, the PRSs for age at smoking initiation in Europeans significantly predicted the age at smoking initiation (R2 = 0.049, p = 0.026) and the PRSs for smoking cessation significantly predicted the smoking cessation (R2 = 0.092, p = 0.027) in Japanese ever-smokers. Furthermore, the PRSs related to age at smoking initiation in Europeans were higher in Japanese schizophrenia patients than in the HCs and those of the FRs were intermediate between those of patients with schizophrenia and those of the HCs (R2 = 0.015, p = 0.015). In our target subjects, patients with schizophrenia had a higher mean age at smoking initiation (p = 0.018) and rate of daily smoking initiation after age 20 years (p = 0.023) compared with the HCs. A total of 60.6% of the patients started to smoke before the onset of schizophrenia. These findings suggest that genetic factors affecting late smoking initiation are associated with the risk of schizophrenia.
Collapse
Affiliation(s)
- Kazutaka Ohi
- Department of Psychiatry and Psychotherapy, Gifu University Graduate School of Medicine, Gifu, Japan. .,Department of General Internal Medicine, Kanazawa Medical University, Ishikawa, Japan.
| | - Daisuke Nishizawa
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yukimasa Muto
- Department of Psychiatry and Psychotherapy, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Shunsuke Sugiyama
- Department of Psychiatry and Psychotherapy, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Junko Hasegawa
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Midori Soda
- Department of Biomedical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Kiyoyuki Kitaichi
- Department of Biomedical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.,Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| | - Toshiki Shioiri
- Department of Psychiatry and Psychotherapy, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
10
|
Polygenic risk score as clinical utility in psychiatry: a clinical viewpoint. J Hum Genet 2020; 66:53-60. [PMID: 32770057 DOI: 10.1038/s10038-020-0814-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/21/2020] [Accepted: 07/19/2020] [Indexed: 01/06/2023]
Abstract
Genome-wide association studies (GWASs) have detected many susceptible variants for common diseases, including psychiatric disorders. However, because of the small effect size of each variant, clinical utility that aims for risk prediction and/or diagnostic assistance based on the individual "variants" is difficult to use. Therefore, to improve the statistical power, polygenic risk score (PRS) has been established and applied in the GWAS as a robust analytic tool. Although PRS has potential predictive ability, because of its current "insufficient" discriminative power at the individual level for clinical use, it remains limited solely in the research area, specifically in the psychiatric field. For a better understanding of the PRS, in this review, we (1) introduce the clinical features of psychiatric disorders, (2) summarize the recent GWAS/PRS findings in the psychiatric disorders, (3) evaluate the problems of PRS, and (4) propose its possible utility to apply PRS into the psychiatric clinical setting.
Collapse
|
11
|
Abstract
Abstract
A long-established hypothesis is that schizophrenia has a strong genetic component. In the early 1990s, the first genetic variant that substantially increases risk for psychosis was identified. Since this initial reporting of deletions in the chromosomal region 22q11.2, nearly two decades passed until substantial insights into schizophrenia’s genetic architecture were gained. Schizophrenia is a polygenic disorder and genetic risk is conferred by both common and rare alleles distributed across the genome. A small number of rare, deleterious copy number variants (CNVs) are associated with moderate to substantial increases in individual risk to schizophrenia. These deletions and duplications are also associated with a range of neurodevelopmental disorders. The diagnostic investigation of CNVs in patients with schizophrenia is likely to represent one of the first examples of genetic testing in clinical psychiatry. The prerequisites for this are currently being defined.
Collapse
Affiliation(s)
- Franziska Degenhardt
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy , LVR Klinikum Essen, University Hospital Essen, University of Duisburg-Essen , Essen , Germany
| |
Collapse
|
12
|
Ohi K, Nishizawa D, Shimada T, Kataoka Y, Hasegawa J, Shioiri T, Kawasaki Y, Hashimoto R, Ikeda K. Polygenetic Risk Scores for Major Psychiatric Disorders Among Schizophrenia Patients, Their First-Degree Relatives, and Healthy Participants. Int J Neuropsychopharmacol 2020; 23:157-164. [PMID: 31900488 PMCID: PMC7171929 DOI: 10.1093/ijnp/pyz073] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/17/2019] [Accepted: 01/01/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The genetic etiology of schizophrenia (SCZ) overlaps with that of other major psychiatric disorders in samples of European ancestry. The present study investigated transethnic polygenetic features shared between Japanese SCZ or their unaffected first-degree relatives and European patients with major psychiatric disorders by conducting polygenic risk score (PRS) analyses. METHODS To calculate PRSs for 5 psychiatric disorders (SCZ, bipolar disorder [BIP], major depressive disorder, autism spectrum disorder, and attention-deficit/hyperactivity disorder) and PRSs differentiating SCZ from BIP, we utilized large-scale European genome-wide association study (GWAS) datasets as discovery samples. PRSs derived from these GWASs were calculated for 335 Japanese target participants [SCZ patients, FRs, and healthy controls (HCs)]. We took these PRSs based on GWASs of European psychiatric disorders and investigated their effect on risk in Japanese SCZ patients and unaffected first-degree relatives. RESULTS The PRSs obtained from European SCZ and BIP patients were higher in Japanese SCZ patients than in HCs. Furthermore, PRSs differentiating SCZ patients from European BIP patients were higher in Japanese SCZ patients than in HCs. Interestingly, PRSs related to European autism spectrum disorder were lower in Japanese first-degree relatives than in HCs or SCZ patients. The PRSs of autism spectrum disorder were positively correlated with a young onset age of SCZ. CONCLUSIONS These findings suggest that polygenic factors related to European SCZ and BIP and the polygenic components differentiating SCZ from BIP can transethnically contribute to SCZ risk in Japanese people. Furthermore, we suggest that reduced levels of an ASD-related genetic factor in unaffected first-degree relatives may help protect against SCZ development.
Collapse
Affiliation(s)
- Kazutaka Ohi
- Department of Neuropsychiatry, Kanazawa Medical University, Ishikawa, Japan
- Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
- Department of General Internal Medicine, Kanazawa Medical University, Ishikawa, Japan
- Department of Psychiatry and Psychotherapy, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Daisuke Nishizawa
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takamitsu Shimada
- Department of Neuropsychiatry, Kanazawa Medical University, Ishikawa, Japan
| | - Yuzuru Kataoka
- Department of Neuropsychiatry, Kanazawa Medical University, Ishikawa, Japan
| | - Junko Hasegawa
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Toshiki Shioiri
- Department of Psychiatry and Psychotherapy, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yasuhiro Kawasaki
- Department of Neuropsychiatry, Kanazawa Medical University, Ishikawa, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
- Molecular Research Center for Children’s Mental Development, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|