1
|
Pahkuri S, Katayama S, Valta M, Nygård L, Knip M, Kere J, Ilonen J, Lempainen J. The effect of type 1 diabetes protection and susceptibility associated HLA class II genotypes on DNA methylation in immune cells. HLA 2024; 103:e15548. [PMID: 38887913 DOI: 10.1111/tan.15548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/24/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024]
Abstract
The HLA region, especially HLA class I and II genes, which encode molecules for antigen presentation to T cells, plays a major role in the predisposition to autoimmune disorders. To clarify the mechanisms behind this association, we examined genome-wide DNA methylation by microarrays to cover over 850,000 CpG sites in the CD4+ T cells and CD19+ B cells of healthy subjects homozygous either for DRB1*15-DQA1*01-DQB1*06:02 (DR2-DQ6, n = 14), associated with a strongly decreased T1D risk, DRB1*03-DQA1*05-DQB1*02 (DR3-DQ2, n = 19), or DRB1*04:01-DQA1*03-DQB1*03:02 (DR4-DQ8, n = 17), associated with a moderately increased T1D risk. In total, we discovered 14 differentially methylated CpG probes, of which 10 were located in the HLA region and six in the HLA-DRB1 locus. The main differences were between the protective genotype DR2-DQ6 and the risk genotypes DR3-DQ2 and DR4-DQ8, where the DR2-DQ6 group was hypomethylated compared to the other groups in all but four of the differentially methylated probes. The differences between the risk genotypes DR3-DQ2 and DR4-DQ8 were small. Our results indicate that HLA variants have few systemic effects on methylation and that their effect on autoimmunity is conveyed directly by HLA molecules, possibly by differences in expression levels or function.
Collapse
Affiliation(s)
- Sirpa Pahkuri
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Shintaro Katayama
- Folkhälsan Research Center, Helsinki, Finland
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Milla Valta
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Lucas Nygård
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Mikael Knip
- Faculty of Medicine, Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
- Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland
| | - Juha Kere
- Folkhälsan Research Center, Helsinki, Finland
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Johanna Lempainen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
- Clinical Microbiology, Turku University Hospital, Turku, Finland
| |
Collapse
|
2
|
Zaeifi D, Azarnia M. Network Cluster Analysis of PPI and Phenotype Ontology for Type 1 Diabetes Mellitus. IRANIAN JOURNAL OF BIOTECHNOLOGY 2024; 22:e3502. [PMID: 38827336 PMCID: PMC11139444 DOI: 10.30498/ijb.2024.361840.3502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/05/2023] [Indexed: 06/04/2024]
Abstract
Background Our knowledge of Type 1 Diabetes Mellitus (T1DM) etiology is incomplete; however, the pathogenesis of the disease includes T-cell-mediated destruction of β-cells. Objective The present study aimed to investigate the key gene pathways and co-expression networks in T1DM disease. Material and Methods TIDM-associated genes were identified from 13 databases, enrichment of pathways annotated with functional annotations, and analysis of protein-protein network interactions. Next, functional modules and transcription factor networks were constructed. The analysis of gene co-expression networks was conducted to discover associated pivotal modules. Results A total of 172 expressed genes and four variants (SNP) were filtered in the of T1DM disease; pathway enrichment analysis identified key pathways, such as inflammatory bowel disease, type I diabetes mellitus, cytokine-cytokine receptor interaction, Th17 cell differentiation, JAK-STAT signaling pathway, and graft-versus-host disease. A weighted correlation network analysis revealed one module that was strongly correlated with T1DM. Functional annotation revealed that the module was mainly enriched in pathways such as T cell activation, regulation of immune system process, and response to the organic substance. IRF2, IRF4, IRF8, and CDX2 were regulated in the module at a significant level. Conclusion The study identified IL-2 as a significant T1DM hotspot and highlighted the role of hub genes and transcription factors in the autoimmune disease, offering potentials for treatment and prevention.
Collapse
Affiliation(s)
- Davood Zaeifi
- Department of Cellular and Molecular Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mahnaz Azarnia
- Department of Cellular and Molecular Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
- Laboratory of Tissue and Embryology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| |
Collapse
|
3
|
Tojjar J, Cervin M, Hedlund E, Brahimi Q, Forsander G, Elding Larsson H, Ludvigsson J, Samuelsson U, Marcus C, Persson M, Carlsson A. Sex Differences in Age of Diagnosis, HLA Genotype, and Autoantibody Profile in Children With Type 1 Diabetes. Diabetes Care 2023; 46:1993-1996. [PMID: 37699205 DOI: 10.2337/dc23-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 08/11/2023] [Indexed: 09/14/2023]
Abstract
OBJECTIVE To examine sex differences in children with newly diagnosed type 1 diabetes (T1D) with respect to age at diagnosis, presence of autoantibodies (GAD antibody [GADA], insulinoma-associated protein 2 [IA-2A], insulin autoantibody [IAA], and zinc transporter 8 autoantibody), and HLA risk. RESEARCH DESIGN AND METHODS A population-based nationwide sample of 3,645 Swedish children at T1D diagnosis was used. RESULTS Girls were younger at T1D diagnosis (9.53 vs. 10.23 years; P < 0.001), more likely to be autoantibody-positive (94.7% vs. 92.0%; P = 0.002), more often positive for multiple autoantibodies (P < 0.001), more likely to be positive for GADA (64.9% vs. 49.0%; P < 0.001), and less likely to be positive for IAA (32.3% vs. 33.8%; P = 0.016). Small sex differences in HLA risk were found in children <9 years of age. CONCLUSIONS The disease mechanisms leading to T1D may influence the immune system differently in girls and boys.
Collapse
Affiliation(s)
- Jasaman Tojjar
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Matti Cervin
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Emma Hedlund
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Paediatrics, Kristianstad Central Hospital, Kristianstad, Sweden
| | - Qefsere Brahimi
- Department of Clinical Sciences, Malmö, Clinical Research Center, Lund University, Malmö, Sweden
| | - Gun Forsander
- The Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
- Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Helena Elding Larsson
- Department of Clinical Sciences, Malmö, Clinical Research Center, Lund University, Malmö, Sweden
- Skåne University Hospital, Malmö, Sweden
| | - Johnny Ludvigsson
- Crown Princess Victoria Childreńs Hospital, Linköping University Hospital, Linköping, Sweden
- Division of Pediatrics, Department of Biomedical and Clinical Sciences (BKV), Medical Faculty, Linköping University, Linköping, Sweden
| | - Ulf Samuelsson
- Crown Princess Victoria Childreńs Hospital, Linköping University Hospital, Linköping, Sweden
- Division of Pediatrics, Department of Biomedical and Clinical Sciences (BKV), Medical Faculty, Linköping University, Linköping, Sweden
| | - Claude Marcus
- Division of Pediatrics, Department of Clinical Science Intervention and Technology, Karolinska Institute, Stockholm, Sweden
| | - Martina Persson
- Department of Medicine, Clinical Epidemiology, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Science and Education, Karolinska Institute, Södersjukhuset, Stockholm, Sweden
| | | |
Collapse
|
4
|
Lernmark Å, Akolkar B, Hagopian W, Krischer J, McIndoe R, Rewers M, Toppari J, Vehik K, Ziegler AG. Possible heterogeneity of initial pancreatic islet beta-cell autoimmunity heralding type 1 diabetes. J Intern Med 2023; 294:145-158. [PMID: 37143363 PMCID: PMC10524683 DOI: 10.1111/joim.13648] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The etiology of type 1 diabetes (T1D) foreshadows the pancreatic islet beta-cell autoimmune pathogenesis that heralds the clinical onset of T1D. Standardized and harmonized tests of autoantibodies against insulin (IAA), glutamic acid decarboxylase (GADA), islet antigen-2 (IA-2A), and ZnT8 transporter (ZnT8A) allowed children to be followed from birth until the appearance of a first islet autoantibody. In the Environmental Determinants of Diabetes in the Young (TEDDY) study, a multicenter (Finland, Germany, Sweden, and the United States) observational study, children were identified at birth for the T1D high-risk HLA haploid genotypes DQ2/DQ8, DQ2/DQ2, DQ8/DQ8, and DQ4/DQ8. The TEDDY study was preceded by smaller studies in Finland, Germany, Colorado, Washington, and Sweden. The aims were to follow children at increased genetic risk to identify environmental factors that trigger the first-appearing autoantibody (etiology) and progress to T1D (pathogenesis). The larger TEDDY study found that the incidence rate of the first-appearing autoantibody was split into two patterns. IAA first peaked already during the first year of life and tapered off by 3-4 years of age. GADA first appeared by 2-3 years of age to reach a plateau by about 4 years. Prior to the first-appearing autoantibody, genetic variants were either common or unique to either pattern. A split was also observed in whole blood transcriptomics, metabolomics, dietary factors, and exposures such as gestational life events and early infections associated with prolonged shedding of virus. An innate immune reaction prior to the adaptive response cannot be excluded. Clarifying the mechanisms by which autoimmunity is triggered to either insulin or GAD65 is key to uncovering the etiology of autoimmune T1D.
Collapse
Affiliation(s)
- Åke Lernmark
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Malmö, Sweden
| | - Beena Akolkar
- National Institute of Diabetes & Digestive & Kidney Diseases, Bethesda, MD USA
| | | | - Jeffrey Krischer
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL USA
| | - Richard McIndoe
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Marian Rewers
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, Colorado USA
| | - Jorma Toppari
- Department of Pediatrics, Turku University Hospital, and Institute of Biomedicine, Research Centre for Integrated Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Kendra Vehik
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL USA
| | - Anette-G. Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, and Klinikum rechts der Isar, Technische Universität München, and Forschergruppe Diabetes e.V., Neuherberg, Germany
| | | |
Collapse
|
5
|
Hedlund E, Ludvigsson J, Elding Larsson H, Forsander G, Ivarsson S, Marcus C, Samuelsson U, Persson M, Carlsson A. Month of birth and the risk of developing type 1 diabetes among children in the Swedish national Better Diabetes Diagnosis Study. Acta Paediatr 2022; 111:2378-2383. [PMID: 35615774 PMCID: PMC9795915 DOI: 10.1111/apa.16426] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 12/30/2022]
Abstract
AIM Previous studies have reported an association between month of birth and incidence of type 1 diabetes. Using population-based data, including almost all newly diagnosed children with type 1 diabetes in Sweden, we tested whether month of birth influences the risk of type 1 diabetes. METHODS For 8761 children diagnosed with type 1 diabetes between May 2005 and December 2016 in the Better Diabetes Diagnosis study, month of birth, sex and age were compared. Human leucocyte antigen (HLA) genotype and autoantibodies at diagnosis were analysed for a subset of the cohort (n = 3647). Comparisons with the general population used data from Statistics Sweden. RESULTS We found no association between month of birth or season and the incidence of type 1 diabetes in the cohort as a whole. However, boys diagnosed before 5 years were more often born in May (p = 0.004). We found no correlation between month of birth and HLA or antibodies. CONCLUSION In this large nationwide study, the impact of month of birth on type 1 diabetes diagnosis was weak, except for boys diagnosed before 5 years of age, who were more likely born in May. This may suggest different triggers for different subgroups of patients with type 1 diabetes.
Collapse
Affiliation(s)
- Emma Hedlund
- Department of Clinical Sciences LundLund UniversityLundSweden,Department of PaediatricsKristianstad Central HospitalKristianstadSweden
| | - Johnny Ludvigsson
- Crown Princess Victoria Children's HospitalLinköping University HospitalLinköpingSweden,Division of Pediatrics, Department of Biomedical and Clinical Sciences (BKV), Medical FacultyLinköping UniversityLinköpingSweden
| | - Helena Elding Larsson
- Department of Clinical Sciences, MalmöLund University, CRCMalmöSweden,Skåne University HospitalMalmöSweden
| | - Gun Forsander
- The Queen Silvia Children's HospitalSahlgrenska University HospitalGothenburgSweden,Institute of Clinical SciencesUniversity of GothenburgGothenburgSweden
| | - Sten Ivarsson
- Department of Clinical Sciences, MalmöLund University, CRCMalmöSweden
| | - Claude Marcus
- Division of Pediatrics, Department of Clinical Science Intervention and TechnologyKarolinska InstituteStockholmSweden
| | - Ulf Samuelsson
- Crown Princess Victoria Children's HospitalLinköping University HospitalLinköpingSweden,Division of Pediatrics, Department of Biomedical and Clinical Sciences (BKV), Medical FacultyLinköping UniversityLinköpingSweden
| | - Martina Persson
- Department of Medicine, Clinical EpidemiologyKarolinska InstituteStockholmSweden,Department of Clinical Science and EducationKarolinska Institute, SödersjukhusetStockholmSweden
| | - Annelie Carlsson
- Department of Clinical Sciences LundLund UniversityLundSweden,Skåne University HospitalMalmöSweden
| |
Collapse
|
6
|
Williams CL, Aitken RJ, Wilson IV, Mortimer GLM, Long AE, Williams AJK, Gillespie KM. The measurement of autoantibodies to insulin informs diagnosis of diabetes in a childhood population negative for other autoantibodies. Diabet Med 2022; 39:e14979. [PMID: 36251483 PMCID: PMC9827938 DOI: 10.1111/dme.14979] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/14/2022] [Indexed: 02/06/2023]
Abstract
AIMS Some childhood type 1 diabetes cases are islet autoantibody negative at diagnosis. Potential explanations include misdiagnosis of genetic forms of diabetes or insufficient islet autoantibody testing. Many NHS laboratories offer combinations of three autoantibody markers. We sought to determine the benefit of testing for additional islet autoantibodies, including insulin (IAA) and tetraspanin 7 (TSPAN7A). METHODS Radiobinding assays (RBAs) were used to test for four islet autoantibodies in children with newly diagnosed type 1 diabetes (n = 486; 54.1% male; median age 10.4 years [range 0.7-18.0]; median duration 1 day [range -183 to 14]). Islet autoantibody negative children were tested for TSPAN7A using a luminescence-based test. Where available, islet cell antibody (ICA) and human leucocyte antigen (HLA) data were considered. RESULTS Using three autoantibody markers, 21/486 (4.3%) children were autoantibody negative. Testing for IAA classified a further 9/21 (42.9%) children as autoantibody positive. Of the remaining 12 (2.5%) autoantibody negative children, all were TPAN7A negative, seven were ICA negative and one was positive for the protective variant DQB1*0602. One was subsequently diagnosed with Maturity Onset of Diabetes in the Young, but follow-up was not available in all cases. CONCLUSIONS Using highly sensitive assays, testing for three autoantibodies fails to detect islet autoimmunity in approximately 1/20 children diagnosed with type 1 diabetes. Testing for IAA in children <5 years and GADA in those >10 years was the most effective strategy for detecting islet autoimmunity. The ability to test for all islet autoantibodies should inform clinical decisions and make screening for monogenic diabetes more cost-effective.
Collapse
Affiliation(s)
- Claire L. Williams
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Southmead HospitalBristolUK
| | - Rachel J. Aitken
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Southmead HospitalBristolUK
| | - Isabel V. Wilson
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Southmead HospitalBristolUK
| | - Georgina L. M. Mortimer
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Southmead HospitalBristolUK
| | - Anna E. Long
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Southmead HospitalBristolUK
| | - Alistair J. K. Williams
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Southmead HospitalBristolUK
| | | | - Kathleen M. Gillespie
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Southmead HospitalBristolUK
| |
Collapse
|
7
|
Du C, Whiddett RO, Buckle I, Chen C, Forbes JM, Fotheringham AK. Advanced Glycation End Products and Inflammation in Type 1 Diabetes Development. Cells 2022; 11:3503. [PMID: 36359899 PMCID: PMC9657002 DOI: 10.3390/cells11213503] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/18/2022] [Accepted: 10/31/2022] [Indexed: 08/08/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease in which the β-cells of the pancreas are attacked by the host's immune system, ultimately resulting in hyperglycemia. It is a complex multifactorial disease postulated to result from a combination of genetic and environmental factors. In parallel with increasing prevalence of T1D in genetically stable populations, highlighting an environmental component, consumption of advanced glycation end products (AGEs) commonly found in in Western diets has increased significantly over the past decades. AGEs can bind to cell surface receptors including the receptor for advanced glycation end products (RAGE). RAGE has proinflammatory roles including in host-pathogen defense, thereby influencing immune cell behavior and can activate and cause proliferation of immune cells such as islet infiltrating CD8+ and CD4+ T cells and suppress the activity of T regulatory cells, contributing to β-cell injury and hyperglycemia. Insights from studies of individuals at risk of T1D have demonstrated that progression to symptomatic onset and diagnosis can vary, ranging from months to years, providing a window of opportunity for prevention strategies. Interaction between AGEs and RAGE is believed to be a major environmental risk factor for T1D and targeting the AGE-RAGE axis may act as a potential therapeutic strategy for T1D prevention.
Collapse
Affiliation(s)
- Chenping Du
- Glycation and Diabetes Complications Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba 4102, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia 4072, Australia
| | - Rani O. Whiddett
- Glycation and Diabetes Complications Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba 4102, Australia
| | - Irina Buckle
- Glycation and Diabetes Complications Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba 4102, Australia
- Faculty of Medicine, The University of Queensland, St Lucia 4072, Australia
| | - Chen Chen
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia 4072, Australia
| | - Josephine M. Forbes
- Glycation and Diabetes Complications Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba 4102, Australia
- Faculty of Medicine, The University of Queensland, St Lucia 4072, Australia
- Department of Medicine, The University of Melbourne, Austin Health, Heidelberg 3084, Australia
| | - Amelia K. Fotheringham
- Glycation and Diabetes Complications Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba 4102, Australia
- Faculty of Medicine, The University of Queensland, St Lucia 4072, Australia
| |
Collapse
|
8
|
Ilonen J, Laine A, Kiviniemi M, Härkönen T, Lempainen J, Knip M, Groop P, Ilonen J, Otonkoski T, Veijola R, Abram A, Aito H, Arkhipov I, Blanco‐Sequeiros E, Bondestam J, Granholm M, Haapalehto‐Ikonen M, Horn T, Huopio H, Janer J, Johansson C, Kalliokoski L, Keskinen P, Kinnala A, Korteniemi M, Laakkonen H, Lähde J, Miettinen P, Nykänen P, Popov E, Pulkkinen M, Salonen M, Salonen P, Sankala J, Sidoroff V, Suomi A, Tiainen T, Veijola R. Associations between deduced first islet specific autoantibody with sex, age at diagnosis and genetic risk factors in young children with type 1 diabetes. Pediatr Diabetes 2022; 23:693-702. [PMID: 35403376 PMCID: PMC9541564 DOI: 10.1111/pedi.13340] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/25/2022] [Accepted: 04/04/2022] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES We aimed to further characterize demography and genetic associations of type 1 diabetes "endotypes" defined by the first appearing islet specific autoantibodies. RESEARCH DESIGN AND METHODS We analyzed 3277 children diagnosed before the age of 10 years from the Finnish Pediatric Diabetes Register. The most likely first autoantibody could be deduced in 1636 cases (49.9%) based on autoantibody combinations at diagnosis. Distribution of age, sex, HLA genotypes and allele frequencies of 18 single nucleotide polymorphisms (SNPs) in non-HLA risk genes were compared between the endotypes. RESULTS Two major groups with either glutamic acid decarboxylase (GADA) or insulin autoantibodies (IAA) as the deduced first autoantibody showed significant differences in their demographic and genetic features. Boys and children diagnosed at young age had more often IAA-initiated autoimmunity whereas GADA-initiated autoimmunity was observed more frequently in girls and in subjects diagnosed at an older age. IAA as the first autoantibody was also most common in HLA genotype groups conferring high-disease risk while GADA first was seen more evenly and frequently in HLA groups associated with lower type 1 diabetes risk. The risk alleles in IKZF4 and ERBB3 genes were associated with GADA-initiated whereas those in PTPN22, INS and PTPN2 genes were associated with IAA-initiated autoimmunity. CONCLUSIONS The results support the assumption that in around half of the young children the first autoantibody can be deduced based on islet autoantibody combinations at disease diagnosis. Strong differences in sex and age distributions as well as in genetic associations could be observed between GADA- and IAA-initiated autoimmunity.
Collapse
Affiliation(s)
- Jorma Ilonen
- Immunogenetics Laboratory, Institute of BiomedicineUniversity of TurkuTurkuFinland
| | - Antti‐Pekka Laine
- Immunogenetics Laboratory, Institute of BiomedicineUniversity of TurkuTurkuFinland
| | - Minna Kiviniemi
- Immunogenetics Laboratory, Institute of BiomedicineUniversity of TurkuTurkuFinland
| | - Taina Härkönen
- Pediatric Research Center, Children's HospitalUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland,Research Program for Clinical and Molecular Metabolism, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Johanna Lempainen
- Immunogenetics Laboratory, Institute of BiomedicineUniversity of TurkuTurkuFinland,Departments of PediatricsTurku University HospitalTurkuFinland,Clinical MicrobiologyTurku University HospitalTurkuFinland
| | - Mikael Knip
- Pediatric Research Center, Children's HospitalUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland,Research Program for Clinical and Molecular Metabolism, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland,Tampere Center for Child Health ResearchTampere University HospitalTampereFinland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Dahl A, Jenkins S, Pittock SJ, Mills J, Foster J, McKeon A, Pittock S. Comprehensive Diabetes Autoantibody Laboratory-Based Clinical Service Testing in 6044 Consecutive Patients: Analysis of Age and Sex Effects. J Appl Lab Med 2022; 7:1037-1046. [DOI: 10.1093/jalm/jfac037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/05/2022] [Indexed: 11/13/2022]
Abstract
Abstract
Background
In 2017, Mayo Clinic Laboratories commenced offering a comprehensive type 1 diabetes mellitus (T1DM) autoantibody (Ab) evaluation including 4 known Abs targeting glutamic acid decarboxylase (GAD65), protein tyrosine phosphatase-like islet antigen 2 (IA2), insulin (IAA), and zinc transporter 8 protein (ZnT8) antigens.
Methods
The objective of this study was to evaluate real-time data on the frequency and patterns of all 4 Abs stratified by age and sex from 6044 unique consecutive adult and pediatric patients undergoing evaluation for suspected diabetes.
Results
At least one Ab was found in 3370 (56%) of all samples: 67% of children (aged 0–17), 49% of young adults (aged 18–35), and 41% for both middle-aged (aged 36–55) and older (aged >55) adults (P ≤ 0.0001). GAD65-Abs were the most common in all age groups, followed by ZnT8-Ab in those <36 years, or IAA-Ab in those ≥36. Frequencies of IA2- and ZnT8-Abs drop significantly with increasing age. Clusters of 3 or 4 Abs were more frequently encountered in younger patients (41% of children vs 12% in middle- and 13% in older age groups, P ≤ 0.0001).
Conclusions
Children undergoing serological evaluation for T1DM were more commonly positive for autoantibodies than older age groups. The frequency of ZnT8- and IA2-Abs decreases, and IAA-Ab frequency increases with increasing age, and clusters of 2 to 4 autoantibodies are more common in children. In clinical practice, comprehensive testing for diabetes autoantibodies resulted in a switch in diagnosis to T1DM for patients previously classified as type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Amanda Dahl
- Department of Pediatric Endocrinology , Rochester, MN , USA
| | | | | | - John Mills
- Laboratory Medicine and Pathology , Rochester, MN , USA
| | - Jesica Foster
- Laboratory Medicine and Pathology , Rochester, MN , USA
| | - Andrew McKeon
- Laboratory Medicine and Pathology , Rochester, MN , USA
| | | |
Collapse
|
10
|
Parviainen A, Härkönen T, Ilonen J, But A, Knip M. Heterogeneity of Type 1 Diabetes at Diagnosis Supports Existence of Age-Related Endotypes. Diabetes Care 2022; 45:871-879. [PMID: 35147706 DOI: 10.2337/dc21-1251] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 01/19/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Previous findings suggest that there are age-related endotypes of type 1 diabetes with different underlying etiopathological mechanisms in those diagnosed at age <7 years compared with those diagnosed at age ≥13 years. We set out to explore whether variation in demographic, clinical, autoimmune, and genetic characteristics of children and adolescents with newly diagnosed type 1 diabetes support the existence of these proposed endotypes. RESEARCH DESIGN AND METHODS We used data from the Finnish Pediatric Diabetes Register to analyze characteristics of 6,015 children and adolescents diagnosed with type 1 diabetes between 2003 and 2019. We described and compared demographic data, clinical characteristics at diagnosis, autoantibody profiles, and HLA class II-associated disease risk between three groups formed based on age at diagnosis: <7, 7-12, and ≥13 years. RESULTS We found significant age-related differences in most of the characteristics analyzed. Children diagnosed at age <7 years were characterized by a higher prevalence of affected first-degree relatives, stronger HLA-conferred disease susceptibility, and higher number of autoantibodies at diagnosis, in particular a higher frequency of insulin autoantibodies, when compared with older children. Those diagnosed at age ≥13 years had a considerably higher male preponderance, higher frequency of glutamic acid decarboxylase autoantibodies, longer duration of symptoms before diagnosis, and more severe metabolic decompensation, reflected, for example, by a higher frequency of diabetic ketoacidosis. CONCLUSIONS Our findings suggest that the heterogeneity of type 1 diabetes is associated with the underlying disease process and support the existence of distinct endotypes of type 1 diabetes related to age at diagnosis.
Collapse
Affiliation(s)
- Anna Parviainen
- Pediatric Research Center, Children's Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Taina Härkönen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Anna But
- Biostatistics Consulting, Department of Public Health, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Mikael Knip
- Pediatric Research Center, Children's Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Center for Child Health Research, Tampere University Hospital, Tampere, Finland
| | | |
Collapse
|
11
|
Martinez MM, Spiliopoulos L, Salami F, Agardh D, Toppari J, Lernmark Å, Kero J, Veijola R, Tossavainen P, Palmu S, Lundgren M, Borg H, Katsarou A, Larsson HE, Knip M, Maziarz M, Törn C. Heterogeneity of beta-cell function in subjects with multiple islet autoantibodies in the TEDDY family prevention study - TEFA. Clin Diabetes Endocrinol 2022; 7:23. [PMID: 34983671 PMCID: PMC8728995 DOI: 10.1186/s40842-021-00135-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/29/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Individuals with multiple islet autoantibodies are at increased risk for clinical type 1 diabetes and may proceed gradually from stage to stage complicating the recruitment to secondary prevention studies. We evaluated multiple islet autoantibody positive subjects before randomisation for a clinical trial 1 month apart for beta-cell function, glucose metabolism and continuous glucose monitoring (CGM). We hypothesized that the number and type of islet autoantibodies in combination with different measures of glucose metabolism including fasting glucose, HbA1c, oral glucose tolerance test (OGTT), intra venous glucose tolerance test (IvGTT) and CGM allows for more precise staging of autoimmune type 1 diabetes than the number of islet autoantibodies alone. METHODS Subjects (n = 57) at 2-50 years of age, positive for two or more islet autoantibodies were assessed by fasting plasma insulin, glucose, HbA1c as well as First Phase Insulin Response (FPIR) in IvGTT, followed 1 month later by OGTT, and 1 week of CGM (n = 24). RESULTS Autoantibodies against GAD65 (GADA; n = 52), ZnT8 (ZnT8A; n = 40), IA-2 (IA-2A; n = 38) and insulin (IAA; n = 28) were present in 9 different combinations of 2-4 autoantibodies. Fasting glucose and HbA1c did not differ between the two visits. The estimate of the linear relationship between log2-transformed FPIR as the outcome and log2-transformed area under the OGTT glucose curve (AUC) as the predictor, adjusting for age and sex was - 1.88 (- 2.71, - 1.05) p = 3.49 × 10-5. The direction of the estimates for all glucose metabolism measures was positive except for FPIR, which was negative. FPIR was associated with higher blood glucose. Both the median and the spread of the CGM glucose data were significantly associated with higher glucose values based on OGTT, higher HbA1c, and lower FPIR. There was no association between glucose metabolism, autoantibody number and type except that there was an indication that the presence of at least one of ZnT8(Q/R/W) A was associated with a lower log2-transformed FPIR (- 0.80 (- 1.58, - 0.02), p = 0.046). CONCLUSIONS The sole use of two or more islet autoantibodies as inclusion criterion for Stage 1 diabetes in prevention trials is unsatisfactory. Staging type 1 diabetes needs to take the heterogeneity in beta-cell function and glucose metabolism into account. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT02605148 , November 16, 2015.
Collapse
Affiliation(s)
- Maria Månsson Martinez
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Jan Waldenströms gata 35, Box 503 32, SE-214 28, Malmö, Sweden.
| | - Lampros Spiliopoulos
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Jan Waldenströms gata 35, Box 503 32, SE-214 28, Malmö, Sweden
| | - Falastin Salami
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Jan Waldenströms gata 35, Box 503 32, SE-214 28, Malmö, Sweden
| | - Daniel Agardh
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Jan Waldenströms gata 35, Box 503 32, SE-214 28, Malmö, Sweden
| | - Jorma Toppari
- Department of Pediatrics, Turku University Hospital, Turku, Finland
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, and Centre for Population Health Research, University of Turku, Turku, Finland
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Jan Waldenströms gata 35, Box 503 32, SE-214 28, Malmö, Sweden
| | - Jukka Kero
- Department of Pediatrics, Turku University Hospital, Turku, Finland
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, and Centre for Population Health Research, University of Turku, Turku, Finland
| | - Riitta Veijola
- Department of Pediatrics, PEDEGO Research Unit, MRC Oulu, University of Oulu, Oulu, Finland
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Päivi Tossavainen
- Department of Pediatrics, PEDEGO Research Unit, MRC Oulu, University of Oulu, Oulu, Finland
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Sauli Palmu
- Department of Pediatrics, Tampere Center for Child, Adolescent and Maternal Health Research, Tampere University Hospital, Tampere, Finland
| | - Markus Lundgren
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Jan Waldenströms gata 35, Box 503 32, SE-214 28, Malmö, Sweden
| | - Henrik Borg
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Jan Waldenströms gata 35, Box 503 32, SE-214 28, Malmö, Sweden
| | - Anastasia Katsarou
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Jan Waldenströms gata 35, Box 503 32, SE-214 28, Malmö, Sweden
| | - Helena Elding Larsson
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Jan Waldenströms gata 35, Box 503 32, SE-214 28, Malmö, Sweden
| | - Mikael Knip
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Marlena Maziarz
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Jan Waldenströms gata 35, Box 503 32, SE-214 28, Malmö, Sweden
| | - Carina Törn
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Jan Waldenströms gata 35, Box 503 32, SE-214 28, Malmö, Sweden
| |
Collapse
|
12
|
Silverstein A, Dudaev A, Studneva M, Aitken J, Blokh S, Miller AD, Tanasova S, Rose N, Ryals J, Borchers C, Nordstrom A, Moiseyakh M, Herrera AS, Skomorohov N, Marshall T, Wu A, Cheng RH, Syzko K, Cotter PD, Podzyuban M, Thilly W, Smith PD, Barach P, Bouri K, Schoenfeld Y, Matsuura E, Medvedeva V, Shmulevich I, Cheng L, Seegers P, Khotskaya Y, Flaherty K, Dooley S, Sorenson EJ, Ross M, Suchkov S. Evolution of biomarker research in autoimmunity conditions for health professionals and clinical practice. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 190:219-276. [DOI: 10.1016/bs.pmbts.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Nevalainen J, Datta S, Toppari J, Ilonen J, Hyöty H, Veijola R, Knip M, Virtanen SM. Frailty modeling under a selective sampling protocol: an application to type 1 diabetes related autoantibodies. Stat Med 2021; 40:6410-6420. [PMID: 34496070 DOI: 10.1002/sim.9190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/12/2021] [Accepted: 08/23/2021] [Indexed: 02/01/2023]
Abstract
In studies following selective sampling protocols for secondary outcomes, conventional analyses regarding their appearance could provide misguided information. In the large type 1 diabetes prevention and prediction (DIPP) cohort study monitoring type 1 diabetes-associated autoantibodies, we propose to model their appearance via a multivariate frailty model, which incorporates a correlation component that is important for unbiased estimation of the baseline hazards under the selective sampling mechanism. As further advantages, the frailty model allows for systematic evaluation of the association and the differences in regression parameters among the autoantibodies. We demonstrate the properties of the model by a simulation study and the analysis of the autoantibodies and their association with background factors in the DIPP study, in which we found that high genetic risk is associated with the appearance of all the autoantibodies, whereas the association with sex and urban municipality was evident for IA-2A and IAA autoantibodies.
Collapse
Affiliation(s)
- Jaakko Nevalainen
- Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Somnath Datta
- Department of Biostatistics, University of Florida, Gainesville, Florida, USA
| | - Jorma Toppari
- Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Jorma Ilonen
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Riitta Veijola
- Department of Pediatrics, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Mikael Knip
- Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Suvi M Virtanen
- Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland.,Public Health and Welfare Department, Finnish Institute for Health and Welfare, Helsinki, Finland.,Research, Development and Innovation Centre, and Center for Child Health Research, Tampere University and University Hospital, Tampere, Finland
| |
Collapse
|
14
|
Nieto J, Castillo B, Astudillo M, Tosur M, Balasubramanyam A, Pietropaolo M, Redondo MJ. Islet autoantibody types mark differential clinical characteristics at diagnosis of pediatric type 1 diabetes. Pediatr Diabetes 2021; 22:882-888. [PMID: 34018301 DOI: 10.1111/pedi.13238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/20/2021] [Accepted: 05/18/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND We aimed to study whether islet autoantibody type marks differential characteristics at the time of type 1 diabetes (T1D) diagnosis. METHODS We studied 711 children with newly diagnosed autoimmune T1D. We compared demographic (sex, age, race/ethnicity), clinical (pubertal development, BMI percentile, diabetic ketoacidosis [DKA]) and laboratory (glucose, hemoglobin A1c [HbA1c], C-peptide, tissue transglutaminase antibodies [tTGA], thyroglobulin antibodies, and thyroid peroxidase antibodies [TPOA]) characteristics by presence/absence of autoantibodies to insulin (IAA), GAD65 (GADA), or IA-2/ICA512 (IA-2A). Islet autoantibody titers were evaluated among the children positive for the relevant autoantibody type. We used multivariable analysis to adjust for potential confounders. RESULTS IAA+ was statistically associated with younger age (p < 0.0001) and lower HbA1c (p = 0.049) while Tanner stage, GADA status and number of positive islet autoantibodies were not significant in the multivariable model. GADA+ was associated with female sex (OR = 4.0, p = 0.002) and negatively with elevated tTGA titers (>50 U/mL) (OR = 0.21, p = 0.026) but not with age, IAA status, IA-2A status, islet autoantibody number, or thyroid autoimmunity. None of the associations with IA-2A positivity was statistically significant in the multivariable analysis. In multivariable models, IAA titer was significantly associated with younger age (p = 0.006), DKA (p = 0.017) and higher tTGA levels (p = 0.002); GADA titer with female sex (p = 0.028), racial minority (p = 0.046) and TPOA positivity (p = 0.021); and IA-2A titer with older age (p = 0.001) and not being African American (p = 0.024). CONCLUSIONS Islet autoantibody type is associated with differential characteristics at diagnosis of pediatric T1D. Longitudinal and mechanistic studies are needed to evaluate T1D endotypes by autoantibody type.
Collapse
Affiliation(s)
- Jacobo Nieto
- Undergraduate School, Rice University, Houston, Texas, USA
| | - Beatriz Castillo
- School of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Marcela Astudillo
- Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Mustafa Tosur
- Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Ashok Balasubramanyam
- Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, Texas, USA
| | | | - Maria J Redondo
- Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
15
|
Ibrahim TAM, Govender D, Abdullah MA, Noble JA, Hussien MO, Lane JA, Mack SJ, Martin GGN, Atkinson MA, Wasserfall CH, Ogle GD. Clinical features, biochemistry, and HLA-DRB1 status in youth-onset type 1 diabetes in Sudan. Pediatr Diabetes 2021; 22:749-757. [PMID: 33837995 PMCID: PMC8274711 DOI: 10.1111/pedi.13209] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/08/2021] [Accepted: 03/24/2021] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE To further understand clinical and biochemical features, and HLA-DRB1 genotypes, in new cases of diabetes in Sudanese children and adolescents. RESEARCH DESIGN AND METHODS Demographic characteristics, clinical information, and biochemical parameters (blood glucose, HbA1c, C-peptide, autoantibodies against glutamic acid decarboxylase 65 [GADA] and insulinoma-associated protein-2 [IA-2A], and HLA-DRB1) were assessed in 99 individuals <18 years, recently (<18 months) clinically diagnosed with T1D. HLA-DRB1 genotypes for 56 of these Arab individuals with T1D were compared to a mixed control group of 198 healthy Arab (75%) and African (25%) individuals without T1D. RESULTS Mean ± SD age at diagnosis was 10.1 ± 4.3 years (range 0.7-17.6 years) with mode at 9-12 years. A female preponderance was observed. Fifty-two individuals (55.3%) presented in diabetic ketoacidosis (DKA). Mean ± SD serum fasting C-peptide values were 0.22 ± 0.25 nmol/L (0.66±0.74 ng/ml). 31.3% were autoantibody negative, 53.4% were GADA positive, 27.2% were IA-2A positive, with 12.1% positive for both autoantibodies. Association analysis compared to 198 controls of similar ethnic origin revealed strong locus association with HLA-DRB1 (p < 2.4 × 10-14 ). Five HLA-DRB1 alleles exhibited significant T1D association: three alleles (DRB1*03:01, DRB1*04:02, and DRB1*04:05) were positively associated, while three (DRB1*10:01, DRB1*15:02, and DRB1*15:03) were protective. DRB1*03:01 had the strongest association (odds ratio = 5.04, p = 1.7 × 10-10 ). CONCLUSIONS Young Sudanese individuals with T1D generally have similar characteristics to reported European-origin T1D populations. However, they have higher rates of DKA and slightly lower autoantibody rates than reported European-origin populations, and a particularly strong association with HLA-DRB1*03:01.
Collapse
Affiliation(s)
| | - Denira Govender
- Life for a Child Program, Diabetes NSW, Glebe, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Mohamed Ahmed Abdullah
- Sudanese Children's Diabetes Association, Khartoum, Sudan
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Janelle Annette Noble
- Children's Hospital Oakland Research Institute, Oakland, California, USA
- Department of Pediatrics, University of California, San Francisco, Oakland, California, USA
| | - Mohammed Osman Hussien
- Central Laboratory, Ministry of Higher Education and Scientific Research, Khartoum, Sudan
| | - Julie Ann Lane
- Children's Hospital Oakland Research Institute, Oakland, California, USA
| | - Steven John Mack
- Department of Pediatrics, University of California, San Francisco, Oakland, California, USA
| | | | - Mark Alvin Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, Florida, USA
- Department of Pediatrics, College of Medicine, Diabetes Institute, University of Florida, Gainesville, Florida, USA
| | - Clive Henry Wasserfall
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, Florida, USA
| | - Graham David Ogle
- Life for a Child Program, Diabetes NSW, Glebe, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
16
|
Bauer W, Gyenesei A, Krętowski A. The Multifactorial Progression from the Islet Autoimmunity to Type 1 Diabetes in Children. Int J Mol Sci 2021; 22:7493. [PMID: 34299114 PMCID: PMC8305179 DOI: 10.3390/ijms22147493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/04/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
Type 1 Diabetes (T1D) results from autoimmune destruction of insulin producing pancreatic ß-cells. This disease, with a peak incidence in childhood, causes the lifelong need for insulin injections and necessitates careful monitoring of blood glucose levels. However, despite the current insulin therapies, it still shortens life expectancy due to complications affecting multiple organs. Recently, the incidence of T1D in childhood has increased by 3-5% per year in most developed Western countries. The heterogeneity of the disease process is supported by the findings of follow-up studies started early in infancy. The development of T1D is usually preceded by the appearance of autoantibodies targeted against antigens expressed in the pancreatic islets. The risk of T1D increases significantly with an increasing number of positive autoantibodies. The order of autoantibody appearance affects the disease risk. Genetic susceptibility, mainly defined by the human leukocyte antigen (HLA) class II gene region and environmental factors, is important in the development of islet autoimmunity and T1D. Environmental factors, mainly those linked to the changes in the gut microbiome as well as several pathogens, especially viruses, and diet are key modulators of T1D. The aim of this paper is to expand the understanding of the aetiology and pathogenesis of T1D in childhood by detailed description and comparison of factors affecting the progression from the islet autoimmunity to T1D in children.
Collapse
Affiliation(s)
- Witold Bauer
- Clinical Research Centre, Medical University of Białystok, Marii Skłodowskiej-Curie 24a, 15-276 Białystok, Poland; (A.G.); (A.K.)
| | - Attila Gyenesei
- Clinical Research Centre, Medical University of Białystok, Marii Skłodowskiej-Curie 24a, 15-276 Białystok, Poland; (A.G.); (A.K.)
- Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, 7624 Pécs, Hungary
| | - Adam Krętowski
- Clinical Research Centre, Medical University of Białystok, Marii Skłodowskiej-Curie 24a, 15-276 Białystok, Poland; (A.G.); (A.K.)
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Białystok, Marii Skłodowskiej-Curie 24a, 15-276 Białystok, Poland
| |
Collapse
|
17
|
Heikkilä N, Sormunen S, Mattila J, Härkönen T, Knip M, Ihantola EL, Kinnunen T, Mattila IP, Saramäki J, Arstila TP. Generation of self-reactive, shared T-cell receptor α chains in the human thymus. J Autoimmun 2021; 119:102616. [PMID: 33652347 DOI: 10.1016/j.jaut.2021.102616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/04/2021] [Accepted: 02/07/2021] [Indexed: 11/26/2022]
Abstract
The T-cell receptor (TCR) repertoire is generated in a semistochastic process of gene recombination and pairing of TCRα to TCRβ chains with the estimated total TCR diversity of >108. Despite this high diversity, similar or identical TCR chains are found to recur in immune responses. Here, we analyzed the thymic generation of TCR sequences previously associated with recognition of self- and nonself-antigens, represented by sequences associated with autoimmune diabetes and HIV, respectively. Unexpectedly, in the CD4+ compartment TCRα chains associated with the recognition of self-antigens were generated in significantly higher numbers than TCRα chains associated with the recognition of nonself-antigens. The analysis of the circulating repertoire further showed that these chains are not lost in negative selection nor predominantly converted to the regulatory T-cell lineage. The high abundance of self-reactive TCRα chains in multiple individuals suggests that the human thymus has a predilection to generate self-reactive TCRα chains independently of the HLA-type and that the individual risk of autoimmunity may be modulated by the TCRβ repertoire associated with these chains.
Collapse
Affiliation(s)
- Nelli Heikkilä
- Research Programs Unit, Translational Immunology, and Medicum, University of Helsinki, Haartmaninkatu 3, 00290, Helsinki, Finland.
| | - Silja Sormunen
- Department of Computer Science, Aalto University, Konemiehenkatu 2, 02150, Espoo, Finland
| | - Joonatan Mattila
- Research Programs Unit, Translational Immunology, and Medicum, University of Helsinki, Haartmaninkatu 3, 00290, Helsinki, Finland
| | - Taina Härkönen
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Stenbäckinkatu 9, 00290, Helsinki, Finland
| | - Mikael Knip
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Stenbäckinkatu 9, 00290, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, University of Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland; Folkhälsan Research Center, Topeliuksenkatu 25, 00250, Helsinki, Finland; Department of Pediatrics, Tampere University Hospital, Elämänaukio 2, 33520, Tampere, Finland
| | - Emmi-Leena Ihantola
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, Puijonlaaksontie 2, 70210, Kuopio, Finland
| | - Tuure Kinnunen
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, Puijonlaaksontie 2, 70210, Kuopio, Finland; Eastern Finland Laboratory Centre (ISLAB), Puijonlaaksontie 2, 70210, Kuopio, Finland
| | - Ilkka P Mattila
- Department of Pediatric Cardiac and Transplantation Surgery, Hospital for Children and Adolescents, Helsinki University Central Hospital, Stenbäckinkatu 9, 00290, Helsinki, Finland
| | - Jari Saramäki
- Department of Computer Science, Aalto University, Konemiehenkatu 2, 02150, Espoo, Finland
| | - T Petteri Arstila
- Research Programs Unit, Translational Immunology, and Medicum, University of Helsinki, Haartmaninkatu 3, 00290, Helsinki, Finland
| |
Collapse
|
18
|
Pöllänen PM, Ryhänen SJ, Toppari J, Ilonen J, Vähäsalo P, Veijola R, Siljander H, Knip M. Dynamics of Islet Autoantibodies During Prospective Follow-Up From Birth to Age 15 Years. J Clin Endocrinol Metab 2020; 105:5901133. [PMID: 32882033 PMCID: PMC7686032 DOI: 10.1210/clinem/dgaa624] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/31/2020] [Indexed: 01/23/2023]
Abstract
CONTEXT We set out to characterize the dynamics of islet autoantibodies over the first 15 years of life in children carrying genetic susceptibility to type 1 diabetes (T1D). We also assessed systematically the role of zinc transporter 8 autoantibodies (ZnT8A) in this context. DESIGN HLA-predisposed children (N = 1006, 53.0% boys) recruited from the general population during 1994 to 1997 were observed from birth over a median time of 14.9 years (range, 1.9-15.5 years) for ZnT8A, islet cell (ICA), insulin (IAA), glutamate decarboxylase (GADA), and islet antigen-2 (IA-2A) antibodies, and for T1D. RESULTS By age 15.5 years, 35 (3.5%) children had progressed to T1D. Islet autoimmunity developed in 275 (27.3%) children at a median age of 7.4 years (range, 0.3-15.1 years). The ICA seroconversion rate increased toward puberty, but the biochemically defined autoantibodies peaked at a young age. Before age 2 years, ZnT8A and IAA appeared commonly as the first autoantibody, but in the preschool years IA-2A- and especially GADA-initiated autoimmunity increased. Thereafter, GADA-positive seroconversions continued to appear steadily until ages 10 to 15 years. Inverse IAA seroconversions occurred frequently (49.3% turned negative) and marked a prolonged delay from seroconversion to diagnosis compared to persistent IAA (8.2 vs 3.4 years; P = .01). CONCLUSIONS In HLA-predisposed children, the primary autoantibody is characteristic of age and might reflect the events driving the disease process toward clinical T1D. Autoantibody persistence affects the risk of T1D. These findings provide a framework for identifying disease subpopulations and for personalizing the efforts to predict and prevent T1D.
Collapse
Affiliation(s)
- Petra M Pöllänen
- Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Samppa J Ryhänen
- Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jorma Toppari
- Department of Pediatrics, Turku University Hospital, and Institute of Biomedicine and Centre for Population Health Research, University of Turku, Turku, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku and Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Paula Vähäsalo
- Department of Pediatrics, PEDEGO Research Group, Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Riitta Veijola
- Department of Pediatrics, PEDEGO Research Group, Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Heli Siljander
- Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikael Knip
- Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Correspondence and Reprint Requests: Mikael Knip, MD, PhD, Children’s Hospital, University of Helsinki, P.O. Box 22 (Stenbäckinkatu 11), FI-00014 Helsinki, Finland. E-mail:
| |
Collapse
|
19
|
Mikk ML, Pfeiffer S, Kiviniemi M, Laine AP, Lempainen J, Härkönen T, Toppari J, Veijola R, Knip M, Ilonen J. HLA-DR-DQ haplotypes and specificity of the initial autoantibody in islet specific autoimmunity. Pediatr Diabetes 2020; 21:1218-1226. [PMID: 32613719 DOI: 10.1111/pedi.13073] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/09/2020] [Accepted: 06/22/2020] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE We aimed to clarify the association of various HLA risk alleles with different types of autoantibodies initiating islet specific autoimmunity. METHODS Follow-up cohorts from the Finnish Type 1 Diabetes Prediction and Prevention (DIPP) study and children diagnosed with type 1 diabetes (T1D) from the Finnish Pediatric Diabetes Register (FPDR) were analyzed for the presence of autoantibodies to insulin (IAA), glutamic acid decarboxylase (GADA), IA-2 antigen (IA-2A), and zinc transporter 8 (ZnT8A); and genotyped for HLA DR/DQ alleles. In the DIPP study, autoantibodies were regularly analyzed from birth up to 15 years of age. RESULTS In the DIPP cohort, 621 children developed one single persistent autoantibody, GADA in 284, IAA in 268, and IA-2A in 40 cases. Highly significant differences in the specificity of the first autoantibody were observed between HLA genotypes. Homozygotes for the DR3-DQ2 haplotype had almost exclusively GADA as the first autoantibody, whereas a more even distribution between GADA and IAA was found in DR3-DQ2/DR4-DQ8 as well as DR3-DQ/x and DR4-DQ8/x genotypes (x referring to neutral haplotypes). In DR4-DQ8 positive genotypes with the DRB1*04:01 allele IAA was more often the first autoantibody than in DRB1*04:04 positive genotypes. Various neutral haplotypes also significantly affected the relative proportions of different initial autoantibodies. These findings were confirmed and expanded in a series of 1591 T1D children under the age of 10 years from FPDR. CONCLUSIONS These results emphasize the importance of HLA class II polymorphisms in the recognition of autoantigen epitopes in the initiation of various pathways of the autoimmune response.
Collapse
Affiliation(s)
- Mari-Liis Mikk
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Sophie Pfeiffer
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Minna Kiviniemi
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Antti-Pekka Laine
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Johanna Lempainen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland.,Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Taina Härkönen
- Pediatric Research Center, Children Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jorma Toppari
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland.,Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Riitta Veijola
- Department of Pediatrics, PEDEGO Research Unit, Medical Research Center, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Mikael Knip
- Pediatric Research Center, Children Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland.,Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | | |
Collapse
|
20
|
Knoop J, Eugster A, Gavrisan A, Lickert R, Sedlmeier EM, Dietz S, Lindner A, Warncke K, Hummel N, Ziegler AG, Bonifacio E. Maternal Type 1 Diabetes Reduces Autoantigen-Responsive CD4 + T Cells in Offspring. Diabetes 2020; 69:661-669. [PMID: 31896551 DOI: 10.2337/db19-0751] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/28/2019] [Indexed: 11/13/2022]
Abstract
Autoimmunity against pancreatic β-cell autoantigens is a characteristic of childhood type 1 diabetes (T1D). Autoimmunity usually appears in genetically susceptible children with the development of autoantibodies against (pro)insulin in early childhood. The offspring of mothers with T1D are protected from this process. The aim of this study was to determine whether the protection conferred by maternal T1D is associated with improved neonatal tolerance against (pro)insulin. Consistent with improved neonatal tolerance, the offspring of mothers with T1D had reduced cord blood CD4+ T-cell responses to proinsulin and insulin, a reduction in the inflammatory profile of their proinsulin-responsive CD4+ T cells, and improved regulation of CD4+ T cell responses to proinsulin at 9 months of age, as compared with offspring with a father or sibling with T1D. Maternal T1D was also associated with a modest reduction in CpG methylation of the INS gene in cord blood mononuclear cells from offspring with a susceptible INS genotype. Our findings support the concept that a maternal T1D environment improves neonatal immune tolerance against the autoantigen (pro)insulin.
Collapse
Affiliation(s)
- Jan Knoop
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Anne Eugster
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Anita Gavrisan
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Ramona Lickert
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Eva-Maria Sedlmeier
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Sevina Dietz
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Annett Lindner
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of Helmholtz Centre Munich at University Clinic Carl Gustav Carus, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Katharina Warncke
- Department of Pediatrics, Klinikum Rechts der Isar, School of Medicine, Technical University Munich, Munich, Germany
| | - Nadine Hummel
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Anette-Gabriele Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
- Forschergruppe Diabetes, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
- Forschergruppe Diabetes e.V., Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Ezio Bonifacio
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of Helmholtz Centre Munich at University Clinic Carl Gustav Carus, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| |
Collapse
|
21
|
Koskinen MK, Mikk ML, Laine AP, Lempainen J, Löyttyniemi E, Vähäsalo P, Hekkala A, Härkönen T, Kiviniemi M, Simell O, Knip M, Veijola R, Ilonen J, Toppari J. Longitudinal Pattern of First-Phase Insulin Response Is Associated With Genetic Variants Outside the Class II HLA Region in Children With Multiple Autoantibodies. Diabetes 2020; 69:12-19. [PMID: 31591105 DOI: 10.2337/db19-0329] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 10/02/2019] [Indexed: 11/13/2022]
Abstract
A declining first-phase insulin response (FPIR) is associated with positivity for multiple islet autoantibodies, irrespective of class II HLA DR-DQ genotype. We examined the associations of FPIR with genetic variants outside the HLA DR-DQ region in the Finnish Type 1 Diabetes Prediction and Prevention (DIPP) study in children with and without multiple autoantibodies. Association between FPIR and class I alleles A*24 and B*39 and eight single nucleotide polymorphisms outside the HLA region were analyzed in 438 children who had one or more FPIR results available after seroconversion. Hierarchical linear mixed models were used to analyze repeated measurements of FPIR. In children with multiple autoantibodies, the change in FPIR over time was significantly different between those with various PTPN2 (rs45450798), FUT2 (rs601338), CTSH (rs3825932), and IKZF4 (rs1701704) genotypes in at least one of the models. In general, children carrying susceptibility alleles for type 1 diabetes experienced a more rapid decline in insulin secretion compared with children without susceptibility alleles. The presence of the class I HLA A*24 allele was also associated with a steeper decline of FPIR over time in children with multiple autoantibodies. Certain genetic variants outside the class II HLA region may have a significant impact on the longitudinal pattern of FPIR.
Collapse
Affiliation(s)
- Maarit K Koskinen
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
- Medicity, University of Turku, Turku, Finland
| | - Mari-Liis Mikk
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku and Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Antti-Pekka Laine
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku and Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Johanna Lempainen
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku and Clinical Microbiology, Turku University Hospital, Turku, Finland
| | | | - Paula Vähäsalo
- Department of Pediatrics, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Anne Hekkala
- Department of Pediatrics, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Taina Härkönen
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Minna Kiviniemi
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku and Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Olli Simell
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
| | - Mikael Knip
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland
| | - Riitta Veijola
- Department of Pediatrics, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku and Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Jorma Toppari
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| |
Collapse
|
22
|
Battaglia M, Ahmed S, Anderson MS, Atkinson MA, Becker D, Bingley PJ, Bosi E, Brusko TM, DiMeglio LA, Evans-Molina C, Gitelman SE, Greenbaum CJ, Gottlieb PA, Herold KC, Hessner MJ, Knip M, Jacobsen L, Krischer JP, Long SA, Lundgren M, McKinney EF, Morgan NG, Oram RA, Pastinen T, Peters MC, Petrelli A, Qian X, Redondo MJ, Roep BO, Schatz D, Skibinski D, Peakman M. Introducing the Endotype Concept to Address the Challenge of Disease Heterogeneity in Type 1 Diabetes. Diabetes Care 2020; 43:5-12. [PMID: 31753960 PMCID: PMC6925574 DOI: 10.2337/dc19-0880] [Citation(s) in RCA: 211] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023]
Abstract
The clinical diagnosis of new-onset type 1 diabetes has, for many years, been considered relatively straightforward. Recently, however, there is increasing awareness that within this single clinical phenotype exists considerable heterogeneity: disease onset spans the complete age range; genetic susceptibility is complex; rates of progression differ markedly, as does insulin secretory capacity; and complication rates, glycemic control, and therapeutic intervention efficacy vary widely. Mechanistic and immunopathological studies typically show considerable patchiness across subjects, undermining conclusions regarding disease pathways. Without better understanding, type 1 diabetes heterogeneity represents a major barrier both to deciphering pathogenesis and to the translational effort of designing, conducting, and interpreting clinical trials of disease-modifying agents. This realization comes during a period of unprecedented change in clinical medicine, with increasing emphasis on greater individualization and precision. For complex disorders such as type 1 diabetes, the option of maintaining the "single disease" approach appears untenable, as does the notion of individualizing each single patient's care, obliging us to conceptualize type 1 diabetes less in terms of phenotypes (observable characteristics) and more in terms of disease endotypes (underlying biological mechanisms). Here, we provide our view on an approach to dissect heterogeneity in type 1 diabetes. Using lessons from other diseases and the data gathered to date, we aim to delineate a roadmap through which the field can incorporate the endotype concept into laboratory and clinical practice. We predict that such an effort will accelerate the implementation of precision medicine and has the potential for impact on our approach to translational research, trial design, and clinical management.
Collapse
Affiliation(s)
- Manuela Battaglia
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Hospital, Milan, Italy
| | | | - Mark S Anderson
- Diabetes Center, University of California, San Francisco, San Francisco, CA
| | - Mark A Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Dorothy Becker
- Division of Endocrinology and Diabetes, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
| | - Polly J Bingley
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, U.K
| | - Emanuele Bosi
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Hospital, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy, and Department of Internal Medicine, IRCCS San Raffaele Hospital, Milan, Italy
| | - Todd M Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Linda A DiMeglio
- Division of Pediatric Endocrinology and Diabetology and Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Carmella Evans-Molina
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - Stephen E Gitelman
- Division of Pediatric Endocrinology and Diabetes, University of California, San Francisco, San Francisco, CA
| | | | - Peter A Gottlieb
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO
| | - Kevan C Herold
- Department of Immunobiology, Yale University, New Haven, CT
| | - Martin J Hessner
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
| | - Mikael Knip
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Clinical and Molecular Metabolism Research Program, University of Helsinki, Helsinki, Finland
| | - Laura Jacobsen
- Department of Pediatrics, University of Florida, Gainesville, FL
| | - Jeffrey P Krischer
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - S Alice Long
- Diabetes Program, Benaroya Research Institute, Seattle, WA
| | - Markus Lundgren
- Department of Clinical Sciences, Clinical Research Centre, Faculty of Medicine, Lund University, and Skåne University Hospital, Malmö, Sweden
| | - Eoin F McKinney
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, U.K
| | - Noel G Morgan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K.,University of Exeter Medical School and Royal Devon and Exeter Hospital, Exeter, U.K
| | - Richard A Oram
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Royal Devon and Exeter Hospital, Exeter, U.K.,NIHR Exeter Clinical Research Facility, University of Exeter Medical School, Exeter, U.K.,Academic Renal Unit, Royal Devon and Exeter NHS Foundation Trust, Exeter, U.K
| | - Tomi Pastinen
- Center for Pediatric Genomic Medicine, Children's Mercy Kansas City, Kansas City, MO
| | - Michael C Peters
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Alessandra Petrelli
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Hospital, Milan, Italy
| | - Xiaoning Qian
- Department of Electrical and Computer Engineering, TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, TX
| | - Maria J Redondo
- Baylor College of Medicine, Texas Children's Hospital, Houston, TX
| | - Bart O Roep
- Department of Diabetes Immunology, Diabetes & Metabolism Research Institute, Beckman Research Institute, National Medical Center, City of Hope, Duarte, CA.,Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Desmond Schatz
- Department of Pediatrics, University of Florida, Gainesville, FL
| | | | - Mark Peakman
- Peter Gorer Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London, U.K. .,King's Health Partners Institute of Diabetes, Obesity and Endocrinology, London, U.K
| |
Collapse
|
23
|
Ilonen J, Lempainen J, Veijola R. The heterogeneous pathogenesis of type 1 diabetes mellitus. Nat Rev Endocrinol 2019; 15:635-650. [PMID: 31534209 DOI: 10.1038/s41574-019-0254-y] [Citation(s) in RCA: 241] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/13/2019] [Indexed: 12/14/2022]
Abstract
Type 1 diabetes mellitus (T1DM) results from the destruction of pancreatic β-cells that is mediated by the immune system. Multiple genetic and environmental factors found in variable combinations in individual patients are involved in the development of T1DM. Genetic risk is defined by the presence of particular allele combinations, which in the major susceptibility locus (the HLA region) affect T cell recognition and tolerance to foreign and autologous molecules. Multiple other loci also regulate and affect features of specific immune responses and modify the vulnerability of β-cells to inflammatory mediators. Compared with the genetic factors, environmental factors that affect the development of T1DM are less well characterized but contact with particular microorganisms is emerging as an important factor. Certain infections might affect immune regulation, and the role of commensal microorganisms, such as the gut microbiota, are important in the education of the developing immune system. Some evidence also suggests that nutritional factors are important. Multiple islet-specific autoantibodies are found in the circulation from a few weeks to up to 20 years before the onset of clinical disease and this prediabetic phase provides a potential opportunity to manipulate the islet-specific immune response to prevent or postpone β-cell loss. The latest developments in understanding the heterogeneity of T1DM and characterization of major disease subtypes might help in the development of preventive treatments.
Collapse
Affiliation(s)
- Jorma Ilonen
- Institue of Biomedicine, University of Turku and Clinical Microbiology, Turku University Hospital, Turku, Finland.
| | - Johanna Lempainen
- Institue of Biomedicine, University of Turku and Clinical Microbiology, Turku University Hospital, Turku, Finland
- Department of Paediatrics, University of Turku and Turku University Hospital, Turku, Finland
| | - Riitta Veijola
- Department of Paediatrics, University of Oulu and Oulu University Hospital, Oulu, Finland
| |
Collapse
|
24
|
Pöllänen PM, Lempainen J, Laine AP, Toppari J, Veijola R, Ilonen J, Siljander H, Knip M. Characteristics of Slow Progression to Type 1 Diabetes in Children With Increased HLA-Conferred Disease Risk. J Clin Endocrinol Metab 2019; 104:5585-5594. [PMID: 31314077 DOI: 10.1210/jc.2019-01069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/11/2019] [Indexed: 12/19/2022]
Abstract
CONTEXT Characterization of slow progression to type 1 diabetes (T1D) may reveal novel means for prevention of T1D. Slow progressors might carry natural immunomodulators that delay β-cell destruction and mediate preservation of β-cell function. OBJECTIVE To identify demographic, genetic, and immunological characteristics of slow progression from seroconversion to clinical T1D. DESIGN HLA-susceptible children (n = 7410) were observed from birth for islet cell antibody (ICA), insulin autoantibody (IAA), glutamic acid decarboxylase (GADA), and islet antigen-2 autoantibodies (IA-2A), and for clinical T1D. Disease progression that lasted ≥7.26 years (slowest) quartile from initial seroconversion to diagnosis was considered slow. Autoantibody and genetic characteristics including 45 non-HLA single nucleotide polymorphisms (SNPs) predisposing to T1D were analyzed. RESULTS By the end of 2015, 1528 children (21%) had tested autoantibody positive and 247 (16%) had progressed to T1D. The median delay from seroconversion to diagnosis was 8.7 years in slow (n = 62, 25%) and 3.0 years in other progressors. Compared with other progressors, slow progressors were less often multipositive, had lower ICA and IAA titers, and lower frequency of IA-2A at seroconversion. Slow progressors were born more frequently in the fall, whereas other progressors were born more often in the spring. Compared with multipositive nonprogressors, slow progressors were younger, had higher ICA titers, and higher frequency of IAA and multiple autoantibodies at seroconversion. We found no differences in the distributions of non-HLA SNPs between progressors. CONCLUSIONS We observed differences in autoantibody characteristics and the season of birth among progressors, but no characteristics present at seroconversion that were specifically predictive for slow progression.
Collapse
Affiliation(s)
- Petra M Pöllänen
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Johanna Lempainen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku and Clinical Microbiology, Turku University Hospital, Turku, Finland
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
| | - Antti-Pekka Laine
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku and Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Jorma Toppari
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
- Institute of Biomedicine and Centre for Population Health Research, University of Turku, Turku, Finland
| | - Riitta Veijola
- Department of Pediatrics, PEDEGO Research Group, Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku and Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Heli Siljander
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikael Knip
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland
- Folkhälsan Research Center, Helsinki, Finland
| |
Collapse
|
25
|
Slight-Webb S, Bourn RL, Holers VM, James JA. Shared and unique immune alterations in pre-clinical autoimmunity. Curr Opin Immunol 2019; 61:60-68. [PMID: 31557691 DOI: 10.1016/j.coi.2019.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/01/2019] [Accepted: 08/26/2019] [Indexed: 02/08/2023]
Abstract
Progression from health to a classified autoimmune disease is an evolving process that can happen rapidly in some diseases, but usually takes years to develop. Specific immune alterations predate pathogenic autoimmunity and can be used as disease biomarkers to identify high-risk individuals for prevention studies applied in the pre-clinical state. Here we discuss recent findings that illuminate specific immune pathways that are altered in the earliest phases of pre-clinical autoimmunity as well as those mediators more closely associated with later clinically apparent and classified disease onset.
Collapse
Affiliation(s)
- Samantha Slight-Webb
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Rebecka L Bourn
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - V Michael Holers
- Medicine and Rheumatology, University of Colorado School of Medicine, Aurora, CO 80045, United States
| | - Judith A James
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States; Medicine and Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States.
| |
Collapse
|
26
|
Chiarelli F, Giannini C, Primavera M. Prediction and prevention of type 1 diabetes in children. Clin Pediatr Endocrinol 2019; 28:43-57. [PMID: 31384096 PMCID: PMC6646239 DOI: 10.1297/cpe.28.43] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/02/2019] [Indexed: 12/14/2022] Open
Abstract
Type 1 diabetes (T1D) is a chronic T-cell mediated autoimmune disease characterized by
destruction of beta cells. Although new data have better defined the complex etiology
underling the interrelation of genetic and environmental factors in the natural history of
T1D, relevant pieces of the puzzle still are missing. Genetic predisposition is mainly
associated to some histocompatibility leukocyte antigen (HLA) alleles; however, recent
data suggest that new as well as still unknown genes might better define the complex
multigenetic risk of the disease. In addition to the genetic effects, the concordance in
familial aggregation in T1D indicates a pivotal role of environmental factors in the
course of the disease, facilitating autoantibodies production. JDRF has recently proposed
a new early stage of T1D according to which the detection of two or more autoantibodies in
the blood, might describe those children at increased risk of developing T1D during the
following years. In contrast to the improvements reached by prediction models, to date
primary, secondary and tertiary prevention have still failed to achieve a safe and
efficacious intervention strategies. Anyway, the most recent progresses in this field pave
the way for future studies, with the aim of preventing T1D in children.
Collapse
Affiliation(s)
| | - Cosimo Giannini
- Department of Paediatrics, University of Chieti, Chieti, Italy
| | | |
Collapse
|
27
|
Purcell AW, Sechi S, DiLorenzo TP. The Evolving Landscape of Autoantigen Discovery and Characterization in Type 1 Diabetes. Diabetes 2019; 68:879-886. [PMID: 31010879 PMCID: PMC6477901 DOI: 10.2337/dbi18-0066] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 01/29/2019] [Indexed: 12/20/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that is caused, in part, by T cell-mediated destruction of insulin-producing β-cells. High risk for disease, in those with genetic susceptibility, is predicted by the presence of two or more autoantibodies against insulin, the 65-kDa form of glutamic acid decarboxylase (GAD65), insulinoma-associated protein 2 (IA-2), and zinc transporter 8 (ZnT8). Despite this knowledge, we still do not know what leads to the breakdown of tolerance to these autoantigens, and we have an incomplete understanding of T1D etiology and pathophysiology. Several new autoantibodies have recently been discovered using innovative technologies, but neither their potential utility in monitoring disease development and treatment nor their role in the pathophysiology and etiology of T1D has been explored. Moreover, neoantigen generation (through posttranslational modification, the formation of hybrid peptides containing two distinct regions of an antigen or antigens, alternative open reading frame usage, and translation of RNA splicing variants) has been reported, and autoreactive T cells that target these neoantigens have been identified. Collectively, these new studies provide a conceptual framework to understand the breakdown of self-tolerance, if such modifications occur in a tissue- or disease-specific context. A recent workshop sponsored by the National Institute of Diabetes and Digestive and Kidney Diseases brought together investigators who are using new methods and technologies to identify autoantigens and characterize immune responses toward these proteins. Researchers with diverse expertise shared ideas and identified resources to accelerate antigen discovery and the detection of autoimmune responses in T1D. The application of this knowledge will direct strategies for the identification of improved biomarkers for disease progression and treatment response monitoring and, ultimately, will form the foundation for novel antigen-specific therapeutics. This Perspective highlights the key issues that were addressed at the workshop and identifies areas for future investigation.
Collapse
Affiliation(s)
- Anthony W Purcell
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Salvatore Sechi
- Division of Diabetes, Endocrinology, and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Teresa P DiLorenzo
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY
- Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
28
|
Mathieu C, Lahesmaa R, Bonifacio E, Achenbach P, Tree T. Immunological biomarkers for the development and progression of type 1 diabetes. Diabetologia 2018; 61:2252-2258. [PMID: 30209538 DOI: 10.1007/s00125-018-4726-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022]
Abstract
Immune biomarkers of type 1 diabetes are many and diverse. Some of these, such as the autoantibodies, are well established but not discriminative enough to deal with the heterogeneity inherent to type 1 diabetes progression. As an alternative, high hopes are placed on T cell assays, which give insight into the cells that actually target the beta cell or play a crucial role in maintaining tolerance. These assays are approaching a level of robustness that may allow for solid conclusions on both disease progression and therapeutic efficacy of immune interventions. In addition, 'omics' approaches to biomarker discovery are rapidly progressing. The potential emergence of novel biomarkers creates a need for the introduction of bioinformatics and 'big data' analysis systems for the integration of the multitude of biomarker data that will be available, to translate these data into clinical tools. It is worth noting that it is unlikely that the same markers will apply to all individuals. Instead, individualised signatures of biomarkers, combining autoantibodies, T cell profiles and other biomarkers, will need to be used to classify at-risk patients into various categories, thus enabling personalised prediction, prevention and treatment approaches. To achieve this goal, the standardisation of assays for biomarker discovery, the integration of analyses and data from biomarker studies and, most importantly, the careful clinical characterisation of individuals providing samples for these studies are critical. Longitudinal sample-collection initiatives, like INNODIA, should lead to novel biomarker discovery, not only providing a better understanding of type 1 diabetes onset and progression, but also yielding biomarkers of therapeutic efficacy of interventions to prevent or arrest type 1 diabetes.
Collapse
Affiliation(s)
- Chantal Mathieu
- Department of Endocrinology, University Hospital Gasthuisberg, KU Leuven, Herestraat, 49 3000, Leuven, Belgium.
| | - Riitta Lahesmaa
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Ezio Bonifacio
- DFG Center for Regenerative Therapies Dresden, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden, Helmholtz Zentrum München, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Peter Achenbach
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Diabetes Research, Munich-Neuherberg, Germany
| | - Timothy Tree
- Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, Borough Wing Guy's Hospital, London, UK
- NIHR Biomedical Research Centre, Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK
| |
Collapse
|
29
|
Yi L, Swensen AC, Qian WJ. Serum biomarkers for diagnosis and prediction of type 1 diabetes. Transl Res 2018; 201:13-25. [PMID: 30144424 PMCID: PMC6177288 DOI: 10.1016/j.trsl.2018.07.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/02/2018] [Accepted: 07/24/2018] [Indexed: 12/25/2022]
Abstract
Type 1 diabetes (T1D) culminates in the autoimmune destruction of the pancreatic βcells, leading to insufficient production of insulin and development of hyperglycemia. Serum biomarkers including a combination of glucose, glycated molecules, C-peptide, and autoantibodies have been well established for the diagnosis of T1D. However, these molecules often mark a late stage of the disease when ∼90% of the pancreatic insulin-producing β-cells have already been lost. With the prevalence of T1D increasing worldwide and because of the physical and psychological burden induced by this disease, there is a great need for prognostic biomarkers to predict T1D development or progression. This would allow us to identify individuals at high risk for early prevention and intervention. Therefore, considerable efforts have been dedicated to the understanding of disease etiology and the discovery of novel biomarkers in the last few decades. The advent of high-throughput and sensitive "-omics" technologies for the study of proteins, nucleic acids, and metabolites have allowed large scale profiling of protein expression and gene changes in T1D patients relative to disease-free controls. In this review, we briefly discuss the classical diagnostic biomarkers of T1D but mainly focus on the novel biomarkers that are identified as markers of β-cell destruction and screened with the use of state-of-the-art "-omics" technologies.
Collapse
Affiliation(s)
- Lian Yi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Adam C Swensen
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington.
| |
Collapse
|
30
|
Turtinen M, Härkönen T, Parkkola A, Ilonen J, Knip M. Sex as a determinant of type 1 diabetes at diagnosis. Pediatr Diabetes 2018; 19:1221-1228. [PMID: 29862628 DOI: 10.1111/pedi.12697] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/02/2018] [Accepted: 05/23/2018] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE The present study tested the hypothesis that girls have a more aggressive disease process than boys at the diagnosis of type 1 diabetes (T1D). METHODS Demographic and clinical characteristics, the humoral autoantibody profile, and the genetic risk assessed by the presence of human leukocyte antigen DR-DQ haplotypes were analyzed in terms of sex in 4993 children and adolescents diagnosed with T1D between January 2003 and December 2016. RESULTS A clear male preponderance (56.6%) was observed in our cohort and boys were significantly older than girls at clinical diagnosis (mean 8.3 vs 7.7 years, P < .001). Age-adjusted analyses showed a poorer metabolic decompensation in girls than boys at diagnosis. Boys tested more often positive for autoantibodies against insulin autoantibodies (P = .008), islet antigen-2 autoantibodies (P = .033), and zinc transporter 8 autoantibodies (P = .027), whereas girls had a higher frequency of glutamic acid decarboxylase autoantibodies (GADA) (P < .001) and higher GADA (P < .001) and islet cell antibody titers (P = .001). We did not find any significant differences in the genetic risk profile between girls and boys. CONCLUSIONS Our data show that the metabolic derangement is more severe in girls already at diagnosis of T1D and this finding is independent of age. The immunologic aggressiveness of the disease is more variable as the predominance of different autoantibodies varies between sexes with a higher frequency of GADA in girls, while the 3 other biochemical autoantibodies were more common in boys.
Collapse
Affiliation(s)
- Maaret Turtinen
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Taina Härkönen
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Anna Parkkola
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Mikael Knip
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland.,Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland
| | | |
Collapse
|
31
|
Zou J, Gao X, Liu T, Liang R, Liu Y, Wang G, Wang L, Liu N, Sun P, Wang Z, Wang S, Shen Z. Ethylenecarbodiimide-fixed splenocytes carrying whole islet antigens decrease the incidence of diabetes in NOD mice via down-regulation of effector memory T cells and autoantibodies. Endocr J 2018; 65:943-952. [PMID: 29998909 DOI: 10.1507/endocrj.ej18-0158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a syndrome of loss of glucose homeostasis caused by the loss of β cell chronic autoimmunity against islet cells. Islet-specific epitopes coupled antigen presenting cells by Ethylenecarbodiimide (ECDI) is a promising strategy to induce antigen-specific tolerance. However, single epitope induced tolerance is insufficient to prevent the onset of T1DM. The aim of this study is to evaluate the efficacy of whole islet antigens in preventing the onset and progression of T1DM and identify the underlying immune mechanism in NOD mice. In this study, the whole islet antigens, derived from islet lysate isolated from BALB/c mice, were coupled to splenocytes of BALB/c mice by ECDI fixation (SP-Islet lysate), and then intravenously administrated to NOD mice. The results showed that, compared with control group, SP-Islet lysate group significantly decreased T1DM incidence and improved the survival of NOD mice. SP-Islet lysate treated mice had reduced insulitis score and autoantibody levels, and improved glucose tolerance and insulin/glucagon production. Furthermore, the effector memory T cells (TEMs) were downregulated and regulatory T cells (Tregs) were upregulated by the SP-Islet lysate treatment, with reduced populations of Th1&Th17 cells. In conclusion, ECDI-fixed splenocytes carrying whole islet antigens effectively prevented the onset of T1DM in NOD mice, via suppressing the production of autoantibodies and inducing anergy of autoreactive T cells.
Collapse
Affiliation(s)
- Jiaqi Zou
- Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin First Center Hospital, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Tianjin, China
| | - Xinpu Gao
- Tianjin Medical University, Tianjin, China
- Organ Transplant Center, Tianjin First Central Hospital, Tianjin, China
| | - Tengli Liu
- Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin First Center Hospital, Tianjin, China
| | - Rui Liang
- Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin First Center Hospital, Tianjin, China
| | - Yaojuan Liu
- Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin First Center Hospital, Tianjin, China
| | - Guanqiao Wang
- Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin First Center Hospital, Tianjin, China
| | - Le Wang
- Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin First Center Hospital, Tianjin, China
| | - Na Liu
- Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin First Center Hospital, Tianjin, China
| | - Peng Sun
- Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin First Center Hospital, Tianjin, China
| | - Zhiping Wang
- Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin First Center Hospital, Tianjin, China
- Organ Transplant Center, Tianjin First Central Hospital, Tianjin, China
- Tianjin Clinical Research Center for Organ Transplantation, Tianjin First Center Hospital, Tianjin, China
| | - Shusen Wang
- Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin First Center Hospital, Tianjin, China
- Organ Transplant Center, Tianjin First Central Hospital, Tianjin, China
- Tianjin Clinical Research Center for Organ Transplantation, Tianjin First Center Hospital, Tianjin, China
| | - Zhongyang Shen
- Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin First Center Hospital, Tianjin, China
- Organ Transplant Center, Tianjin First Central Hospital, Tianjin, China
- Tianjin Clinical Research Center for Organ Transplantation, Tianjin First Center Hospital, Tianjin, China
| |
Collapse
|
32
|
Koskinen MK, Lempainen J, Löyttyniemi E, Helminen O, Hekkala A, Härkönen T, Kiviniemi M, Simell O, Knip M, Ilonen J, Toppari J, Veijola R. Class II HLA Genotype Association With First-Phase Insulin Response Is Explained by Islet Autoantibodies. J Clin Endocrinol Metab 2018; 103:2870-2878. [PMID: 29300921 PMCID: PMC6097602 DOI: 10.1210/jc.2017-02040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/21/2017] [Indexed: 12/17/2022]
Abstract
CONTEXT A declining first-phase insulin response (FPIR) is characteristic of the disease process leading to clinical type 1 diabetes. It is not known whether reduced FPIR depends on class II human leukocyte antigen (HLA) genotype, islet autoimmunity, or both. OBJECTIVE To dissect the role of class II HLA DR-DQ genotypes and biochemical islet autoantibodies in the compromised FPIR. DESIGN, SETTING, PARTICIPANTS A total of 438 children with defined HLA DR-DQ genotype in the prospective Finnish Type 1 Diabetes Prediction and Prevention Study were analyzed for FPIR in a total of 1149 intravenous glucose tolerance tests and were categorized by their HLA DR-DQ genotype and the number of biochemical islet autoantibodies at the time of the first FPIR. Age-adjusted hierarchical linear mixed models were used to analyze repeated measurements of FPIR. MAIN OUTCOME MEASURE The associations between class II HLA DR-DQ genotype, islet autoantibody status, and FPIR. RESULTS A strong association between the degree of risk conferred by HLA DR-DQ genotype and positivity for islet autoantibodies existed (P < 0.0001). FPIR was inversely associated with the number of biochemical autoantibodies (P < 0.0001) irrespective of HLA DR-DQ risk group. FPIR decreased over time in children with multiple autoantibodies and increased in children with no biochemical autoantibodies (P < 0.0001 and P = 0.0013, respectively). CONCLUSIONS The class II HLA DR-DQ genotype association with FPIR was secondary to the association between HLA and islet autoimmunity. Declining FPIR was associated with positivity for multiple islet autoantibodies irrespective of class II HLA DR-DQ genotype.
Collapse
Affiliation(s)
- Maarit K Koskinen
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
- Correspondence and Reprint Requests: Maarit K. Koskinen, MD, University of Turku, Lemminkäisenkatu 3, 20520 Turku, Finland. E-mail:
| | - Johanna Lempainen
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku and Turku University Hospital, Turku, Finland
| | | | - Olli Helminen
- Department of Pediatrics, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Anne Hekkala
- Department of Pediatrics, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Taina Härkönen
- Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Minna Kiviniemi
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku and Turku University Hospital, Turku, Finland
| | - Olli Simell
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
| | - Mikael Knip
- Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku and Turku University Hospital, Turku, Finland
| | - Jorma Toppari
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Riitta Veijola
- Department of Pediatrics, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| |
Collapse
|
33
|
Greenbaum CJ, Speake C, Krischer J, Buckner J, Gottlieb PA, Schatz DA, Herold KC, Atkinson MA. Strength in Numbers: Opportunities for Enhancing the Development of Effective Treatments for Type 1 Diabetes-The TrialNet Experience. Diabetes 2018; 67:1216-1225. [PMID: 29769238 PMCID: PMC6014559 DOI: 10.2337/db18-0065] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/20/2018] [Indexed: 12/12/2022]
Abstract
The early to mid-1980s were an inflection point in the history of type 1 diabetes research. Two landmark events occurred: the initiation of immune-based interventions seeking to prevent type 1 diabetes and the presentation of an innovative model describing the disorder's natural history. Both formed the basis for hundreds of subsequent studies designed to achieve a dramatic therapeutic goal-a means to prevent and/or reverse type 1 diabetes. However, the need to screen large numbers of individuals and prospectively monitor them using immunologic and metabolic tests for extended periods of time suggested such efforts would require a large collaborative network. Hence, the National Institutes of Health formed the landmark Diabetes Prevention Trial-Type 1 (DPT-1) in the mid-1990s, an effort that led to Type 1 Diabetes TrialNet. TrialNet studies have helped identify novel biomarkers; delineate type 1 diabetes progression, resulting in identification of highly predictable stages defined by the accumulation of autoantibodies (stage 1), dysglycemia (stage 2), and disease meeting clinical criteria for diagnosis (stage 3); and oversee numerous clinical trials aimed at preventing disease progression. Such efforts pave the way for stage-specific intervention trials with improved hope that a means to effectively disrupt the disorder's development will be identified.
Collapse
Affiliation(s)
- Carla J Greenbaum
- Clinical Research Center, Diabetes Research Program, Benaroya Research Institute at Virginia Mason, Seattle, WA
| | - Cate Speake
- Clinical Research Center, Diabetes Research Program, Benaroya Research Institute at Virginia Mason, Seattle, WA
| | - Jeffrey Krischer
- Diabetes Center and Pediatric Epidemiology Center, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Jane Buckner
- Clinical Research Center, Diabetes Research Program, Benaroya Research Institute at Virginia Mason, Seattle, WA
| | - Peter A Gottlieb
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO
| | - Desmond A Schatz
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL
| | - Kevan C Herold
- Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT
| | - Mark A Atkinson
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL
- Department of Pathology, College of Medicine, University of Florida, Gainesville, FL
| |
Collapse
|
34
|
Balke EM, Balti EV, Van der Auwera B, Weets I, Costa O, Demeester S, Abrams P, Casteels K, Coeckelberghs M, Tenoutasse S, Keymeulen B, Pipeleers DG, Gorus FK. Accelerated Progression to Type 1 Diabetes in the Presence of HLA-A*24 and -B*18 Is Restricted to Multiple Islet Autoantibody-Positive Individuals With Distinct HLA-DQ and Autoantibody Risk Profiles. Diabetes Care 2018; 41:1076-1083. [PMID: 29545461 DOI: 10.2337/dc17-2462] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/20/2018] [Indexed: 02/03/2023]
Abstract
OBJECTIVE We investigated the effect of HLA class I risk alleles on disease progression in various phases of subclinical islet autoimmunity in first-degree relatives of patients with type 1 diabetes. RESEARCH DESIGN AND METHODS A registry-based group of siblings/offspring (aged 0-39 years) was monitored from single- to multiple-autoantibody positivity (n = 267) and from multiple-autoantibody positivity to clinical onset (n = 252) according to HLA-DQ, -A*24, -B*18, and -B*39 status. Genetic markers were determined by PCR sequence-specific oligotyping. RESULTS Unlike HLA-B*18 or -B*39, HLA-A*24 was associated with delayed progression from single- to multiple-autoantibody positivity (P = 0.009) but not to type 1 diabetes. This occurred independently from older age (P < 0.001) and absence of HLA-DQ2/DQ8 or -DQ8 (P < 0.001 and P = 0.003, respectively), and only in the presence of GAD autoantibodies. In contrast, HLA-A*24 was associated with accelerated progression from multiple-autoantibody positivity to clinical onset (P = 0.006), but its effects were restricted to HLA-DQ8+ relatives with IA-2 or zinc transporter 8 autoantibodies (P = 0.002). HLA-B*18, but not -B*39, was also associated with more rapid progression, but only in HLA-DQ2 carriers with double positivity for GAD and insulin autoantibodies (P = 0.004). CONCLUSIONS HLA-A*24 predisposes to a delayed antigen spreading of humoral autoimmunity, whereas HLA-A*24 and -B*18 are associated with accelerated progression of advanced subclinical autoimmunity in distinct risk groups. The relation of these alleles to the underlying disease process requires further investigation. Their typing should be relevant for the preparation and interpretation of observational and interventional studies in asymptomatic type 1 diabetes.
Collapse
Affiliation(s)
- Else M Balke
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eric V Balti
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Clinical Chemistry, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | | | - Ilse Weets
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Clinical Chemistry, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Olivier Costa
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Clinical Chemistry, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Simke Demeester
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Clinical Chemistry, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Pascale Abrams
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Endocrinology and Diabetology, GasthuisZusters Antwerpen Campus Sint Augustinus en Sint Vincentius, Antwerp, Belgium
| | - Kristina Casteels
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Pediatrics, Universitaire Ziekenhuizen Leuven, Leuven, Belgium
| | - Marina Coeckelberghs
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Diabetology, Paola Kinderziekenhuis, Antwerp, Belgium
| | - Sylvie Tenoutasse
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium.,Diabetology Clinic, Hôpital Universitaire des Enfants Reine Fabiola, Brussels, Belgium
| | - Bart Keymeulen
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Diabetology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | | | - Frans K Gorus
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Clinical Chemistry, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | | |
Collapse
|